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Genome-resolved correlation mapping links
microbial community structure tometabolic
interactions driving methane production
from wastewater

Brandon Kieft 1, Niko Finke1, Ryan J. McLaughlin1,2, Aditi N. Nallan1,2,
Martin Krzywinski3, Sean A. Crowe 1,4 & Steven J. Hallam 1,2,5,6,7,8

Anaerobic digestion ofmunicipal mixed sludge producesmethane that can be
converted into renewable natural gas. To improve economics of this microbial
mediated process, metabolic interactions catalyzing biomass conversion to
energy need to be identified. Here, we present a two-year time series asso-
ciating microbial metabolism and physicochemistry in a full-scale wastewater
treatment plant. By creating a co-occurrence network with thousands of time-
resolved microbial populations from over 100 samples spanning four oper-
ating configurations, known and novel microbial consortia with potential to
drive methane production were identified. Interactions between these popu-
lations were further resolved in relation to specific process configurations by
mappingmetagenome assembled genomes and cognate gene expression data
onto the network. Prominent interactions included transcriptionally active
Methanolinea methanogens and syntrophic benzoate oxidizing Syn-
trophorhabdus, as well as a Methanoregulaceae population and putative syn-
trophic acetate oxidizing bacteria affiliated with Bateroidetes (Tenuifilaceae)
expressing the glycine cleavage bypass of the Wood–Ljungdahl pathway.

Renewable natural gas (RNG), primarily composed of biogenic
methane (CH4) and carbon dioxide is an important non-fossil energy
resource useful in the transition to a low carbon future1. Despite
widespread adoption of technologies such as anaerobic digestion (AD)
to produce biogenic CH4, industrial-scale AD converting organic waste
(e.g., municipal black and gray water) to RNG tends to experience
operational challenges, including (i) variable RNG yields, (ii) lower
production efficiencies than theoretical values, and (iii) substantial
amounts of solid residues that can be costly to dispose2. These

challenges can confound the economics of RNG production and arise
in part from a prevailing “black box” paradigm that does not fully
consider the microbial communities, also known as microbiomes,
driving AD conversion processes3. Discovering design principles that
shape the network properties of AD microbiomes offers a new para-
digm for optimizing RNG production and waste resource recovery.

Over the past decade, high-throughput sequencing approaches
have been used to describe microbial community structure, function
and dynamics associated with AD at different operating scales4–9,
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including recent efforts to characterize the global microbiome of
wastewater ADs10. Importantly, these studies indicate that the AD
milieu supports regionally distinct microbial communities containing
heterogeneous constituents engaged in conserved metabolic interac-
tions driving organic waste conversion to CH4

11. In addition to micro-
bial dynamics, considerable evidence also indicates that industrial-
scale AD performance is strongly influenced by a variety of process
parameters including substrate chemistry, loading rates, retention
time, temperature, and metal micronutrient (e.g., Fe, Ni, Mo, Mn)
concentration12–15. Taken together, an emerging scientific
consensus16–18 suggests that a new paradigm for understanding and
improving AD systems should involve constructing microbial interac-
tion networks in relation to physical and chemical parameter infor-
mation under time-resolved conditions at relevant operating scales.
This is particularly needed for industrial-scale operations which are
difficult to access and study over unit time4,8,18–25.

Here, we present a two-year time series study of the Lulu Island
municipal wastewater treatment plant (WWTP) operated by Metro
Vancouver in Richmond, British Columbia, Canada. Our study is
intended to facilitate further understanding of microbial community
structure, function, and dynamics in relation to industrial-scale RNG
production. The Lulu Island WWTP uses standard practices and pro-
duces >5000 m3 of RNG per day from mixed sludge as a starting
material. Replicated mixed sludge samples were collected biweekly
fromLuluADs and archived forDNAandRNAextraction. Small subunit
ribosomal RNA (SSU or 16S rRNA) gene amplicons were generated
from 116 replicated samples, including two periods of standard AD
operation, a period of AD operation with an additional allochthonous
waste stream, and a period that used serial (instead of parallel) AD
operation. The resulting amplicon sequence variant (ASV) data was
used to identify a core set of microorganisms across the time series,
construct a co-occurrence network to generate statistically informed
hypotheses related to potential syntrophic interactions, and, in com-
bination with process parameter information, identify indicator
microorganisms associated with different process configurations and
relevant WWTP conditions such as final nitrate levels, volatile solids
destroyed, total RNGproduced, andRNGmethane content. A subset of
time series samples representing each process configuration was also
selected for metagenomic whole genome shotgun and metatran-
scriptomic sequencing to produce metagenome-assembled genomes
(MAGs) and estimate expression levels based on transcript read
mapping. MAGs were associated with cognate ASV nodes in the co-
occurrence network. Ultimately, these multi-omic datasets and statis-
tical approaches offered potential mechanistic explanations (through
encoded and expressed functions) formetabolic interactions between
co-occurring microorganisms in the AD, providing insight into the
metabolic network driving RNG production in the Lulu Island WWTP.

Results and discussion
Lulu Island waste resource recovery ecosystem
The Lulu Island WWTP operated by Metro Vancouver in Richmond,
British Columbia, Canada (Longitude: −123.14498° or 123° 8’ 42” W,
Latitude: 49.11491° or 49° 6’ 54” N) provides primary and secondary
treatment of >30 billion liters of mixed-sourced wastewater from
~200,000 residents each year. Primary treatment includes a series of
tanks where wastewater undergoes screening, aeration, mechanical
separation, settling, and clarification. This effluent then enters a sec-
ondary treatment stream, where it is pumped through a trickling filter,
solids-contact tank, secondary clarifier, and disinfection tank before
being released into receiving water. A portion of sludge from the pri-
mary and secondary treatment process streams is mixed and thick-
ened, then split equally into two mesophilic (38 °C) anaerobic
digesters (ADs) manifesting a 30-day retention time. The ADs are
typically operated in parallel with identical mixed waste inputs.
Methane and other gases from the ADs are scrubbed to renewable

natural gas (RNG) which is either used to generate heat for Lulu Island
WWTP operations or sold to FortisBC, the local distributor of
natural gas.

Metro Vancouver provided physicochemical parameters and tri-
plicate waste secondary sludge (WSS) samples from solid contact
tanks and overflow digestate samples from anaerobic digesters (AD1
and AD2) on a biweekly basis betweenOctober 13, 2016 andDecember
12, 2018. During this time interval, ADs experienced four different
process configurations (StandardOperation I, standard operationwith
chemically enhanced primary treatment sludge (CEPT Operation),
Standard Operation II, and Serial Operation; Fig. 1A) which differed
both in upstream primary and secondary wastewater treatment steps
and in the flow of material into the ADs. Each configuration repre-
sented experimental perturbations of municipal operations to deter-
mine howdifferent process parameters contribute to RNGproduction,
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Fig. 1 | Summaries of theoperating conditions andphysicochemical conditions
of the digester across the time series. A Wire diagram of the four process
configurations across the two-year time series. SOI Standard Operation I, CEPT
Chemically Enhanced Primary Treatment Operation, SOII Standard Operation II,
SER Serial Operation, MS mixed sludge waste from primary and secondary treat-
ment), CH4 (biogas), BS biosolids, Labels “1” and “2” indicate the two anaerobic
digesters (all samples for this study were taken from AD1). B Temporal physico-
chemical sparklines of ADperformance.Methane% volumetric percent of biogas as
methane, HRT hydraulic retention time, OLR organic loading rate, Biogas (total
volumetric biogas generated), VFAs volatile fatty acids. Box plots of configuration
groups represent 75th, 50th (median), and 25th percentiles, with whiskers repre-
senting 90th percentiles and outlier position as filled points above whiskers (n = 16
for SOI, 10 for CEPT, 11 for SO II, and 6 for SER).
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volatile solids conversion, influent, and effluent sludge characteristics
(e.g., nutrient and metal composition, chemical oxygen demand) in
relation to microbial community structure, function, and dynamics.
This study is focused on data collected and analyzed from one of the
ADs (AD1), which was sampled continuously throughout the two-year
time series.

Physicochemical parameter information
Physicochemical parameter information was collected throughout the
time series to evaluate both mixed sludge characteristics entering the
AD as well as organic waste conversion processes e.g., solids destruc-
tion, VFA concentrations, RNG production (Supplementary Data 1). In
pairwise comparisons, physicochemical profiles from the two Stan-
dard Operations (I and II) were indistinguishable (Supplementary
Data 4). However, samples from the intervening CEPT Operation dif-
fered significantly from the two Standard configuration modes based
on a sharp increase in organic loading (kg/m3), which ultimately led to
a temporary increase in total biogas production approaching 5739 m3

(Fig. 1B). The final Serial Operation was themost distinct configuration
of the four because of a fundamentally different flow regime, initiated
by a rapid shift to in-line (serial) rather than equivalent flow of mixed
sludge split between the two ADs (Fig. 1A). This caused the inflow rate
(ML/day) into AD1 to increase sharply at the beginning of Serial
Operation, along with a concomitant decrease in hydraulic retention
time (days). During this interval, digestate characteristics such as
volatile fatty acid concentration (mg/L), final ammonia in the effluent
(mg/L), and percent CH4 in RNG all increased.While the CH4 to carbon
dioxide (CO2) ratio of RNG increased during the Serial configuration
(indicating higher quality), the total volume of RNG decreased, sug-
gesting a possible tradeoff in RNG quantity vs. quality which was then
explored further from a microbiological perspective.

Microbial community structure
Given the observed impact of process configuration on Lulu Island AD
RNG production, we explored the sample archive to identify relation-
ships between physicochemical parameters, such as VFA concentra-
tions and RNG production, and microbial community structure.
Genomic DNA extracted from 43 replicated AD1 samples spanning the
time series was used to generate amplicons targeting the V4 region of
the bacterial and archaeal (prokaryotic) 16S rRNA gene. Resulting data
sets had an average of 23,833 quality-filtered 250-bp paired-end reads
per sample resolving 928 unique ASVs (Supplementary Data 5). Con-
sistent with physicochemical parameter information, microbial com-
munity structure also differed across samples in relation to process
configuration (Supplementary Data 6). Interestingly, while the condi-
tions inStandardOperation II returned to the samestate as inStandard
Operation I (after the intervening CEPT Operation), the microbial
community did not return to its previous structure, indicating for-
mation of a new stable state. The majority of unique ASVs (92%) had
>80% sequence identity to cognate sequences in the global Microbes
in Wastewater Treatment Systems and Anaerobic Digesters (MiDAS)
16S rRNA gene database10, indicating that a phylogenetically and
globally conserved set of microbial lineages are adapted to driving
hydrolysis, fermentation andmethanogenesis in the ADmilieu (Fig. 2).

Despite high recall of ASVs to the MiDAS database, the structure
of the Lulu Island AD community differed in several important ways
from previously described datasets from mesophilic ADs (Fig. S1)23,
26–28. Although Bacteroidetes, Firmicutes, and Proteobacteria were
common and conserved community members, the most abundant
taxonomic group in Lulu Island sampleswasCloacimonetes (candidate
phylumWWE1),with a cumulative relative abundanceexceeding 25% in
most samples across the time-series (Figs. S1, S2). This phylum is
typically found in low abundance in mesophilic ADs treating waste-
water, although it has been observed to dominate bioenergy facilities
processing crop residues, and somemesophilic WWTPs (typically with

long retention timesor highorganic loading rates), where it likelyplays
a role in amino acid fermentation and syntrophic propionate
oxidation8,29. In addition to Cloacimonetes, ASVs associated with the
candidate phylum Marinimicrobia were also relatively abundant,
reaching up to 5.4% in some samples. Although prevalent and active in
marine ecosystems under low oxygen conditions30–32, Marinimicrobia
are often observed in ADs where they may play a role in hydrogen
production and nitrogen mineralization33,34. Additional candidate
groups, including Atribacteria, Kiritimatiellaeota, and Hydro-
genedentes, were also identified in Lulu Island samples at relative
abundances approaching 1%, suggesting that these candidate groups
are important AD community members whose metabolic roles are
conserved across time8,35.

Amplicon sequence variants affiliated withMethanogenic archaea
had low relative abundances across the time series and included the
families Methanofastidiosaceae (0.9%), Methanosaetaceae (0.5%),
Methanospirillaceae (0.3%), Methanoregulaceae (0.2%), Methanomi-
crobiaceae (0.1%), and Methanobacteriaceae (0.1%). Methanofastidio-
saceae, the most abundant methanogenic lineage in Lulu Island AD
samples, is a candidate group that lacks several canonical methano-
genesis pathway components, likely using methylated thiol com-
pounds for energy andCH4production

33.Methanosaetaceae, primarily
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Fig. 2 | A Sankey diagram of microbial community structure shown as relative
abundances of family-level taxa grouped into their respective domains and
classes. The width of ribbons represents the cumulative relative abundances of all
ASVswithin each taxonomic lineage. The final column assigns ASVs to categories of
percent identity of their V4 16S sequences to the MiDAS database. The two-letter
codes on the plot represent taxonomic names. Domain: Ba Bacteria, Ar Archaea.
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Cl Cloacimonadaceae, Sy Syntrophaceae, Ot Other, An Anaerolineaceae, Sp Spir-
ochaetaceae, Ri Rikenellaceae, Le Lentimicrobiaceae, Ba Bacteroidetes
(vadinHA17), Ru Ruminococcaceae, Pr Prolixibacteraceae, Pe Pedosphaeraceae, Bu
Burkholderiaceae, Mf Methanofastidiosaceae, Ma Methanosaetaceae, Mp Metha-
nospirillaceae, Mr Methanoregulaceae, Mm Methanomicrobiaceae, Mb
Methanobacteriaceae.
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represented by Methanothrix populations in Lulu Island samples,
convert acetate to CH4 without the need for syntrophic interactions,
while the four remaining lineages are obligate hydrogenotrophic
methanogens36–38 that dependon syntrophic interactionswith bacteria
for electron equivalents driving CO2 reduction to CH4

39.

Relationships between AD microbial communities and physi-
cochemical parameters
In ecosystems with well-controlled resource inputs such as ADs with
constrained feedstock, organic loading rate, retention time, tempera-
ture, etc., environmental conditions and microbial community struc-
ture can fluctuate together in stable patterns4,40,41. In the Lulu IslandAD
milieu, intervals with similar process configurations typically selected
for similar microbial communities based on hierarchical cluster ana-
lysis (Fig. 3A),while sampling timepointswithdistinctphysicochemical
parameters selected for distinct communities. Notably, at transition
points between process configurations, when physicochemical para-
meters rapidly changed, microbial community composition rapidly
responded in a time period shorter than the two-week resolution of
our time series sampling, wherein microbial communities at the initial
timepoint of a new operating condition still resembled that of the
previous configuration before a new a new stable state was reached by
the next sampling point (Fig. 3A).

By applying a dimension-reduction approach (i.e., canonical cor-
respondence analysis) to a sample-by-sample distance matrix of the
combined physicochemical parameter and ASV abundance informa-
tion, process configuration was identified as a statistically significant
variable in shaping the AD microbes and physicochemistry based on
permutational analysis of variance tests (Fig. 3B). Using these com-
bined datasets, it was observed that samples taken directly after
transition to a new process configuration were more similar to the
previous configuration. Given that no significant decline in RNG pro-
duction was associated with these transitions (Supplementary Data 1),
it appeared that detectable shifts in microbial community structure
did not necessarily degrade AD performance with respect to overall

RNG yield. From these combined data, it was further determined from
model fitting that the set of physicochemical parameters that most
influenced microbial community structure was organic loading rate
(kg/m3) and the concentrations of volatile acids, ammonia, and nitrate
(mg/L) in the AD digestate, accounting for 27.6% of the temporal var-
iation in microbial structure observed across the time series (Supple-
mentary Data 7). These key parameters are typically identified as the
main drivers of microbial structure and activity in mesophilic
WWTPs42.

To account for population-level relationships between microbes
and process configurations, ASV temporal distribution patterns were
correlated with 28 measured physicochemical parameters across the
time series. These results identified microbial populations and physi-
cochemical parameters that were positively correlated (Fig. S4). One
set of positively correlated variables included total biogas production
(m3), organic loading rate (kg/m3), and several populations of Clos-
tridia, Sphingobacteriales, Chloroflexi, and Spirochaetes. A second set
of positive correlations, loosely associated with the first set, included
AD hydraulic retention time (days), percent biogas composed of CO2,
concentration of effluent nitrate (mg/L), and several populations of
Bacteroidales, Proteobacteria, and acetoclasticmethanogens affiliated
with Methanothrix. These groupings support previous observations
that certain heterotrophicmicroorganisms, typically those engaged in
hydrolysis coupled to fermentation, as well as acetoclastic methano-
genic archaea, are most competitive when organic loading rate and
retention time are high43, 44. Although total gas production was posi-
tively correlatedwith this set of conditions and taxa, the percentage of
CO2 was also high relative to other timepoints, indicating that a larger
share of organic carbon input was metabolized to CO2 rather than to
CH4. This correlation of higher CO2 percent with dominance of acet-
oclastic methanogens is not unexpected given the stoichiometric
imbalance in CO2:CH4 between different methanogenic pathways45,46.
A third set of positively correlated variables included percent CH4,
temperature (°C), volatile fatty acids (mg/L), and several populations
of Clostridiales, Bacteroidetes, and hydrogenotrophic methanogens
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chemical conditions. A The structures of the ADmicrobial community (ASV data)
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two-sided PERMANOVA table above the plot shows results of a test between the
four configuration groups.

Article https://doi.org/10.1038/s41467-023-40907-5

Nature Communications |         (2023) 14:5380 4



affiliatedwithMethanoculleus (Fig. S4). A fourth set, loosely correlated
with the third, included BOD and COD, ammonia (mg/L) and sus-
pended solids (mg/L), as well as hydrogenotrophic methanogens
affiliated with Methanomicrobiales. Previous studies indicate that
increases in both ammonia and fatty acid concentrations tend to select
for hydrogenotrophic methanogenesis under mesophilic
conditions12,47–51. Shifts from acetoclastic to hydrogenotrophic
methanogenesis have also previously been observed in WWTP
ADs39,52,53, reducing the methane potential of effluent54,55, and resulting
in higher methane content of RNG56.

Taken together, these results indicate significant coupling
between physicochemical parameters and both population- and
community-level microbial structure across process configurations.
Methanogenic archaea and some putative syntrophic bacteria that
cooperate to reduce CO2 to CH4 were strongly selected during the
Serial Operation, while direct acetate-reducing methanogens and
other fermentative and non-syntrophic bacteria were selected in other
process configurations. Physicochemical parameter measurements
generally corroborated these patterns, including higher ammonia
associated with increased hydrogenotroph/syntroph abundances,
higher VFA concentrations associated with increased abundances of
fermentative bacterial lineages, and higher RNG CO2 content asso-
ciated with increased acetoclastic methanogen abundances. Sub-
sequent investigation of the time series focused on identifying
microbial indicators engaged in metabolic interactions with potential
to influence RNG purity and yield.

Identification of microbial indicators
During the time series, >25 complete volumetric turnover events
occurred based on an average AD retention time of 30 days. Despite
this recurring bottleneck, a robust core microbiome could be identi-
fied in the Lulu Island AD containing >30%of identifiedASVs (339) in at
least 80% of samples. This core collectively accounted for 64.4% of
total 16S rRNA gene sequence reads. Given that input wastewater to
the Lulu IslandWWTP varied in origin and upstream processing across
the time series, evidence of a robust core microbiome supports the
hypothesis that selection factors such as environmental filtering and
ecological interactions were likely more important than the initial
community composition of waste inputs and the founder effect11,57,58.
Based on previous work, selection pressures that help maintain a core
AD microbiome include strong physical constraints such as retention
time and organic loading59, chemical constraints such as low trace
metal concentrations and highly anoxic, reducing conditions60, and
biological constraints such as metabolic interactions between co-
occurring microorganisms61. Research to identify and characterize
these modes of selection in the AD milieu are becoming increasingly
important to the biotechnology sector, typically with the assumption
that operational controls can be identified and leveraged to select for
communities that improve RNG production6,20,28,62,63.

Although a robust core microbiome persisted throughout the
time series, the relative abundance of many taxa was significantly
impacted by shifts in physicochemical parameters and process con-
figuration. Through indicator species analysis, with configuration as
the conditional variable and all ASVs tested for significant over-
representation based on temporal abundance patterns, 138 indicator
ASVs were identified, including both common and conditionally
rare taxa (Fig. S3). Indicator ASVs were usually distributed such that
each configuration was represented by a unique set of ASVs, even
within a single family-level taxon, suggesting there may be subtle
underlying diversification patterns supporting functional redundancy
in the AD milieu. For example, while there were many indicators
affiliated with the Syntrophaceae family of Proteobacteria, there were
unique sets of Syntrophaceae indicator ASVs for Standard I, CEPT, and
Standard II, and Serial Operations. Other taxa with indicator ASVs were
more specific in their representation of a given process configuration.

For example, 10/13 ASVs from the Rikenellaceae family of Bacter-
oidetes were affiliated with the Serial Operation. Another notable
pattern was the partitioning of archaeal indicator ASVs between con-
figurations based on methanogenic phenotype. For example, the sole
archaeal indicator for Standard Operation I was a population of
Methanosaetaceae, which perform acetoclasticmethanogenesis, while
the two archaeal indicators for Serial Operation were affiliated with
Methanoregulaceae and Methanobacteriaceae, which only perform
hydrogenotrophicmethanogenesis. Taken together, indicator analysis
at the ASV level provided further evidence that the activity of co-
occurring populations, both as core and configuration-dependent
consortia, helps shape the active community structure driving RNG
production.

Time-resolved correlation network analysis
Significant correlations were identified between AD process
parameters, and both microbial community structure and the abun-
dance of specific microbial populations relevant to RNG production
over time. Based on the distributed nature of biomass conversion to
methane between different microbial populations in WWTP ADs, we
hypothesized that different process configurations would not only
select for different populations but also that metabolic interactions
among and between populations would vary under selection. To test
this hypothesis, a co-occurrence network based on normalized ASV
abundances across the two-year time series was constructed from a
sparse inverse covariance matrix. Metadata information about nodes
in the network, such as indicator ASV status, functional information
from a paired MAG, and connectivity to other nodes, were then map-
ped onto the network to identify configuration-dependent subnet-
works containing ensembles with potential to drive RNG production.

The ASV co-occurrence network was composed of 390 ASVs
which had significant covariance across the time series (Fig. 4). The
average clustering coefficient of the network (i.e., a measure of
grouping or density among nodes) was 0.16, placing it well-within the
range of microbial food webs or functional networks, and higher in
connectivity than randomly produced associations between popula-
tions (SupplementaryData 2)64. ASVs which were indicators for a given
configuration tended to be connected in the network (a result of co-
variance between the indicator analysis and the co-occurrencemodel)
and formed strongly correlated subnetworks within the larger parent
network. Similarly, closely related ASVs (e.g., those with >97% 16S V4
rRNAhomology) tended to coalesce into subnetworks, suggesting that
populations with low phylogenetic distance tended to share similar
temporal distribution patterns and conserved functional roles due to
similar selection pressures (see nodes and edges in Supplementary
Data 8 and Supplementary Data 9).

Genome-resolved correlation network mapping
Although taxonomically labeled ASVs can provide a way to predict
trait-based information that is useful for inferring metabolic interac-
tions, many AD microorganisms have poor taxonomic classifications
and additional genome-resolved analysis is needed to assign potential
functional roles8, 9,20,27,43. Instead of using reference databases to infer
functions from ASV nodes in the network, MAGs were generated from
a set of 17 representative samples used for metagenomic whole gen-
ome shotgun sequencing across the time series with the goal of linking
MAGs to ASVs and then ascribing functions to network nodes. The
resulting metagenome datasets had an average assembled length of
657.4Mbp, fromwhich 40high-qualityMAGs (HQ: >90% complete and
<5% contamination, with at least one full ribosomal RNA operon) and
475 medium-quality MAGs (MQ: >50% complete and <10% con-
tamination, with at least one gene copy of the three ribosomal RNA
subunits) were binned. Metagenome read mapping indicated that HQ
and MQ bins represented on average 12.03% of the total quality base
pairs sequenced per sample (Supplementary Data 2). The resulting
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MAGs were mapped onto cognate ASVs based on 16S rRNA gene
sequence homology, enabling genome-resolved analysis of nodes
within the network. A total of 233 ASVs (25.1% of total ASVs) could be
paired with a unique MAG at a 16S rRNA gene sequence homology
cutoff of >99.5% over the full length of the V4 region (~1 allowed mis-
match). Of the 233 ASV-MAG pairs identified by homology, a total of
186 shared the same lowest-common ancestor taxonomy between the
ASV V4 region and the MAG genomic sequence and were used for
genome-resolved correlation network mapping (see methods).

Thus, the ASV time-series data, enabled by high-resolution sam-
pling, were used to build a network of co-occurring ASVs that char-
acterized temporally coherent taxa which responded similarly to
changes in WWTP process configuration. Then, metagenomic
sequence information was used to overlay a functional architecture
onto the network that used representative MAGs to describe potential
metabolic interactions between co-occurring populations at the level
of genes, reactions and pathways. The 186 ASV-MAG pairs were dis-
tributed throughout the parent network, suggesting good coverage of
taxonomic lineages and process configurations (Fig. 4).

In addition to linking ASVs to MAGs via 16S rRNA gene identity,
metatranscriptomes were generated from the 17 samples with meta-
genomes (Supplementary Data 3), allowing assignment of gene
expression information (as transcripts per million, TPM) to MAGs in
the network (Supplementary Data 10). A notable observation from this

analysis was thatmethanogens displayed a strong decoupling between
the metagenome- and metatranscriptomes-based measured relative
abundances regardless of methanogenic lineage65–67, most of which
had low TPM in metagenomes but very high TPM in metatran-
scriptomes (Supplementary Data 10). However, when only considering
bacterial MAGs and not methanogen MAGs, the correlation between
metagenome TPM abundance and metatranscriptome TPM abun-
dance was strong (ρ = 0.53; t = 13.81; df = 472; p-value < 0.001), indi-
cating that bacterial relative abundance observed in metagenome
libraries was predictive of enzymatic activity (metatranscriptomes) in
the AD milieu.

Subnetworks of methanogenic consortia
Taken together, the genome-resolved correlation network contained
information about (1) temporal patterns of population abundance
from the ASV time series, (2) indicator taxa for the various AD process
configuration, (3) a subset of network nodes (47.7%) associated with
MAGs, and (4) gene-level expression of eachMAG. Six subnetworks of
co-abundant methane-producing populations were identified within
the parent network (Subnetworks 1–6), which were constructed by
identifying hydrogenotrophic methanogen ASVs and all nodes con-
nected by primary or secondary co-occurrence edges (one or two
degrees of separation). These subnetworks represented ensembles
with potential to drive RNG production across the time series, with
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supporting evidence for biogas-producing syntrophic metabolisms
gleaned from metabolic pathway reconstruction and gene expression
data associated with MAGs mapped onto cognate ASVs within
subnetworks.

Subnetwork 1 included four populations: three Rikenellaceae
ASVs annotated as MiDAS species 240 (M.S.240) and M.S.3232, two of
which were Serial Operation indicators (one of the Rikenellaceae
indicator ASV had a corresponding MAG that was annotated to
Tenuifilaceae in GTDB), and one Methanoregulaceae ASV (M.S.4938),
which was also a Serial Operation indicator with an associated MAG
(Supplementary Data 8). This small Subnetwork was isolated from the
rest of the parent network and, given that 75% of nodes were indicator
taxa, the organisms in this subnetwork were significantly more abun-
dant during the Serial Operation when RNG purity was highest. The
twoMAGs in Subnetwork 1 were both high-quality, with completeness
and contamination metrics of 93.3% and 1.4% (Tenuifilaceae;
3300028576_27) and 99.0% and 0% (Methanoregulaceae;
3300036947_39). Due to the strong co-occurrences during Serial
Operation and the quality of the MAGs in Subnetwork 1, the encoded
and expressed functions of the two genomes were examined for evi-
dence of potential metabolic interactions. As expected, the Metha-
noregulaceae MAG encoded and expressed all genes necessary for
hydrogenotrophic methanogenesis (e.g., mcrABCDG,
genes Ga0377204_000018.861 − 865 and mtrABCDEFH,
genes Ga0377204_000018.866 − 873) and lacked acetate kinase (ack)
and phosphoacetyl transferase (pta) needed for acetoclastic metha-
nogenesis (Figure S5; Supplementary Data 11). The Tenuifilaceae MAG
that mapped to the subnetwork ASV encoded and expressed a partial
WoodLjungdahl (WL) pathway (fdh, fhs, fol,met) but lacked theCODH/
ACS complex considered necessary for canonical acetate-oxidizing
syntrophy by reverse WL68 (Figure S5; Supplementary Data 11). The
MAG did, however, both encode and express genes necessary for
oxidizing acetate to 5,10-methylenetetrahydrofolate via the glycine
cleavage system (Ga0255340_1000079.146, Ga0255340_1000129.100,
and Ga0255340_1003402.5), indicating a potential route connecting
acetate to its partial reverse WL methyl branch33,56. While this glycine
cleavage system syntrophic mode has been proposed in several taxa
there is currently no definitive evidence of its activity33,56,62,69–71, and
many organisms use this system in amino acid biosynthesis reactions
and other diverse functions independent from the reverse WL
pathway72. The Tenuifilaceae MAG also encoded and expressed orga-
noheterotrophic functions common to other Bacteroidetes, including
a sus-like biopolymer degradation and transport system and several
peptidases (Supplementary Data 11), indicating that these three ASVs
could also be co-occurring with Methanoregulaceae through non-
syntrophic modes of interaction (e.g., by catalyzing the rate-limiting
depolymerization steps upstream of methanogenesis or through co-
selection because of similar preferences for the conditions in the AD
under Serial Operation).

Subnetworks 2, 3, and 5, centered around Methanobacterium
lacus, Methanospirillium M.S.2576, and Methanospirillium M.S.2576,
respectively, none of which had associated high-quality MAGs. Sub-
networks 2 and 5 each had an ASV from a syntrophic bacterial lineage
(Smithella and Syntrophaceae) directly connected to the methanogen
node (Supplementary Data 9), while Subnetwork 3 was an isolated
group containing three nodes (two methanogen and one Paludi-
bacteraceae ASVs). Subnetwork 2 was the only subnetwork containing
hydrogenotrophic methanogens that also included a Cloacimonada-
ceae ASV despite the latter lineage exhibiting the highest total relative
abundance in the time series analysis and representing 10.5% of nodes
in the parent network. This suggests that Cloacimonadaceae are likely
not closely associated with syntroph-dependent methanogens in the
Lulu Island AD milieu.

Subnetwork 4 contained aClostridiaASV (ChristensenellaceaeR-7
M.S.240) with an associated MAG (3300028677_44), a Bacteroidales

UCG-001 ASV (M.S.1138), a Synergistaceaae ASV (M.S.2022), and a
Methanobacterium lacus ASV with an associated MAG
(3300028677_53) that was also an indicator for Serial Operation
(Supplementary Data 8). The two MAGs in Subnetwork 2 had com-
pleteness and contamination of 78.3% and 0.4% (Christensenellaceae)
and 94.4% and 0.8% (Methanobacteriaceae), respectively (Supple-
mentary Data 10), and the Christensenellaceae was directly connected
with the syntrophy-dependent Methanobacterium methanogen. This
Firmicutes family includes populations of peptide/amino acid fer-
menters and potentially H2-producers

73,74, and though it has no iso-
lated representatives, the Christensenellaceae R-7 lineage has been
observed to comprise up to 6% of the AD community in some meso-
philic digesters10. According to functional data from the Christense-
nellaceae MAG in Subnetwork 4, this population encoded and
expressed several peptide and amino acid metabolism functions
(Supplementary Data 11), including three major operons (two
livFGHKM and one azlCD) for branched-chain amino acid transport,
over 15 metabolic amino/exo/endo/oligopeptidase enzymes, and the
hallmark fermentation enzyme pyruvate:ferredoxin oxidoreducase
(Ga0255346_1000279.56). Between the Bacteroidales (as a
depolymerizer75), Christensenellaceae (as a fermenter), Synergistaceae
(as an SAOB56,76), and Methanobacterium (as a hydrogenotrophic
methanogen) ASVs, Subnetwork 4 retained the metabolic capacity to
carry out hydrolysis, fermentation, acetate oxidation, and methano-
genesis of complex organicmaterial to RNG. The observation that this
Methanobacterium ASV was also a statistical indicator for the Serial
Operation further suggests that this ensemble was most abundant in
time series analysis during the period of high local RNG purity.

Subnetwork 6 was the largest co-occurring set of ASVs and
included 25 nodes with 7 total ASV-MAG pairs (Supplementary Data 8).
This Subnetwork was formed by four smaller but contiguous subnet-
works. With four hydrogenotrophic methanogens in the 25-node
subnetwork, Subnetwork 6 accounted for 40% of hydrogenotrophic
methanogen ASVs in the parent network. Among the 25 nodes
were also two indicator ASVs for Standard Operation II. Subnetwork 6
included several syntrophic lineages that had primary or secondary
edges connected to the methanogen nodes, including two Syn-
trophomonas (both M.S.3971), one Syntrophorhabdus (M.S.998), and
one Synergistaceae (Thermovirga M.S.988)56,77. Based on 10,000 per-
mutations of 25 random nodes from the parent network, the prob-
ability of observing four syntroph nodes and four hydrogenotrophic
methanogen nodes by chance was 2.8%, showing that Subnetwork 6
was rich in syntrophic interactions driving RNG production.

Nodes with representative MAGs in Subnetwork 6 were two
Clostridia ASVs (D8A-2 lineage and Ruminococcus) and a single ASV
from Desulfobacterota (Syntrophorhabdus M.S.998), Deltaproteo-
bacteria (Phaselicystis M.S.2086a), Paludibacteraceae (M.S.2677),
Patescribacteria (Candidatus Falkowbacteria M.S.5033), and Metha-
nolinea (M.S.4938). The directly co-occurring Methanolinea and Syn-
trophorhabdus MAGs were 99.0% complete with 0% contamination
(3300036947_39) and 72.9% complete with 8.6% contamination
(3300028576_34), respectively, and each had a full rRNA operon. The
16S rRNA gene sequence of the Syntrophorhabdus MAG (across the
whole 1482 bp gene) was 93.48% similar to the best cultured repre-
sentative Syntrophorhabdus aromaticivorans str. UI. Similar to this type
strain, the Syntrophorhabdus MAG encoded and expressed benzoate-
CoA ligase for benzoate degradation to benzoyl-CoA
(Ga0255340_1019139.2) and two benzoyl-CoA reductase operons for
converting benzoyl-CoA to the dienoyl-CoA intermediate
(Ga0255340_1011848.9 and Ga0255340_1011848.11, plus
Ga0255340_1031544.4 and Ga0255340_1031544.6), including two
operons of the heterodisulfide reductase involved in this endergonic
step; the benzoyl-CoA reductase enzymes were highly expressed
(TPM= 17.53; 30th most abundant ORF in the genome), indicating that
this pathway is a critical metabolic step for Syntrophorhabdus
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(SupplementaryData 11). To complete the oxidationof benzoate toH2,
CO2, and fatty acids, the MAG encoded and expressed syntenic genes
for dienoyl-CoA hydration (Ga0255340_1005473.7), breaking and
hydrolyzing the intermediate ring (Ga0255340_1005473.3 and
Ga0255340_1005473.5), and finally for beta-oxidation
(Ga0255340_1013965.3-7).

Taken together, these observations provide an overlaid picture of
population-level co-occurrence, metabolic interactions facilitating
that co-occurrence, and gene expression data to support those
metabolic interactions. This study also provides a model for con-
ducting time series amplicon analysis coupled with genome-resolved
correlation mapping to identify known and novel metabolic interac-
tions underlying organic waste conversion to RNG with potential to
define new design principles that improve RNG quality and yield at
scale. These same design principles can in turn be extended to the
production of other value-added compounds, hastening the transition
from waste treatment to sustainable waste resource recovery.

Methods
Sample collection and processing
We conducted a time series sampling campaign of AD microbial
community structure, function, and dynamics at the Lulu IslandWWTP
in order to identify taxa associated with enhanced RNG production.
Metro Vancouver provided physicochemical process parameters and
triplicate samples of overflow digestate from anaerobic digesters (AD1
and AD2) at the Lulu Island WWTP on a biweekly basis for two years
resulting in a sample collection archive consisting of 28 different
physicochemical parameter measurements as well as microbial DNA
for amplicon and metagenomic whole genome shotgun sequencing,
and RNA for metatranscriptomic sequencing across 43 sampling dates
(Supplementary Data 1). After transport to the lab, mixed sludge
samples were centrifuged for 15min at 14,000 × g, followed by che-
mical flocculation of the remaining cells in the supernatant with FeCl3
and NaOH78. After a final spin the supernatant was discarded, and the
pellet stored at −80 °C prior to nucleic acid extraction. Mixed sludge
DNA was extracted from frozen pellets using a DNeasy PowerSoil kit
from Qiagen according to the manufacturer’s specifications. DNA
quantity and purity (260/280 values) were measured using a Nano-
Drop (Thermo Fisher). Mixed sludge RNA was extracted from frozen
pellets using RNeasy PowerSoil kit from Qiagen. RNA quantity and
quality were measured using a NanoDrop.

Small subunit ribosomal RNA gene amplicon sequencing
Microbial community structure and dynamics of mixed sludge sam-
ples was determined using PCR amplicon libraries targeting the V4
region of the bacterial and archaeal (prokaryotic) small subunit ribo-
somal RNA (SSU or 16S rRNA) gene using the 515F (GTGY-
CAGCMGCCGCGGTAA) and 806R (GGACTACNVGGGTWTCTAAT)
primers according to Earth Microbiome Project guidelines79. A bar-
code was added to each amplicon library for multiplex sequencing on
the Illumina MiSeq platform. The QIIME2 function demux was used to
demultiplex the resulting FASTQ-formatted sequence files into sepa-
rate samples, which were uploaded to the NCBI SRA database under
PRJNA902729 as SRR22733982 – SRR22734080. The QIIME2 DADA2
pipeline was used to denoise amplicon libraries, filter chimeras, and
create a feature table of amplicon sequence variants (ASVs)80,81. ASVs
were filtered to remove those with less than one observation on
average across all samples and assigned taxonomy based on the
QIIME2 feature-classifier-sklearn function with confidence set to 0.75
using a local install of the Silva v132 database82. ASV sequences were
also assigned taxonomy using the samemethod to the GTDB bacterial
and archaeal 16S rRNA gene database (v202) to compare taxonomy to
the paired MAGs (see later methods). 16S V4 rRNA gene amplicon
sequences for all samples were uploaded to the NCBI GenBank

database under BioProject PRJNA902729 as BioSamples
SAMN32228586 - SAMN32228684.

Amplicon sequence analysis and metadata integration
Physicochemical process parameters and metadata were integrated
into the QIIME2 feature taxonomy and count table using the add-
metadata and convert functions of biom to create a tab separated table
of ASV designators, their taxonomic affiliation, their amplicon read
count across samples, and metadata associated with each sample81. A
batch correction was employed to remove any effects of sequencing
date (sequence libraries were generated on three separate plates) as a
factor explaining biological variationusing the R packagesDESeq2 and
limma83,84. Some physicochemical parameters were not measured
daily; therefore, an interpolation technique was used to estimate
concurrent biological and physicochemical data. Briefly, any biological
sampling dates missing from the physicochemical data table were
added as an empty row, then interpolated using the smooth-fitting
splinefun() function of the base R ‘stats’ package; parameters were
checked manually by plotting to ensure reliable data interpolation
between empirical physicochemical values. The 16S rRNA amplicon
data (ASVphylogenetic tree, 16S rRNAgene sequences,ASV taxonomy,
sample metadata) were imported into R and merged into a master
phyloseqobjectusing the functionmerge_phyloseq()of the ‘phyloseq’R
package85.

Statistical analyses and data visualization of ASV data
All analysis and plotting code for the ASV analysis in this work can be
found in the Supplementary Software. Taxonomic community com-
position of ASVs (as an average across all samples) was plotted using
the sankeyNetwork() function of the ‘networkD3’ R package. In the final
category of the Sankey diagram, the percent identity of ASV
V4 sequences to the MiDAS database was determined using a local
install of the BLASTn software (v2.5.0) with default parameters10,86.

Hierarchical clustering of both ASV and physicochemical data was
performedusing thehclust() function of the base ‘stats’Rpackage,with
distance matrices calculated using the Bray-Curtis dissimilarity metric
on the ASV count table and physicochemical metadata table exported
from the master phyloseq object. The hierarchical clustering dendro-
grams from the two datasets were corresponded using the tangle-
gram() function of the ‘dendextend’ R package87. Canonical
correspondence analysis (CCA) was performed using a Hellinger
transformation of the combined physicochemical and ASV data with
the decostand() and cca() functions of the ‘vegan’ R package88. The
results were plotted using the ‘ggplot2’ R package89. Permutational
analysis of variance (PERMANOVA) of samples across the four AD
Configurations in the CCA was calculated with the adonis() function of
the ‘vegan’ R package.

The community co-occurrencenetworkwas calculated by directly
passing themaster phyloseq object to the spiec.easi() function from the
‘SpiecEasi’ R package, with the glasso method, a minimum lambda
ratio of 0.1, and the bstars selection criteria90. Nodes in the network
represent ASVs observed in at least 25% of samples across the time
series and are sized by mean relative abundance. Vertices in the net-
work represent positive co-occurrence values, with vertex width being
proportional to the co-occurrence value calculated from the spie-
c.easi() function.

Microbial taxonomic compositional data across individual sam-
ples and lineages was exported from the master phyloseq object and
plotted in barplot and scatterplot form using functions within the
‘ggplot2’ R package. Indicator species analysis using the multipatt()
function of the ‘indicspecies’ R package was used to derive statistically
significant associations between ASVs and each configuration91. Each
indicator ASV was grouped by taxon and results were plotted using
‘ggplot2.
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Amaximum rank correlation test was performed to determine the
set of physicochemical variables which best explained ASV community
structure using the bioenv() function of the ‘vegan’ R package with
default parameters. Correlations between temporal physicochemical
parameter values and abundances of individual ASVs were calculated
with the cor() function of the base ‘stats’ R package and plotted as a
heatmap using ‘ggplot2’.

Metagenomic shotgun sequencing
A subset of 17 time series samples (Supplementary Data 1) were
sequenced at the Joint Genome Institute on either the Illumina HiSeq-
2000 1TB or Illumina NovaSeq platforms (2x151bp reads) to generate
metagenome-assembled genomes (MAGs). Read processing was per-
formed in accordancewith the JGI standard operating procedure 1064
using the jgi_meta_run.py (version 2.0.1) processing pipeline92,93. The
resulting paired-end reads were then assembled using SPAdes assem-
bler (version 3.11) using a range of Kmers with the parameters “spa-
des.py -m 2000 –tmp-dir tmp.5774024.0 -o spades3 –only-assembler
-k 33,55,77,99,127 –meta -t 32 −1 reads1.fasta −2 reads2.fasta”94. The
entire filtered read set wasmapped to the final assembly and coverage
information was generated using bbmap (version 37.78) using default
parameters except ambiguous=random (https://jgi.doe.gov/data-and-
tools/bbtools/). Raw sequence data in FASTQ format are available on
NCBI SRA and analysis and assemblies are available in the JGI GOLD
database. Project and accession numbers are listed in Supplemen-
tary Data 3.

Genome-resolved metagenomic analysis and network mapping
Binning of assembled contigs into MAGs was performed using Meta-
BAT v2.12.195 implemented through the Genomes OnLine Database
(GOLD) based on the established JGI workflow, and completion and
contamination was assessed using CheckM v1.0.1296. Taxonomic
assignment was performed using GTDB (release 86) with GTDB-tk
v0.2.297.MAGquality and taxonomic assignmentwere augmentedwith
RNA detection including noncoding RNA (ncRNA), tRNAs, and rRNA
(5S, 16S, 23S) genes using tRNAscan-SE v2.0.6 in “bacterial” and
“archaeal” search modes and cmsearch from the INFERNAL v1.1.3
package against the Rfam 13.0 database using the trusted cutoffs
parameter (–cut_tc)98,99. Reported hit overlapping by ≥1 bp and
belonging to the sameRfamclasswere identified and the lower scoring
of the two was removed.

High- and medium-quality MAGs were identified on the basis of
current community standards (Supplementary Data 2)100. MAGs with
>90% completeness, <5% contamination, and at least one of each rRNA
subunit gene were retained as “high-quality” MAG populations. MAGs
with >50% completeness, <10% contamination, and at least one rRNA
subunit gene were retained as “medium quality” MAG populations.
High- and medium-quality MAGs were uploaded as draft genomes to
NCBI MAGs and were functionally annotated using the JGI’s IMG
workflow, which implements NCBI RPSBLAST to assign COG IDs to
COG database v2014, EBI’s pfam_scan tool (which uses HMMER v3.0)
to assign PFAM IDs to Pfam database v30, LAST to assign KEGG KO
Terms from IMG genes to the KEGGdatabase v77.1, and LAST to assign
EC numbers from IMGgenes (using KOTerms)with a homology-based
approach with a local installation of BLASTn v2.5.093.

DNA sequences of ASVs from the time series (~273 bp) were then
searched as queries against a custom reference database of SSU rRNA
gene sequences encoded in high- or medium-quality MAGs binned
from the 17 metagenomes. Hits with >99.5% nucleotide identity over
the full length of the query region were accepted (i.e., ASV V4 rRNA
sequences with 0 or 1 mismatch along the 273 bp fragment to a MAG
V4 rRNA region). For each of the 233 unique ASV-MAG pairs identified
using this method, the GTDB taxonomy of each was compared and
only pairs with a matching lowest-common-ancestor taxonomy were
accepted (i.e., if anASVwasannotated to theorder level and itsMAG to

the family level, the order level taxonomymust agree between the ASV
and MAG). This resulted in 186 query-reference hits with coherent
taxonomies, whichwere considered as ASV-MAG pairs and allowed for
MAGs to be mapped onto ASV nodes in the co-occurrence network.
Based on functional annotations from the JGI IMG workflow, the pre-
sence of methanogenic and potential syntrophic metabolic pathways
in a select set of MAGs (i.e., those forming strong subnetworks in the
co-occurrence analysis) were inferred from key encoded enzymes and
electron carriers. Marker genes were selected to cover the necessary
and sufficient steps of methanogenesis and syntrophy by known
pathways56,101–103.

Metatranscriptomic sequencing and read mapping
Total RNA was extracted (from the same physical samples as for DNA)
using the RNeasy Power Soil kit from Qiagen according to manu-
facturer specifications. RNA quality was checked using a bioanalyzer
(Agilent) to measure concentration and RNA integrity number (RIN) a
measure of the quality and integrity of the RNA. Samples were also
measuredon theNanoDrop (ThermoFisher) for concentration and the
260/280 value to assess RNA purity. A total of 14 RNA extracts with
260/280 > 1.90 and RIN ≥ 5.0 were sent to GeneWiz for high-
throughput sequencing of the community mRNA using “Standard
RNA-seq” package. Details of this procedure are proprietary; more
information can be found here (https://www.genewiz.com/Public/
Services/Next-Generation-Sequencing/RNA-Seq/). Briefly, total RNA
underwent rRNA depletion to concentrate mRNA transcripts, which
were library prepped and sequenced Illumina HiSeq-2000 1TB plat-
form (2× 150bp reads). Raw reads were adapter trimmed, quality
trimmed, and quality filtered using TrimmomaticSE (v0.35) with the
parameters -phred33, LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15
MINLEN:36. Quality-filtered RNA-seq read data in FASTQ format were
uploaded to the NCBI under BioProject PRJNA902729 as BioSamples
SAMN34106045 - SAMN34106058.

To infer and quantify gene expression of protein-coding genes on
contigs assembled from eachmetagenome, quality-filtered transcripts
from each sample were mapped to their respective metagenome
library contigs using bowtie2 v2.2.5 with parameters –end-to-end and
–very-sensitive104. The resulting BAM mapping files were further pro-
cessed to identify and remove PCR duplicates using samtools and the
MarkDuplicates function from Picard Toolkit (http://broadinstitute.
github.io/picard/). The mRNA copy number of genes from each
metagenome was then calculated using a protocol designed by the
Environmental GenomicsGroup SciLifeLab at KTH Stockholm (https://
metagenomics-workshop.readthedocs.io/en/latest/annotation/
quantification.html). Briefly, HTSeq was used to count the number of
readsmapped to features (e.g., genes, tRNA, etc.) on reference contigs
using the GFF3 feature file generated during metagenome analysis.
The number of metatranscript reads mapped to each feature
were then normalized using the TPM (Transcripts per million)
method. The resulting TPM tables for each of the 14 metagenome-
metatranscriptome pairs (containing rows of gene features with TPM
expression values) were parsed to calculate the percentage of meta-
transcript reads mapped to MAG bins and to associate TPM to func-
tional pathways of interest in MAGs from the co-occurrence
subnetworks (Supplementary Data 3).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data generated for this study can be found deposited in public repo-
sitories. For 16S rRNA amplicon sequences, reference the NCBI Gen-
Bank database under BioProject PRJNA902729 as BioSamples
SAMN32228586 - SAMN32228684. For whole-genome shotgun
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metagenome sequences, reference the NCBI SRA database under
BioProjects PRJNA502381, PRJNA502380, PRJNA518419, PRJNA502378,
PRJNA502379, PRJNA502376, PRJNA502377, PRJNA502375,
PRJNA620832, PRJNA620833, PRJNA620758, PRJNA620835,
PRJNA620756, PRJNA620838, PRJNA620839, PRJNA620843, and
PRJNA620754 (See Supplementary Data 3 for details and associations
to JGI GOLD analysis accessions). For shotgun metatranscriptomic
sequences, reference the NCBI SRA database under BioProject
PRJNA902729 as BioSamples SAMN34106045 - SAMN34106058.

Code availability
While all open source and freely available tools were used for this
analysis, a markdown of the code used to conduct statistical analysis
and create data visualizations in R v4.1.2 is referenced in the Supple-
mentary Software.
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