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Gut microbiota and fecal short chain fatty
acids differ with adiposity and country of
origin: the METS-microbiome study

Gertrude Ecklu-Mensah 1,15, Candice Choo-Kang 2,15,
Maria Gjerstad Maseng3,4,5, Sonya Donato 1, Pascal Bovet 6,7,
Bharathi Viswanathan7, Kweku Bedu-Addo8, Jacob Plange-Rhule8,
Prince Oti Boateng8, Terrence E. Forrester 9, Marie Williams9,
Estelle V. Lambert10, Dale Rae10, Nandipha Sinyanya10, Amy Luke 2,
Brian T. Layden11,12, Stephen O’Keefe13, Jack A. Gilbert 1 &
Lara R. Dugas 2,14

The relationship between microbiota, short chain fatty acids (SCFAs), and
obesity remains enigmatic. We employ amplicon sequencing and targeted
metabolomics in a large (n = 1904) African origin cohort from Ghana, South
Africa, Jamaica, Seychelles, and the US. Microbiota diversity and fecal SCFAs
are greatest in Ghanaians, and lowest in Americans, representing each end of
the urbanization spectrum. Obesity is significantly associated with a reduction
in SCFA concentration, microbial diversity, and SCFA synthesizing bacteria,
with country of origin being the strongest explanatory factor. Diabetes, glu-
cose state, hypertension, obesity, and sex canbe accurately predicted from the
global microbiota, but when analyzed at the level of country, predictive
accuracy is only universally maintained for sex. Diabetes, glucose, and
hypertension are only predictive in certain low-income countries. Our findings
suggest that adiposity-related microbiota differences differ between low-to-
middle-income compared to high-income countries. Further investigation is
needed to determine the factors driving this association.

Obesity remains an ongoing global health epidemic that continues to
worsen, affecting more than 600 million adults worldwide1, including
over a third of Americans2. Importantly, comorbidities associated with
obesity account for over 60% of deaths worldwide3. A major driver of
obesity is the adoption of aWestern lifestyle, which is characterized by

excessive consumption of ultra-processed foods4–6. Obesity has been
accompanied by dramatic increases in the prevalence of non-
communicable diseases such as type two diabetes and hypertension
among people of African origin5–9. Therefore, disrupting the rapidly
expanding obesity epidemic, particularly among African-origin
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populations, is critical to controlling the cardiometabolic disorder
epidemic10. However, successfully managing and treating obesity and
its comorbidities, and specificallymaintainingweight loss long-term, is
particularly challenging due to an incomplete understanding of the
heterogeneous and complex etiopathology, as well as additional
challenges facing populations experiencing rapid urbanization10–12.
The epidemiologic transition is a model able to capture these shifts in
dietary and rural-to-urban movements and is characterized by diets
that are high in ultra-processed foods with a significant loss in fiber, as
evidenced in the United States, where less than 50% of the population
meet dietary fiber recommendations13.

Gut microbial ecology and metabolism play pivotal roles in the
onset and progression of obesity and its relatedmetabolic disorders14.
Obese and lean individuals have reported differences in the compo-
sition and functional potential of the gut microbiome, with an overall
reduction in species diversity in the obese gut7,15–19, additionally, fecal
microbiota transfer from obese donors to mouse models can recapi-
tulate the obese phenotype20–22. Further, fecal microbiota transplant
from healthy donors into patients with obesity and metabolic syn-
drome has been shown to improve markers of metabolic health in the
recipients23. While these studies suggest thatmodification ofmicrobial
ecology may offer new options for the treatment and prevention of
obesity, themechanism that drives themicrobiota-obesity relationship
is not fully understood. The microbiota may facilitate greater energy
exploitation from food and storage capacity by the host20,24, influen-
cing adipose tissue composition and fatmass gain, aswell as providing
chronic low-grade inflammation and insulin resistance25,26.

Among the numerous microbial metabolites modulating obesity,
there is an ever-growing interest in the role of short-chain fatty acids
(SCFAs), which includes butyrate, acetate, and propionate as potential
biomarkers for metabolic health as well as therapeutic targets. SCFAs
derive primarily from microbial fermentation of non-digestible dietary
fiber in the colon. They havemanyeffects onhostmetabolism, including
serving as an energy source for host colonocytes, used as precursors for
the biosynthesis of cholesterol, lipids, and proteins, and regulating gut
barrier activities27–29. Human and animal studies demonstrate a protec-
tive role of SCFAs in obesity and metabolic disease. In experimental
animal models, SCFA supplementation reduces body weight, improves
insulin sensitivity, and reduces obesity-associated inflammation30–34. In
humans, increased gut production of butyrate correlates with improved
insulin response after an oral glucose tolerance test35. Although
increased SCFA levels are generally observed as positive for health36,
other studies have suggested thatoverproductionmaypromoteobesity,
possibly resulting from greater energy accumulation37–41. Indeed, a pre-
vious study observed greater fecal SCFA concentrations to be linked
with obesity, increased gut permeability, metabolic dysregulation, and
hypertension in a human cohort42.

The conflicting obesity role of SCFAs identified by existing studies
may result from the variation in the gut microbiota, which is shaped by
lifestyle and diet. Adequately powered studies in well-characterized
populations may permit more rigorous assessments of individual dif-
ferences. Prior comparative epidemiological studies have broadly
focused on either contrasting the gut microbiota of extremely different
populations, such as the traditional hunter-gatherers and urban-
westernized countries, or ethnically homogenous populations43–46.
Demographic factors represent one of the largest contributors to the
individualized nature of the gut microbiome46–48. The five diverse, well-
characterized cohorts from the modeling of the epidemiologic transi-
tion study (METS)offer auniqueopportunity to examine the issues since
they are more representative of most of the world’s population. METS
has longitudinally followed an international cohort of approximately
2500 African origin adults spanning the epidemiologic transition from
Ghana, South Africa, Jamaica, Seychelles, and the US since 2010 to
investigatedifferences in healthoutcomesutilizing the frameworkof the
epidemiologic transition. Pioneeringmicrobiomestudies fromtheMETS

cohorts reveal that cardiometabolic risk factors, including obesity, are
significantly associated with reduced microbial diversity and the
enrichment of specific taxa and predicted functional traits in a
geographic-specific manner7,49. While yielding valuable descriptions of
the connections between the gut microbiota ecology and disease, par-
ticularly obesity, as well as pioneering the efforts ofmicrobiome studies
of populations of African origin on different stages of the ongoing
nutritional epidemiologic transitions, these studies, however, have
applied small sample size (N= 100 toN=655), and also did not utilize all
the countries in the METS cohort. Thus, uncertainties remain as to the
precise interpretation of the microbiome-obesity associations, which
hampers further progress toward diagnostic and clinical applications.

Our new study, METS-Microbiome, investigated associations
between the gut microbiota composition and functional patterns,
concentrations of fecal SCFAs, and obesity in a large (N = 1904) adult
cohort of African origin, comprised of Ghana, South Africa, Jamaica,
Seychelles, and the US spanning the epidemiologic transition50,51. The
central hypothesis is that alterations to the gut microbiota and com-
munity composition will be associated with increasing stages of the
epidemiologic transition, reductions in fecal SCFA levels, and higher
obesity prevalence. Here, we show profound variations in gut micro-
biota, including significant changes in community composition,
structure, and predicted functional pathways as a function of popu-
lation obesity andgeography. Importantly, the utility of themicrobiota
in predicting whether an individual is non-obese or obese differs
considerably by country of origin and suggests that lifestyle traits in
high-income countries may increase obesity risk even for lean indivi-
duals. Overall, our findings are important for understanding the
complex relationships between the gut microbiota, population life-
style, and the development of obesity, which may set the stage for
defining the mechanisms through which the microbiome may shape
health outcomes in populations of African origin.

Results
Obesity differs significantly across the epidemiological
transition
From 2018 to 2019, the METS-Microbiome study recruited 2085 par-
ticipants (~60% women) ages 35-55 years old from five different sites
(Ghana, South Africa, Jamaica, Seychelles, and USA). Of these partici-
pants, 1249 have been followed on a yearly basis since 2010 under the
parent METS study. Data from 1,867 participants with complete data
sets were used in this analysis. The overall mean age was 42.5 ± 8.0
years (Table 1). Mean fasted blood glucose was 105.2 ± 39.4mg/dL,
mean systolic blood pressure was 123.4 ± 18.1mmHg, and mean dia-
stolic blood pressure was 77.2 ± 13.1mmHg. When compared to high-
income countries (Jamaica, Seychelles andUSA), women andmen from
low- and middle-income (Ghana and South Africa) had significantly
lower BMI (except South African women), fasted blood glucose, and
blood pressure (systolic and diastolic). Mean BMI was lowest in South
African men (22.3 kg/m2 ± 4.1) and highest in US women (36.3 kg/
m2 ± 8.8). When compared to the US, all sites had a significantly lower
prevalence of obesity (p <0.001 for all sites except for Seychelles:
p =0.02). The prevalence of hypertension was lowest in Ghanaian men
(33.1%) and highest in US men (72.7%). The prevalence of diabetes was
lowest in South African women and men (3.5% for women and men)
and highest in Seychellois men (22.8%). When compared to the US, the
prevalence of hypertension and diabetes was significantly lower in
countries at the lower end of the spectrum of HDI (i.e., Ghana and
South Africa) when compared to the US (p <0.001).

Microbial community composition and predicted metabolic
potential differs significantly between countries and correlates
with obesity
Following the removal of samples that had fewer than 6000 reads and
featured less than ten reads in the entire dataset, a total of 433,364,873
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16 S rRNA gene V4 region sequences were generated from the 1873
fecal samples, which were clustered into 13,254 amplicon sequence
variants (ASVs). Country of origin describes most of the variation in
microbial diversity and composition, with significant differences in
both alpha and beta diversity. Although there weremajor variations in
alpha diversity between countries and a large degree of inter-
individual variation within countries, Ghana showed significantly
greater diversity for all the alpha diversity metrics (Observed ASVs,
ShannonDiversity, and Faith’s phylogenetic diversity) when compared
to all other countries (Fig. 1a). Seychelles and US had the lowest alpha
diversity (Fig. 1a; Kruskal–Wallis; FDR-corrected, q < 0.05). The stool
microbiota alpha diversity of non-obese individuals was significantly
greater when compared with that of obese individuals (Fig. 1b, Wil-
coxon rank-sum; p <0.05). Beta diversity was also significantly differ-
ent between countries (Fig. 1c–f, Supplementary Table 2; weighted
UniFrac distance; PERMANOVA; R2 = 0.118; p <0.001; unweighted
UniFrac distance; PERMANOVA; R2 = 0.083; p <0.001) and obese
group (weighted UniFrac distance; PERMANOVA; R2 = 0.001; p =0.031;
unweighted UniFrac distance; PERMANOVA, R2 = 0.003; p <0.001).

Next, we compared fecal microbiota diversity between obese
individuals with their non-obese counterparts within each country
independently. Greater alpha diversity was detected in non-obese
subjects in the Ghanaian (Observed ASVs, Faith PD) and South
African cohorts (Observed ASVs) only (Supplementary Table 1; Wil-
coxon rank-sum; p < 0.05). Similarly, significant differences in beta
diversity between obese and non-obese microbiota were observed
in Ghana (Unweighted UniFrac; PERMANOVA; R2 = 0.004; p < 0.05),
South Africa (Unweighted UniFrac; PERMANOVA; R2 = 0.007;
p < 0.05) and US (Weighted UniFrac; PERMANOVA; R2 = 0.007;
p < 0.05) data sets (Supplementary Table 2). These results suggest
that the beta diversity differences observed in the Ghanaian and
South African participants may partly be due to the differences in
rare taxa, whereas, among the US participants, the differences may
be related to differences in proportional dominant microbial taxa.
Collectively, these observations suggest that the country is a
major driver of the variance in gut microbiota diversity and com-
position among participants with or without obesity, with marked

contributions from Ghana and South Africa and modest contribu-
tions from the US in the overall cohort.

We also examinedwhether the country of origin or obesity relates
to the presence of specificmicrobial genera frequently used to stratify
humans into enterotypes52. As expected, large differences in enter-
otype between the countries wereobserved. The Prevotella enterotype
(P-type) was enriched on the African continent, with 81% and 62% in
Ghanaians and South Africans, respectively, while Bacteroides enter-
otype (B-type) was dominant in the US (75%), Jamaican cohorts (68%),
and comparable proportions of both enterotypes among individuals
from Seychelles (Supplementary Table 3). Further, obese individuals
displayed a greater abundance of B-type, whereas a higher proportion
of the P-type was associated with the non-obese group (Supplemen-
tary Table 3). Consistent with this observation, the abundance of
B-type correlatedwith higher BMI (q =0.004) than P-type. Significantly
greater diversity and increased levels of total SCFA were observed in
participants in the P-type (Supplementary Table 3). The relative
abundance of shared and unique features between the different
countries illustrated by the Venn diagram showed that Ghana has the
largest number of unique genera, and the US has the lowest (Fig. 1g).

Microbial taxa differ significantly between countries and
between lean and obese individuals
In comparison with the US, South African fecal microbiota had a sig-
nificantly greater proportion of Clostridium, Olsenella, Bacilli, and
Mogibacterium; Jamaican samples had a significantly greater propor-
tion of Bacilli, Bacteroides, Clostridia,Dialister, Enterobacteriaceae, and
Oscillospiraceae; Seychelles samples had a significantly greater pro-
portion of Clostridium, Olsenella, and Haemophilus; and Ghanaian
samples had a significantly greater proportion of Clostridium, Pre-
votella, Weisella, Enterobacteriaceae and Butyricicoccaceae. The US
samples had a significantly greater proportion of Aldercreutzia, Anae-
rostipes,Clostridium, Eggerthella, Eisenbergiella,Ruminococcaceae, and
Sellimonas compared to the four countries (Fig. 2a and Supplementary
Fig. 1; ANCOM-BC; log fold change (LFC) > 1.4; q <0.05).

When adjusted for country, age, and sex (ANCOM-BC; q <0.05),
38 ASVs were significantly different between obese and non-obese

Table 1 | METS-microbiome participant’s characteristics

Ghana South Africa Jamaica Seychelles US

Women

n = 254 n = 228 n = 263 n = 196 n = 213

Age (years) 40.74 ± 8.1 35.56 ± 7.8 45.16 ± 7.5 43.84 ± 6.1 45.44 ± 6.4

BMI (kg/m2) 28.30 ± 5.9 33.42 ± 8.6 32.12 ± 7.3 30.32 ± 7.2 36.34 ± 8.8

Obese (%) 45.0% 61.0% 60.4% 49.5% 74.7%

SBP (mm Hg) 117.1 ± 18.5 115.20 ± 17.1 126.08 ± 19.0 123.28 ± 17.8 124.19 ± 18.4

DBP (mm Hg) 70.53 ± 12.2 75.20 ± 12.1 79.41 ± 12.6 79.37 ± 14.4 81.52 ± 12.1

Hypertensive (%) 37.5% 37.3% 57.4% 55.5% 65.4%

Glucose (mg/dL) 110.45 ± 62.7 89.17 ± 20.0 107.46 ± 39.1 111.35 ± 27.2 107.07 ± 44.0

Diabetic (%) 6.8% 3.5% 12.9% 13.9% 19.9%

Men

n = 117 n = 171 n = 133 n = 164 n = 107

Age (years) 43.92 ± 8.7 36.53 ± 7.2 44.42 ± 7.5 44.57 ± 5.1 47.12 ± 5.5

BMI (kg/m2) 23.7 ± 4.4 22.26 ± 4.1 24.8 ± 5.3 28.46 ± 5.5 30.37 ± 8.2

Obese (%) 13.4% 5.3% 15.7% 39.2% 44.4%

SBP (mm Hg) 121.28 ± 15.4 122.71 ± 15.5 129.23 ± 17.1 130.43 ± 16.2 130.67 ± 16.0

DBP (mm Hg) 68.02 ± 13.0 75.32 ± 11.1 78.07 ± 11.5 81.64 ± 12.1 82.37 ± 12.2

Hypertensive (%) 33.1% 45.0% 50.3% 65.9% 72.7%

Glucose (mg/dL) 100.52 ± 19.4 94 ± 23.4 99.04 ± 33.1 124.26 ± 44.2 107 ± 36.2

Diabetic (%) 1.0% 3.5% 4.8% 22.8% 17.5%

Data are presented as mean ± standard deviation for continuous variables and percentages (%) for categorical variables.
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groups. The obese group was characterized by an increased propor-
tion of Allisonella, Dialister, Oribacterium, Mitsuokella, and Lachnos-
pira, whereas non-obese microbiota had a significantly greater
proportion of Alistipes, Bacteroides, Clostridium, Parabacteroides,
Christensenella, Oscillospira, Ruminococcaceae (UBA1819), and Oscil-
lospiraceae (UCG010) (Fig. 2b).

Overall, therewas almost nooverlap in the features discriminating
obese from non-obese groups between the country-specific

differential abundance analyses, except for a single Parabacteroides
ASV that was differentially enriched in non-obese participants in both
the Ghanaian and Jamaican cohorts (Fig. 2c, e; ANCOM-BC; q <0.05).
When comparing obese and non-obese groups in Ghana, 4 features,
Colidextribacter, Butyricicoccaceae, Oscillospiraceae, and Para-
bacteroideswere enriched in thenon-obesegroup (Fig. 2c;ANCOM-BC;
q <0.05). The gut microbiota of the obese group in the South African
cohort was enriched for 7 ASVs, including Lactobacillus,Oribacterium,
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andMegasphaera (Fig. 2d; ANCOM-BC; q < 0.05). In the Jamaican non-
obese group, 6 ASVs were enriched including Christensenellaceae,
Desulfovibrio, Eubacterium and Parabacteroides, whereas the relative
proportion of Ruminococcus was greater in the obese Jamaican group
(Fig. 2e; ANCOM-BC; q <0.05). The US non-obese group was enriched
for Intestinimonas and Ruminiclostridium when compared with their
obese counterparts (Fig. 2f; ANCOM-BC; q <0.05), whereas there were
no significantly enriched features that discriminated obese from the
non-obese group in participants from Seychelles.

Microbial taxonomic features predict obesity overall but not
within each country
Using supervised Random Forest machine learning, the predictive
capacity of the gut microbial features to stratify individuals to country
of origin, sex, or metabolic phenotypes was assessed. The predictive
performance of the model was calculated by area under the receiver
operating characteristic curve (AUC) analysis, which showed a high
accuracy for country of origin (AUC = 0.97) (Fig. 3a and Supplemen-
tary Table 4), and a comparatively lower level of predictive accuracy
for the obese state (AUC=0.65) (Fig. 3b and Supplementary Table 5).
Diabetes status was predicted with AUC = 0.63 (Fig. 3c and Supple-
mentary Table 4), glucose status with AUC = 0.66 (Fig. 3d and Sup-
plementary Table 5), hypertensive status with AUC = 0.65 (Fig. 3e and
Supplementary Table 5) and sex with AUC = 0.75 (Fig. 3f and Sup-
plementary Table 5). Random Forest analysis was also used to identify
the top 30 microbial taxonomic features that differentiate between
countries and obese states. Similar to the ANCOM-BC results, Pre-
votella and Streptococcus were at a greater proportion in the micro-
biota of Ghanaian and non-obese individuals, whereas Mogibacterium
was at a greater proportion in the South African cohort (Supplemen-
tary Fig. 2a, b). A greater proportion of Megasphaera was associated
with the Jamaican cohort, while a greater proportion of Rumino-
coccaceae was observed in the American microbiota (Supplementary
Fig. 2a).Weisella, which was identified as having a significantly greater
proportion in the Ghanaian cohort using ANCOM-BC, was observed to
be a discriminatory feature for Seychelles microbiota using Random
Forest (Supplementary Fig. 2a).

Similarly, the predictive capacity of gut microbiota features in
stratifying individuals by sex or metabolic phenotypes was assessed
separately for each of the five study sites. The predictive performance
of the model calculated by AUC analysis showed changes in accuracy
for all parameters determined for all sites (Fig. 3g–k and Supplemen-
tary Tables 6–11). For example, the obese state was marginally pre-
dictive only for Ghana (AUC=0.57), while all other countries lost
accuracy (Fig. 3g–k). The predictive accuracy (Supplementary Table 6)
for diabetes status was only retained for Ghana (AUC=0.69), and
Jamaica (AUC =0.66); glucose status prediction was lost for all coun-
tries but South Africa, where it improved (AUC0.78); and prediction of

hypertensionwas only retained for Ghana (AUC =0.63). The predictive
ability for sex was maintained for all countries (Supplementary
Table 6).

Predicted genetic metabolic potential differs by country and
obesity status
The predicted potential microbial functional traits resulting from the
compositional differences in microbial taxa between countries and
obese states were assessed, although we acknowledge that currently
available reference genome databases are likely biased toward well-
studied Western populations and may have limited capacity to suffi-
ciently characterize the gut microbiome from understudied
populations43,53. Nonetheless, PICRUSt2 predicted a total of 372
MetaCyc functional pathways. ANCOM-BC analysis adjusted for sex,
age, and BMI identified 67 pathways that accounted for discriminative
features between the 4 different countrieswith theUS (Supplementary
Fig. 3a; ANCOM-BC; LFC > 1.4; q <0.05). In comparison with the United
States, MetaCyc pathways differentially increased in Ghana and
Jamaica include methylgallate degradation, norspermidine biosynth-
esis (PWY-6562), gallate degradation I pathway, gallate degradation II
pathway, histamine degradation (PWY-6185), toluene degradation III
(via p-cresol) (PWY-5181). South African samples had a greater pro-
portion of L-glutamate degradation VIII (to propanoate) (PWY-5088),
isopropanol biosynthesis (PWY-6876), creatinine degradation (PWY-
4722), adenosylcobalamin biosynthesis (anaerobic) (PWY-5507),
respiration I (cytochrome c) (PWY-3781) (Supplementary Fig. 3a;
ANCOM-BC; q <0.05). MetaCyc pathways linked to norspermidine
biosynthesis (PWy-6562), mycothiol biosynthesis (PWY1G-0), were at a
greater proportion in the Seychelles samples, whereas reductive acetyl
coenzyme A (CODH-PWY), and chorismate biosynthesis II (PWy-6165)
were depleted in the US samples (Supplementary Fig. 3a, ANCOM-BC;
q <0.05). ANCOM-BC analysis adjusted for site, sex, and age identified
24 predicted pathways that differentiated between obese and non-
obese individuals (Supplementary Fig. 3b; ANCOM-BC; q <0.05).
Notably, the microbiota of non-obese individuals had a greater pro-
portion of predicted pathways, including the TCA cycle, amino acid
metabolism (P162-PWY, PWY-5154, PWY-5345), ubiquinol biosynthesis-
related pathways (PWY-5855, PWY-5856, PWY-5857, PWY-6708, UBI-
SYN-PWY), cell structure biosynthesis and nucleic acid processing
(PWY0 845, PYRIDOXSYN-PWY) (Supplementary Fig. 3b; ANCOM-BC;
q <0.05). On the contrary, when stratified by country, no statistically
significant predicted functional pathways differentiated non-obese
from obese participants within each country except in Jamaica, where
only a single predicted pathway (PWY7377) involved in adenosylco-
balamin biosynthesis (anaerobic) was differentially enriched in non-
obese individuals (Supplementary Fig 3c, ANCOM-BC; q <0.05).

Next, KEGG orthology (KO) involved in pathways related to
butanoate (butyrate) metabolism and LPS biosynthesis were

Fig. 1 | Variation in gut microbiome diversity. a Alpha diversity estimated by
Shannon, Observed ASVs and Faith’s PD (phylogenetic diversity) between coun-
tries. Exact false discovery rate (FDR)-correctedq values from left to right: Shannon:
2.33e −08, 3.55e− 41, 2.42e − 37, 1.25e − 31, 6.70e − 20, 1.03e − 16, 3.02e − 12, 0.015,
0.1089; Observed: 0.0022, 2.84e − 26, 4.77e − 51, 7.90e− 43, 7.60e− 16, 2.06e − 40,
1.61e − 32, 3.39e −06, 5.79e −06, 0.058; PD: 0.067, 1.51e− 11, 3.69e − 41, 3.30e− 41,
2.59e −05, 2.04e − 30, 5.77e − 31, 3.33e − 14, 7.86e − 15. b Alpha diversity estimated
by Shannon, Observed ASVs and Faith’s PD (Phylogenetic Diversity) between obese
and non-obese. Exact FDR-corrected q values from left to right: Shannon: 0.014;
Observed: 1.86e −05; PD: 6.05e−06. Alpha diversity metrics (Faith’s PD, Observed
ASVs, and Shannon) are shown on the y-axis in different panels, while country or
obese groups are shown on the x-axis. c Beta diversity principal coordinate analysis
based on weighted UniFrac distance between countries. d Beta diversity principal
coordinate analysis based on weighted UniFrac distance between obese and non-
obese. e Beta diversity principal coordinate analysis based on unweighted UniFrac
distance between countries. f Beta diversity principal coordinate analysis based on

unweighted UniFrac distance between obese and non-obese. The proportion of
variance explained by each principal coordinate axis is denoted in the corre-
sponding axis label. g Venn diagram of shared and unique genera between the five
countries detected at a relative abundance>0.001 inmore than50%of the samples.
Box plots show the interquartile range (IQR), the horizontal lines show the median
values and the whiskers extend from the hinge no further than 1.5*IQR. Each
colored dot denotes a sample. Statistical significance adjusted for multiple com-
parisons using false discovery rate (FDR) correction is indicated: *, P <0.05; **,
p <0.01; ***, p <0.001; ****, p <0.0001, ns, non-significant; across countries and
obese groups (Kruskal–Wallis test and pairwiseWilcoxon rank sum test; two-sided)
for alpha diversity or by permutational multivariate analysis of variance (PERMA-
NOVA) for beta diversity. Source data are provided as a Source Data file. Alpha
diversity analysis for country, n = 1873 samples (Ghana, n = 373; South Africa,
n = 390; Jamaica, n = 401; Seychelles, n = 396; USA, n = 313) and obesity status,
n = 1764 samples. For Beta diversity analysis, n = 1764 samples.
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Fig. 2 | Variation in gut microbiome composition. a Differentially abundant taxa
among countries with the US as the reference due to its status as the country with
the highest HDI and highest obesity incidence (n = 1694). b Differentially abundant
taxa between obese and non-obese groups in the entire cohort (n = 1694). Differ-
entially abundant taxa between obese and non-obese groups within c Ghana
(n = 329); d South Africa (n = 374); panel e Jamaica (n = 386); panel f US (n = 304).
ANCOM-BC analyses adjusted for BMI, age, sex, and country. Data are presented by
effect size (log fold change) with a 95% confidence interval (CI) calculated from the

beta coefficient and standard errors estimated from the ANCOM-BC log-linear
(natural log)model (two-sided; FDR-adjusted). The coloreddot indicates effect size
(log fold change), and the whiskers indicate 95% CI. Representative ASVs with log
fold change >1.4 in at least one group are shown for the country. FDR-adjusted
(q < 0.05) effect sizes are indicated by * q <0.05; ** q <0.01; *** q <0.001. The exact
p-values are available in the source data file. Source data are provided as a Source
Data file. FDR false discovery rate, HDI human development index, ANCOM-BC
analysis of compositions of microbiomes with bias correction.
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investigated. Predicted genes involved in butyrate biosynthesis path-
ways showed that enoyl-CoA hydratase enzymes (K01825, K01782,
K01692), lysine, glutarate/succinate enzymes (K07250, K00135,
K00247), glutarate/Acetyl CoA enzymes (K00175, K00174, K00242,
K00241 K01040, K01039) were differentially abundant in participants
from Ghana, South Africa, Jamaica, and Seychelles in comparison to
the US cohort (Supplementary Fig. 4a; ANCOM-BC; q <0.05). The
relative abundance of succinic semialdehyde reductase (K18121) was
significantly increasedonly in South Africa, Jamaica, and the Seychelles
population. Further, predicted genes proportionally abundant only in
specific countries were observed. For instance, succinate semi-
aldehyde dehydrogenase (K18119) was enriched only in the Ghanaian

cohort, 4-hydroxybutyrate CoA-transferase (K18122) was enriched
among South African participants, and lysine/glutarate/succinate
enzyme (K14268) differentially abundant within the Seychelles popu-
lation (Supplementary Fig. 4a; ANCOM-BC; q <0.05). The relative
abundance of predicted genes encoding for enzymes such as maleate
isomerase (K01799), 3-oxoacid CoA-transferase (K01027), and pyr-
uvate/acetyl CoA (K00171, K00172, K00169) was greater in the US
participants compared with participants from the 4 countries (Sup-
plementary Fig. 4a; ANCOM-BC; q < 0.05). The non-obese exhibited a
significantly greater abundance of genes that catalyze the production
of butyrate via the fermentation of pyruvate or branched amino-acids
such as enoyl-CoA hydratase enzyme (K01825), Leucine/Acetyl CoA

Country Diabetes Glucose

Hypertension Obesity status Sex

Ghana: obesity status South Africa: obesity status Jamaica: obesity status

Seychelles: obesity status USA: obesity status

a b c

d e f

g h i

j k

Fig. 3 | Receiver operating characteristic curves showing the classification
accuracy of gut microbiota in a Random Forest model. Classification accuracy
for estimating a all countries (n = 1694); b diabetes status (n = 1657); c glucose
status (n = 1657); d hypertensive status (1694); e obesity status (n = 1694); f sex
(n = 1694) are presented. Classification accuracy for estimating country-level

obesity status in g Ghana (n = 329); h South Africa (n = 374); i Jamaica (n = 386);
j Seychelles (n = 361); k USA (n = 304) are presented. Micro-averaging values are
impacted by data imbalance since it averages across each sample, whereas Macro-
averaging provides equal weight to the characterization of each sample. Macro-
averaging values are reported in the text. AUC area under the curve.
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enzyme (K01640) and pyruvate/acetyl CoA enzyme (K00171, K00172,
K00169, K01907) by contrast obese individuals were differentially
enriched for succinyl-CoA:acetate CoA-transferase (K18118) (Supple-
mentary Fig. 4b; ANCOM-BC; q < 0.05). All analyses were adjusted for
country, sex, BMI, and age (q <0.05).

Exploring similar analysis at each study site, several predicted
genes, including enzymes involved in the pyruvate/acetyl CoA path-
way (K01907, K00023, K01640), 4−hydroxybutyrate dehydrogenase
(K18120) and 4−hydroxybutyryl−CoA dehydratase (K14534) were dif-
ferentially enriched in non-obese participants from Ghana (Supple-
mentary Fig. 4c; ANCOM-BC; q <0.05). The relative abundance of two
genes both encoding pyruvate/acetyl CoA enzymes (K00171, K00169)
was greater among the non-obese South African cohort (Supplemen-
tary Fig. 4d; ANCOM-BC; q < 0.05), while only a single gene encoding
4−hydroxybutyryl−CoA dehydratase (K14534) was found to be differ-
entially abundant in non-obese individuals from Jamaica (Supple-
mentary Fig. 4e; ANCOM-BC; q <0.05). No statistically significant
differences in the proportion of genes encoding enzymes in the
butyrate synthesis pathway were observed among participants in the
non-obese group compared with the obese counterparts in both Sey-
chelles and the US.

Several gut microbial predicted genes involved in LPS biosynth-
esis differentially enriched among the countries were identified. In
particular, the relative abundance of specific LPS genes (K02560,
K12973, K02849, K12979, K12975, K12974)was significantly enriched in
Ghana, South Africa, Jamaica, and Seychelles when compared with the
US (Supplementary Fig. 5a; ANCOM-BC; q <0.05). Higher proportions
of LPS genes, including K12981, K12976 K09953, and K03280, were

significantly increased in Seychelles samples in comparison with US
samples and significantly increased in the US cohorts in comparison
with participants from Ghana, South Africa, and Jamaica (Supple-
mentary Fig. 5a, ANCOM-BC; q <0.05). US samples had a greater pro-
portion of the following genes (K15669, K09778, K03273, K03271) in
comparison with the other 4 countries (Supplementary Fig. 5a;
ANCOM-BC; q <0.05). Obese individuals had a greater abundance of
predicted genes encoding LPS biosynthesis (K02841, K02843, K03271,
K03273, K19353), whereas only 1 LPS gene (K02850) differentially
elevated in the non-obese group (Supplementary Fig. 5b; ANCOM-BC;
q <0.05). When analyzed separately for each country, the relative
proportion of predicted genes encoding components of the LPS bio-
synthesis was not significantly different between non-obese and obese
individuals at all 5 study sites. All analyses were adjusted for country,
sex, BMI, and age.

Microbial community composition and taxonomy correlate
with observed fecal SCFA concentrations
Using multiple linear regression analysis, adjusting for age and sex, all
countries had significantly higher weight-adjusted fecal total SCFA
levels when compared to the US participants (p <0.001), with Gha-
naians having the highest weight-adjusted fecal total SCFA levels
(Supplementary Table 12). When compared to their obese counter-
parts, non-obese participants had significantly higher weight-adjusted
fecal total and individual SCFA levels (Supplementary Table 13). Total
SCFA levels displayed a weak but significantly positive correlation with
Shannon diversity (Fig. 4a; Spearman r =0.074). A similar trend was
observed in the different individual SCFAs, namely acetate (Fig. 4a;

Fig. 4 | Shannon index correlates positively with fecal short-chain fatty acids.
a Correlations (Spearman’s rho, R; two-sided) between Shannon diversity and
concentrations (n = 1704) of the different types of fecal short-chain fatty acids
(SCFAs) among countries. b Country level correlations (Spearman’s rho, R; two-
sided) between Shannon and valerate levels in Ghana (n = 331); South Africa

(n = 362); Jamaica (n = 331); Seychelles (n = 374); US (n = 306). Each colored dot
represents a sample of a specific country, and the horizontal line on the scatterplot
denotes the line of best fit. Unadjusted p values are reported. Source data are
provided as a Source Data file.
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Spearman r =0.058), butyrate (Fig. 4a; Spearman r =0.12), valerate
(Fig. 4a; Spearman r =0.19) and propionate (Fig. 4a; Spearman
r =0.073). Observed ASVs were not significantly correlated with total
SCFAs (p >0.05). Levels of acetate, butyrate, and propionate exhibited
strong significant correlations with total SCFA, whereas valerate levels
significantly correlated negatively (Spearman r = −0.09) with total
SCFAs. Next, we assessed if levels of total SCFAs could be predicted by
amixedmodel. The country explained 45.7% of the variation in SCFAs.
No significant effect was explained either by obesity or Shannon
diversity.

When stratified by country, Shannon diversity was negatively
associated with acetate concentrations in Jamaica (Supplementary
Table 14; Spearman r = −0.21, p <0.001) and Seychelles (Supplemen-
tary Table 14; Spearman r = −0.11; p = 0.032), and negatively associated
with propionate concentrations in Ghana (Supplementary Table 14;
Spearman r = −0.14, p = 0.013) and South Africa (Supplementary
Table 14; Spearman r = −0.16, p = 0.003). A negative relationship was
observed between levels of total SCFA and Shannon in South Africa
(Supplementary Table 14; Spearman r = −0.11, p =0.046) and Jamaica
(Supplementary Table 14; Spearman r = −0.12, p =0.029), whereas
butyrate correlatedwith Shannon in South Africa only (Supplementary
Table 14; Spearman r = −0.14, p = 0.008). Finally, valerate levels
showed significant correlations with Shannon in all countries (Fig. 4b;
Spearman r =0.12–0.41, p < 0.05).

Using the XGBoost machine learning model, the predictive
capacity of SCFAs to stratify individuals to either obeseor non-obese in
the entire cohort was assessed. The predictive performance of the
model was calculated by area under the receiver operating char-
acteristic curve (AUC) analysis, which showed poor accuracy and
similar outcomes for the different SCFAs. Total SCFA predicted an
obese state with AUC = 0.55, acetate, and propionate with AUC =
0.53, butyrate with AUC = 0.52, and valerate with AUC = 0.51 (Sup-
plementary Fig. 6). Similar analysis to determine obesity status was
performed at the country-specific level and the results of the pre-
dictive performance of the model were comparable to that of the
entire cohort analysis (Supplementary Fig. 6). The comparative pre-
dictive capacity for the obese state was higher in Ghana (AUC=0.60)
using valerate; higher in south Africa (AUC=0.55) using propionate;
higher in Jamaica using acetate (AUC=0.56) and total SCFA (AUC =
0.56). The obese state predicted by butyrate was comparable among
all countries (AUC =0.51) except Ghana (AUC=0.46). Overall, the
predictive capacity of SCFAs was higher in Ghana, South Africa, and
Jamaica compared with the US and Seychelles (Supplementary Fig. 6).

Based on the biological plausibility of the associations among the
gut microbiota, SCFA, and obesity7,37,54, and our findings, we applied
mediation analysis to evaluate whether the gut microbiota could med-
iate the relationship between SCFAs and obesity. Our results showed a
significant direct effect (ADE) (estimate = −0.0003; p < 2e−16) and a
total effect of SCFA (estimate = −0.0003; p < 2e−16) (Supplementary
Table 15). However, the indirect effect (ACME) of SCFA on obesity
through Shannon was not statistically significant (p>0.05), suggesting
that the effect of SCFA on obesity cannot be fully explained by the
microbiota alpha diversity. When the analysis was stratified by country,
the effect of SCFA on obesity diminished.

To further explore the connection between SCFAs with gut
microbiota, Spearman correlations between taxa that were sig-
nificantly proportionally different between countries and concentra-
tions of SCFAs were determined. Valerate negatively correlated with
the proportion of Faecalibacterium, Roseburia, and Streptococcus,
which were all positively correlated with acetate, propionate, and
butyrate (Fig. 5a; q < 0.05). In addition, the proportions of Christense-
nellaceae, and UCG 002 (Oscillospiraceae) were significantly positively
associated with valerate and negatively correlated with acetate, pro-
pionate, and butyrate (Fig. 5a; q <0.05). Similarly, Spearman’s rank
correlation coefficients were calculated between the differentially

abundant ASVs identified between obese and non-obese groups with
concentrations of SCFAs. Broadly, the proportions of most ASVs were
significantly positively associated with acetate in comparison with the
other three SCFAs (Fig. 5b; q < 0.05). Consistent with the correlations
mentioned above, valerate negatively correlated with most ASVs that
were found to be positively correlated with the three major SCFAs,
acetate, propionate, and butyrate, and vice versa. The relative pro-
portions of ASVs belonging to Allisonella and Lachnospira positively
correlated with acetate, propionate, and butyrate, whereas a sig-
nificantly negative relationship was observed between Bacteroides
abundances with the aforementioned SCFAs (Fig. 5b; q <0.05). Vale-
rate showed significantly positive associations withOscillospirales and
Ruminococcaceae abundances and significantly negative correlations
with Lachnospira and Clostridium abundances (Fig. 5b; q <0.05).

At the country level, several genera contributed to variations in
SCFAs. The genera that correlated with SCFA levels for obese and non-
obese states differed at each site. For instance, acetate levels corre-
lated negatively with the relative proportions of Anaerostipes among
obese participants from Ghana and Seychelles and non-obese indivi-
duals from Jamaica (Fig. 5c–e; q <0.05). By contrast, positive associa-
tions were observed between acetate and Cantebacterium among the
non-obese US cohort and negative associations with Coproccocus
within the non-obese Seychelles group (Fig. 5f, g). Butyrate levels
positively correlated with 2 different ASVs assigned to the genus
Subdoligranulum in all countries except the US; ASV 6915 was posi-
tively associated with non-obese individuals in Ghana, South Africa,
and Jamaica, whereas ASV 7064 was positively associated with obese
individuals in Jamaica and Seychelles, which could be indicative of two
different species or functional niche differentiation within a taxon.
Similarly, 3 Blautia ASVs positively correlated with butyrate levels in
non-obese participants from Ghana (ASVs 12508, 12561), South Africa
(ASVs 12508, 12561), and Jamaica (ASV 12630). Additionally, ASVs 12822
and 12561 positively correlated with butyrate levels in Jamaican parti-
cipants irrespective of their obesity status (Fig. 5c–f). Propionate was
found to be positively associated with Prevotella in the non-obese
group from Jamaica andGhanawhile positively correlatedwith Blautia
(ASVs 12822, 12561) and Coprococcus (11,293) among obese partici-
pants from Seychelles and the US (Fig. 5c–f; q <0.05). In the Ghanaian
cohort, valerate positively correlated with Blautia, while being inver-
sely associated with Streptococcus in the obese group in Jamaica and
Seychelles and with all South African participants (Fig. 5c–e; q <0.05).
Collectively, more ASVs correlated with total SCFA among non-obese
participants when compared to their obese counterparts.

Discussion
By leveraging a well-characterized large population-based cohort of
African-origin adults residing in geographically distinct regions of
Ghana, SouthAfrica, Jamaica, Seychelles, and theUS,we examined the
relationships between gutmicrobiota, fecal SCFAs, and adiposity. Our
data revealed profound variations in gut microbiota, including sig-
nificant changes in community composition, structure, and predicted
functional pathways as a function of population obesity and geo-
graphy, despite their shared ancestral background. Our data further
revealed an inverse relation between fecal SCFA concentrations,
microbial diversity, and obesity; importantly, the utility of the
microbiota in predicting whether an individual was non-obese or
obese differed considerably by country of origin, being marginally
better than chance only in Ghana and not predictive for all other
countries. Interestingly, only sex was universally predicted at indivi-
dual sites; while predictive accuracy for diabetes status was only
retained for Ghana (AUC =0.69) and Jamaica (AUC= 0.66); glucose
status only in South Africa (AUC =0.78); and hypertension was only
retained for Ghana (AUC =0.63), suggesting that predicting meta-
bolic disease indicators from the microbiome was impacted by dif-
ferences in this relationship between countries. Importantly, fecal
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Fig. 5 | Associations of gutmicrobiota ASVswith concentrations of short-chain
fatty acids (SCFAs). aHeatmapof Spearman’s correlation between concentrations
of SCFAs and top 30 differentially abundant ASVs (identified by ANCOM-BC)
among countries (n = 1694). b Heatmap of Spearman’s correlation between con-
centrations of SCFAs and differentially abundant ASVs (identified by ANCOM-BC)
for obese (n = 1694). Heatmap of Spearman’s correlation between concentrations
of SCFAs and top 30 relatively abundant features in the non-obese andobese group

in c Ghana (n = 329); d South Africa (n = 374); e Jamaica (n = 386); f Seychelles
(n = 361); g USA (n = 304). Correlations are identified by Spearman’s rank correla-
tion coefficient. Brick red squares indicate positive correlation, gray squares
represent negative correlation, and white squares are insignificant correlations.
Exact Benjamini–Hochberg adjusted p values are shown. Source data are provided
as a Source Data file.
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SCFA concentrations could not predict obesity either globally or
within each, which suggests that the relationship between SCFA and
obesity is still unclear, and SCFAmay be a poor biomarker for obesity.
Overall, our findings are important for understanding the complex
relationships between the gut microbiota, population lifestyle, and
the development of obesity, which may set the stage for defining the
mechanisms through which the microbiome may shape health out-
comes in populations of African origin.

As reported previously, our data showed that geographic origin
canmodulate the composition of the gut microbiota. Our findings are
also consistentwith our previousMETS studies7,49 andother large-scale
continental cohort studies48,55–61, that report a higher bacterial diversity
and composition/microbial richness in traditionally non-western
groups that distinguish them from urban-industrialized individuals
whose diets are low in fiber and high in saturated fats62,63. Although we
observe enrichment in the relative abundance of several taxa asso-
ciated with country of origin in our cohorts, we also detect a pattern
where the gut microbiota of the Ghanaian and South African cohorts
tend to share many features, while the gut microbiota of the Jamaican
cohort shared many features with all 4 countries. It is plausible that
Jamaica may be undergoing a more rapid transition than Ghana and
South Africa, as reflected by their microbial communities overlapping
with bothWestern and traditionally non-western populations.Notably,
traditionally non-western associated taxa, including Prevotella, Butyr-
ivibrio, Weisella, and Romboutsia, were enriched in participants from
Ghana and South Africa, as suggested previously61. Western-associated
taxa such as Bacteroides and Parabacteroides were enriched in indivi-
duals from Jamaica and the US61,64. We also found greater enrichment
of VANISH taxa, including Butyricicoccus and Succinivibrio, in the
Ghanaian cohort, in line with individuals practicing traditional
lifestyles43. Prevotella is usually associated with plant-based diets rich
in dietary fibers, while Bacteroides abundance broadly correlates with
diets high in fat, animal protein, and sugars65,66, which is in agreement
with our enterotype analysis where a Prevotella-rich microbiota dom-
inates the Ghanaian and South African gut, while a Bacteroides-rich
microbiota dominated in the high-income countries. As Prevotella
synthesizes SCFAs67, its depletion may lead to the observed reduction
in SCFA concentrations. Our results support a potential role for geo-
graphy in reinforcing variations in the gut microbiota in our study
cohort despite shared ethnicity. Geographymay reflect subtle shifts in
lifestyle and/or environmental exposures, including heterogeneity of
dietary sources, exposure to medications, socioeconomic factors,
medical history, and biogeographical patterns in microbial
dispersion43,44,68,69.

We also inferred the metabolic capacity of the gut microbiota,
which suggested that pathways that regulate processes, including
energymetabolism, inflammation, epigenetic processes, and oxidative
stress, were differently proportional between countries. Participants
from Ghana and Jamaica were enriched for gallate degradation, which
can result in phenolic catechin metabolites, which are thought to
alleviate obesity-related pathologies70,71. Additionally, glutamate
metabolism, which can be fermented to butyrate and propionate, was
enriched in South Africans and Ghanaians compared to the US. In
Seychelles, actinobacterial mycothiol biosynthesis was enriched,
which is involved in antioxidant activity and the removal of toxic
compounds from cells72. We further identified a depletion of SCFA
synthesis pathways, e.g., acetyl coenzyme A pathway, threonine bio-
synthesis, and leucine degradation in the US cohort. Further studies
are required to evaluate the potential causal relations of these gut
microbial functions.

Preclinical mousemodels provided early causal links between gut
microbial ecology and obesity73,74, suggesting the potential to predict
obesity risk from the microbiome. However, as we showed here, the
prediction has proven difficult because the results are conflicting75.
However, we identified several SCFA-producing bacteria that were

significantly depleted in relative abundance among obese individuals,
which may influence host energy metabolism. For example, Oscillos-
pira and Christensenella, which were statistically associated with
increased SCFA concentrations and reduced obesity, have previously
been associated with a lean phenotype76–79 and produce SCFAs77,78,
including butyrate, which improves insulin sensitivity and reduces
inflammation80. We also detected several butyrate-producing ASVs,
including Eubacterium, Alistipes, Clostridium, and Odoribacter, to be
proportionally enriched in individuals who were non-obese. We
observed that obese individuals presented a greater abundance of
Lachnospira, which does produce SCFAs, a finding also consistent with
our prior study in the samepopulation7 and others81–83. However, other
studies have observed the opposite84,85.

Some studies, mostly from Western populations, have reported
that elevated SCFA concentrations in stool can associate with
obesity37,42,54,86. For example, a Colombian cohort showed associations
between elevated fecal SCFA levels, central obesity, gut permeability,
and hypertension42. One potential explanation is that obese gut
microbiota may lead to less efficient SCFA absorption, hence the
increased SCFA excretion42. However, we found diets high in fiber
correlate positively with weight loss87,88 and increased levels of fecal
SCFAs89. One explanation may be differences in lifestyle factors,
including medication, activity, and pollutant exposure, which could
also impact intestinal absorption in Western countries. We note that
fecal SCFA concentrations are not a direct measure of intestinal SCFA
production but rather reflect a net result of the difference between
production and absorption90. Studies using stable isotopes tomeasure
SCFA dynamics would improve the interpretation of this dichotomy.

Our study, due to the size and diversity of the cohort, provides
robust evidence to suggest that fecal SCFA concentrations are not
predictive of obesity status and that fecal SCFAmay function as a poor
biomarker for obesity. Previous studies have suggested that measures
of both circulating and fecal SCFAs could bemore accurate prognostic
markers of obesity status35,42,91,92, a hypothesis that remains to be fully
elucidated in our study cohort. Additionally, controlled human inter-
vention studies, including the quantitation of whole-body turnover
rates of SCFAs40, are needed to ascertain the potential health benefits
before clinical translation can be implemented to improve metabolic
health. Broadly, our findings prompt caution in relying on fecal
microbial metabolites alone to infer obesity outcomes since obesity is
a heterogenous construct with several unique mechanisms involving
host-related factors such as genetic predisposition and microbial
SCFAs in precipitating disease susceptibility.

Another mechanism underpinning obesity is metabolic endotox-
emia. An increase in Proteobacteria, which often accompanies a high
fat/high sugar diet, is often associated with an increase in circulating
lipopolysaccharide (LPS) and H2S, which provoke low-grade inflam-
mation, increased intestinal permeability and clock gene disruption in
the liver, which associate with adiposity93–95. We identified an increase
in the LPS producer, Dialister96,97, and LPS-associated pathways in
obese individuals, which have previously been associated with
obesity98, sleep disruption, and chronic inflammation99–103. We posit
that LPS production may result in a systemic inflammatory state
favoring the development of obesity in concordance with the asso-
ciatedmetabolic endotoxemia pathway linking gut bacteria to obesity.

In obese individuals, aswell as SCFAmetabolism,we also detected
marked depletion in pathways involved in cell structure, vitamin B6,
nicotinamide adenine dinucleotide, and amino acid biosynthesis. This
suggests that pathways important for growth and energy homeostasis
are disrupted in individuals with obesity.We also noted an enrichment
of the formaldehyde assimilation I (serine pathway) pathway. A study
reported increases in the abundance of formaldehyde assimilation
pathway in a depressed group when compared with non-depressed
controls104. Although we do not yet understand the mechanistic
details, it is known that toxic formaldehyde is generated along with
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reactive oxygen species during inflammatory processes105. Thus, an
increased capacity for formaldehyde pathway may indicate a
microbiome-induced increase in reactive oxygen species in the gut of
obese individuals. Indeed, prior work has identified the induction of
oxygen stress bymicrobial perturbations as one of themechanisms by
which the microbiome can promote weight gain and insulin
resistance106. The specific alterations of the gut microbiota and the
associated predicted functionality may constitute a potential avenue
for the development of microbiome-based therapeutics to treat obe-
sity and/or to promote and sustain weight loss.

While our study has several strengths, including a large sample
size, a diverse population along an epidemiological transition gradient
with a comprehensive dataset that allowed the exclusion of the
potential effects of origin as well as control of potential interpersonal
covariates, and the use of validated and standard tools for data col-
lection, we acknowledge some limitations as well. First, the cross-
sectional nature of our study design is unable to establish temporality
or identify mechanisms by which the gut microbiome may causally
influence the observed associations. In that regard, we expect that
prospective data from the METS cohort study will provide the basis to
assess the longitudinal association between gut microbiota composi-
tion, metabolites, and obesity, and we have an ongoing study explor-
ing the potential correlations longitudinally.Wehadno information on
diet and physical activity, lifestyle factors that are well-recognized to
have profound influences on the gut microbiota. The use of 16 S rRNA
sequencing in our analysis for inferences on microbial functional
ecology inherently has its limitations for drawing conclusions on
species and strain level functionality due to its low resolution. Finally,
here we report the associations between the gut microbiota and fecal
SCFA concentrations, which may not reflect circulating SCFA con-
centration levels. Nevertheless, our results provide insight into the
relationship between obesity, gutmicrobiota, andmetabolic pathways
in individuals of African origin across different geographies, stimu-
lating further examination of large-scale studies using multi-omic
approaches with deeper taxonomic and functional resolution and
animal transplantation studies to investigate potentially novel micro-
bial strains and to explore the clinical relevance of the observed
metabolic differences.

Methods
Study cohort
Since 2010, METS and the currently funded METS-Microbiome study
have longitudinally followed an international cohort of African origin
adults (based on self-report) spanning the epidemiologic transition
from Ghana, South Africa, Jamaica, Seychelles, and the US50,51. The site
in Ghana was based at Nkwantakese, a rural village of approximately
20,000 inhabitants and about 25 km outside of Kumasi. The site in
South Africa was in Khayelitsha, an urban informal settlement near
Cape Town with over 400,000 inhabitants. The participants from
Jamaicawere fromSpanish Town, an urban area 25 km from the center
of Kingston. The Seychelles site was based at Mahé, the largest and
most populated of the 100 islands forming the Republic of Seychelles,
located approximately 1500 km east of Kenya in the Indian Ocean and
home to approximately 81,000 inhabitants. Participants in theUSwere
recruited in Maywood, IL, a suburb adjacent to the western border of
Chicago and home to approximately 24,000 people. METS utilizes the
frameworkof the epidemiologic transition to investigate differences in
health outcomes based on country of origin. The epidemiologic tran-
sition is defined using the United Nations Human Development Index
(HDI) as an approximation of the epidemiologic transition. Ghana
represents a lower-middle-income country, South Africa represents a
middle-income country, Jamaica and Seychelles represent high-
income countries, and the US represents a very high-income coun-
try. This framework has allowed us to understand how increasing
global Westernization, resulting in greater consumption of ultra-

processed foods, is associated with a higher prevalence of obesity,
type 2 diabetes, and cardiometabolic diseases. Our data from the ori-
ginal METS cohort demonstrate that the epidemiologic transition has
altered habitual diets in the international METS sites and that reduced
fiber intake is associatedwith highermetabolic risk, inflammation, and
obesity across the epidemiologic transition107. Originally, 2,506
African-origin adults (25–45 yrs) were enrolled in METS between Jan-
uary 2010 and December 2011 and followed on a yearly basis. In 2018,
METS participants were recontacted and invited to participate in
METS-Microbiome (NCT03378765). Participants were excluded from
participating in the original METS study if they self-reported being
persons with an infectious disease, including HIV, being pregnant,
breastfeeding, using antibiotics within 3 months, or having any con-
dition which prevented the individual from participating in normal
physical activities. METS-Microbiome was approved by the Institu-
tional Review Board of Loyola University Chicago, IL, US; the Com-
mittee on Human Research Publication and Ethics of KwameNkrumah
University of Science and Technology, Kumasi, Ghana; the Research
Ethics Committee of the University of Cape Town, South Africa; the
Board for Ethics and Clinical Research of the University of Lausanne,
Switzerland; and the Ethics Committee of the University of the West
Indies, Kingston, Jamaica. All study procedures were explained to
participants in their native languages, and participants were provided
written informed consent after being given the opportunity to ask any
questions and compensated for their participation.

Anthropometry, sociodemographic, and biochemical
measurements
Participants completed the research visits at the established METS
research clinics located in the respective communities51. Briefly, they
presented themselves at the site-specific research clinic early in the
morning, following anovernight fast. Theweight of the participantwas
measured without shoes and dressed in light clothing to the nearest
0.1 kg using a standard digital scale (Seca, SC, USA). Height was mea-
sured using a stadiometer without shoes and head held in the Frank-
fort plane to the nearest 0.1 cm.Waist circumference wasmeasured to
the nearest 0.1 cm at the umbilicus, while hip circumference was
measured to the nearest 0.1 cm at the point of maximum extension of
the buttocks. Adiposity (% body fat) was assessed using bioelectrical
impedence analysis (Quantum, RJL Systems, Clinton Township, MI)
and study-specific equations51. Bloodpressure wasmeasured using the
standard METS protocol using the Omron Automatic Digital Blood
Pressure Monitor (model HEM-747Ic, Omron Healthcare, Bannock-
burn, IL, USA), with the antecubital fossa at heart level. Metabolic
disease risks were assessed as follows: hypertension was defined as
mean systolic/diastolic blood pressure ≥ 130/80mm Hg or on current
treatment; diabetes was defined as >125mg/dL or current treatment
for all sites, except for Ghana as not all participants were fasted
overnight. For the Ghanaian site, diabetes was defined as ≥140mg/dL
or current treatment according to American Diabetes Association
guidelines for random glucose testing. Obesity was defined as ≥30 kg/
m2. Participants were encouraged to provide stool samples in a clinic
or just prior to clinic visits using a standard collection kit (EasySampler
stool collection kit, Alpco, NH). In cases where this was not possible,
participants stored stool samples in home freezers or coolers for
1–3 days prior to clinic visits. Fecal samples were placed within a −80°
freezer immediately upon receipt at all the sites. Participants were
requested to fast from 8pm in the evening prior to the clinic exam-
ination, during which fasting capillary glucose concentrations were
determined using a finger stick (Accu-check Aviva, Roche).

Fecal short-chain fatty acid quantification
As in our previous studies7,108–112, fecal SCFAs were measured using
LC–MS/MS at the University of Illinois-Chicago Mass Spectrometry
Core using previously publishedmethods113,114. The LC–MS/MSanalysis
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was completed on an AB Sciex Qtrap 5500 coupled to the Agilent
UPLC/HPLC system. All samples were analyzed by Agilent poroshell
120 EC-C18 Column, 100Å, 2.7 µm, 2.1mm× 100mm coupled to an
Agilent UPLC system, which was operated at a flow rate of 400 µl/min.
A gradient of buffer A (H20, 0.1% Formic acid) and buffer B (Acetoni-
trile, 0.1% Formic acid) was applied as 0min, 30% of buffer B; increase
buffer B to 100% in 4min; maintain B at 100% for 5min. The column
was then equilibrated for 3min at 30% B between the injections with
the MS detection in negative mode. The MRM transitions of all tar-
geted compounds include the precursor ions and the signature pro-
duction ion. Unit resolution is used for both analyzers Q1 and Q3. The
MS parameters, such as declustering potential, collision energy, and
collision cell exit potential, are optimized in order to achieve optimal
sensitivity. SCFAs are presented as individual SCFAs (μg/g), including
butyric acid, propionic acid, acetic acid, and valeric acid, aswell as total
SCFAs (sum of 4).

DNA extraction and amplicon sequencing
Fecal samples were shipped on dry ice to the microbiome core
sequencing facility, University of California, San Diego, for 16 S rRNA
gene processing. Fecal samples were randomly sorted and transferred
to 96‐well extraction plates, and DNA was extracted using the MagAt-
tract Power Microbiome kit. Blank controls and ZymoBIOMICS mock
controls (Cat.No.D6300)were includedper extractionplate,whichwas
carried through all downstream processing steps. Extracted DNA was
used for amplification of the V4 region of the 16 S rRNA gene with 515F-
806R region-specific primers (515 F: 5′GTGYCAGCMGCCGCGGTAA3′;
806R: 5′GGACTACNVGGGTWTCTAAT3′) according to the Earth
Microbiome Project115,116. No human DNA sequence depletion or
enrichment ofmicrobial or viral DNAwas performed. Purified amplicon
libraries were sequenced on the Illumina NovaSeq platform to produce
150bp forward and reverse reads through the IGM Genomics Center at
the University of California San Diego.

Bioinformatic analysis
The generated raw sequence data were uploaded and processed in
Qiita117 (Qiita ID 13512), an open-source, web-enabled microbiome
analysis platform. Sequences were demultiplexed, quality filtered,
trimmed, erroneous sequences were removed, and ASVs were defined
using Deblur118. The deblur ASV tablewas exported to Qiime2119,120, and
representative sequences of the ASVs were inserted into the Green-
genes 13.8 99% identity tree with SATé-enabled phylogenetic place-
ment (SEPP) using q2-fragment-insertion119,121 to generate an insertion
tree for diversity computation. Additionally, the deblur ASV table was
assigned taxonomic classification using the Qiime2 feature classifier,
with Naive Bayes classifiers trained on the SILVA database (version
138;122). A total of 463,258,036 reads, 154,952 ASVs, and 1902 samples
were obtained from the deblur table. The resulting ASV count table,
taxonomy data, insertion tree, and sample metadata were exported
and merged into a phyloseq123 object in R (R Foundation for Statistical
Computing, Vienna, Austria) for downstream analysis. Features with
less than ten read in the entire dataset, and samples with fewer than
6000 reads were removed from the phyloseq object. In addition,
mitochondrial and chloroplast-derived sequences, non-bacterial
sequences, as well as ASVs that were unassigned at the phylum level
were filtered prior to analyses. There were 433,364,873 reads and
13254 ASVs in the remaining 1873 fecal samples in the phyloseq object.
The remaining samples, afterfiltering,were rarefied to adepthof 6000
reads to avoid sequencing bias before generating diversity measures,
leaving 9917 ASVs across 1873 samples.

Diversity and differential proportional analyses
Alpha diversity measures based on Observed ASVs, Faith’s Phyloge-
netic Diversity, and Shannon Index were conducted on rarified sam-
ples using phyloseq v 1.38.0123 and picante v1.8.2124 libraries. Beta

diversity was determined using both weighted and unweighted Uni-
Frac distance matrices125, generated in phyloseq v 1.38.0. The Bacter-
oides Prevotella ratio was calculated by dividing the abundance of the
genera Bacteroides by Prevotella. Participants were classified into
Bacteroides enterotype (B-type) if the ratio was greater than 1. Other-
wise, Prevotella enterotype (P-type). For differential abundance ana-
lysis, samples were processed to remove exceptionally rare taxa. First,
the non-rarefied reads were filtered to remove samples with <10,000
reads. Next, ASVs with fewer than 50 reads in total across all samples
and/or were present in less than 2% of samples were excluded. This
retained 2061 ASVs across 1694 samples. The retained ASVs were
binned at the genus level and subsequently used in the analysis of
compositions of microbiomes with bias correction (ANCOM-BC
v1.2.2)126 to determine specific taxa differentially abundant across sites
or obesephenotype. ANCOM-BC is a statistical approach that accounts
for sampling fraction and normalizes the read counts by a process
identical to log-ratio transformations while controlling for false dis-
covery rates and increasing power. The site, age, sex, and BMI were
added as covariates in the ANCOM-BC formula to reduce the effect of
confounders.

Machine learning
Random Forest supervised learning models implemented in Qiime2
was used to estimate the predictive power of microbial community
profiles for the site and obese phenotype. The classifications were
done with 500 trees based on 10-fold cross-validation using the QIIME
“sample-classifier classify-samples”plugin120. A randomly drawn80%of
samples were used for model training, whereas the remaining 20%
were used for validation. Further, the 30 most important ASVs for
differentiating between site or obese phenotype were predicted and
annotated. The predictive capacity of SCFAs to stratify individuals by
country or either obese or non-obesewas done using XGBoost v.1.7.5.1
machine learning model R package with parameters set at 10-fold CV
and 100 repetitions.

Mediation analysis
The mediation package (v4.5.0) in R (v4.3.0) was used to infer causal
relationships between gutmicrobial diversity, SCFAs, and obesity. The
mediation analysis was performed with the same parameter settings
(boot = “TRUE,” boot.ci.type = “perc”, conf.level = 0.95, sims = 1000).
The total effect was obtained through the sum of a direct effect and a
mediated (indirect) effect.

Predicted metabolic gene pathway analysis
The functional potential of microbial communities was inferred using
the Phylogenetic Investigation of Communities by Reconstruction of
Unobserved States 2 (PICRUSt2) v2.5.1 with the ASV table processed to
remove exceptionally rare taxa and the representative sequences as
input files127. The metabolic pathway from the PICRUSt2 pipeline was
annotated using the MetaCyc database128. The predicted MetaCyc
abundances (unstratified pathway abundances) were analyzed with
ANCOM-BC to determine differentially abundant pathway associations
across sites and obese status. The site, age, sex, and BMIwere added as
covariates in the ANCOM-BC formula to reduce the effect of
confounders.

Statistical analysis
All statistical analyses and graphswere donewithR v4.1.1 and Stata v5.
Descriptive statistics for continuous variables are presented as
mean ± standard deviation of the mean if normally distributed or as
median (interquartile range) if non-normally distributed; categorical
variables are shown as counts and percentages. P values were two-
sided. Kruskal–Wallis test and Permutational Analysis of Variance
(PERMANOVA) tests with 999 permutations using the Adonis function
in the vegan package v 2.6.2129 were performed to compare alpha and
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beta diversity measures, respectively, with multiple groups compar-
ison correction. PERMANOVAmodels were adjusted for BMI, age, and
sex for the country, whereas age, sex, and countrywere accounted for
in obese groups. For variables that showed significant differences in
the PERMANOVA analyses, the PERMDISP test was performed to
assess differences in dispersion or centroids. For differential abun-
dance analysis, the false-discovery rate (FDR)method incorporated in
the ANCOM-BC library was used to correct p-values for multiple
testing. A cut-off of q < 0.05 was used to assess significance. Spear-
man correlations were performed between concentrations of short-
chain fatty acids, Shannon diversity or concentrations of short-chain
fatty acids, and differentially abundant taxa thatwere identified either
among study sites or in obese and non-obese individuals. The
resulting p-values were adjusted for multiple testing using the
Benjamini–Hochberg FDR. A mixed model was built using lme4
package vk1-31 to assess whether total SCFAs could be predicted by
Shannon diversity, obesity, and country, setting obesity and Shannon
diversity as fixed effects and random intercept by country. Statistical
analysis and data visualization performed in R version 4.1.1 used the
following freely available packages: ANCOMBC v1.2.2, ggplot2 v 3.3.6,
vegan v 2.6.2, phyloseq v 1.38.0, microbiome v 1.19.1, micro-
biomeutilities v 1.00.16, gghalves v 0.1.3, qiime2R v0.99.6, tidyverse
v1.3.1, reshape v0.8.8, microViz v 0.9.4, cowplot v1.1.1, picante v1.8.2,
reshape v 0.8.8, lme4 v1.1-31, RColorBrewer v1.1-3, gtable v 0.3,
mediation v4.5.0, xGBoost v1.7.5.1, Biostrings v2.62.0, biomformat
v1.22.0, rstatix 0.7.0, patchwork 1.1.1, readr v2.1.2. PICRUSt2 v2.5.1 was
installed in Python v 3.7.4.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All 16 S rRNAgene sequence data have been deposited at the European
Bioinformatics Institute site under the accession code (https://www.
ebi.ac.uk/ena/browser/view/PRJEB63378). Additionally, sequencing
data and processed tables are available through QIITA117 under study
identifier 13512. The SILVA 16 S rRNA database used for alignment is
available at https://data.qiime2.org/2022.2/common/silva-138-99-515-
806-nb-classifier.qza. The KEGG and MetaCyc Databases are available
at https://www.genome.jp/kegg/ and https://metacyc.org/, respec-
tively. The clinical and metadata are available under restricted access
due to privacy regulations of our cohort, access can be obtained by
request to the corresponding author (Lara Dugas: ldugas@luc.edu).
The data and analyses generated in this study are available within the
paper, Supplementary Information andSourceDatafiles providedwith
this paper. Source data are provided in this paper.

Code availability
The R codes used for analysis and figure generation are available at
https://doi.org/10.6084/m9.figshare.23542395.v1.
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