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Whole genome deconvolution unveils
Alzheimer’s resilient epigenetic signature

Eloise Berson 1,2,3 , Anjali Sreenivas1,2, Thanaphong Phongpreecha 1,2,3,
Amalia Perna 1, Fiorella C. Grandi4,5,6, Lei Xue2,3,7, Neal G. Ravindra 1,2,3,
Neelufar Payrovnaziri2,3,7, Samson Mataraso 2,3,7, Yeasul Kim2,3,7,
Camilo Espinosa 2,3,7, Alan L. Chang 2,3,7, Martin Becker 2,3,7,
Kathleen S. Montine1, Edward J. Fox1, Howard Y. Chang 8,9,
M. Ryan Corces 4,5,6, Nima Aghaeepour 2,3,7,10 & Thomas J. Montine 1,10

Assay for Transposase Accessible Chromatin by sequencing (ATAC-seq)
accurately depicts the chromatin regulatory state and altered mechanisms
guiding gene expression in disease. However, bulk sequencing entangles
information from different cell types and obscures cellular heterogeneity. To
address this, we developed Cellformer, a deep learning method that decon-
volutes bulk ATAC-seq into cell type-specific expression across the whole
genome. Cellformer enables cost-effective cell type-specific open chromatin
profiling in large cohorts. Applied to 191 bulk samples from 3 brain regions,
Cellformer identifies cell type-specific gene regulatory mechanisms involved
in resilience to Alzheimer’s disease, an uncommon group of cognitively heal-
thy individuals that harbor a high pathological load of Alzheimer’s disease. Cell
type-resolved chromatin profiling unveils cell type-specific pathways and
nominates potential epigenetic mediators underlying resilience that may
illuminate therapeutic opportunities to limit the cognitive impact of the dis-
ease. Cellformer is freely available to facilitate future investigations using high-
throughput bulk ATAC-seq data.

Transcriptional regulation and chromatin accessibility have been
shown to play a crucial role in various neurological disorders1. Among
other epigenetic techniques, the Assay for Transposase Accessible
Chromatin by sequencing (ATAC-seq) provides an accurate way to
depict the chromatin landscape of the brain and how it is altered by
neurodegenerative diseases2–4. ATAC-seq is notably relevant to nomi-
nate candidates involved in disease, especially non-coding regions that
disrupt gene transcription. While bulk ATAC-seq promises to deter-
mine open chromatin regions (OCR) and gene regulatory changes in a

direct and efficient way, it entangles data from different cell types and
obscures cell type-specific information5–7. Although single nucleus (sn)
ATAC-seq can overcome this barrier7, it is labor-intensive, expensive,
and vulnerable to technical dropout impacting data analysis and
interpretation8.

Deconvoluting bulk sequencing data has been widely investi-
gated, especially for RNA-sequencing9–14 and recently adapted for bulk
ATAC-seq as OCR is better at capturing cell type-specificity than gene
expression12,15–17. These computational approaches rely on a well-
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designed signature matrix, using only limited andmost distinguishing
cell type-specific features to estimate the cellular compositionof tissue
samples. While this matrix approach can help to resolve spatial single-
cell gene expression from bulk RNA-seq18, the definition of cell type-
specific marker remains challenging14,19. Recently, a deep learning
approach has been proposed to bypass this limitation and directly
predict cellular abundance from bulk RNA and microarray expression
with high accuracy13. Cellular abundance change is a milestone in bulk
analysis and has led to new insight into biologicalmechanisms13,20. Yet,
it prevents a comprehensive understanding of the chromatin accessi-
bility heterogeneity across cell populations and cell-specific OCR var-
iation in disease, limiting bulk sequencing analysis.

Source separation21 is a widely studied signal processing para-
digm that retrieves the set of individual sources from a mixed signal.
One classical application is in audio processing, where one micro-
phone is recording multiple instruments that are playing simulta-
neously. Source separation consists in retrieving the sound made by
each type of instrument individually from one recorded audio signal.
In this study, using a similar paradigm, we develop and test a deep
learning-based algorithm, Cellformer, that separates the expression
of 6 main brain cell types from bulk samples: 4 glial cell types
including astrocytes (AST), microglia (MIC), oligodendrocytes (OLD)
and oligodendrocyte progenitor cells (OPCs) and 2 major classes of
neurons, excitatory (EXC) and inhibitory (INH). Unlike previous stu-
dies, Cellformer not only estimates cellular composition but also
deconvolutes cell type-specific ATAC-seq OCR along the whole
genome.

As we age past 65 years, the majority of the population resides on
the Alzheimer’s disease (AD) continuum, meaning that approximately
four out of five older adults have latent, prodromal, or full expression
of AD dementia (ADD)22,23. These stages within the AD continuum
typically have a progression of functional decline matched with
increasing disease burden as measured during life by histopathology,
neuroimaging, or biomarkers24–26. Standing apart from the AD con-
tinuum is a relatively small subset of older individuals who have mis-
matched normal cognitive function and a high disease burden
sufficient to cause dementia; these individuals, called resilient to AD
(RAD), are especially important because their existence demonstrates
that even advanced AD burden does not necessarily lead to dementia.
What combination of inherited factors, life choices, and experiences
incurred or avoided combine in this “natural protection” that can be
fully effective even in centenarians? Recently, several putative genetic
loci involved in RAD have been found using genome-wide association
studies (GWAS)27,28, yet the underlying gene regulatorymachinery that
mediates gene expression in RAD remains to be elucidated.

In this work, we leverage 191 well-curated tissue samples from sex
and age range matched normal control (NC, n = 5), RAD (n = 12), and
ADD (n = 19) individuals, without neurological comorbidities, and use
Cellformer to predict cell type-specific ATAC-seq data from three brain
regions and provide unique insights into the cellular and molecular
mechanisms underpinning RAD (Fig. 1, Supplementary Fig. 1).

Results
Cellformer: from bulk to cell type-specific OCR
The rich diversity of cell type-specific changes can be obscured in
bulk tissue transcriptomic and epigenomic analyses bymixing across
heterogeneous cell populations. Hence, we hypothesize that deep
learning algorithms, developed to separate mixed source signals21,
could help resolve cell type-specific expression. However, a major
pitfall of deep learning is the requirement of large and annotated
datasets to train the model without overfitting, yet bulk ATAC-seq
datasets with corresponding known cell type-specific expression
compositions are very scarce. To bypass this limitation, we leveraged
single-nucleus ATAC-seq collected from the brains of NC individuals7

and an in-silico dataset generation strategy to create synthetic bulk
samples with established cell type-specific expression13 (Fig. 2a).
More precisely, Cellformer was trained using synthetic subject-
specific synthetic bulk samples. These samples were generated by
first sampling andmerging a random number of single nuclei per cell
type, to create cell type-specific ground truth. Then combining cell
type-specific expression produces synthetic bulk samples, Cellfor-
mer’s input (Methods).

Processing DNA-based sequencing has inherent challenges
including handling the extremely large number of sequential features,
which can lead to both memory and computational challenges. Deep
learning offers the promise of dealing with high dimensional data and
showing successful applications in diverse tasks using ATAC-seq
data29,30. To handle the ATAC-seq high-dimensionality, Cellformer
combines attention mechanisms and an effective method, named
dual-path. The attention mechanisms create connections between
distantly related elements demonstrating high performances in long-
sequence modeling with the development of Transformer models31 in
natural language, speech32, or DNA-sequence processing33. The dual-
path strategy splits the input sequence into small chunks to extract
both local and global dependencies while reducing the computational
complexity of attention-based architecture34. Applied to ATAC-seq
data, Cellformer processes genome-wide sequences extracting both
local (intra-chromosome) and global (inter-chromosome) interactions
to accurately predict cell type-specific accessibility along the whole
genome (Fig. 2b & Methods).

Another well-known issue with ATAC-seq data is low signal
intensity35, which might impact reproducibility and make computa-
tional analysis more difficult. To strengthen our model prediction and
denoise the ATAC-seq OCR, Cellformer automatically filters the less
predictable OCR per cell type, to retain high-confidence OCR for
downstream analysis (see Methods).

Cellformer successfully deconvolutes synthetic bulk ATAC-seq
into cell type-specific chromatin accessibility from different
tissues
Model validation was carried out using a leave-one subject-out strat-
egy, that is, at each iteration, the training of the model was done
using synthetic bulk ATAC-seq brain samples from 12 subjects while

Fig. 1 | Study overview. Cellformer was fed data from comorbidity-free bulk
samples from individuals with clinicopathologic characterization as normal control
(NC), Resilient to Alzheimer’s disease (RAD), and Alzheimer’s disease dementia
(ADD). Threebrain regionswereusedper individual to gain insight into the regional

and cellular epigenetic profile of RAD. Cellformer generated cell type-specific
expression for 6 main cell types across the whole genome, leading to an unpre-
cedented chromatin profiling of RAD (Created with Biorender.com).
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the testing used the 13th subject’s sample. The model capacity at
accurately predicting OCR value per cell type was assessed using
Spearman correlation coefficients. Additionally, themodel accuracy at
predictingOCR accessibility (yes/no)wasmeasured using AUROC, and
AUPRC between binarized ground truth and predicted OCR accessi-
bility (see Methods). Cellformer successfully deconvolutes bulk
expression over cross-validation iterations, achieving strong perfor-
manceswith amean Spearman coefficient of 0.82, AUROCof 0.97, and
AUPRCof0.97betweenpredicted cell type-specific expression and the
synthetic ground truth (Fig. 2c). Stratified by cell type, Cellformer
accurately deconvolutes bulk ATAC-seq OCR with Spearman correla-
tion superior to 0.75 (Supplementary Fig. 2a). Cellformer significantly
outperforms other machine learning methods chosen as baseline
performers for this problem; these include both a supervised and

unsupervised approaches used in partial deconvolution: multi-output
linear regression36,37 andwidely used non-negativematrix factorization
(NMF)38 and a nonparametric method, K-nearest neighbors (KNN) (P
value < 0.05). Its variance across cross-validation iterations were also
lower than existing methods. (Fig. 2c, Supplementary Fig. 2b).

Current state-of-the-art deconvolution methods such as
scDeconv39, DeconPeaker12, BayesPrism40, and CIBERSORT9, rely
on a cell type-specific expression matrix, using the most highly
distinguished markers per cell type, to predict the cellular com-
position of bulk tissue. In contrast, Cellformer predicts cell type-
specific expression of more than 41954 OCR, which is 2.5-fold
more output than established deconvolution methods (Supple-
mentary Fig. 2c). This enables more comprehensive downstream
analysis of biological systems at the cell type level and highlights
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the ability of more extensive deconvolution to gain deeper
insight from bulk data.

As a learning-based algorithm,Cellformer relies on snATAC-seq to
learn cell type profiles. Using our proposed synthetic pseudo-bulk data
generation strategy,we show that Cellformer canbe trained effectively
with a limited number of snATAC-seq samples, with minimal effect of
sample size on its performance (Krustal–Wallis P value 0.98)(Supple-
mentary Fig. 2d).

We further test the ability of Cellformer to deconvolute bulk
ATAC-seq from different tissues. To ensure its robustness to technical
variations such as batch effect, we apply it to in-silico bulk ATAC-seq,
which was created from scATAC-seq from 18 peripheral blood
mononuclear cells (PBMCs) collected for different investigations3,41.
Cellformer accurately predicts cell type expression of the five main
PBMC cell types with a mean Spearman correlation of 0.85 and mini-
mal cross-sample variation, outperforming other baseline models
(Fig. 2d, Supplementary Fig. 2e, f).

In real-life scenarios, the cell type composition of bulk tissue
remains unknown. For instance, a rare cell type can be missing, or a
new (unidentified) cell type can emerge in bulk tissue. In both sce-
narios, Cellformer is minimally affected by the presence or absence of
one cell type, as there are no significant differences in the model’s
performance across different cell types (Supplementary Fig. 3). Addi-
tionally, we evaluated Cellformer’s performances on pseudo-bulk
samplesmadewith different percentages of cell type-specific cells. We
observed a slight decline in Cellformer’s performancewhen cells make
up <10% of the total bulk cells. For biologically rare cells such as OPCs
(constituting <3% in white matter) or microglia (constituting <10% in
brain), Cellformer achieves an average Spearman correlation of 0.7
when deconvoluting pseudo-bulk data, with OPCs which account for
<3% of the overall composition. Similarly, an average correlation of
0.68 is achieved when deconvoluting pseudo-bulk samples containing
less than 10% of microglia (Supplementary Fig. 4a). Finally, although
we primarily focused on the major brain cell classes in this study, we
also assessed the performance of Cellformer in accurately capturing
OCRs in specific subclasses such asSST+ andPVAL+ inhibitory neurons
(Supplementary Fig. 4b).

Cellformer resolved bulk ATAC-seq across three brain regions
Following training, Cellformerwas then applied tobulkATAC-seq from
NC, RAD, ADD collected from three brain regions: caudate (CAUD),
superior and middle temporal gyri (SMTG), and hippocampus (HIPP).
Cellformer output consistency, applied to bulk samples from different
phenotypes, was done by computing the Spearman correlation

coefficient between technically replicated cell type-specific expres-
sions. A significantly higher correlation (Spearman>0.8, Bonferonni
corrected P value < 1e-3) is observed between deconvoluted expres-
sion from true technical replicates than randomly chosen samples,
from the same brain region and same disease group (Fig. 2e, Supple-
mentary Fig. 5). Preservation of the true cell type signature on
deconvolutedRAD andADD samples is evaluated using anexternal cell
classifier, trained on single-cell ATAC-seq from NC (see Methods).
A near-perfect concordance is found between the cell-classifier
predictions and the true label using Cellformer’s outputs (Fig. 2f,
Supplementary Fig. 6).

Validation of the RAD and ADD cell type-specific expression was
performed by comparing Cellformer cell type-specific expression and
cell type-specific expression from snATAC using two publicly available
datasets42,43. Significantly high correlations (correlation coefficient
>0.75) are found between snATAC and deconvoluted cell type
expression from two different regions of the cortex using Cellformer’s
set of predictable OCR (Fig. 2g, Supplementary Fig. 7). A substantial
correlation is also noticed between neuronal and glial cells, in agree-
mentwith brain cell atlas hierarchy44. These inter-cell type correlations
were also observed within snATAC-seq and deconvoluted ATAC-seq
mean profiles, suggesting that Cellformer can deconvolute cell types
with a range of similar OCRs (Supplementary Fig. 7b). These results
suggested that the set of predictable OCR derived by Cellformer are
highly reproducible across studies and provide a reference signature
of the main cell types in the brain that could be a useful resource for
further studies.

We next tested whether Cellformer could reveal biological sig-
natures by intersecting AD-specific OCR with genomic regions linked
to recently reported AD-risk genes45. OCRwas derived using univariate
analysis comparing ADD with non-ADD samples (adjusted P value <
0.05, absolute logFC >0.5 using two-sided Wilcoxon’s test) (Supple-
mentary Fig. 8a). When compared with known AD-risk variants, we
found that hippocampal cell type AD-specific OCR associated genes
were significantly enriched in AD traits in both neuronal and glial cells,
except in oligodendrocytes (P value < 0.05 using Benjamini-Hochberg
corrected Fisher’s test) (Supplementary Fig. 8b). These results high-
light the power of cell type-specific resolved ATAC-seq to identify
disease epigenetic signatures.

Cell type-specific chromatin accessibility landscape from NC,
RAD, and ADD corroborates previous observations
When applied to bulk samples fromNC, RAD, and ADD, Cellformer led
to an unprecedented cell type-specific epigenetic dataset offering

Fig. 2 | Cellformer: model training, design, and evaluation. a A synthetic dataset
of simulated bulk samples was generated from previously published single-cell
ATAC-seq from 13 normal controls7. Cell type-specific pseudo-bulk samples were
generated by aggregating snATAC-seq data, revealing the ground truth cell type-
specific composition. Simulated cell-specific pseudo-bulk samples were further
aggregated to generate pseudo-bulk samples, which are Cellformer’s input. This
dataset was used to train Cellformer tominimize the reconstruction error between
predicted and ground truth cell type-specific ATAC-seq (Created with Bior-
ender.com). b Cellformer leverages a dual-path strategy to process both intra and
inter-chromosome interaction, enabling full genome deconvolution. P values were
derived using a two-sided Wilcoxon’s test after multi-testing correction.
c Cellformer was evaluated using the leave-one-subject-out strategy. It out-
performed other multi-output regression models, notably linear regression, KNN
and an unsupervised approach (NMF) used previously to estimate cellular com-
position across the (n = 6) different cell types. P values were derived using a two-
sided Wilcoxon’s test after multi-testing correction. d Cellformer successfully
deconvoluted leave-one-out cross-validated PBMC in-silico bulk ATAC-seq data
from different datasets (n = 18 samples), predicting cell type-specific expression of
five main cell types (B cell, T cell-CD4+ (CD4), T cell-CD8+ (CD8), Myeloid and NK
cells). P values were derived using a two-sided Wilcoxon’s test after multi-testing
correction. e Quality of the Cellformer’s predictions was assessed by comparing

technical replicate cell type-specific expression (n = 36 samples, see Fig. 1). Cell-
former generated outputs that are highly consistent between true technical repli-
cates, exhibiting a correlation coefficient (>0.9) significantly higher than with
random replicates. (Two-sided Wilcoxon’s test after multi-testing correction)
f Cellformer output preserves cell type signature across 6 cell types: astrocytes
(AST), microglia (MIC), oligodendrocytes (OLD), and oligodendrocyte progenitor
cells (OPCs), and 2major classes of neurons, excitatory (EXC) and inhibitory (INH).
An external cell classifier trained on single-cell data from NC samples was used to
assess the cell type-specific ATAC-seq quality. The confusion matrix computed
between the cell classifier and Cellformer predictions showed almost perfect
agreement, highlighting its capacity to preserve the cell type signature.
g Cellformer validation was performed by comparing RAD cell type-specific
expression from SMTG with RAD single-cell ATAC-seq expression from SEA-AD
using a two-sided Spearman correlation. Significant high correlations were
obtainedwithin the same cell type between the twodatasets. Spearman correlation
coefficient order between cell types was consistent with biological knowledge: a
high correlation was found between neuron types and between OLD and OPCs. All
box plots show the median (middle line), interquartile range (bottom and upper
edges), and the minimum and maximum values of the distribution (whiskers). *P
value < 0.05, **P value <0.01, ***P value < 0.001, ****P value < 0.0001.
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opportunities to identify unique RAD epigenetic signatures at cell type
resolution. It generated at least 10,145 well-predicted OCR per cell
type, yielding 41,954 shared cell type-specific OCR, across three brain
regions: HIPP, CAUD, and SMTG (Fig. 3a). These OCR exhibited no
confounding patterns by sex, age, or batch enabling a more accurate
analysis (Supplementary Fig. 8c).

Aligning with the literature, cell type-specific samples clustered
primarily by cell type, then brain region, and finally disease group
(Fig. 3b, c)7,42. Additionally, most of the cell type-specific OCR were
found in the intronic (~50%), distal (~25%), or promoter (~15%) regions,
similar to our previous work7 (Fig. 3d). Together these findings
demonstrate that cell type-specific data generated by Cellformer
showed expected epigenetic patterns in the human brain and aligned
well with observations made on single-cell data.

RAD-specific open chromatin accessibility reveals new epige-
netic mediators
Weperformedunivariate analysis on cell type-specific expression from
RAD, NC, ADD, independently for each cell type. Most of the differ-
ences distinguishing RAD from other groups are found in the HIPP
(93%), with few differences observed in the CAUD region (7%) using
multi-testing corrected two-sided Wilcoxon’s test (P value < 0.05,
absolute fold-change >0.5); none were identified in SMTG. RAD-
specific OCR are shared between neuronal cells (55%) and microglia
(28%) (Fig. 4a).

RAD-dysregulated OCR is primarily cell type-specific, with 30% in
excitatory neurons and 22.5% inmicroglia (Fig. 4b). Interestingly, RAD-
specific OCR are foundmore upregulated than downregulated in HIPP
(Fig. 4c). Interpretation of these results is supported by applying Gene
Ontology (GO) to the genes related to all identified significantly dif-
ferent OCR in RAD, revealing cell junction, synaptic transmission, and
neuronal development signals in neuronal RAD-specific OCR and
inflammatory response in microglial RAD-specific OCR (adjusted P
value < 0.05) (Fig. 4d).

We conducted additional validation of RAD epigenetic signatures
by using proteomics data previously collected on the same samples46.
A weak agreement is observed between proteomic expression
and ATAC-seq accessibility with a Pearson correlation of −0.001

(Supplementary Fig. 8d). Only 8% of OCR-related genes show overlap
with expressed proteins (Supplementary Fig. 8e). Similar results are
observed with RAD-specific OCR-related genes, with 4 out of 40 (10%)
genes overlapping with expressed proteins. However, in contrast to
the overall sample, our analysis reveals that two (50%) protein-coding
genes (VDAC2 and PGBP5) exhibited significant upregulation in RAD at
both epigenetic and proteomic levels (Supplementary Fig. 8f).

To complement our analysis and nominate RAD gene regulatory
elements, an activity-by-contact (ABC) algorithmwas applied to the set
of predictable OCR andHiChip fromdifferent brain regions7 to predict
regional gene enhancer interactions47. ABC model determined 16,320
hippocampal enhancer OCR with 15% showing physical evidence only
in this region (Supplementary Fig. 8g). By intersecting the set of pre-
dicted enhancers with RAD-specific OCR, we found that <50% of RAD-
specific OCR were linked to cis-regulated elements while the rest were
found innon-coding regions (Fig. 4e). GOandpathway analysis applied
to OCR predicted to be localized in both genic and intergenic RAD-
specific enhancers revealed significant enrichment of genes related to
chemical synaptic transmission in excitatory neurons, inhibitory neu-
rons, and microglia notably Amyloid Beta Precursor Protein Binding
Family A Member 2 (APBA2), that modulates AD amyloid precursor
protein, and BDNF signaling pathway. These findings corroborate
previous analyses performed with microarray protein analysis and
animal models48,49.

Discussion
Bulk ATAC-seq is an effective and efficient method to measure open
chromatin accessibility2,4,35. Inhumanbrains,ATAC-seqmaybe favored
over RNA-based methods for technical reasons, including greater
stability of DNA in post-mortem brains and more comprehensive
assessment than in single-nucleus assays50. While snATAC-seq offers
the attractive opportunity to detect cell type-specific open chromatin
accessibility, it is highly impacted by dropout events, making snATAC-
seq analysis more challenging and vulnerable to missing low-
expressed genes51. To remedy this, we developed Cellformer, a new
approach to deconvolute bulk ATAC-seq data and thereby computa-
tionally enhance resolution to the cell-type level. Using Cellformer, we
illustrated the power of deep learning to enhance biological data

Fig. 3 | Cellformer deconvolutes bulk expression into cell type-specific
expression enabling an unprecedented chromatin profiling of RAD and ADD.
a Our approach enabled the characterization of RAD spanning >10,000 cell type-
specificOCR.bAsexpected, cell type-specific expressionsweremainly clusteredby
cell type. UMAP embedding of cell type-specific expression is colored by cell type,

brain region, and phenotype. cHeatmap showing themean chromatin accessibility
per cell type, brain region, and phenotype. As observed previously7, phenotype
chromatin accessibility variation is dominated by regional variation. d OCR com-
position per cell type. The majority of the cell type-specific OCR were in intronic,
promoter, and distal regions.
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analysis and advance our understanding of disease mechanisms at the
epigenetic level.

The cellular composition of tissue is a crucial component of
sequencing analysis40,52. In contrast to previous methods to deconvo-
lute bulk sequencing data9,12,53, Cellformer does not aim to predict
cellular abundance in bulk tissue but instead “fully” deconvolutes bulk
ATAC-seq, generating OCR data at the cell type level across the whole
genome. Besides, Cellformer does not rely on cell type signature
matrix definition9,18, a key ingredient of previous bulk deconvolution
that strongly correlates with prediction accuracy14,19 and deters appli-
cation to samples where no single-cell data are available, such as the
RAD and ADD samples investigated here. Defining an accurate sig-
nature remains an open computational problem that has been poorly
investigated for ATAC-seq data12. Cellformer bypasses this issue by
leveraging the power of deep learning to automatically extract and
predict cell type-specific OCR13.

While ATAC-seq can be performed on experimentally isolated
single cells or single nucleus, Cellformer can resolve bulk expression at
the cell type level, not at the single-cell level. However, creating cell
type-specificmixtures is a popular strategy to overcome the low count
and sparsity of snATAC-seq and improves the statistical power of

single-cell analysis54. Notably, cell type-specific data are used to
strengthen the signal and improve statistical significance for high-
confidence, differential analysis55, TF footprint, or disease gene reg-
ulatory signatures identification56–58. Furthermore, similar to single-cell
sequencing, Cellformer is limited to the most predictable and highly
expressed cell type-specific OCR.

Cellformer belongs to the reference-based method category:
supervision of the model requires snATAC-seq to learn cell type-
specific expression. Therefore, Cellformer predictions are limited to
the cell type-specific open chromatin patterns detected in the single-
nucleus samples and strongly depend on the quality of snATAC-seq
samples.

In this study, we focused on the 6 major brain cell classes.
Although we demonstrate Cellformer’s ability to deconvolute at a
lower resolution (Supplementary Fig. 4b), wenotice that increasing the
number of output cell types results in a significant rise in computa-
tional complexity. This limitation restricts the number of deconvo-
luted cell types that can be effectively handled. To overcome this
challenge, we plan to implement and validate strategies such as
hierarchical training or cell-type prioritization functions, which will
expand the capabilities of Cellformer. The model generalization and

Fig. 4 | Epigenetic signature of RAD. Differentially expressed open chromatin
region (OCR) across three brain regions and predicted for six cell types. aCell type-
specific OCR between RAD and ADD/NC were mainly found in HIPP (93%) and
distributedbetweenmicroglia (28%), and neuron cells (55%) (multi-testing adjusted
two-sided Wilcoxon’s test P values < 0.05, logFC>0.5). b OCR differentially regu-
lated in RAD in the HIPP was mainly neuron-specific (excitatory specific or shared

between inhibitory and excitatory neurons) or microglia-specific. c Number of
differentially upregulated and downregulated OCR in RAD per cell type. d GO
enrichment applied to RAD-specific OCR (FDR 5%). e Hippocampal RAD-specific
OCR intersected with predicted enhancers using the ABC model47. Only 50% of
RAD-specific OCR were identified as enhancers in HIPP.
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robustness will be also improved in the future by leveraging the ever-
growing amount of available single-cell/nucleus ATAC-seq data or by
adapting transfer learning approaches to improve prediction perfor-
mances on bulk samples from new tissues. Another limitation is the
time of training which varies between two hours and a few days
depending on themodel configuration, the computing power used for
the training, and the number of samples. Yet, it remains faster and less
expensive than a single-cell sequencing protocol. Additional hyper-
parameter optimization and gradient acceleration strategy will be
implemented in the future to improve training efficiency59.

Applied to large cohort bulk ATAC-seq data frommultiple human
brain regions, Cellformer provided new insights into RAD, an unusual
groupof individualswhodonot succumbto thehighburdenofADand
who likely hold important clues to treat this highly prevalent disease.
Cellformer predicted that OCRdifferences between RAD and the other
two groups that are on the AD continuumwere very strongly localized
to HIPP, which subserves declarative memory formation and is the
primary target of AD. At the cellular level, most predicted RAD-specific
OCR were characterized by changes in both inhibitory and excitatory
neurons followed by microglia60. From the perspective of cellular
processes, GO analysis of RAD-specific OCR highlighted neuronal
development, inflammatory response, and synaptic transmission
processes. These pathways were highlighted in previous studies using
proteomics and mouse models of AD48,61–63. Overall, these highly
plausible predictions suggest that individuals with RAD are dis-
tinguished from the AD continuum by epigenetic upregulation in
support of hippocampal neuronal processes and synapses. This reg-
ulation changemight confer RAD the ability to preserve the number of
neuronal projections and synapses that have been observed through
histopathological studies64.

Cellformer offers new perspectives to gain insight into bulk
sequencing and identify cell-specific gene regulatory changes in dis-
ease progression in a cost-effective way. Complementing cellular
abundance prediction, Cellformer provides additional information to
advance bulk ATAC-seq analysis. We expect that Cellformer may help
to unveil cell-specific transcriptional regulation and advance our
understanding of disease epigenetic mechanisms in other biological
settings.

Methods
Data overview
This study drew on snATAC-seq and bulk ATAC-seq data previously
collected7. Primary brain samples were obtained from Stanford Uni-
versity, the University of Washington, or Banner Health from post-
mortem tissue following informed consent and Institutional Review
Boards approval7 (Supplementary Fig. 1). In addition, five recently
collected control snATAC-seq samples fromSMTG (collected using the
same ATAC-seq protocol7) were used to train the model. Data on sex
was collected but not gender. Validation was performed using Seattle
Alzheimer’s Disease Brain Cell Atlas (SEA-AD)43 single-cell (sc-) ATAC-
seq data generated using a 10xMultiome preparation, snATAC-seq
from human prefrontal cortex42 and genetic variants from the most
recent GWAS study for late-onset Alzheimer’s45.

Individuals’ brain samples from both ATAC-seq datasets were
carefully filtered according to clinical diagnosis of cognitive status
proximate todeath and assessmentofADneuropathologic change and
other neuropathologic comorbidities (see Supplementary Table 1)
using current consensus guidelines24,65–69. Resilient cases were defined
as individuals without dementia at their most recent clinical research
evaluation within 2 years of death, and neuropathologic findings of B
score >2 and C score >1 but without vascular brain injury or Lewy body
disease, and LATE neuropathologic change stage of 0 or 1. To ensure a
valid comparison between cell-type-specific ATAC-seq and single-
nucleus ATAC-seq from SEA-AD cohort, we also removed samples
from patients with known Lewy Body disease (brainstem, limbic,

neocortical, olfactory) and LATE neuropathologic change stage above
1 in the SEA-AD dataset.

Bulk ATAC-seq and scATAC-seq processing
We leveraged annotated single-cell ATAC-seq from 12 NC subjects to
identify cell type-specificOCR (or peak)7. “Peak calling”was performed
on regional and cell type-specific replicates to improve statistical sig-
nificance using ArchR workflow56 and its MACS2 implementation70.
Chromatin accessibility varies largely per brain region and cell type1.
Therefore, to ensure capturing OCR that is significantly expressed in
the6main cell types of interest (astrocyte,microglia, oligodendrocyte,
OPCs, excitatory, and inhibitory neurons), we removed single cells that
do not belong to one of these six categories as well as single cells
identified as doublets. Only the significant OCRmarker56, unique to an
individual or a small number of cell type groups was conserved for
downstreamanalysis (FDR <0.001 and FC> 1). In total, wedefined a set
of 41,954 OCR. The count normalized matrix, combining OCR from all
the bulk samples, was then derived using featureCount71.

Previously preprocessed and annotated PBMC scATAC-seq was
downloaded from (https://github.com/GreenleafLab/ArchR_2020)56.
Peak calling, peak filtering, and in-silico bulk generation were per-
formed using the same workflow as described above.

FeatureCount (version 2.0.3) also was applied to 10xMultiple
single-nucleus ATAC-seq fragment files from SEA-AD cohort to extract
the same set of OCR. For an accurate comparison, we only considered
predictable cell type-specific OCR for comparison, used in this study.
Only cells passing the quality control and annotated using the paired
snRNA were used for downstream analysis43.

Annotated raw OCR count matrix provided by Morabito et al42.
was used and intersected with our set of predictable OCR to compare
the prefrontal cortex from ADD and NC single nucleus with deconvo-
luted cell type expression using “intersect” function frombedtools72. A
set of 20060 overlapping OCR was then used to compute the Spear-
man correlation matrices between cell type expression (Supplemen-
tary Fig. 8).

Transformer-based cell-specific ATAC-seq separator
The “Cocktail party” or source separation problem is a widely studied
question consisting of extracting individual source signals from a
mixed one. Inspired by this paradigm, we leveraged a state-of-the-art
source separation method to deconvolute bulk ATAC-seq and extract
individual cell type-specific expression along the whole genome.
Comprehensive processing of the gene regulatory elements linkage,
spanning the whole genome, was achieved using a long-sequence
friendly neural network developed for speech separation34. Based on
the inner/outer transformer-based architecture, our neural network
can extract both within and cross-chromosome epigenetic depen-
dencies along the whole genome using a reduced number of trainable
parameters. More precisely, this “dual-path recurrent neural network”
strategy73,74 decomposes long sequences into smaller chunks of size
250 and, extracts high-level representations within chunks, which are
then concatenated and permuted for inter-chunk interaction proces-
sing. Dual path-based models have shown to be effective at modeling
very long sequences, leading to superior predictive performances in
various audio processing tasks. We adapted the published model to
predict the ATAC-seq profile of 6 major brain cells including astro-
cytes, microglia, oligodendrocytes, OPCS, and two subclasses of neu-
rons, excitatory and inhibitory neurons. An advantage of this
architecture is that it can extract both within and cross-chromosome
cell type-specific epigenetic dependencies all along the genome.

To improve our prediction confidence and enhance the robust-
ness of our approach, we stacked on top of our trained network a
filtering module removing predicted OCR with a relatively high train-
ing error. For each cell type i, we computed the normalized mean
absolute error across all the N samples in the training set as:
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NMEAp =
MEAðX̂i ,XiÞ
1
N

PN

p = 1
jXij

, with Xi and X̂i the ground truth and the predicted,

OCR values, respectively for the cell type i. We preserved cell type-
specific OCR for downstream analysis with a mean error lower than a
threshold defined as: NMEAp <MNMEA + τ*σNMEA, withMNMEA and σNMEA

themean and standard deviation of NMEA across all the OCR and τ the
threshold ranging from −0.5 to 1. τ was optimized using samples from
the training to maximize the correlation between the cell type-specific
ground truth and predicted ATAC-seq expression. Once the filtering
module was trained, it was applied to the model outputs to preserve
only the most predictable cell type-specific OCR.

The pythonic implementation from Asteroid library75 was used to
build and adapt a network. Intra-inter dual-path block was repeated
once and comprised 1 multi-head attention layer and 256-dimensional
FC layers, leading to a 435K trainable parameter-neural network. The
modelwas trainedusingAdamWOptimizer fromPyTorch (v1.10.0)76 to
minimize the mean-square error loss on batches of size 32. An initial
learning rate of 1e-3 was dynamically optimized during the training
using the strategy proposed by73. Best iteration and optimal weights
were selected using an early-stop algorithm. The training stability was
ensured by using gradient clipping to limit the MSE error to 5.

Synthetic dataset generation
Model training was achieved by creating a synthetic dataset of paired
bulk and corresponding cell type-specific samples (ground truth),
leveraging available single cells samples from NC12,13 Each pair in the
synthetic dataset was created by first sampling and aggregating a
random number of the same type of single nuclei from a sample’s
snATAC-seq results in order to create synthetic cell type-specific
pseudo-bulk samples that preserve regional and individual diversity in
our synthetic dataset. Then, corresponding synthetic bulk ATAC-seq
data were created by aggregating the generated cell type-specific
pseudo-bulk samples from the six cell types. 3000 pairs of synthetic
bulk and cell type-specific bulk were generated from each subject,
composed of a random number of cells ranging from 100 to 800.
Then, both synthetic cell type-specific and bulk samples were nor-
malized by the total number of cells and the maximum OCR value.
Harmony batch normalization was applied on snATAC-seq to ensure
robust peak calling7,56. No batch normalization was further applied on
the input of the model, since additional analysis suggests that Cell-
former removes batch effects while preserving biological variations,
i.e., kBet = 0.79 ±0.14, NMI = 0, ARI = −0.02 ± 0.001, cLISI = 1, iLISI =
0.58 ±0.02 across the brain regions77.

Model validation
Model testing through leave-one-subject-out cross-validation.
Model generalizability was assessed using the leave-one-subject-out-
strategy. More precisely, at each iteration, the dataset was partitioned
into a training and testing set, such that samples from all brain regions
from one individual were left out while the rest of the samples were
gathered to create the training set. From the training set, 20% of the
samples were used to tune the model hyperparameters at each itera-
tionwhile the remaining samples helped to optimize theweights of the
model. Once trained, we fed the model with synthetic bulk samples
created by aggregating single cells per snATAC-seq donor from the
test set (never seen by the model) and validated its performances at
predicting an accurate and consistent cell-specific signal using the
Spearman correlation. We also assessed the ability of the model to
predict non-zero OCR by computing the AUROC and AUPRC after
binarization of the ATAC-seq expression29,30. Mean errors with quartile
error bars across iterations were reported and compared with other
models. Themodel with the highest performanceon thewhole dataset
and among the top threemodelswith the lowest test errorwasused for
downstream analysis.

Model’s output consistency and plausibility. Model output con-
sistency was validated by computing the Spearman correlation
between technical replicates and predicted cell type-specific sig-
nals (Fig. 2e). To assess the significance of the observed mean cor-
relation between technical, random replicate permutation tests
were performed. More precisely, for each bulk sample, Spearman
correlation was computed between the model’s output of this
sample and a random replicate, arbitrarily selected from the same
brain region, from the phenotype group, or both the same brain
region and phenotype group (Supplementary Fig. 3). P value was
derived by comparing the mean correlation between true replicates
and random replicates using Bonferroni corrected two-sided
Wilcoxon test.

Cell signature preservation. We ensured the cell type signatures
model’s preservation in ADD and RAD samples using an external cell
classifier (Supplementary Fig. 6). To better capture the cell type-
specific signature and be more robust to dropout, an XGBoost classi-
fier was trained to classify single-nucleus ATAC-seq fromControl cases
into cell class. The model was trained to minimize a softmax loss
between the predicted label fromsynthetic cell type-specificATACand
the corresponding ground truth (see Synthetic Dataset Generation).
Stratified K-fold nested cross-validation was exploited to validate the
model and performances of the model were quantified using AUROC
and AUPRC between the ground truth label and the predicted prob-
ability and optimized the model hyperparameters. The XGBoost
package in Python was exploited to implement the cell classifier,
parameterized with a learning rate equal to 0.1, a maximum depth of
tree set to 10 and 100 estimators. The model achieved a mean
AUROC= 1.000, Precision =0.994, and Recall = 0.993 over cross-
validation iterations when tested on the held-out single-nucleus
ATAC-seq datasets.

Once trained and validated to accurately predict the cell type, the
model was applied to deconvoluted cell type-specific expression from
AD and RAD. The classifier achieved an AUROC of 1.000, a Precision of
0.993, and a Recall of 0.994 when tested on the deconvoluted
expression. Confusion matrices showed almost a perfect classification
across cell types, brain regions, and conditions.

Model comparison
We compared our model with supervised (Linear regression), non-
parametric (KNN) machine learning, and unsupervised (Non-Negative
Matrix Factorization) models. These algorithms were implemented
using the default parameterized functions from Scikit-learn78. Using
100 synthetic bulk samples, the multi-out models (Linear regression
and KNN) were trained to predict cell type-specific OCR byminimizing
the MSE loss. The same leave-one-subject-out strategy as for Cellfor-
mer was used to assess models’ generalization and avoid overfitting.
NMF model was trained using a synthetic bulk matrix created by
aggregating all the single nuclei per replicate. Then, the predicted
OCR-specific expression was computed through row-wise multi-
plications between the feature matrix and the coefficient vectors.

OCR annotation
Chipseeker79 was used to identify OCR-gene association and
genomic OCR annotation using default parameters following ATAC-
seq data processing guidelines and Harvard bioinformatics
recommendations35,80. One of the main issues in epigenetic analysis is
the lack of consensus between annotating tools81. We, therefore,
compared Chipseeker to the annotations given by ArchR, developed
for ATAC-seq data analysis. Overall, Chipseeker and ArchR agreed on
60% of peaks, including complete (100%) agreement between peak-to-
gene annotations of RAD-specific promoters, from which our biologi-
cal insights were drawn. In particular, similar gene ontology enrich-
ment is observed using both tools.
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Candidate enhancer OCRs per brain region were computed using
Active-by-Contact (ABC) model47. Candidate enhancer regions were
derived for each brain region independently using 10 ATAC-seq
replicates. Region-specific ABC scores were computed by combining
the OCR activity and the genomic spatial information extracted from
the HiChip-seq data provided by Corces et al7., using the suggested
parameters80.

Cell type-specific ATAC-seq analysis
Differentially expressed OCRwere identified using FDR corrected two-
sided Wilcoxon test using FDR 5% and absolute log fold-change
superior to 0.5 from Scanpy library and MultiPy82–84. Gene ontology
and pathway analysis were performed on OCR-related genes with the
GO and BioPlanet databases from 2021 and 2019, respectively, using
GSEAPY85 (version 1.0.3).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings described in this manuscript are
publicly available. Bulk ATAC-seq and single-cell ATAC-seq from con-
trol individuals were previously collected and annotated26 accessible
through GEO accession (GSE147672). Additional single-nucleus ATAC-
seq data and raw and processed bulk ATAC-seq fromADD and RAD are
available through GEO accession (GSE226529) and Dryad (https://doi.
org/10.5061/dryad.2fqz612t0). Validation of themodel was performed
using processed snATAC-seq from40,41 available at (http://portal.brain-
map.org/explore/seattle-alzheimers-disease and https://www.synapse.
org/#!Synapse:syn22079621/wiki/603535. Processed PBMC ATAC-seq
data are accessible at https://github.com/GreenleafLab/ArchR_2020).

Code availability
For future research, all custom code used in this work code, processed
data, and additional metadata have been made publicly available at
(https://github.com/elo-nsrb/Cellformer) and https://doi.org/10.5281/
zenodo.8175353. The following packages were used: Python 3 (version
3.9.7) with PyTorch (version 1.10.0); Scikit-learn (version 1.0.1), aster-
oid (0.5.2), and GSEAPY (version 1.0.3); R (version 4.2.2) with ArchR (R
version 4.2.2), Chipseeker (version 1.36.0); FeatureCount (ver-
sion 2.0.3).
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