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Neural manifolds for odor-driven innate and
acquired appetitive preferences

Rishabh Chandak 1 & Baranidharan Raman 1

Sensory stimuli evoke spiking neural responses that innately or after learning
drive suitable behavioral outputs. How are these spiking activities intrinsically
patterned to encode for innate preferences, and could the neural response
organization impose constraints on learning? We examined this issue in the
locust olfactory system. Using a diverse odor panel, we found that ensemble
activities both during (‘ON response’) and after stimulus presentations (‘OFF
response’) could be linearly mapped onto overall appetitive preference indi-
ces. Although diverse, ON and OFF response patterns generated by innately
appetitive odorants (higher palp-opening responses)were still limited to a low-
dimensional subspace (a ‘neural manifold’). Similarly, innately non-appetitive
odorants evoked responses thatwere separable yet confined to another neural
manifold. Notably, only odorants that evoked neural response excursions in
the appetitive manifold could be associated with gustatory reward. In sum,
these results provide insights into how encoding for innate preferences can
also impact associative learning.

Inmany organisms, the olfactory system serves as the primary sensory
modality that guides a plethoraof behaviors, such as foraging for food,
finding mates, and evading predators. The genetic makeup of these
organisms determines the innate preference, or valence, associated
with different olfactory stimuli1–6. Consequently, neural responses
evoked by these stimuli have to be patterned to drive motor neurons
to perform appropriate behaviors (i.e., move towards or away) that are
key for survival. Given the importance of rapid and robust decision-
making7–10, we wondered how information regarding the valence of a
chemical cue is encoded in the olfactory system2,4,11–17. Particularly, we
examined whether and how neural responses are spatiotemporally
structured to represent odor valence in the early locust olfactory
system.

In insects, odor stimuli are detected by olfactory sensory neurons
in the antenna that transduce chemical cues to electrical signals and
relay them to the antennal lobe. A network of cholinergic projection
neurons (PNs, excitatory) and GABAergic local neurons (inhibitory) in
the antennal lobe fire in unique spatiotemporal combinations to
encode for stimulus identity18–24. The PN responses are patterned over
space and time to encode for different odorants encountered by the
insects and relay this information to higher centers responsible for
learning, memory, and overall behavioral preferences25–27. The odor-

evoked PN response patterns are elaborate and continue well after the
stimulus is terminated.

Since the behavioral responses initiated by an odorant are often
rapid8,9,28, the relevance of neural activity that occurs well after the
stimulus onset remains to be understood. However, what has been
reported is that the behavioral responses elicited by an odorant last
the duration of the stimulus exposure28,29. Further, an emerging per-
spective from the fly30 and worm chemotaxis system31 is that the
responses even after termination of a stimulus should be behaviorally
relevant. During chemotaxis, the ON responses trigger a surge or
upwind run behavior, and the OFF responses bring about the com-
plementary casting or local search behavior. In addition to driving
different innate behaviors, in the fly gustatory system32, both the ON
and the OFF responses evoked by bitter stimuli have been shown to
alter synaptic plasticity in the mushroom body, albeit in an opposing
fashion.

What is the relevance of the odor-evoked ON and OFF responses
in driving innate and acquired odor-driven behavioral preferences?We
examined this issue in the locust olfactory system. Our results show
that both ON and OFF responses of odorants that evoked similar
behavioral preferences could be grouped into separate clusters.
Therefore, ensemble neural responses during both these time
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windows could be used to predict the behavioral outcomes. Intrigu-
ingly, both ON and OFF responses could impact learning associations
between an odorant and a gustatory reward but in disparate ways. In
sum, our results reveal how spatiotemporally structured neural
responses could be mapped onto innate and acquired olfactory
preferences.

Results
Innate appetitive preferences of locusts to an odor panel
We began by assaying the innate appetitive preferences of starved
locusts to a large, diverse panel of odorants (1% v/v unless stated
otherwise). Each odor in the panel was presented to every locust once
using a pseudorandomized order. The palp-opening responses (POR)
evoked by all odorants in the panel were recorded (Fig. 1a, b). We used
a binary metric to quantify whether each locust responded to an odor
by opening its palps (a score of 1 to indicate a palp-opening response
(white-colored boxes), and a score of 0 to indicate no response (gray-
colored boxes)). For visualization, the odors were sorted based on the
number of PORs they elicited across locusts.

We converted these results to a preference index for each odor
(see “Methods”). As can be seen from Fig. 1c, we obtained a broad
range of preferences for the odor panel. Hexanol (at 10% v/v; leftmost
odorant; x axis), a green-leaf volatile, had the highest preference,
whereas linalool (rightmostodorant; x axis), a pesticide, had the lowest
preference. We categorized odorants as being appetitive, neutral, and
unappetitive (one-sided binomial test comparison; neutral and unap-
petitive odors are jointly referred to as “non-appetitive”). Prior studies
have found that preferences for certain odorants can vary between
males and females of the same species1,33,34. To examine this possibility,
we also compared behavioral responses between male and female
locusts (n = 13 for each gender, Supplementary Fig. 1a). While appeti-
tive preferences for certain odorants did vary between males and
females in our dataset (e.g., hexanal and garlic), these differences were
not significant (t test, P > 0.1 for all odors).

Is there a simple stimulus feature that could account for these
diverse appetitive preferences? Since the odorants were diluted to the
same concentration (1% v/v) and delivered identically (except hexanol
which was alone delivered at 10%, 1%, and 0.1% dilutions), the vapor
pressure of the chemicals directly determined how much of each sti-
mulus was delivered. We wondered then if locusts were simply
behaving more frequently for more volatile odors (higher vapor
pressure). However, as can be seen in Fig. 1d (and Supplementary
Fig. 1b), a regression between the vapor pressure of the stimuli against
the behavioral responses poorly explained the observed POR trend.

Another potential confound that could impact the observed
trends could arise from fatigue/loss of motivation which could
potentially diminish the locust PORs in the later trials of the experi-
ment. To eliminate this possibility, we plotted the observed number of
PORs as a function of the trial number (Fig. 1e). As can be noted, our
results indicate that locust performance remains robust and even
slightly increased as the experiment progressed (R2 = 0.23; Supple-
mentary Fig. 1c). In addition, we performedMonte Carlo simulations to
verify that population-level responses were not biased by a handful of
individuals. Our results confirmed that this is indeed the case and the
results converged when any random subset of eighteen or more
locusts was used to calculate behavioral preference indices for dif-
ferent odorants (Fig. 1f). Finally, we conducted an independent set of
experiments to confirm whether the preferences of locusts to a given
odorant remains consistent across repetitions. Our results indicate
that the locusts’ PORs remained consistent even when the same
odorant was encountered in a recurring fashion (Supplementary
Fig. 1d). These results, combinedwith the pseudorandompresentation
of odorants, indicate that the behavioral preferences obtained are a
strong indicator of the innate appetitive preference of the locusts, and
the sample size used was sufficient to get a stable readout.

Individual projection neuron responses to appetitive and non-
appetitive odorants
Next, we sought to understand the neural basis of this behavioral
readout. To examine this, we recorded odor-evoked responses from
projection neurons (PNs) in the locust antennal lobe (Fig. 2a). We sti-
mulated the antenna with the same odor panel used in the behavioral
experiments. The stimulus dynamics of each odorant were quantified
using a photoionization detector (PID) and the mean voltage respon-
ses for all odors are shown in Fig. 2b (left panel; see “Methods”). The
right panel shows the peak PID response for each odorant arranged in
order of innate appetitive preferences (cues that evoked the highest
behavioral responses are on the left and the lowest are on the right).

We presented each odorant for ten repetitions in a pseudor-
andomized order. A total of 89 PNs (pooled across 26 locusts of both
sexes; ~10% of the total number of PNs in a single antennal lobe) were
recorded using this approach and used for all subsequent analyses.
Consistent with prior data, we found that odor-evoked responses had
two prominent epochs: an ON response that occurred during the 4 s
when the stimulus was presented, and an OFF response that occurred
during a 4 s window immediately following stimulus termination. We
found a PN that had an ON response for most of the odorants (Fig. 2c,
PN A), whereasmany PNs responded to a subset of odorants either with
an ON response or an OFF response. A small fraction of neurons were
OFF-responders to a fewappetitive odors but switched toON responses
for some of the non-appetitive odorants (Fig. 2c; PN B; 8/89 PNs with
similar tuning). Complementing these responses, we also found a small
fraction of PNs that was ON-responsive to all five appetitive odorants
but was OFF-responsive to one or more unappetitive odorants (Fig. 2c,
PN C; 11/89 PNs with similar tuning). On average, odorants with higher
valence elicited stronger ON and OFF responses across more PNs than
those with lower valence, while inhibition increased as the odorants
became less appetitive (Fig. 2d; see “Methods“).

We computed the correlation between the individual PN respon-
ses to different odorants with the overall behavioral preferences of the
same panel (Fig. 2e). Notably, we found a small subset of neurons that
had either a strong positive or negative correlation with the POR
responses observed. Furthermore, our results indicate that such cor-
relations could be found when either the ON or OFF responses were
used. Although, it would be worth noting that different subsets of PNs
had a high correlation with appetitive preference during the ON and
the OFF periods.

How selective are individual PN responses? To answer this, we
computed a tuning curve for each PN during both the odor ON and
OFF periods (Fig. 2f). We found that most PNs responded to at least
two odorants or more during the ON period (84/89 PNs) and a small
fraction of neurons (11/89 PNs) responded to ten or more odorants
(Fig. 2f, bar plots along the y axis). The odor-evoked responses were
more selective during the OFF period, with 70/89 PNs responding to
two or more odors and only three PNs responding to more than ten
odorants. In sum, these results indicate that individual PNs responded
to the odor panel with great diversity.

Ensemble projection neuron responses to appetitive and non-
appetitive odorants
Next, we examined how odor-evoked responses vary at an ensemble
level. To visualize the ensemble neural responses and how they
change as a function of time, we used a linear dimensionality
reduction technique (Principal Component Analysis, PCA; see
“Methods”). PCA neural response trajectories for the ON period are
shown for all odorants (Fig. 3a; 4 s of odor presentation). Consistent
with prior findings22,35–37, our data also reveal that each odorant
produced a distinct looped response trajectory. Interestingly, we
observed that neural response trajectories evoked by odorants that
were labeled as innately appetitive in the behavioral assay evolved
in a similar direction (blue trajectories). This indicates that the
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combination of PNs excited by these odors had overlap and hence
the PN ensemble vectors were near one another in the state space.
Similarly, the trajectories for odors labeled as unappetitive also
evolved in a similar direction (red trajectories) and occupied a dif-
ferent region of the state space. Note that the sets of red and blue
trajectories did not overlap, indicating that odors within different
groups (appetitive and unappetitive) were being encoded by rela-
tively distinct subsets of PNs.

We confirmed these dimensionality reduction results with a
high-dimensional clustering analysis (Fig. 3b). We found that the
spiking profiles for odors that belonged to the same group
(appetitive or unappetitive) were similar, and hence clustered
within the same branch when visualized using a dendrogram.
These results support our interpretation that different subsets of
PNs in the antennal lobe are activated in a manner that is repre-
sentative of the innate appetitiveness of the stimulus.
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Fig. 1 | Innate appetitive preferences of locusts to a diverse odor panel. a (i) A
schematic showing a palp-opening response (POR). A successful POR was defined
as an opening of the maxillary palps beyond the facial ridges shown on the locust.
(ii) Odors were delivered in a pseudorandomized order onto the locust antenna.
The stimulus delivery was 4 s in duration, and the inter-stimulus-interval was set to
56 s. All source data are provided as a Source Data file. b Innate preferences of 26
locusts for the 22 odorants tested are shown. Each row shows the POR responses of
a locust to the odor panel. White boxes indicate successful PORs to odorants and
gray boxes indicate no PORs. Note that odorants are sortedbasedon thenumberof
PORs elicited across locusts (highest–leftmost to lowest–rightmost)). c Preference
indices were calculated for all odors tested and are shown as a bar plot (n = 26
locusts). Blue bars indicate odors classified as appetitive, gray bars indicate neutral
odors and red bars indicate unappetitive odors. Locusts with a significant deviation

from themedian response (one-sidedbinomial test, P <0.1, were classified as either
being appetitive or unappetitive; *P <0.1, **P <0.05, ***P <0.01). Error bars indicate
s.e.m. d Regression analysis of odor vapor pressure versus the number of PORs
generated (across all 26 locusts) is shown. Only odorants with available vapor
pressure data were considered (18/22 odors at 1% v/v concentration). The best-fit
linear regression line is shown. e Regression analysis of POR counts versus the trial
number is shown. Each circle indicates the number of locusts with successful PORs
in that particular trial. The best-fit linear regression line is shown. f Results from
Monte Carlo simulations are shown (see “Methods”). Preference indices obtained
byusing a randomsubset of locusts of a particular size (i.e., anyn-locusts-out-of-26)
were correlatedwith overall results obtained using all 26 locusts. Themean± s.e.m.
correlation values across 100 random simulations are shown for each sample size.
An R2 value above 0.95 was obtained for simulations with n > 18 locusts.
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Predicting behavioral preferences from odor-evoked neural
responses
How well do the neural responses map onto the behavioral pre-
ferences for different odorants? To examine this, we used linear
regression to predict the probability of generating a POR given the
ensemble PN activity elicited by that odorant. (Fig. 4a). Note that for

these predictions, we used the normalized behavioral responses for
each odor (see “Methods”), which could also be interpreted as the
probability of a palp-opening response to a given odorant (across
locusts). The regressionweights were trained using all but one odorant
and used to predict the probability of POR for the left-out odorant (i.e.,
a leave-one-odorant-out-cross-validation approach; 22 different linear
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regression models were used). We found that this simple approach
yielded robust predictions for all odorants (Fig. 4b, c).

Note that we made predictions using the mean ensemble PN
activity during 4 s of odor exposure (i.e., an “ON-regressor”), and using
4 s of odor-evoked activity after the termination of the odorant (i.e., an
“OFF-regressor”). Both the regressors performed relatively well with
the ON-regressor performance being better than the OFF-regressor.
Further, the performance of the linear regression approach with
shuffled prediction probabilities for different odorants (i.e., “shuffled
control” for bothONandOFF cases) predicted values around themean
POR probability for all odorants (Fig. 4b, c; mean = ~0.4), and was
significantly inferior compared to the ON- and OFF- regression
approaches. The poor performance of the shuffled control approach
compared to the ON- and OFF- regressors suggest that the spiking
activity across PNs is indeed organized to enable mapping between
neural and behavioral response spaces.

How consistent were the different regressionmodels? Our results
indicate that the weights assigned to each PN remained stable irre-
spective of the odor that was left out to train the regression model
(Fig. 4d). This consistency of the assigned weights across regressors
indicates that no particular odorant disproportionately influenced the
regression model used to transform neural responses into POR prob-
abilities. In addition, Monte Carlo simulations (see “Methods”)
revealed that both the ON- and OFF- regressors’ performance
improved as the number of PNs used in the analyses was increased
(Supplementary Fig. 2a).

We wondered whether the same set of PNs contributed during
both ON and OFF periods to predict the preference index for different
odorants. To understand this, we calculated the correlation coefficient
between the weights assigned by both these regression approaches
(Fig. 4e). Our results indicate that there was only a weak correlation
between weights assigned by the ON- and OFF- regressors. To further
corroborate this conclusion, we examined the ability of the ON-
regressor to predict the behavioral PORs when using OFF-period data
(i.e., using temporal epoch that was not used to obtain ON-regressor
weights; Supplementary Fig. 2b). Our results indicate that this
approach resulted in very poor prediction results (R2 of 0.291). Even
poorer results were obtained when OFF-regressor was used to predict
behavioral PORs using odor-evoked responses during stimulus pre-
sentation (Supplementary Fig. 2c). Taken together, these results indi-
cate that information regarding the overall appetitive preference is
distributed across different sets of PNs during the ON vs OFF epochs.
In sum, we conclude that the ensemble neural responses during odor
presentations and after their termination are odor-specific and contain
information about the overall innate behavioral responsegeneratedby
that odorant.

Innate versus acquired appetitive preferences for odorants
Next, we wondered if innate appetitive preferences for odorants and
theneural responses they evoke can informregardingother behavioral
dimensions such as learning andmemory. To examine this, we used an

appetitive-conditioning assay (Fig. 5a). Locusts were starved for 24 h
and pre-screened for innate responses to the odorants used in the
assay. Only those that did not have innate responses were used for the
appetitive-conditioning experiments (see “Methods”).

We trained locusts with four chemically and behaviorally diverse
odorants as conditioned stimuli in an “ON-training paradigm” (Fig. 5a
and Supplementary Fig. 3). Following training, we examined the ability
of the trained locusts to respond to the conditioned stimulus in an
unrewarded test phase. Opening of maxillary palps (palp-opening
response) was regarded as a readout of successful stimulus recogni-
tion.We found that locusts trainedwith hexanol or isoamyl acetate as a
conditioned stimulus robustly responded to the presentation of these
odorants in the test trials. However, we found that locusts trained with
citral and benzaldehyde showed no palp-opening response during the
testing phase (Fig. 5b, c). This observation eliminates the possibility
that the POR responses we observed could arise from non-specific
behavioral facilitation and that no odor-reward associations were
learned.

Next, we examined whether locusts could be conditioned when
the reward was delayed until half a second after the termination of the
conditioned stimulus (i.e., “OFF-conditioning paradigm (0.5 s delay)”;
note that similar conditioningprotocol butwith longer delays between
odor termination and presentation of electric shock have been
examined in flies38). For this set of experiments, we only used hexanol
and benzaldehyde as the conditioned stimuli (Fig. 5d). Once again, our
results indicated that only locusts trained with hexanol robustly
responded with PORs to the trained odorant in the testing phase.
However, the PORdynamicsobserved inOFF-paradigm trained locusts
were noticeably different from those we noted in the ON-training
paradigm case. In the ON-training case, we found that locust PORs
began immediately after the onset of the CS, lasted the duration of the
stimulus, and the palps began to close following the termination of the
stimulus. The peak of the PORs always occurred during the CS pre-
sentations. In contrast, for the OFF-training case, locust PORs were
significantly slower (SupplementaryFig. 4), and thepeakof the PORs in
many locusts occurred after the termination of the stimulus.

In sum, these results indicate that only some odorants can suc-
cessfully be associated with the food reward. Furthermore, both pre-
sentations during and after the termination of the stimulus can lead to
the odor-reward association but the behavioral response dynamics are
significantly different between the two cases.

A linear model predicts behavioral response dynamics and
cross-learning
How important is the timing of the reward in learning odor-reward
associations?We found that even for those odorants that resulted in a
successful association between the odor and the reward, the timing of
the reward during training was important. When the reward was pre-
sented 4 s after the termination of the odorant we found that no
stimulus-reward associations were learned (Fig. 6a; “OFF-Conditioning
(4 s delay)”). These results confirm that learning did happen in the

Fig. 2 | Individual PN responses to appetitive and non-appetitive odorants. a A
schematic of the experimental setup is shown (see “Methods”). All source data are
provided as a Source Data file. b Mean voltage signals (left panel) and peak values
(right panel) acquired from a photoionization detector are shown for all odorants
in the panel. Same coloring/ordering convention as in Fig. 1c. c Representative PN
responses to all 22 odorants are shown. Each tick indicates an actionpotential, each
row corresponds to one trial, and ten trial blocks are shown for each odorant. The
black bar indicates the four seconds odor presentation window. d Left panel: The
number of PNs that were activated during the odor presentation window (ON
responsive) is plotted for all odorants in the panel. Middle and right panels: Similar
plots but showing the number of PNs that were inhibited during odor presentation,
and the number of PNs activated after odor termination (OFF-responsive) are
shown. In all three scatterplots, the odorants are arranged along the x axis basedon

their appetitive valence. e Left panel: Thedistributionof correlation values between
each PN’s response to the odor panel (a 22-dimensional vector; mean ON respon-
ses) with the overall appetitive preference for the same set of odorants is shown.
Right panel: Similar plot as the left panel, but the OFF-period PN activity (4 s
immediately following odor termination) was now correlated with the overall odor
valences. f Left: Responses of individual PNs to all 22 odors during the ON period
are shown. Each row corresponds to a single PN, and the odorants (columns) were
organized from the highest valence to the lowest (left to right). PNs were classified
as ON responsive (white box) or unresponsive (gray box). The bar plot on the left
indicates the number of odorants that activated each PN. PNs are sorted such that
those that responded tomost odorants are at the top (i.e., least selective). Note that
individual PNs whose rasters are shown in (c) are identified. Right: Similar plot as
the left panel but characterizing OFF responses across all 89 PNs to the odor panel.
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other paradigms (Fig. 5) and that both the identity of the odorant and
the timing of the reward constrain what can be acquired through this
Pavlovian conditioning approach.

Next, we wondered how locusts conditioned with a particular
odorant (i.e., “the training odor”) respond when tested using other
untrained odorants i.e., how olfactory learning generalizes between
odorants. Our results indicate that locusts trained with hexanol
responded robustly to presentations of isoamyl acetate (another
odorant with a positive valence; Fig. 6b). Exposures to citral and ben-
zaldehyde evoked no responses in hexanol-trained locusts. Surpris-
ingly, locusts trained with citral and benzaldehyde showed no
responses to the trained odorant, but a significant fraction of them

showed PORs to hexanol and isoamyl acetate (Fig. 6b). For the OFF-
trainingparadigm,we found that learning/cross-learningwasobserved
only in those locusts that received rewards within 2 s of the termina-
tion of the conditioned stimulus. Interestingly, a large fraction of
locusts (~60%) that received reward immediately after the termination
of benzaldehyde (0.5 s after cessation) again paradoxically responded
to hexanol and isoamyl acetate (Fig. 6c, d).

How predictable are these behavioral response dynamics and
memory cross-talks given the neural responses evoked by these four
odorants? To understand this, we set up determining the neural-
behavioral transformation as a regression problem with sparsity
constraints. For each training paradigm, the goal was to predict the
POR responses to all four odorants examined given the time-varying
ensemble neural responses evoked by each odorant. Six such
regression problems were set up, one for each training paradigm
used in our study. We found that POR responses to all four odorants
could be predicted reliably for all cases (red curves, Fig. 7a). We
found that a linear mapping could indeed be found where the POR
dynamics predicted from the neural responses were in good
agreement with those observed in behavioral experiments (Fig. 7a;
black (actual) vs. red (predicted); Fig. 7b). Notably, the regression
weights assigned to different PNs to predict the POR for each
training paradigm were highly similar (Fig. 8a, b). This result indi-
cated that the mapping between neural responses and the PORs is
highly consistent since the main trend observed in all cases were
PORs to positive valence odorants (hex and iaa) and a lack of
response to those with negative valence (citral and bzald). Con-
sistent with this interpretation, we found that those PNs that
received the most positive weights in the linear regression respon-
ded strongly to both positive valence odorants and had little to no
responses to exposures of benzaldehyde and citral (Fig. 8c). On the
other hand, PNs that responded strongly to the negative valence
odorants and had transient responses at the onset and offset of both
positive valence odorants received the most negative weights. More
importantly, the negatively weighted PNs showed stronger spiking
activities to the non-appetitive odorants, which allowed the sup-
pression of POR responses (Fig. 8c; gray traces taller than black
traces for benzaldehyde and citral).

We also compared the firing activity of individual neurons with
the weights they were assigned in the regression analysis (Fig. 8d, e).
Consistent with the PSTH shown (Fig. 8c, black traces), we found that
positively weighted PNs had stronger responses to the appetitive
odors (hexanol and IAA) relative to non-appetitive odors (benzalde-
hyde and citral). Furthermore, the negatively weighted PNs had
stronger responses for non-appetitive odorants (consistent with
Fig. 8c, gray traces).

In sum, these results indicate that the behavioral responses’
strength and dynamics evoked by different odorants could be pre-
dicted from time-varying ensemble neural responses observed in the
antennal lobe and that a robust linear mapping involving ~50% of the
total neurons was sufficient to transform neural activity into POR
output.

A spatiotemporal coding logic for encoding appetitive odor
preferences
Are the neural responses to appetitive and non-appetitive odorants
organized in an interpretable fashion to explain the diverse set of
neural and behavioral observations? To understand this, we visualized
the ensemble neural activity trajectories of different odorants during
both the ON and OFF periods. As can be observed, the odor-evoked
ensemble responses were organized into four well-defined subspaces/
clusters: appetitive ON, appetitive OFF, non-appetitive ON, and non-
appetitive OFF (Fig. 9a, b, the non-appetitive cluster includes odorants
with both neutral and negative valences). Note that the different
directions in this coding space indicate different combinations of PN
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responses, and nearby regions indicate pattern-matched neural
responses. Therefore, these results indicate that while the neural
activities during appetitive odorant exposures varied from one odor-
ant to another (Fig. 9a, b—cluster 1), they were still constrained to
exploit only a limited combination of PN responses and therefore
restricted to a particular subspace/region in this coding space.

Extending this logic, these results also indicate that ensemble activities
after the termination of appetitive odorants (Fig. 9a, b—cluster 2),
during exposures to non-appetitive odorants (Fig. 9a, b—cluster 3), and
after cessation of the non-appetitive stimuli (Fig. 9a, b—cluster 4) all
employed restricted combinations of ensemble neural responses that
were different from each other.
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Notably, the variance in neural responses evoked by appetitive
odorants primarily spanned a low-dimensional space (i.e., a “neural
manifold”) that contained clusters 1 and 2. Only odorants that evoked
neural responses limited to this manifold could be associated with
food rewards (therefore referred to as the “reinforceable odor mani-
fold”; Fig. 9a). Presenting the reward during activation of either neural
cluster 1 or cluster 2 led to learning. However, the behavioral response
dynamics significantly varied depending on whether the reward
overlapped with cluster 1 or cluster 2 (Supplementary Fig. 4). In con-
trast, the variance in neural responses evoked by non-appetitive
odorants spanned a differentmanifold that contained clusters 3 and 4.
Presenting reward during the activation of either of these response
clusters did not result in successful conditioned stimulus-reward
associations (therefore referred to as the “non-reinforceable odor
manifold”). Although, we note that non-specific facilitation of PORs to
other odorants (hex and iaa) was observed.

To quantify these low-dimensional patterns observed in the PCA
space, we computed the similarity between odor-response vectors
obtained using all 89 PNs. For each odor, we obtained an 89-
dimensional vector to capture the mean response during the ON
period and calculated the angle between all such vectors for all odors
(Fig. 9c and Supplementary Fig. 5). Note that a smaller angle (in
degrees) represents the greater similarity between two vectors/odors.
For each odor, we computed 21 angles (22 odors, ignoring self-com-
parison; refer Supplementary Fig. 5b, c) and grouped them based on
comparison with either appetitive or non-appetitive odors. We then
subtracted the average angle of the innately appetitive group from the
non-appetitive group to obtain a single similarity angle for each odor.
A net positive angle indicates that the odor’s responses were more
similar to the appetitive group while negative angles denote better
pattern-match with non-appetitive odors. Figure 9c shows this net
angular similarity value for each odorant in our panel. The odors are
sortedby valence, and the bars are colored todenote theprobability of
innate PORs for the odorant. Overall, these results are quite similar to
those obtained from the manifold analyses (clusters 1 and 2), indicat-
ing that high-dimensional neural responses agree with the low-
dimensional approximations. A similar result was also obtained when
using the OFF-period responses to perform this analysis (Fig. 9d;
similar to clusters 3 and 4; Supplementary Fig. 5b).

Remarkably, our results indicate that similar odor-evoked
response manifolds were also observed when neural responses were
monitored in behaving preparations (Supplementary Fig. 6). In sum,
these results reveal an organizational logic for patterning spatio-
temporal ensemble neural responses to mediate both innate and
acquired odor-driven appetitive preferences.

A Hebbian neural network for sensory-to-behavior mapping
Finally, to gain mechanistic insights regarding how conditioning
odorants with reward increased PORs for only some odorants (hex and

iaa) but not others (bza and cit), we developed a computational model
(Fig. 10a). In thismodel, the input neuron responses (obtained directly
from the antennal lobe projection neuron responses we recorded
experimentally) feed-forward onto two downstream neurons that had
opposing functions: a “Decoding Neuron 1 (DN1)” that drives appeti-
tive response and a “Decoding Neuron 2 (DN2)” that inhibits that same
response (i.e., an “anti-neuron”). Both downstream neurons received
input from the entire input ensemble. However, weights from one set
of input neurons (encoding neural ensemble 1) onto the appetitive
Decoding Neuron 1 alone were Hebbian plastic in this model. The rest
of the network connections remained unaltered after initialization (see
“Methods” for details).

Such “neuron–anti-neuron”pairs have beenutilized for predicting
overall motor outputs16,29,39, and are highly consistent with the emer-
ging view from other insect models that have shown mushroom body
output neurons form segregated channels to drive opposing
behaviors40,41. Finally, the motor output neuron that drives behavior in
the model merely takes the difference in the overall activity of the
“neuron-anti-neuron pair” (i.e., DN1– DN2) to determine the final
behavioral output: successful POR only if appetitive Decoding Neuron
1’s activity was stronger than the suppressive Decoding Neuron 2’s
response. In order to replicate the results from our conditioning
experiments, the model would require two criteria to be met: a) rein-
forceable odorants (hex and iaa) should strongly activate encoding
neural ensemble 1 that makes plastic connections with Decoding
Neuron 1, b) Non-reinforceable odorants (bza and cit) should evoke
strong neural activity in ensemble 2, and at least some weak activity in
the encoding neural ensemble 1 (Fig. 10b).

Consistent with our hypothesis, we found that the neural
responses we recorded for the four odorants used in the conditioning
experiments did meet the above expectations regarding how the
appetitive and non-appetitive odorants activated the neural ensemble
(Fig. 10c). As can be noted, some neurons (at the top of PN activity
vectors) were activated more by hexanol and isoamyl acetate while
responding less to benzaldehyde and citral. On the other hand, only a
smaller subset of neurons that were strongly activated by benzalde-
hyde (near the bottom of PN activity vectors) also responded to hex-
anol and isoamyl acetate. Therefore, the antennal lobe activity that
drives the responses in downstream neurons is consistent with the
schematized inputs shown in Fig. 10b.

Next, to simulate behavioral conditioning, we updated the
weights between the encoding input ensembles and Decoding
Neuron 1 alone using a simple Hebbian update rule (see “Methods”).
Note that the response threshold for Decoding Neuron 1was set high
to prevent false positive PORs before learning. On the other hand,
the response threshold for Decoding Neuron 2 was set low as the
overall response strength for non-appetitive odorants was weaker
and allowed robust suppression of PORs to all odorants. Our results
indicate that irrespective of whether the hexanol or benzaldehyde

Fig. 4 | Neural response patterns robustly predict innate behavioral pre-
ferences forodorants. a Schematic of the linear regression approach is shown (see
“Methods”) All source data are provided as a Source Data file. b Left: Predictions
from theON-regressor versus the actual probabilities obtained from the behavioral
assay for all odorants in the panel are shown. Overall, the R2 value between the
predicted value and the actual behavioral response was high (R2 = 0.726). Right:
Similar plot but for the shuffled control is shown. Here, the behavioral POR prob-
abilities were randomized, and a regression model was fit similar to learning the
unshuffled case. Note that the predictions are centered around themean valenceof
~0.4. c Similar plots as panel b, but using models trained on the OFF-period
responses are shown. The OFF-regressors performed poorer than the ON-
regression models but were still well above shuffled control performance levels.
d Left: TheON-period linear regressionmodelwas validated by training 22different
models, leaving 1-of-the-22-odors out each time for validation. The weights
obtained for each PN are shown for all 22models trained using this leave-one-odor-

out-cross-validation approach. The weights assigned to 89 PNs were sorted (i.e.,
lowest to highest) based on the model used to predict POR responses to hexanol.
The inset shows the distribution of pairwise correlations between each weight
vector obtained for predicting POR for different odorants. Right: Similar plot as left
panel, but for the 22 OFF-regressors are shown. e Left: Blue curves indicate weight
vectors obtained from the ON-period regressors as shown in panel d. Red traces
show weights learned by the OFF-period regressors but sorted using the same
indices as the ON-period vectors. As can be seen, the blue and red curves are
uncorrelated. Right: Correlation analysis quantifying the similarities in weights
assigned to PNs by theON- and theOFF- regressors. Weights learned by the PNs are
highly correlated within the ON-period and OFF-periods (darker colors along the
diagonal blocks). However, the weights assigned to each PN are different between
the ON- and OFF-regressors, and hence the off-diagonal blocks have lower corre-
lations (lighter colors).
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Fig. 5 | Only innately appetitive odorants can be reinforced using classical
conditioning. a A schematic showing the training protocol followed for both ON-
and OFF- classical appetitive-conditioning assays (see “Methods” for details). Fol-
lowing the training phase, locusts were then tested for palp-opening responses
(PORs) in an unrewarded phase. All source data are provided as a Source Data file.
b Results from ON-conditioning using four different odors are shown. The mean
POR response of locusts during the unrewarded testing phase is shown in eachplot.
The testing odor was the same as the training odor, as indicated on each plot.
Colored bars indicate 4 s of odor presentation and 4 s immediately following odor
termination. Error bars indicate s.e.m., and the number of locusts that had sig-
nificant PORs for each conditioning odorant are shown in parentheses. As can be
seen, locusts trained with hexanol and isoamyl acetate were able to produce POR

responses in the test phase, while benzaldehyde and citral training yielded no
responses. Note that different sets of locusts were trained/tested for each odorant.
c POR traces for the four sets of locusts trained with hexanol, isoamyl acetate,
benzaldehyde, or citral are shown. The PORs shown were recorded during the
testing phase. Each row corresponds to the response observed in one locust. The
responses were normalized to range between [0, 1] for each locust (see “Methods”;
blue = 0 and yellow = 1). d Similar traces as shown in panels b and c but for OFF-
conditioning using hexanol or benzaldehyde are shown. Hexanol-OFF training
produced significant PORs in 12/20 locusts, whereas benzaldehyde-OFF training
yielded no significant responses. Note that the PORs for hexanol-OFF training were
delayed and persisted well into the OFF period (compared to hexanol-ON trained
responses shown above).

Article https://doi.org/10.1038/s41467-023-40443-2

Nature Communications |         (2023) 14:4719 9



ensemble responses were used for updating network weights, it
always resulted in an increased input to the Decoding Neuron 1
(Fig. 10d vs. e). Therefore, Decoding Neuron 1 had a transient output
after onset for hexanol and isoamyl acetate irrespective of the odor
used for reward pairing (Fig. 10d, e, arrowheads). The stronger
response of Decoding Neuron 2, that was only primarily activated by
benzaldehyde and citral ensured that there was no POR output to
these odorants even after Hebbian modification of network weights.
Thus, this simple neural network with a “neuron–anti-neuron pair”
and selective Hebbian connections was sufficient to replicate results
from our conditioning experiments.

Discussion
In this study, we examined the neural correlates of innate and acquired
olfactory preferences. Our results indicate that while the neural
responses evoked by an odorant are patterned over combinations of
neurons activated and over time, the ensemble neural responses are
still constrained by the overall behavioral relevance of the chemical
cue. Odorants that have a positive appetitive preference, or valence,
evoked ensemble neural responses that overlapped during odor pre-
sentations (i.e., ON responses) and after their terminations (i.e., OFF
responses). Similarly, odorants with a neutral or negative appetitive
preference evoked spiking activities that formed similar ON and OFF
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response clusters that were distinct from the appetitive response
clusters. As a direct consequence of this spatiotemporal organization
of neural responses, the innate behavioral responses were entirely
predictable from neural responses during either of these epochs but
using distinct subsets of neurons.

Furthermore, our results indicate that delivering gustatory
rewards during ON and OFF response epochs of odorants with
positive appetitive valences alone resulted in successful Pavlovian

conditioning. Reinforcing non-appetitive odorants did not generate
successful odor-reward associations, but resulted in an increase in
behavioral responses to other odorants with a positive valence.
Notably, a linear model could map neural responses evoked by the
odorants onto behavioral response dynamics and cross-associations
learned. In sum, our results reveal a spatiotemporal coding logic that
supports encoding both innate and acquired odor-driven appetitive
preferences.
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Fig. 9 | Neural manifolds can explain innate and acquired behaviors.
aTrajectories showing ensemble neural responses during both theON- and theOFF-
periods for all 22 odors are shown along the top 3 principal components (n= 89 PNs;
see “Methods”). The trajectories were colored as follows: blue—appetitive odorants
ON responses, cyan—appetitive odorants OFF responses, red—non-appetitive odor-
antsONresponses, andmagenta—non-appetitiveodorantsOFF responses. Variances
in odor-evoked responses of appetitive odorants were not uniformly distributed but
confined to a subspace and are schematically shown as using a linear plane (colored
in blue and encompasses appetitive ON and OFF neural ensembles). Similarly, non-
appetitive odorants ensemble responses are confined to a distinct neural manifold
schematically shown in red. All source data are provided as a Source Data file.
bDendrogram showing the categorization of odor-evokedON andOFF responses of
all 22 odorants in the panel are shown. A correlation distance metric was used to
assess the similarity between 89-dimensional PN response vectors. Coloring con-
vention similar to (a). Note that the appetitive and non-appetitive odorants form

supra-clusters, each containing ON and OFF responses sub-clusters. c Plot showing
the average similarity of an odorant to other appetitive and non-appetitive odorants.
For each odor, we took the ON response across 89 PNs (i.e., 89-d vector) and
computed its cosine similarity with theON responses for all other odorants. Twenty-
one such angles were obtained for each odorant (ignoring self-comparison; Sup-
plementary Fig. 5). The angles obtained from comparison with appetitive and non-
appetitive odorants were grouped, and the average for each group was taken. The
difference between the average angles for each group (non-appetitive minus appe-
titive) is shownhere as a bar plot. Theodorants along the x axis are shown in order of
decreasing innate valence (left to right), and the bars are colored to indicate the
probability of innate PORs (Fig. 1). Note that a positive similarity score indicates the
odor responses were more similar to appetitive odors while a negative score indi-
cates better pattern-match with non-appetitive odorants. d Similar plot as (c) but
using the OFF responses across all 89 PNs.
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Could the observed appetitive preferences for different odor-
ants be predicted directly from the stimulus/chemical space34,42,43?
We found that chemical features such as those extracted by nuclear
magnetic resonance spectra or infrared spectra did not have good
correlations with the overall appetitive preferences for different
chemicals on the odor panel (Supplementary Fig. 7). Our results
indicate that chemically similar odorants evoked divergent neural
responses (isoamyl acetate and ethyl acetate—both esters but
opposite valences). Conversely, we found odorants that had differ-
ent chemical features mapped onto similar appetitive preferences
(benzaldehyde and cyclohexanone). Even features such as the vapor
pressure that controls the number of molecules reaching the

antenna did not have a good correlation with the overall behavioral
preference. While this is not an exhaustive list of chemical features
that can be extracted, these results appear to indicate that it would
be difficult to find a simple linear mapping of the chemical space
onto the behavioral space. Similar results have recently been
reported in the mouse olfactory bulb44. Contrasting the non-
linearity between the chemical—neural transformations, a linear
mapping was indeed found between neural and behavioral spaces.
These results support the idea that neural responses, even in those
circuits very early in the olfactory pathway, are organized to gen-
erate appropriate behavioral outcomes rather than faithfully
represent the chemical features of the odorants.
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Surprisingly, at the individual neuron level, we found that
responses in a small subset of PNs had a strong correlation with the
overall innate preference for different odorants (Fig. 2e; correlations
>0.75 for 4/89 PNs for ON responses and 2/89 PNs for OFF responses).
Suchencodingof overall odor valence by individual neurons soearly in
the olfactory pathway has indeed been reported in other invertebrate
models2–4. While the simplest model to predict the behavioral out-
comes from the neural activity would be to just use a few of these
neurons, whether such a model would be robust is unclear. Earlier
studies have shown that individual projection neuron responses
change unpredictably with changes in stimulus dynamics, intensity,
competing cues, stimulus history, and ambient conditions23,29,45–47.
Notably, the behavioral recognition of odorants was found to remain
invariant under a battery of these perturbations48. Therefore, a more
robust and fault-tolerant model to overcome such variations in neural
responses that arise due to natural perturbations would involve a
combinatorial readout of the ensemble activity as proposed in our
regression analyses.

To understand the appetitive preferences of locusts to different
odorants, we used the palp-opening responses that locusts use to grab
food. While preferences of individual locusts to the odor panel were
idiosyncratic (i.e., varied from one locust to another; see Fig. 1b), as a
group they tended to have similar behavioral preferences (Fig. 1f). This
simple readout provided a one-dimensional quantitative summary of
the innate appetitive preferences for thedifferent odorants used inour
panel. We found that a simple linear regression was sufficient to map
ensemble neural responses during both stimulus presentation and
after termination onto this behavioral dimension. Therefore, we con-
cluded that the neural responses were spatiotemporally formatted to
support the generation of innate behavioral outcomes.

Prior studies have shown that the palp-opening responses to an
odorant could also be learned through associative conditioning45,49. To
understand the rules that constrain learning in this paradigm, we
screened and identified locusts that did not have any innate responses.
Wewereconcerned that repeated exposures to anodorantmay induce
PORs in these locusts. In this scenario, the PORs observed in the testing
phase may not arise from conditioning but rather from sensitization
due to repeated exposures to a stimulus. However, our results indicate
that when the introductions of the reward were delayed to occur well
after the termination of the odorant (hexanol OFF 4 s and
benzaldehyde-OFF 4 s paradigms), locusts did not show PORs and
maintained their lack of responses to the conditioning odorants
(Fig. 6a). We interpreted this result as an appropriate control indicat-
ing that locusts did not become sensitized to generate PORs to the
conditioned stimulus and that PORs in these locusts were observed
only in certain scenarios that suited associative learning.

Our conditioning experiments revealed that only two of the four
odorants (hex and iaa) used resulted in a successful association
between the odorant and the reward. As a result, locusts responded
with PORs to the presentation of these odorants during the testing

phase. We also observed the generalization of the learned PORs to
other odorants. Locusts trainedwith hexanol also showed responses to
isoamyl acetate and vice versa (generalization to similar odors). Intri-
guingly, locusts trained with citral and benzaldehyde also increased
PORs to hexanol and isoamyl acetate (cross-learning could also alter
behavioral responses to unrelated odorants). We again found that
linear mapping between neural and behavioral responses existed and
captured all the important trends in our data (Fig. 7a).

We found that delaying reward such that it was delivered either
during the presentation of hexanol (ON-training paradigm) or imme-
diately after its termination (OFF-training paradigm; 0.5 s after stimu-
lus termination) both resulted in associative learning. However, we
found that the POR dynamics were different between these two
training paradigms. We note that locusts in the ON-training paradigm
had PORs that were significantly different from those observed in
locusts trained using the OFF paradigm. Notably, such nuanced dif-
ferences in POR dynamics still correlated with the neural response
similarity between the test odorant and the conditioned stimulus
(Supplementary Fig. 8, red PORs vs black neural response correla-
tions). These results are consistentwith the interpretation that the POR
trends could be predicted from the overall neural response profile and
how they change as a function of time. Taken together, these results
suggest that the timing of the reward could be controlled to coincide
during different phases of neural response dynamics and such
manipulations result in predictable changes in behavioral responses.

Is this learning paradigm still associative learning? Generalization
of learning to other untrained stimuli has indeed been reported in
other model organisms such as honey bees and ants50–52. Such gen-
eralization or cross-learning has been noted to be asymmetric, and in
some cases generate a stronger response to the untrained
odorants50,51. Our results are consistentwith thesepriorfindings, but as
we noted, pairing non-appetitive odorants such as benzaldehyde and
citral did not increase PORs to these odorants but increased responses
to other appetitive odorants (hex and iaa). The non-specificity of this
learning effect, while surprising, raises questions regarding the sti-
mulus features that are associated with the reward. What potential
mechanism could provide a neural correlate for cross-learning
observed in our conditioning experiments? Our results show that a
simple neural network model with Hebbian plasticity was sufficient to
map the neural activity we recorded onto the behavioral outcomes
observed. Notably, the model required two key features to replicate
results: overlap in neural responses between appetitive and non-
appetitive odorants, and restricting plasticity to only a subset of the
neural network that connected encoding neurons predominantly
activated by appetitive odorants. These features nudged the system to
become more sensitive to the other appetitive odorants via con-
ditioning, but the behavioral response to non-appetitive odorants was
robustly shut down by the non-malleable part of the network. Hence,
we believe these results reveal an unnoted feature of associative
learning in a sensory modality using a combinatorial coding scheme.

Fig. 10 | A simple neural network with Hebbian plasticity recreates our con-
ditioning experiment results. a Schematic of the network used to examine the
effects of associative learning on behavioral PORs. The input neurons (corre-
sponding to PNs) are divided into two non-overlapping groups. While all input
neurons connect to both the downstream decoding neurons, only the connections
betweenencoding ensemble 1 and the decoding neuron 1 are plastic and are altered
during associative conditioning using a simple Hebbian rule (see “Methods”). All
source data are provided as a SourceDatafile.bA keymodel assumption:Appetitive
odorants (hex and iaa) that elicited PORs after pairing with food reward should
activate the encoding ensemble 1 more. Non-appetitive odorants (bza and cit) that
did not elicit PORs after conditioning are expected to activate PNs in the encoding
ensemble 2 more. However, the non-appetitive odorants should also activate a few
neurons in the encoding ensemble 1. cBinary categorization of PN responses in our
experimental dataset (n = 89 PNs) as responsive or non-responsive to a given

odorant. The PNs are ordered such that those activated by hexanol are at the top
and those activated by bza are at the bottom. PNs with peak odor-evoked activity
greater than the mean + 6.5 standard deviations of pre-stimulus activity were
considered responsive. The same ordering was used to compare the PN response
categorization for all four odorants. d Left panel: The activity of decoding neuron 1
(DN1) and decoding neuron 2 (DN2) along with the expected POR responses gen-
erated before any Hebbian alteration of network weights are shown for all four
odorants. Right panel: Similar plots but now showing DN1 and DN2 along with
predicted POR after Hebbian learning. Only the PN activities during hexanol pre-
sentations were used for altering the network connections. e Similar plots as in (d)
but showing model outputs before and after learning using PN activity patterns
generated by benzaldehyde odor. Note that both hexanol and benzaldehyde learn-
ing resulted in increased PORs to hex and iaa, and no responses to bza and cit,
consistent with our experimental data.
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In this study, our datasets comprised neural responses evoked by
a panel of diverse odorants and their innate and acquired appetitive
preferences. Surprisingly, we found that there exists a theoretical
framework that would allow us to integrate these observations and
understand the neural underpinnings of behavior. We regarded the
ensemble neural activity as a high-dimensional neural response tra-
jectory. Each odor-evoked response trajectory consisted of two non-
overlapping segments, one during odor presentation (i.e., ON
response), and the other after its terminations (i.e., OFF response).
Notably, we found that ON responses and OFF responses evoked by
innately appetitive odorants were on or near a low-dimensional sub-
space or “manifold” (Fig. 9a). Similarly, we found that ON and OFF
responses evoked by odorants with negative appetitive valence were
on or near a separate low-dimensional manifold in the coding
space (Fig. 9a).

We note that neuronal manifolds that encode for different beha-
vioral response motifs have been reported in other model
organisms42,53–55. InC. elegans, theseneuronalmanifolds appear to arise
globally and engage several circuits throughout the entire brain.
Importantly, even those neuronal circuits that aredirectlydownstream
of sensory neuronswere incorporated in these brain-wide dynamics to
orchestrate the innate behavioral outcomes53. If this is indeed a generic
phenomenon, we would expect the spiking response patterns in the
early olfactory circuits, such as invertebrate antennal lobe or verte-
brate olfactory bulb would be organized into behaviorally relevant
neural manifolds. Our results indeed reveal that this is the case at least
in the locust olfactory system.

Results from our conditioning experiments indicated that
delivering rewardswhile the odor-driven neural activities were in the
“appetitive manifold” resulted in successful conditioning, whereas
delivering rewards during responses excursion in the “non-appeti-
tive manifold” did not result in the non-appetitive odorants being
associated with the food reward. Interpreted differently, this result
suggests that neural activity patterns on some manifolds are con-
ducive for learning, while activity patterns outside this manifold
could be harder to learn. Similar results have been reported in the
context of motor control in the primate motor cortex56. While the
motor cortex result arose from constraints imposed by the neural
circuitry making certain neural activity patterns difficult to gen-
erate, here the antennal lobe network could generate neural
response excursions in both learnable and non-learnable manifolds
depending on the identity of the stimuli.

The topic of how attractive and aversive odorants are encoded in
the antennal lobe has been explored in the fly and the honeybee
olfactory systems2,11–15. The emerging view from these studies is pre-
dominantly that of labeled lined codes, where some glomeruli are
activated by attractive odorants and a non-overlapping subset by
repulsive odorants. In some cases, the ensemble neural activity across
the entire olfactory network during odor presentations has also been
shown to predict the overall innate behavioral responses4,17. Although
the importance of time as a coding dimension has been well estab-
lished in olfaction37,57–61, the importance of time-varying neural activity
for shaping innate behavioral preferences is not fully understood.

As our results indicate, the neural responses during an odor pre-
sentation and after its termination are highly distinct. Therefore,
ensemble neural activity traces distinctneural response trajectories (as
shown in Fig. 9a) during these epochs. Both ON and OFF responses
were correlated with innate odor appetitive preference and therefore
could be used to predict the overall behavioral outcomes (Fig. 4).
Notably, our results indicate that these ON-OFF neural responses are
not randomly scattered in the state space but are highly organized.
Both ON and OFF responses evoked by all odorants with positive
valence resided on or near a neural manifold that were distinct from
the ON and OFF responses evoked by odorants with negative
valence (Fig. 9).

What makes an odorant or a sensory stimulus “naturally appeti-
tive” or “innately pleasurable” or the opposite? Once transduced into
an electrical signal, it is the neural activity patterns that the down-
stream/higher circuits have to work with. Are there features/aspects of
neural activity patterns that help determine whether the stimulus that
evoked it can be behaviorally categorized as “pleasurable” or
“unpleasant”, or “appetitive” or “unappetitive”? This is the question
that we sought to answer. Further, compared to other sensory mod-
alities, olfactory responses are highly combinatorial and dynamic. So
how are these temporally evolving patterns of neural activity orga-
nized to facilitate this mapping onto the behavioral responses?

Taking a step further back, it does make sense to not have the
capacity to link a foul smell with food, or for someone with a peanut
allergy, almond/aldehyde smells with food. They are potentially pro-
tectivemechanisms for keeping the organisms safe. In that sense, it is a
straightforward hypothesis to expect the neural coding for these non-
appetitive cues to differ fromtheones deemedgoodor edible. Howdo
the responses to these different classes of odorants differ and how
soon do they start to diverge from one another? Our results indicate
that this divergence begins straight from the first neural circuit that
receives the sensory input (i.e., the antennal lobe). While the odor-
evoked responses are spatiotemporally patterned, they are still orga-
nized in a meaningful way to facilitate this neural-behavioral mapping.
Additionally, interpreting ensemble neural response patterns this way
also allowedus to understandwhichodorants couldbe associatedwith
the gustatory reward.

Methods
Odor stimulation
All odorants were delivered at a 1% v/v dilution in mineral oil and
placed in dark 60-ml bottles. A constant background air stream
(desiccated and filtered) at 0.75 L/min was used as the carrier stream
for 0.1 L/min pulses of odorants. A large vacuum funnel placed directly
behind the antenna allowed for the constant clearing of the odorants
delivered.

For behavioral experiments to quantify innate appetitive pre-
ferences, each odorant in the panel was presented for one trial in a
pseudorandomized order (Fig. 1a). Odorants were delivered by dis-
placing a 0.1 L/min of headspace in the odor bottles using a pneumatic
picopump (WPI Inc., PV-820). Each odor pulse was 4 s and the intertrial
interval was 60 s.

For electrophysiology experiments, each odorant was presented
for ten trials in a pseudorandomized order. To minimize interference
during the experiment, we designed and built a custom olfactometer
(SMC valves, NI-DAQ controller) that was automated and triggered
usingMATLAB. Each odor pulsewas 4 s in duration, and the inter-pulse
interval was 60 s.

Behavior experiments to characterize innate palp-opening
responses
Young adult locusts (S. americana) of either sex were starved for
24 hours before the experiment. Locusts were immobilized within a
plastic tube and their compound eyes were covered using black tape.
All 20 odorants were diluted to 1% v/v. Hexanol alone was additionally
diluted to 0.1% and 10% dilutions (i.e., a total of 22 odorants in the
panel). Each locust was presented with all 22 odorants in a pseudor-
andomized order for 4 s pulses separated by 56 s inter-pulse intervals
(60 s between the starts of two consecutive pulses). The experiments
were recorded using a video camera (Microsoft). An LED was used to
track stimulus onset/offset. The POR responseswere scoredoffline in a
blind fashion with no odorant information to remove any experi-
menter biases. Responses to each odorant were scored a 0 or 1
depending on if the palps remain closed or opened (Fig. 1b). A suc-
cessful POR was defined as an opening of the maxillary palps beyond
the facial ridges as shown on the locust schematic (Fig. 1a).
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Preference index
As noted above, locust responses to each odorant were binarized. The
responses of all locusts to an odorwere then summed to obtain a Total
Score. A normalized score for each odorant was then calculated as
follows:

Norm scoreodor =
Total Scoreodor
Total # locusts

ð1Þ

The preference index (Fig. 1c) was then calculated for each
odorant by performing a median subtraction from the Norm_score as
follows –

Preference indexodor =Normscoreodor
� Norm scoremedian ð2Þ

Norm_scoremedian was obtained by calculating the median across
all odorants.

Vapor pressure analysis
Vapor pressure data for 18 odorants were obtained from an online
database (The Good Scents Company)62. Data for neem and garlic
could not be obtained, and these odors were omitted from our ana-
lyses in Fig. 1d. Regression analysis was performed between vapor
pressure values and the POR Total Scores. An R2 value was obtained
using the “fitlm” function in MATLAB (Fig. 1d). One of the odorants in
the panel (ethyl acetate) had a vapor pressure much higher than all
other chemicals, and hence the weak correlations in Fig. 1d could be
driven by this potential outlier. To control for this, a similar analysis
was performed in Supplementary Fig. 1b, but using only seventeen
odorants (i.e., excluding ethyl acetate).

Monte Carlo simulations for evaluating behavioral stability
We performed Monte Carlo simulations on the data shown in Fig. 1b.
We randomly sampled locusts (“n’” ranging from 1 to 26) and calcu-
lated preference indices for all odors using POR scores using the
selected subsets of locusts. For each n, we performed 100 such
simulations and computed an average preference index, which was
then compared with the preferences obtained using all 22 locusts. The
mean correlation for each n is shown in Fig. 1f. Error bars indicate the
standard error of the mean (s.e.m.).

Electrophysiology experiments
Young adult locusts of either sex were used for these experiments63.
The legs and wings were removed, and they were immobilized on a
custom platform. The head was fixed into place by a wax cup and the
antennae were held in place inside a thin tube using epoxy glue. The
cuticle above the brain was cut open, the air sacs covering the brain
were removed, and the locusts were degutted tominimize any internal
movements. A metal-wire platform was then inserted underneath the
brain to lift and stabilize it. Finally, the transparent sheath covering the
brain was removed after applying protease enzyme.

Locust brains prepared this way were super-fused with artificial
saline buffer, and a reference electrode (Ag/Ag–Cl) was inserted into
the saline. Multi-unit recordings were made from the antennal lobe
projection neurons (PNs)using a 4 × 4 siliconprobe (NeuroNexus)with
impedance in the 200–300 kΩ range (Fig. 2a). Data were acquired at a
15 kHz sampling rate using a custom MATLAB program and filtered
between 0.3 and 6 kHz using an amplifier system (Caltech) that pro-
vided a 10,000 gain.

Offline spike-sorting (IgorPro) was performed using the best four
channels recorded64. To identify single units (PNs), the following
published criteria were used: unit cluster separation >5 noise s.d., the
number of spikes within 20ms <6.5%, and spike waveform variance
<6.5 noise s.d. To account for baseline drift and loss of neurons during
an experiment, we only included PNs with consistent baseline spiking

activity in all 220 trials (22 odors, 10 trials each). We defined a PN as
being consistent if its baseline firing rate (during a 4 s period before
odor presentation) in all trials was no less than 15% of the maximum
baseline firing rate for that PN. A total of 89 PNs were identified using
these criteria (originally acquired 131 PNs from 26 locusts).

PID experiment
We used a fast-photoionization diode (miniPID, Aurora Scientific) to
characterize the stimulus delivery dynamics of all odors used in the
electrophysiology experiments. Each odor was presented for five trials
and PID signals were acquired at 15 kHz using a custom MATLAB pro-
gram. The mean signals for all odors are shown in Fig. 2b.

Projection neuron response classification
We defined 4 s of odor presentation as an ON period, and the 4 s
immediately following odor termination as an OFF period. PNs were
classified as ON-responsive if the firing activity was 6.5 s.d. above the
mean baseline (2 s preceding the stimulus) firing activity in at least five
of the ten trials during the ON period. Similarly, PNs were classified as
beingOFF-responsive using a similarmetric applied to the OFF period.
PNs were classified as “Inhibited” if their firing activity did not exceed
2 s.d. of baseline in any time bin during odor presentation and the
mean firing rate during the entire stimulus duration (4 s) was lower
than the mean baseline activity (in at least five out of ten trials). These
classifications are summarized for all odors in Fig. 2d.

Dimensionality reduction analysis
Weused Principal Component Analysis (PCA) to visualize ensemble PN
activity (Figs. 3a and 9a). The spiking activity for each PN during 4 s of
odor presentationwas averaged across all 10 trials and binned in 50ms
non-overlapping time bins. In this manner, we obtained an 89 PN x 80
time-bin matrix for each odorant. We concatenated these data matri-
ces obtained for each odor to obtain an 89 × 1760 datamatrix (80 bins
* 22 odors). We then computed a covariance matrix (89 × 89) for this
data matrix.

Each 89-dimensional response vector was then projected onto the
top three eigenvectors (that captured the highest variance). For visua-
lization, the first time bin was subtracted from each odor to obtain a
similar pre-stimulus baseline for all odors. The odor trajectories were
smoothed using a three-point moving average low-pass filter.

Hierarchical clustering analysis
The spiking activity of each PN during 4 s of odor presentation was
summed to obtain an 89 × 1 (89 PNs) vector per odorant. Agglom-
erative hierarchical clustering was performed on vectors for all 22
odors using the “linkage” function in MATLAB. The odors were clus-
tered based on a correlation distancemetric, and the farthest pairwise
distance between clusters was minimized. The clustering was visua-
lized using the “dendrogram” function (Fig. 3b) after obtaining a leaf
ordering using the “optimalleaforder” function.

Linear regression to predict valence from PN activity
Mean odor-evoked activity for each PN (ni) was used as the input for
the linear regressor and the behavioral Norm_score for each odor was
used as the output. A softmax layer was added to ensure that the final
prediction was always between 0 and 1. A leave-one-out-cross-valida-
tion (LOOCV) approach was used, where the model weights were
trained using data for 21 odors using gradient descent, and then the
neural response for the test odorantwasused topredict the behavioral
POR preference index. The mean squared error cost function was
minimized.

Predicted POR= softmax
X89

i = 1

wi � ni + bias

 !
ð3Þ
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Where ni is the number of spikes evoked during odor exposure in PNi,
and wi is the weight assigned by the linear regressor for PN i.

As controls for the regressors, the POR preference indices of
different odorants were shuffled randomly before training. We used
the entire 4 s of PN activities during odor presentation for the ON-
regressor, and 4 s of OFF activity immediately following odor termi-
nation for the OFF-regressor (Fig. 4 and Supplementary Fig. 2).

Monte Carlo simulations for electrophysiology
We performed Monte Carlo simulations to gauge the performance of
the linear regressors as a function of the number of PNs used for the
analysis was varied. To achieve this, we randomly sub-sampled n
(where n ranged from 1 to 89) PNs and quantified the predictive per-
formance using mean squared error (MSE). For each n, we performed
1000 simulations and reported the average MSE (Supplementary
Fig. 2). We performed these simulations for both the ON- and OFF-
regressors.

Behavior experiments—classical conditioning
Appetitive classical conditioning experiments were performed on
young adult locusts of either sex starved for 24 h before the experi-
ment. Locusts were immobilized within a plastic tube, their eyes were
closed using black tape, and their maxillary palps were painted using a
zero-volatile–organic–chemical green paint (Valspar ultra). A brief 20-
min buffer period was allowed for the paint to dry and the locust to
acclimatize back to baseline activity levels.

Prior to conditioning, each locustwaspresentedwith a 4 spulseof
all four odorants used in the experiment (hexanol, isoamyl acetate,
benzaldehyde, and citral). If a locust had a palp-opening response to
any of these odorants, it was deemed “pre-conditioned” and was dis-
carded from the experiment. A 15-min buffer was allowed between this
pre-test and the training phase.

During the training phase, locusts were presented with the train-
ing odorant diluted at 1% v/v at a rate of 0.1 L/min diluted in a constant
background air stream (desiccated and filtered) of 0.75 L/min. A
vacuum funnel placed behind the locust allowed for odor clearance.
The odor was presented for 10 s and a food reward (wheatgrass) was
presented at 5 s post-odor onset for ON-conditioning. The odor was
presented for 10 s and a food reward (wheatgrass) was presented at
0.5 s, 2 s, or 4 s post-odor termination for OFF-conditioning. Six such
training trials were performed with an intertrial interval of 10min.
Locusts that met the training criteria (>3 food reward acceptances out
of 6) were then evaluated in the testing phase.

During the testing phase, locustswere presentedwith 4 s pulses of
various odorants (at 1% dilution) in a pseudorandomized manner with
a minimum interval of 20min between successive tests. The palp-
opening responses of the locusts were recorded using a video camera
(Microsoft) at 30 fps. The odor delivery and video acquisition were
synced using a custom LabView program.

Locusts were kept on a 12 h day–12 h night cycle (7 am–7 pm
day). All behavioral experiments were performed between 10 am
and 3 pm to ensure that the training phase coincided with the daily
feeding time for the locusts. For each set of experiments, a different
group of locusts was used. No locust was re-used across different
data sets.

Palp-tracking algorithm
To accurately track maxillary palp separation, we trained a UNet con-
volutional neural network using randomized initialization ofweights in
Keras and Tensorflow65. During the training phase, the input into this
network was a single channel (green) 128 × 128 image cropped around
the palps. The outputs were manually labeled palps (as binarized
128 × 128matriceswith 1’s indicating palps and0’s indicating nopalps).
We trained the network using the Adam optimizer and binary cross-
entropy loss function. We performed image augmentation using the

“imgaug” Python library and trained the network on approximately
2000 labeled frames.

Videos were input into the trained network frame-by-frame and
the output was thresholded and binarized using a combination of
Otsu, mean, and triangle filters from the “skimage” library. The palp
distance for each frame was calculated as the distance between the
centroids of the two predicted palps using the “regionprops” function.

Responsive locusts
Locusts were considered “responsive” to a particular odor if they had a
palp-opening response that was >6.5 s.d. above pre-stimulus baseline
(2 s) for at least 30 time-frames (1 s) with palp separation >1.5 arb.u.
(which was the noise threshold of the tracking algorithm) (Figs. 5b, d
and 6a).

Individual locust responses
For the normalized POR traces shown in Fig. 5c, d, we scaled each
locust’s response such that 0 corresponded to the minimum palp
separation and 1 corresponded to the maximum palp separation the
locust had across all test odors. Note that after each training paradigm,
we tested locusts on four odors—hexanol, isoamyl acetate, benzalde-
hyde, and citral.

Mapping neural responses onto palp-opening response
dynamics
PN activity and POR responses (distance between palps) for hexanol,
isoamyl acetate, benzaldehyde, and citral were averaged across trials
and down-sampled to 10Hz. For each odor, we used a 2 s baseline, 4 s
of odor presentation, and 4 s after odor termination to obtain a 10 s
vector (100 elements at 10Hz). We then concatenated responses from
all 4 odors to obtain 400-dimensional vectors. The input data was
hence 89 × 400 (89 PNs; spiking activity at each time point) and the
output was 400× 1 (palp separation at each time point). A regularized
model was fitted using “lasso” (sklearn in Python) with an “alpha” value
of 0.01. The learned 89 × 1 weights were then used with the input data
to generate predicted POR responses shown in red in Fig. 7a.

We trained 6 such models for each training condition shown in
Fig. 7a. The weights obtained for all 6 models were sorted using the
weights from the hexanol-ON model and are shown in Fig. 8a. Fig-
ure 8b shows pairwise correlations between each weight vector pair.
Theweights across all sixmodels were averaged for each PN. 21/89 PNs
had a weight >0 and 19 PNs had a weight <0, with the remainder of
PNs assigned aweight of 0 due to regularization. The PSTHs of the PNs
assigned positive and negative weights are shown for all four odors
in Fig. 8c.

Monitoring neural responses in behaving locusts
We developed a minimally invasive preparation to facilitate the mon-
itoring of projection neuron responses in locusts while they were
classically conditioned. In brief, the locusts were immobilized identi-
cally to the procedure followed for the prior classical conditioning
experiments (see above). A small cut wasmade in their cuticle to allow
access to the antennal lobe, which was stabilized using a metal-wire
platform. Finally, the antennal lobewas de-sheathed to allow electrode
implantation. The neural recordings were performed similarly to the
previous set of electrophysiology experiments.

Before conditioning, we recorded 5 trials of responses to each of
the 6 odors used (appetitive—hexanol, isoamyl acetate, 2-octanol; non-
appetitive—cyclohexanone, benzaldehyde, citral). After a 15-min gap,
we performed the conditioning as follows—locusts were presented
with six trials of trained odor (hexanol or benzaldehyde) with over-
lapping presentations of a food reward (sucrose in water 1 g/10ml
concentration) similar to conditioning methods described above. To
minimize themovement of the locust and conserve neural stability, we
switched from solid food reward (grass) to liquid food reward (sucrose
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in water) and presented it in an automated manner using a pneumatic
pump (WPI Inc., PV-820). The intertrial interval was set to 3min for the
training phase. Post-training, we waited for 15min and then repeated
the presentations of all six odors for five trials each. In all blocks of
neural recordings, we pseudorandomized the order of odor
presentation.

The neural data acquired in these experiments could not be reli-
ably spike-sorted using the approachmentioned above. As a result, we
used an alternative approach for processing this dataset66. The raw
data signals (acquired at 15 kHz) were de-noised using a band-pass
between 300 and 6000Hz followed by clipping of signals 5 s.d. above
or below the baseline level. These were then passed through a con-
tinuous moving root-mean-squared (RMS) filter with a 20ms window
(DSP toolbox on MATLAB), down-sampled by a factor of 150,
smoothed by a 10-point moving average filter, and finally down-
sampled by a factor of 5 to produce a temporal resolution of 20Hz
(50ms, similar to spike-sorted PN responses). The samples were finally
baseline subtracted using the mean of 1 s baseline prior to odor pre-
sentation (two sample recordings shown in Supplementary Fig. 6a) to
obtain the ΔRMS signal. For the PCA analysis shown in Supplementary
Fig. 6b, we followed a similar approach as mentioned above. We used
themean of 4 s of odor presentation and 4 s of responses immediately
after odor termination to obtain a 160-dimension vector for each odor
(8 seconds × 20 samples per second) for each locust. We recorded
from 10 locusts each for hexanol and benzaldehyde training experi-
ments and concatenated these neural responses to obtain a final 20
locust × 160 bin response matrix for each odor during both the pre-
and post-training periods.

Hebbian neural network model
The architecture of the model matched the schematic shown in
Fig. 10a. The input to the model was the spiking activity across the 89
neurons from our electrophysiology dataset. The weights were initi-
alized as follows:

Connection onto the Decoding Neuron 1 (DN1):

W1 = XXT
� ��1

XY1 ð4Þ

X denotes the matrix of neural activity. Each column of X repre-
sents trial-averaged firing activity across 89 PNs in a 50ms time bin.
Neural responses before, during, and after the termination of all four
odorants (hex, iaa, bza, and cit) were included.Y1 is a binary rowvector
with 1’s only during those time bins when hex and iaa were presented.

Connection onto the Decoding Neuron 2 (DN2):

W2 = XXT
� ��1

XY2 ð5Þ

Where X is the same neural data matrix as before. Y2 is a binary
row vector with 1’s only during those time bins when bza and cit were
presented.

The threshold θ1 was to be higher than any value generated by
X*W1. This was done to ensure that the Decoding Neuron 1’s output
was zero for all odorants before learning (i.e., no generation of PORs
for any input). The threshold θ2 was to be the half-max value of X*W2.
This allowed bza and cit to drive the output of the Decoding Neuron 2.

The 89 neurons were divided into two groups of nearly equal
sizes. Those neurons that hadmore responses to hex were assigned to
one group (Encoding Neural Ensemble 1), and those with more
responses to benzaldehyde were assigned to the second group
(Encoding Neural Ensemble 2) (see Fig. 10c). Only those connections
between neurons with stronger hex responses and connecting to
Decoding Neuron 1 (DN1) had a plastic connection that could be
modified through a simple Hebbian rule.

During Hebbian learning, only connections onto the Decoding
Neuron 1 (DN1) were allowed to change based on the following update
rule:

Conditioning with hexanol : W1 =W1 + δ � X �Nhex �R
� � ð6Þ

Where δ is the learning rate (set to 0.25), Nhex is a binary vector
with 1’s for neurons responding to hex and part of the EncodingNeural
Ensemble 1 and 0’s for all other neurons (shown in Fig. 10c; i.e., neu-
rons in the top half of vector that responded to hexanol), and R is the
food reward (set to 1) only during those time bins when hexanol was
presented.

Conditioning with benzaldehyde : W1 =W1 +δ � X �Nbza �R
� � ð7Þ

Where δ is the learning rate (again set at 0.25), Nbza is a binary
vectorwith 1’s for neurons responding tobenzaldehyde andpart of the
Encoding Neural Ensemble 1 and 0’s for all other neurons (shown in
Fig. 10c; i.e., neurons in the top half of the vector that responded to
benzaldehyde), and R is the food reward (set to 1) only during those
time bins when benzaldehyde was presented.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data presented in this paper are publicly available in Figshare
(https://doi.org/10.6084/m9.figshare.22656154). Source data are pro-
vided with this paper.

Code availability
Custom codes used to generate figures in this paper are publicly
available along with the datasets in Figshare (https://doi.org/10.6084/
m9.figshare.22656154).
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