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Integrative analysis of transcriptome
dynamics during human craniofacial
development identifies candidate
disease genes

Tara N. Yankee1, Sungryong Oh 2, Emma Wentworth Winchester 1,
Andrea Wilderman1, Kelsey Robinson3, Tia Gordon4, Jill A. Rosenfeld 4,5,
Jennifer VanOudenhove 2, Daryl A. Scott 4,6, Elizabeth J. Leslie 3 &
Justin Cotney 2,7

Craniofacial disorders arise in early pregnancy and are one of the most com-
mon congenital defects. To fully understand how craniofacial disorders arise,
it is essential to characterize gene expression during the patterning of the
craniofacial region. To address this, we performed bulk and single-cell RNA-
seq on human craniofacial tissue from 4-8 weeks post conception. Compar-
isons to dozens of other human tissues revealed 239 genes most strongly
expressed during craniofacial development. Craniofacial-biased develop-
mental enhancers were enriched +/− 400 kb surrounding these craniofacial-
biased genes. Gene co-expression analysis revealed that regulatory hubs are
enriched for known disease causing genes and are resistant to mutation in the
normal healthy population. Combining transcriptomic and epigenomic data
we identified 539 genes likely to contribute to craniofacial disorders. While
most have not been previously implicated in craniofacial disorders, we
demonstrate this set of genes has increased levels of de novo mutations in
orofacial clefting patients warranting further study.

Craniofacial disorders are among the most common of all congenital
defects, with clefts of the lip and/or palate being the most frequent,
affecting nearly 1 in 700 live births worldwide1. These defects are a
significant public health issue with far-reaching economic ramifica-
tions. For children born with orofacial clefts alone, the combined
lifetime cost of treatment is nearly $700 million2–4. Craniofacial dis-
orders also pose unique physiological and psychological challenges to
patients and their families. The face contains most of the major sen-
sory organs and is the primary means by which humans communicate

emotions, a fundamental social behavior necessary to form and culti-
vate relationships. For these reasons, there is significant impetus to
understand the etiology of craniofacial defects to aid in the develop-
ment of improved diagnostic and preventative methods.

The link between craniofacial abnormalities and genetic disorders
has been long established, as over 500 Mendelian syndromes,
according to OMIM, exhibit a craniofacial element5. Machine learning
technology has been able to take advantage of this observation, and
several tools have been developed to match facial phenotypes with
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known syndromes6–9. Most recently, machine vision tools have shown
potential for applications in diagnosing and characterizing ultra-rare
syndromes with the added benefit of being minimally invasive10,11.
However, themajority of craniofacial abnormalities arenonsyndromic,
occurring in the absence of other abnormalities, potentially limiting
the utility of such approaches for diagnosing nonsyndromic cases.
Additionally, the underlying genetic causes of many nonsyndromic
craniofacial abnormalities remain unclear and are likely to be more
varied across individuals than the rare syndromes. Genome-wide
association studies (GWAS) have identified dozens of loci that con-
tribute to the heritability of nonsyndromic orofacial clefting12–19 as well
as metrics of normal human facial variation20–22.

Only a handful of these variants reside in genes. The vast majority
of these GWAS variants are found in noncoding portions of the gen-
ome. We and others have shown that such variants are systematically
enriched in sequences that obtain active chromatin states during early
human craniofacial development, particularly those annotated as
strong enhancers23–25. Strong enhancers only active in developing
craniofacial tissues are enriched for craniofacially relevant transcrip-
tion factor (TF) binding sites and are generally located nearby genes
already implicated in craniofacial abnormalities. However, these
enrichments are driven by a relatively small fraction of all identified
craniofacial enhancers, and it is unclear exactly which genes these
enhancers regulate. Establishing such enhancer-gene assignments is
difficult in the absence of direct gene expression measurements26–28.
Thus far, gene expression during craniofacial development has been
primarily studied in model organisms such as mouse, chicken, and
zebrafish29–32. For ethical and logistical reasons, gene expression data
fromprimary craniofacial developing human tissue is relatively rare33,34

compared to the thousands of gene expression datasets produced in
adult tissues35,36. Thus there is a great need for large-scale genome-
wide data in order to comprehensively study human craniofacial
development and better understand which genes are regulated by the
trait loci identified in patient cohorts.

To address this knowledge gap, we have generated an
extensive set of bulk RNA-seq data from organogenesis of the
human face. Here we describe the analysis of these gene
expression data along with the integration of thousands of gene
expression profiles from adult tissues and our previously pub-
lished craniofacial chromatin state data25. These analyses revealed
genes with previously unappreciated craniofacial-biased expres-
sion. We combined these findings with data on craniofacial-
specific enhancers to predict enhancer:gene pairs in the devel-
oping human face. We also characterized gene coexpression
across developmental time, revealing gene coexpression modules
that are strongly enriched for known disease-causing genes.
These results provide a framework for prioritizing putative dis-
ease genes that share similar features across our data. This
prioritization strategy identifies 539 genes that are significantly
enriched for de novo protein-altering mutations in patients with
orofacial clefting. Using large public repositories of genome
sequencing (GS) data from healthy individuals, and sequence and
copy number variation data from individuals with developmental
abnormalities, we show strong evidence that haploinsufficiency
of one of our predicted genes, EBF3, is a risk factor for orofacial
clefting in humans. Using single nucleus gene expression data
from comparable timepoints in human and mouse craniofacial
development, we show distinct differences in the expression of
EBF3 and its paralog EBF2 in multiple populations of mesenchyme
cells across species. Data from this investigation are available
from the Genome Expression Omnibus, dbGAP, as a public track
hub on the University of California Santa Cruz (UCSC) Genome
Browser, and directly from our laboratory website for convenient
exploration by the field (https://cotney.research.uchc.edu/
craniofacial).

Results
Characterization of global gene expression during human
craniofacial development
Gene expression during human organogenesis has been shown to be
highly dynamic, and its precise orchestration is crucial for the normal
patterning of a variety of tissues and structures37–39. However, gene
expression patterns during critical stages of human craniofacial
development have not been systematically profiled. To characterize
the transcriptome of the developing human face, we generated gene
expression profiles from multiple biological replicates of primary
craniofacial (CF) tissue from four distinct Carnegie Stages (CS) of the
embryonic period (CS13, CS14, CS15, and CS17) as indicated (Fig. 1a).
This is equivalent to approximately 4 to 6 post-conception weeks
(pcw) based on established staging criteria40. We also retrieved CS22
(~8 pcw) gene expression data from Facebase34,41, resulting in a time
series dataset encompassing nearly half of the embryonic period. We
have previously characterized chromatin state dynamics during these
same stages, including six of these same samples (Supplementary
Data 1), and showed that regulatory regions active in the face during
this period harbor much of the risk for orofacial clefting identified by
GWAS25. Quality control metrics of this bulk gene expression data
revealed that newly generated samples had minimal 3’ bias, generally
high RNA integrity number (RIN) values and excellent transcript
integrity number (TIN) scores (>70) (Fig. 1b, Supplementary Fig. 1A,
and Supplementary Data 1). Principal component analysis (PCA) of the
CF samples showed minimal effects from sex and RNA quality in the
first 2 components (Supplementary Fig. 1B).Having confirmed thehigh
quality of these samples, we then summarized gene expression at the
composite gene level and identified an average of 26,000 genes
expressed at each timepoint (see Methods). The greatest number of
genes were expressed at the latest timepoints of the developmental
series. This is consistent with the increasing heterogeneity of tissues
and cell types generated as development progresses. These different
tissues are undoubtedly present in these bulk samples.

While these timepoints may capture many of the critical events in
CF patterning, other events that occur before CS13 are difficult to
address, and targeted experiments cannot be performed in vivo.
Recent advances in directed differentiation of hESCs into different cell
types have resulted in cell populations that recapitulate many of the
properties of cranial neural crest cells (CNCCs), which contribute to
the developing face42–44. However, the similarity of cultured CNCC
transcriptomes to the primary tissue has not been definitively
demonstrated. To address these issues, we generated CNCCs from H9
hESCs across three distinct rounds of differentiation using an estab-
lished protocol44 and profiled global gene expression. To system-
atically determine the similarity of these CNCC culture systems, we
performed a PCA of these cultured CNCC samples with the primary CF
samples. This revealed that the first principal component reflected the
expected developmental time (Fig. 1b). To further verify the relevance
of the CNCC culturemodel, we performeddifferential gene expression
analysis between H9 hESCs and CNCCs as well as CS13 samples. We
identified 2476 and 3740 genes upregulated versus hESCs in CNCCs
and CS13 samples, respectively. We found a significant (permutation
P <0.001) overlap of 1710 upregulated genes between these two
comparisons. Gene ontology of these genes revealed many terms that
were relevant to craniofacial development and indicated that the
CNCC differentiation captured many of the expression changes in the
bulk tissue compared to pluripotent stem cells (Supplemen-
tary Fig. 1C).

While these initial comparisons gave us a sense of the overall
trends in the data, they did not yet reveal clear craniofacial-relevant
biology. Togainmore specific insight into craniofacial gene expression
patterns, we reasoned that comparisons withmany other tissues could
reveal such information. To achieve this, we uniformly processed our
primary human embryonic andCNCCdata with the Rail-RNA pipeline45
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employed by the recount2database46. This enabled direct comparisons
of our gene expression data to thousands of samples collected from
tissues profiled by GTEx36, multiple stages of the developing human
brain47, and samples we previously generated from the developing
human heart39. We compared composite gene level expression across
all of these samples and observed similar numbers of expressed genes
and ranges of gene expression (Fig. 1d). When we inspected the
developmental transcription factor PAX7, known to be expressed in
early neural crest and many of the craniofacial derivatives48 we
observed robust expression biased toward CNCC and CF samples
relative to other tissues (Fig. 1c and Supplementary Fig. 1E). This is in
contrast to SOD1, which is frequently used as a housekeeping control
gene, and was expressed at similar levels in all tissues (Fig. 1c and
Supplementary Fig. 1E).

We then performed a t-distributed stochastic neighbor embed-
ding (tSNE)49 analysis on all expressed genes across all tissue samples
and found a distinct cluster of craniofacial samples, alongwith clusters
for each of the tissues profiled by GTEx (Supplementary Fig. 1F). This
trend was also observed in PCA, which showed CF tissues generally
clustered together (Fig. 1d). Overall, these results demonstrate the
quality of our data, the robustness of individual embryo staging, the

validity of the CNCC system as a model for early craniofacial devel-
opment, and recovery of a cleardevelopmental timecomponent inour
gene expression data. With these global characteristics confirmed, we
set out to perform specific analyses directed at identifying genes
specifically expressed in these CF tissue samples, genes differentially
expressed across this developmental trajectory, and the construction
of networks of coexpressed genes, which we detail below.

Genes expressed specifically during craniofacial development
are enriched for craniofacial abnormalities
The specificity of gene expression is an important aspect of cell
identity in multicellular organisms. Restricted gene expression is fre-
quently observed for genes directly related to tissue-specific func-
tionality and is often an indicator of disease relevance50–52. Our
previous work has shown that strongly biased expression directly
identified known genes for congenital heart defects39. We looked to do
a similar analysis with this craniofacial dataset to identify putative CF
disease genes; as demonstrated above, PAX7 expression seemed to be
strongly biased toward our CF samples.

To systematically identify genes with similar patterns of tissue-
biased expression,we used ameasurement of inequality called theGini
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Fig. 1 | Transcriptomic profiling of early human craniofacial development.
a Overview of experimental design. Bulk mRNA-seq was performed on five-
timepoints of the primary CF tissue and a cell culture model of CNCCs. The Rail-
RNA/recount2 pipeline was used for alignment and gene-level transcript quantifi-
cation. In order to determine potential disease genes within craniofacial develop-
ment, several downstream computational analyses were performed, such as multi-
tissue comparisons, pairwise differential expression, and the generation of coex-
pression networks. Created with BioRender.com. b PCA plot showing samples
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PAX7 and SOD1 expression across all samples per tissue surveyed. Comparison of
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Index across all tissues profiled above53–55 (SupplementaryData 2). This
index results in a bimodal distribution of genes with a median value of
0.42 and a large number of genes with Gini scores ranging from 0 to
0.3. These low-scoring genes are not tissue-specific, and are thus
expressed across many cell types and likely housekeeping genes (e.g.,
SOD1 =0.238). Notably, several genes involved in the craniofacial-
biased disease Treacher Collins syndrome, TCOF1, POLR1C, and
POLR1D, were low-scoring genes found to be expressed at high levels
in virtually all tissues (Gini scores 0.23, 0.19, and0.15 respectively). The
top quartile of genes, those with scores of 0.7 or greater, contained
5,134 “Gini” genes that have strongly biased expression towards a small
number of samples (Fig. 2a). Of these biased genes, 239 genes
demonstrated the highest average expression in our CF samples. To

determine the CF disease relevance of these genes, we performed a
disease enrichment analysis of theseCFGini genes using theDisGeNET
database56 and found they were indeedmost significantly enriched for
genes implicated in CF abnormalities and cleft palate. Similarly, fetal
brain and embryonic heart Gini genes were significantly enriched for
neurological disease and congenital heart defect-related ontologies,
respectively (Fig. 2b). In contrast to the Gini index analysis, using the
same number of genes ranked solely by absolute expression in cra-
niofacial samples we observed gene ontology enrichments for general
cellular and metabolic processes and distinct disease enrichments
including Diamond Blackfan anemia and carcinomas (Supplementary
Fig. 2A). These results demonstrate the power of multi-tissue com-
parisons and the application of the Gini index to efficiently identify
tissue and disease-relevant genes.Whereas using only gene expression
strength in a single tissue identified genes with general, housekeeping
functions.

Many transcription factors (TFs) have restricted patterns of
expression and are critical in developmental patterning and specifi-
cation across many tissues57. Therefore, we asked if CF Gini genes are
enriched for TFs. Amongst the CF Gini genes, we identified significant
enrichment of human TFs annotated by ref. 57 (n = 71, 6.1-fold
enrichment, Fisher exact p < 2.2 × 10−16). These included many known
to be important in CF development, such as ALX1, ALX4, DLX5, DLX6,
MSX2, PAX3, PAX7, and TWIST158. In addition to transcription factors,
signaling pathways are also well appreciated to be important for nor-
mal CF development. Consistent with this established biology, we
found significant enrichment of genes belonging to families of sig-
naling molecules known to be important in regulating CF morpho-
genesis, including FGF8, FGF1959–61 and WNT7A, WNT7B, and WNT8B62

(Supplementary Fig. 2B).
The genes with the highest Gini index for CF tissues are shown in

Fig. 2c. Themost highly expressed top-scoring gene, COL2A1, has been
linked to Stickler syndrome, which includes CF abnormalities like cleft
palate and midfacial hypoplasia63,64. While this approach successfully
revealed genes known to drive CF disease, the unbiased nature of this
analysis also allowed us to uncover candidate genes not previously
associated with CF development. For instance, HMGA2 is one of the
most specifically expressed genes in our CF tissues. This gene has been
linked in OMIM5 to Silver-Russell syndrome (SRS) and is associated
with a pygmymouse phenotype65, but is relatively underappreciated in
both SRS specifically66 and CF development generally67. Another top-
scoring gene in our analysis, IGF2BP1, encodes an RNA-binding protein
(RBP) that has not been linked to any human diseases in OMIM5 but
results in specific cartilage loss in nasal bones and mandible in
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mouse68. RBPs, as a class, have been linked to a handful of syndromes
with CF phenotypes69, suggesting that IGF2BP1may also play a key role
in CF development in humans.

To further determine if these CF expression biases reflected tissue
and developmentally relevant differences, we asked whether such
trendswerealsoobserved inmouse. To address this, we retrievedgene
expression data uniformly processed by recount370 from developing
mouse craniofacial prominences along with 20 other tissues ranging
from embryonic day 10.5 (E10.5) to postnatal week 4, totaling
500 samples (Supplementary Data 1). Based on PCA, we found these
data largely demonstrated expected differences in global gene
expression that reflected their developmental origin (i.e., mesoderm,
ectoderm, and endoderm), similar to our findings in the human data-
sets (Supplementary Fig. 2C). When we compared gene expression of
orthologous genes across human and mouse craniofacial samples, we
found that the secondprincipal component oriented samples in a clear
developmental trajectory (Supplementary Fig. 2D).

While it is difficult to directly compare developmental stages
across species with dramatically different in utero development times,
calculation of sample distances based on the expression of all one-to-
one orthologous genes indicated CS13 samples were most similar to
E10.5 while CS17 samples were most similar to E12.5 (Supplementary
Fig. 2E). When we performed the same Gini analysis as above for these
mouse tissues, we found similar enrichments of coherent biological
functions amongst tissue-biased genes (Supplementary Fig. 2F). For
instance, heart biased genes were enriched for functions related to
muscle cell differentiation and sarcomere organization while
craniofacial-biased genes were enriched for skeletal development and
olfactory receptor activity.

Of the 239 human craniofacial Gini genes identified above, 154 had
clear one-to-one orthology inmouse. For the remaining 5321Gini genes,
2571 had clear orthology in mouse. Of the CF Gini genes with clear
orthology, we found significant enrichment of genes with similar biases
toward craniofacial samples in mouse (n = 27, Fisher exact
p= 5.663 × 10−13, odds ratio = 7.58). These genes were enriched for
craniofacial-relevant diseaseontologies, as in thehumanfindings above.
Given the highly conserved expression during craniofacial develop-
ment, we wondered if these genes are likely to physically interact or
otherwise directly regulate one another. When we interrogated these
genes, we found that these genes were very strongly enriched for both
predicted and experimentally determined protein–protein interactions
suggesting direct physical regulation amongst proteins encoded by
these genes in both humans and mouse (Fig. 2d).

These findings suggested our multi-tissue and multi-species Gini
analysis capturedmany knownCF disease genes, revealed a conserved
regulatory network at both expression and protein interaction levels,
and implicatedmany novel genes that are biased in expression toward
craniofacial development, warranting further inspection. Moreover,
this analysis identified thousands of genes with restricted expression
across tissue types, which are likely important tomany different fields.

Integration of chromatin states and gene expression from
multiple tissues reveal trends in regulatory architecture for
tissue-specific genes
Given the enrichment of genes with known roles in craniofacial
development and significant numbers of transcription factors in our
Gini analysis, we asked if tissue-specific regulatory sequences might
play a role in these restricted expression patterns. Noncoding reg-
ulatory regions such as enhancers are known to act on genes in a
spatiotemporal manner71 and have been shown to be enriched for
disease-associated variants72,73. In previous work, we have shown that
enhancers active in human craniofacial and heart development are
enriched for variants associated with risk for orofacial clefting and
atrial fibrillation, respectively, suggesting they act on tissue-specific
developmental genes25,39.

To determine if CF Gini genes are likely regulated by CF-specific
enhancers, we leveraged epigenetic atlases from embryonic develop-
ment alongwith fetal and adult tissues inRoadmapEpigenome35. Using
the “strong” enhancer states identified from the 25 ChromHMM
analysis74, we established a list of 10,693 putative CF-specific strong
enhancer segments (CFSEs) by comparing them to all other available
tissues in Roadmap Epigenome and embryonic heart (Supplementary
Data 3). Using GREAT75 to identify CFSE gene targets, we found that as
the number of CFSEs predicted to target a gene increased, the bias of
that gene’s expression toward CF tissue increased (Fig. 3a). These
results suggest that CFSEs drive tissue-biased gene expression and
many are likely to be directly targeting these genes in vivo. We found
that of all Gini genes, the CF Gini genes had the largest enrichment of
CFSE target genes, followed by fetal brain and embryonic heart, con-
firming the global gene expression trends between tissues (Fig. 3a).
Given this robust predicted targeting between CFSEs and CF Gini
genes, we asked where tissue-specific enhancers tend to be physically
located relative to their targets. To address this question, we assigned
each CFSE to the closest CF Gini gene in cis. Compared to a random
permutation control, we detected significant enrichment of CFSE-CF
Gini gene pairs at distances up to 400 kb, with a median distance of
180 kb (Fig. 3b and Supplementary Fig. 3A, B). Approximately 20% of
these CFSEs were located within 50kb of a CF Gini gene. Enhancers
have been demonstrated to form long-distance interactions with their
target genes, with some of the most relevant and specific interactions
occurring over distances greater than 1Mb in developing tissues76,77.
While such individual examples are striking for both the distances and
specificity of effects, extremely long-range interactions (>500 kb)
seem to be relatively rare based on these enhancer-gene pairings and
do not rise above the background expectation.

The results above indicated that tissue-specific, active enhancer
states play strong roles in the specificity of expression. However,
repressive chromatin modifications and the complexes that deposit
those marks have been associated with developmental abnormalities.
Specifically, components of the Polycomb Repressive Complex 2
(PRC2), particularly EZH2 that catalyzes H3K27me3 deposition, are
essential for normal mouse development and have been implicated in
neural crest-derived tissue specification as a result of global gene
derepression78–82. The combination of H3K27me3 andH3K4me3marks
is strongly associated with bivalent chromatin state segmentations
across multiple tissues. Bivalent domains are thought to be regions
within the genome that facilitate temporal expediency during devel-
opment but also identify genes with restricted or gradients of
expression within a tissue35,83–85. Our previous work identified 957
genes with bivalent promoters exclusively in embryonic craniofacial
tissue25. Many of these were DNA-binding factors that are known to
have restricted patterns of gene expression across themouse embryo,
including the adjacent transcription factors Dlx5 and Dlx686–88, sug-
gesting a relationship between bivalent status and specificity of
expression. When we examined all CF-specific bivalent genes, we did
not find a correlation with tissue-specificity of gene expression (Sup-
plementary Fig. 3C).However, bivalent genes classified asDNA-binding
factors were significantly enriched for embryonic CF Gini genes. This
trend was also observed for all bivalent promoters conserved between
mouse and human-developing CF tissues (Fig. 3c).

Notably, we found that DNA-binding factors with bivalent pro-
moter status during human CF development showed the strongest
trends in both the absolute number of assignedCFSEs and the greatest
overall specificity of expression. For example, the nuclear receptor
NR2F1 gene,which has been shown to be a key regulator of neural crest
specification89, is potentially targeted by 16 CFSEs. Other well-known
CF TFs like MSX2 and ALX4 are targeted by ten or more CFSEs90–93

(Supplementary Fig. 4).
This analysis also identified several genes that cause syndromes

that include variable dysmorphic facial features but are not well
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appreciated in human CF disease, including BCL11A, EBF3, and HMGA2
(Supplementary Data 3 and Supplementary Fig. 5). BCL11A has been
recently implicated in Dias–Logan syndrome that is primarily known
for intellectual developmental disability with hereditary persistence of
fetal hemoglobin, but patients have been reported to have multiple
dysmorphic features including microcephaly94. There are 12 CFSEs
within 400 kb of BCL11A and up to 20 in the extended 2.3Mb non-
coding region flanking this gene (Supplementary Fig. 5). The potential

involvement of HMGA2 in Silver-Russell syndrome has been discussed
above. It is putatively targeted by 11 CFSE within 400 kb (Supple-
mentary Fig. 5). In the case of EBF3, it has been linked to a neurode-
velopmental syndrome that includes variable dysmorphic facial
features (HADDS; MIM: 617330). There are 19 CFSEs within 400 kb of
the bivalent TSS region and we observed a CF-specific pattern of
expression compared to surrounding genes (Fig. 3d). Additionally, we
observed that the 1.5Mb window containing EBF3, MGMT, and MKI67
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had the highest density of CFSEs genome-wide and could be an
underappreciated locus for craniofacial development and associated
abnormalities. Overall, these results demonstrate a clear relationship
with the genomic organization of tissue-specific enhancers relative to
genes that have high specificity of expression during development,
particularly those that maintain a bivalent state during organogenesis.

Differential expression during craniofacial development
identifies temporal-specific biological processes
Our analysis thus far has demonstrated the value of comparing across
multiple tissues for observing global trends of gene expression and
identification of genes with tissue-specific patterns of expression.
However, these analyses assume each tissue is at a one-timepoint and
thus do not capture gene dynamics throughout development. Cra-
niofacial development is a morphologically complex process which is
likely to be reflected in its gene expression, thus we sought to under-
stand how gene expression patterns change throughout early

development in craniofacial tissues. We first performed differential
expression analysis in a pairwise fashion across all polyA-capturedRNA
from primary tissue timepoints. We found a total of 3677 genes sig-
nificantly differentially expressed. The largest number of differentially
expressed genes (DEGs) were found in comparisons between the ear-
liest and latest stages (CS13 and CS17, n = 2733), consistent with the
progression of morphogenesis of a structure into multiple distinct
tissue types (Supplementary Fig. 6A–C and Supplementary Data 4).

Whenwe compared the expression of theseDEGs across all of our
gene expression data, we found that hierarchical clustering separated
samples into two main groups that we denote as Early (CNCC, CS13,
and CS14) and Late (CS15, CS17, and CS22) (Fig. 4a). This grouping of
samples indicated the culture model of CNCC utilized in this study
does indeed reflect the primary tissue when neural crest cells are
thought to be populating the craniofacial structures. This is in contrast
to an alternative cranial neural crest cell culture model42 which seems
to have very distinct expression profiles compared to the CNCC data
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and primary tissue gene expression data generated in this study
(Supplementary Fig. 6D).

We identified four major clusters of genes which had obvious
expression trends during the developmental trajectory (Supplemen-
tary Data 4). The upper cluster (1-Dark Green) showed strong expres-
sion in CNCC and CS13 samples and progressive dampening of
expression over developmental time. The genes in the upper mid
cluster (2-Light Green) are largely absent in CNCC and CS22 but have
dynamic expression between early and late stages (Fig. 4a). These two
clusters were enriched for genes involved in patterning, morphogen-
esis, and cell fate specification (Fig. 4b and Supplementary Fig. 6E).
Disease enrichment analysis of the light green cluster revealed strong
enrichment for CF abnormalities including cleft lip ± cleft palate
(Fig. 4c). Genes in the lower mid cluster (3-Light Purple) were
expressed in CNCC but largely absent from the rest of the early tissue
samples. They are expressed again at CS15 and generally increase
across the rest of the developmental trajectory (Fig. 4a and Supple-
mentary Fig. 6E). Genes in the bottom cluster (4-Dark Purple) are
mostly not expressed in the early stages but progressively increase in
expression over the duration of the developmental trajectory. These
two clusters were enriched for GO terms involved with cell–cell
adhesion, muscle development, ossification, and upper palate devel-
opment (Fig. 4b and Supplementary Fig. 6E). These DEGs included all
members of the RUNX family of TFs, many members of the myogenic
TF family, and all members of the PITX family of TFs.

Several genes identified to be involved in establishing neural crest
identity95 were found in all but one of the clusters, with most residing
in dark purple. Interestingly, PAX7 and RXRG exhibit oscillating tra-
jectories, which varied from the overall trajectory of the dark green
cluster (Supplementary Fig. 7A, B). This may be due to multiple waves
of neural crest populating the human CF tissue, as it is thought to
happen in trunk sensory neurogenesis96. These data suggest that the
embryonic period of development, particularly the 4 to 8 post-
conception week period in humans, has distinct programs that are
employed sequentially as morphogenesis and organogenesis of the
face and skull progress.

The classes of genes linked to disorders with CF abnormalities are
exceptionally varied. They include TFs, cell–cell signaling, RNA-bind-
ing, and protein metabolism97,98. We asked if certain classes of genes
would be biased toward dynamic expression in our CF tissues. We
found that signaling and TF classes were more prominent in our dif-
ferentially expressed genes than expected (Supplementary Fig. 7C)
while RBPs were depleted. Many RBPs are known to be ubiquitously
expressed and we show that they have generally low Gini scores in our
multi-tissue analysis (Supplementary Fig. 7D). It is therefore likely that
their function is not directly regulated by transcription, but instead
may be important for post-transcriptional processing of genes that are
either specifically expressed or expressed in cell types like migrating
neural crest that are particularly sensitive to perturbation99.

Based on our above multi-tissue analysis, specifically expressed
genes and TFs with bivalent chromatin status are indicated to play
important roles in CF development. We found that CF Gini genes were
most enriched in the early green clusters (Fisher exact p < 2.2 × 10−16).
Bivalent transcription factors showed similar trends in enrichment
across clusters, with themost significant enrichment in the light green
and dark purple clusters (Fisher exact p < 2.2 × 10−16), suggesting that
throughout development, there are several narrow windows of time
when craniofacial-specific biological processes are occurring.

When we analyzed CS13 chromatin states at the promoters of
genes in each cluster, we found consistent trends in activating histone
modifications, particularly H3K4me3 levels of the dark green cluster
that are more strongly expressed in the early time period (Supple-
mentary Fig. 8). Additionally when we inspected differential enhancer
utilization across development we found enhancers of DEGs showed
similar trajectories of H3K27ac levels (Supplementary Fig. 9). Overall

the patterns of expression that were revealed in the differential
expression analysis were largely confirmed by chromatin state both at
promoters and distal enhancers suggesting direct regulation of genes
by changes in histone modifications at these classes of regulatory
sequences.

Coexpression networks reveal groups of genes with distinct
roles in craniofacial development
The differential expression analyses above revealed clear dynamics in
gene expression across a subset of genes. However, genes not rising to
stringent pairwise differential expression criteria are not considered,
which potentially misses information about other important gene
relationship patterns such as coexpression. Gene coexpression during
development has been shown to reveal modules of genes that have
similar patterns of regulation across time and even identify cell-type
specific enrichments from bulk data39,100,101. Coexpression network
analysis has been successfully applied to a variety of contexts ranging
from the developing brain, particularly for unraveling the complex
genetic architecture of autism spectrum disorder (ASD), to the
developing tooth to suggest odontogenic loci102–104. We wondered if
the same trends might exist in our CF expression data and could be
used to reveal putative disease gene candidates as demonstrated in
ASD105. To attempt to uncover such genes, we applied weighted gene
coexpression network analysis (WGCNA)106 using similar approaches
as those employed in ASD studies102. After normalization and filtering
for low expression, 26,626 genes were assigned to 29modules ranging
in size from ~150 to over 4000 coexpressed genes. We hypothesized
that there would bemodules unique or important to CF development,
and to help identify them, we performed GO enrichment (Fig. 5a). The
GO analysis revealed that the modules were biologically distinct from
one another (Supplementary Data 5). The decreasing modules cap-
tured by WGCNA were enriched for many generic cellular processes
such as cell cycling (orange), tRNA processing (green), splicing (dark
green), and protein trafficking (dark orange). Amongst the increasing
modules, more tissue-specific enrichments were observed, including
muscle development (dark magenta), epithelial differentiation (light
yellow), and, most notably embryonic patterning and morphogen-
esis (black).

We then calculated representative gene expression for each
module, or module eigengene expression, and inter-module eigen-
genes correlation and relatedness. Modules located near one another
in multidimensional scaling space (MDS) (Fig. 5a) revealed three tra-
jectories of expression across development: increasing, decreasing, or
dynamic (Fig. 5b and Supplementary Fig. 10). To get a finer char-
acterization of thesemodules, we determined enrichment from twelve
gene lists including craniofacial related abnormalities (Supplementary
Data 2), specificity of expression, assignment of CFSE to target genes,
clusters of differential expression, and measures of resistance to
deleterious mutations (Fig. 5c). We found that two modules had
enrichment of known CF disease genes and four modules were enri-
ched for CF Gini genes. When we analyzed modules for potential
regulation by CFSEs, we found eight modules were enriched and were
heavily biased toward modules with dynamic patterns of gene
expression. Three modules, light green, black, and dark slate blue had
enrichment for both CF Gini and CFSE, further establishing a connec-
tion between enhancer activity and gene expression. The coexpression
networks also captured relevant gene dynamics since many of the
modules showed enrichment for the DEGs from Fig. 4.

We next turned to exome and genome sequences collected by
gnomAD107, which has developed a score based on observed versus
expected numbers of loss-of-function mutations across these data
(loss-of-function observed/expected upper bound fraction or LOEUF).
Genes identified in the upper deciles of this scoring metric have been
previously predicted tomost likely cause disease in humans.We found
that 8 WGCNA modules had significant enrichment for the upper
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LOEUF deciles (Fig. 5c). Many of these same modules were also enri-
ched for both known disease genes and CF Gini genes.

One implication of the coexpression of genes is that they may be
more likely to interact at the protein level. For instance, genes that
encode proteins that are members of the same complex or biological
process would need to be expressed within similar points of devel-
opment. So we asked how our coexpression networks might reflect
protein–protein interactions (PPI). We found that, indeed, ourWGCNA
network was strongly enriched throughout for known and predicted
protein–protein interactions (Fig. 6a). Overall, these findings strongly
suggested that coexpression networks reflect the known biology
active during craniofacial development.

Regulatory hubs in coexpression networks reveal putative
driver genes for the developing face
Given the robust enrichment of multiple aspects of CF biology across
multiple data types in the modules of our WGCNA, we set out to
determine if these modules could reveal genes involved in CF devel-
opment or cause disease that had been previously inaccessible. Within
coexpression networks, potential driver genes or “hub genes” are
those that have correlations with many other genes (high con-
nectivity). Previous analysis of coexpression networks of early brain
and heart development showed hub genes are enriched for genes with
strong evidence of involvement in ASD and congenital heart disease
(CHD) risk, respectively39,102,103. We thus hypothesized that hub genes,
in particular, would be enriched for known and candidate
disease genes.

We first tested all hub genes against the gnomAD database and
observed significant enrichment across upper LOEUF deciles and sig-
nificant depletion of lower LOEUF deciles (Fig. 6b).Whenwe examined
the hub genes of each module independently, we identified seven
modules whose hub genes were enriched across the two upper LOEUF
deciles. These included all of the modules identified above (Fig. 5c),
with the exception of the light green module. Of these seven, the dark
turquoise, dark red, and black modules were enriched across the top
four deciles and had the highest fold enrichments over background
permutations. When we combined these enrichments with the pre-
viously described annotation analyses and gene ontology enrichments
performed, we found the black module was singularly enriched for all
these metrics.

Specifically, the blackmodule was significantly enriched for genes
linked to craniofacial diseases, genes involved in embryonic morpho-
genesis, CF Gini genes, genes targeted by CFSEs, genes constrained in
healthy humans, and genes which are differentially expressed across
the CF developmental trajectory. We identified a number of driver
genes within the black module that are well-known to the CF devel-
opment field, including DLX5, DLX6, EYA1, MSX1, PRRX2, MSX1, and
TWIST1. Given this enrichment of known disease genes, we wondered
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Fig. 6 | WGCNA network hub-gene enrichment of variant-restricted genes
uncover disease risk of EBF3 for craniofacial development. a Histogram of the
number of gene-scrambled modules that have protein–protein interaction (ppi)
enrichment at a Bonferroni-adjusted one-sided p value <0.05. The vertical orange
linemarks the numberofmodules that have significant ppi in the observedWGCNA
network (permutation p value =0.01).bHistogramof (LOEUF) deciles of hub genes
and randomly selected non-hub genes from all modules in the WGCNA network.
Deciles range from decile 1 (d1), which represents the most constrained genes, to
d10, genes that are the most tolerant to putative loss-of-function (pLoF) variation.
The bars for the expected overlap represent the median and lines represent the
standard deviation calculated from 1000 iterations of randomly selected genes
available from gnomAD (n = 17,277). c Network showing some of the top-scoring
genes (Supplementary Data 6) in the black module, along with known disease
genes. The edges represent the Pearson correlation (>0.9) between genes. Blue
edges connect genes that are highly correlated to EBF3. Genes are represented by
nodeswhich are characterized by shape,fill color, border color, and size. A black fill
indicates the gene has craniofacial-specific expression (Gini ≥0.5). Known disease
genes are marked with a Fuschia border. If the gene has been assigned three or
more CFSEs it has a diamond shape, one CFSE is square, and 0 are circles. A node
with a large size is a hub gene. Genes which have several of these criteria are
displayedwith larger and bold text. dCNCCHi-C interaction plot of the EBF3 locus,
data from121. Below is a zoomed-in genome browser shot of EBF3 locus showing 25-
state ChromHMM segmentation from a culture model of CNCCs, primary
embryonic CF tissue, embryonic heart and fetal cortex, and CS13 through CS20 of
primary human craniofacial tissue. Two orofacial clefting GWAS SNPs reside in and
near the TAD boundary. e Significance and fold enrichments of overlaps of genes
from our prioritization strategy (Prioritized), CF Gini genes (Gini), WGCNA hubs
(Hubs), and genes targeted by CFSEs (CFSE) with genes identified with at least one
DNM (All notation) or multiple DNMs (Multi notation) from orofacial clefting trios.
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whether other genes in this module might be strong disease candi-
dates. Twoof themostprominent suchgenes in theblackmodulewere
MAB21L1 and EBF3 (Fig. 6c). These genes shared features of known CF
disease genes in the black modules, but were more highly connected,
targeted by highest numbers of CFSEs, specifically expressed in CF
tissues, but not widely known to play roles in CF development or dis-
easebasedonannotations inOMIMandDisGeNET.Whenwe inspected
the literature,we found thatMAB21L1has recently been identified tobe
responsible for an ultra-rare disorder which notably involves ocular
anomalies, facial dysmorphism, andmicrocephaly108.Mab21l1KOmice
have ocular anomalies and lack of closure of the anterior fontanel109.
Homozygous Ebf3 mutant mice die perinatally but do not have overt
CF defects110. Heterozygous Ebf3mutantmice have defects in olfactory
neuron projection consistent with reported patterns of Ebf3 expres-
sion being strongest in the olfactory epithelium111,112. Only a small
number of human patients have been identified with rare de novo
variants in EBF3 but these patients consistently displayed intellectual
disability, ataxia, and facial dysmorphologies113–118.

We also find that an ortholog of EBF3, EBF2, is highly coexpressed
(Fig. 6c) consistent with previous studies showing these genes overlap
in expression and function119,120 suggesting that this gene family may
play an unappreciated role in human CF development. When we
inspected the potential regulatory landscape of EBF3 based onHiC121 in
the same CNCC system used for gene expression in this study, we
observed a topologically associating domain (TAD) that extended
from nearly 1.5Mb from the EBF3 promoter region (Fig. 6d). This TAD
is the samewindowwe identified above as enriched forCFSE segments
and harbored two distinct loci linked to risk for orofacial clefting122,123.
These two loci (rs1329189 and rs7922405) were previously labeled as
being associated withMKI67 and MGMT, respectively, based solely on
proximity. However, MKI67 has been used frequently as a marker of
proliferating cells and MGMT is broadly expressed across human tis-
sues with a Gini index of 0.23, very similar to SOD1 in our above ana-
lysis. Thus, we nominate EBF3 as the risk gene for orofacial clefting
associated with these two loci.

Haploinsufficiency of EBF3 was reported by multiple groups to
cause hypotonia, ataxia, and delayed development syndrome, but
orofacial clefting was not reported as a consistent feature109–114. A
search of the exome sequencing clinical database at Baylor Genetics
revealed 15 individuals whose phenotypes are likely to be explained by
deleterious variants in EBF3. Three of these individuals had a cleft
palate. The first individual was a previously published 13-year-old
femalewith a submucosal cleft palate and a short uvula113. She carried a
de novo likely pathogenic c.512 G >A, p.(G171D) [NM_001005463.3]
variant in EBF3. The second was a six-year-old male with a cleft soft
palate who carries a pathogenic de novo c.487C > T, p.(R163W)
[NM_001005463.3] variant in EBF3. He was born prematurely and had
intrauterine growth restriction. Polyhydramnios was noted during
pregnancy. His other phenotypes include delayed speech and lan-
guage development, delayed motor milestones, hypotonia, flexion
contracture, a positive Gower sign, strabismus, nasolacrimal duct
obstruction, atrial septal defect, patent foramen ovale, obstructive
sleep apnea, laryngomalacia, and macrocephaly. The third was a 5-
year-old female with a cleft palate who carries a de novo likely
pathogenic c.661 G >A, p.(V221M) [NM_001005463.3] variant in EBF3.
She was also noted to have delayed speech, intellectual disability,
hypotonia, epicanthal folds, micrognathia, camptodactyly, and
hyperextensibility.

This suggests that the rate of cleft palate among individuals with
putatively causative sequence variants in EBF3 is approximately 20%
(3/15; 95% confidence interval (CI) = 4.3–48.1%). Conservatively
assuming that the rate of cleft palate is 1:500 in the general
population4, the rate observed in individuals with putatively causative
EBF3 variants is statistically higher (P <0.0001; two-tailed Fisher
exact test).

To further determine if haploinsufficiency EBF3 is associated with
an elevated occurrence of orofacial clefting, we examined the
DECIPHER124 database for individuals with copy number variants
(CNVs) encompassing this gene. We identified 202 individuals with a
deletion that affected EBF3. 14% (29/202) of these individuals were
described as having a high palate, and 3.5% (7/202) were described as
having a narrow palate, with six individuals having both a high and
narrow palate. One individual was indicated to have a palatal fistula
and 12 individuals were indicated to have cleft palate or cleft lip ± cleft
palate. This represents a nearly 30-fold higher rate of orofacial clefting
(6%, 12/202, 95% CI = 3.1–10.2%) compared to an incidence of orofacial
clefting in the general population of the United States4 (P <0.0001;
two-tailed Fisher exact test).

Given the findings above in the black module, we inspected all
modules from theWGCNA that had the following traits: CF Gini genes,
CFSE target genes, hub genes, and high LOEUF (decile ≤3) genes. There
were 539 genes that fulfilled at least two of these criteria across our
entiredataset (SupplementaryData 6, 7). Todetermine if this listmight
indeed be enriched for disease-causing genes, we first examined genes
recently curated by CleftGeneDB125 to have experimental evidence for
orofacial clefting in humans and/or mice. We found a very significant
overlap between the curated list and genes identified here that had
been prioritized based solely on gene expression and enhancer
dynamics in normally developing human craniofacial tissue (n = 119,
Fisher exact p value = 5.1 × 10−91, odds ratio = 19.1, Supplemen-
tary Data 7).

We next turned to recently published genome sequencing data in
isolated orofacial clefting trios126. This study reported only three genes
(TFAP2A, IRF6, and ZFHX4) that had enough de novo mutations
(DNMs), either protein-altering or loss-of-function, across probands to
rise above conservative multiple p value correction thresholds given
the size of the cohort. However, there were significantly higher num-
bers of protein-altering DNMs in probands than expected by random
chance. In this study, it was hypothesized that such genesmight play a
role in orofacial clefting risk, but to prove this, either much larger
cohorts would be necessary, as has been seen in the study of ASD, or
additional experimental corroboration would be needed. We hypo-
thesized that our datasets and, specifically, the prioritization scheme
above could provide additional support for the genes reported.

To test this hypothesis, we inspected data from these 756 trios
alongwith anadditionaldataset of 435 trioswith cleft palate (CP)127.We
identified 875 genes with at least one DNM and 58 genes with multiple
DNMs in probands across this cohort. These could be further divided
into genes with at least one DNM in probands with cleft lip with or
without cleft palate (CL/P) and thosewith cleft palate (CP) (572 and 375
genes with one DNM, 29 and 21 genes with multiple DNMs, respec-
tively). We then interrogated these gene sets for significant overlaps
with gene lists that we have assembled here, specifically CF Gini genes,
CFSE targeted genes, hub genes, and prioritized genes. In contrast to
findings in ASD,wedid notfind any significant overlaps between anyof
theDNMgene sets andhubgenes for individualmodules fromWGCNA
or hubs as a total. For CF Gini genes, we only found significant
enrichment for genes with a DNM in CP. For genes putatively targeted
by at least one CFSE, we found significant, but small enrichment for
eachcategory of all DNMgenes, although the only categoryofmultiple
DNMs enriched was for CL/P. Surprisingly, we found significant over-
laps with greatest fold enrichments with our prioritized genes and all
the DNM gene sets. For each OFC grouping, the genes with multiple
DNMs were more significantly enriched in our prioritized genes than
those with a single DNM (Fig. 6e and Supplementary Data 7).

Amongst genes with multiple DNMs, our prioritization strategy
identified all three genes reported by Bishop et al. (IRF6, TFAP2A, and
ZFHX4)126. Other genes included collagen genes COL2A1 and COL11A1,
transcription factor GRHL3, cell adhesion and signal transduction
associated gene CTNND1, and intraflagellar transport gene IFT122.
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Together these results provide additional support for these genes as
bona fide clefting genes. These results also suggest our genomics data-
driven prioritization strategy is enriched in genes with elevated DNM
rates in orofacial clefting and reveal gene expression alone is insuffi-
cient for the prioritization of genetic variants in this class of develop-
mental defects. Moreover, the significant overlap with curated lists of
human and mouse clefting genes suggests the rest of our prioritized
genes, particularly those with a DNM observed in clefting probands,
are fertile ground for identifying additional human disease-
relevant loci.

Single-nuclei RNA-sequencing of embryonic face
Our multi-layered analyses implicated EBF3 as an important player in
gene regulation during human craniofacial development and a risk
factor for orofacial clefting. However, as detailed above, mice lacking
Ebf3 do not have any reported craniofacial abnormalities. In our
humanGini analysis, we found that EBF3 expressionwas biased toward
craniofacial development (Gini = 0.65); however, in mouse Ebf3 was
more ubiquitously expressed (Gini = 0.11). Given these distinct differ-
ences in reported loss-of-function phenotypes and bulk gene expres-
sion patterns across species, we hypothesized that this gene and its
paralog EBF2might104 be expressed in different locations or cell types
in human craniofacial development compared to mouse.

While in situ hybridization for EBF3 might be a straightforward
way to address this issue in mouse embryonic tissues, this is a much
more challenging proposition in human embryonic samples. The
sampleswe have used above and towhichwe currently have access are
all dissected from the rest of the embryo and flash-frozen. Thus, the
samples cannot be embedded for sectioning easily without thawing,
and many of the structural landmarks for the orientation of the tissue
are absent. We have shown in multiple studies that despite these
orientation-based issues, tissue cryopreserved in this way is useful for
high throughput sequencing experiments which do not require
orientation information. Therefore, we looked to address potential
species-specific differences in EBF2/3 expression using single-cell
expression assays. We focused on the human timepoint with the
highest median EBF3 expression, CS17, and the most similar timepoint
in mouse craniofacial development based on our bulk expression,
E12.5 (Supplementary Fig. 2E). We performed single-nuclei RNA-seq
(snRNA-Seq) on craniofacial prominences from three CS17 embryos,
and also performed snRNA-Seq on craniofacial prominences from
three separate pools of tissue from E12.5 mouse embryos.

To identify conserved cell types and their potential differences
across species, we co-projected these samples usingonlygeneswith 1:1
orthologs in human and mouse (Supplementary Fig. 11). With these
~16,000 genes, we used GO enrichment and canonicalmarker genes to
identify seven major cell populations (Mesenchyme, ectoderm,
endoderm, muscle progenitor cells, red blood cells, other blood cells,
and neural progenitor cells), consistent with the major resident cell
types described in developing mouse CF tissue128 (Fig. 7a and Sup-
plementary Data 8). The relative proportions of each cell type were
remarkably similar across species despite potential heterochrony
(Supplementary Fig. 11); we also observed a strong concordance
between analogous cell types across species, except neural progenitor
cells. This was expected, as we have noted the large biases in the
inability to finely dissect primary human CF tissue compared to the
tightly controlled collection of mouse CF tissue. Therefore, much of
the primary human tissue was expected to contain portions of the
forebrain located adjacent to the face at this stage.

As discussed above,WGCNA is able to identify coexpressed genes
primarily expressed in specific cell types even from bulk data39,103,104,129.
To identify these gene signatures in our modules, we considered hub
genes fromeachWGCNAmodule as a collective group and calculated a
“module score” based on the combinatorial activity of these groups of
genes in each cell. These genemodule enrichment scores were indeed

enriched for specific cell types (Fig. 7d and Supplementary Fig. 12). For
example, the hub genes of the black module showed enrichment for
the mesenchyme and endoderm cell populations, while the light cyan
and light green hub genes are specifically expressed in the mesench-
yme. Interestingly, when we interrogated our epithelial and
mesenchymal subclusterings, we were able to observe an enrichment
of WGCNA modules which did not appear in the bulk analysis. For
example, when we look at all cell types, the dark slate blue module
appears to be primarily enriched in the neural progenitor cell pool;
however, when we look at the epithelial subclustering, there is a clear
enrichment of hub genes from this module in epithelial cluster 4. We
observe a similar finding in the mesenchyme for the light yellow
module.

Given the enrichment of expression of genes from the black
module, which contains EBF2 and EBF3, in the mesenchyme and
endoderm cell populations, we wondered whether these two genes
would be significantly expressed in these cell types and potentially
biased in expression across species. We observed elevated expression
of EBF2 in the mesenchyme and EBF3 in the mesenchyme and endo-
thelium of both mouse and human samples (Fig. 8a). When we
inspected coexpression of these two genes, we found a striking bias
toward human cells to jointly express them. This was particularly
apparent in the mesenchyme (Fig. 8b). These results in the mesench-
yme were of particular interest due to this cell type’s relevance to
craniofacial phenotypes. Therefore, we examined the mesenchymal
subclustering for expression of EBF2/EBF3 across species in these
subpopulations. For clusterswithmedianexpression greater than 1, we
observed significantly human-biased expression for both genes in
mesenchyme subclusters 0 and 1 (Fig. 8c). In contrast, we did not find
significant mouse-biased coexpression of these two genes in any
subcluster. Ebf3 was biased toward mouse subclusters 4 and 5, while
Ebf2 was mouse biased in subcluster 6. Of the human-biased sub-
clusters for both of these genes, subcluster 0 and 1, key marker genes
that differentially identify subclusters 0 and 1 were RUNX2 and RUNX1,
respectively (Fig. 7b). In mouse at E13.5, these two genes show distinct
patterns of expression. Runx1 was biased toward the cartilage and
osteogenic regions of the upper palate and maxilla, while Runx2
expression was biased toward the osteogenic mesenchyme in the
mandible130. This suggests thatmesenchyme subcluster 1 is likely to be
derived from the upper palate. This is consistent with our genetic
findings above of EBF3 being a risk factor for orofacial clefting in
humans.

Discussion
Craniofacial malformations caused by genetic perturbations in cra-
niofacial development are one of the largest classes of human birth
defects; however, the gene expression patterns active in these tissues
and structures have until now been largely uncharacterized. Here we
have described the most comprehensive analysis to date of gene
expression from rare human embryonic craniofacial samples. We have
performed large-scale comparisons of gene expression from other
tissues across the body and developmental stages. In order to prior-
itize and identify driver genes and regulatory networks, we have sub-
sequently integrated these data with other types of functional
genomics data, including ChIP-seq, Hi-C, and single-cell RNA-Seq from
embryonic stages of CF development.

We demonstrated that the developing CF transcriptome is its own
distinct tissue by performing comparisons of our CF samples to
thousands of samples across dozens of tissues collected by the GTEx
consortium as well as developing heart and brain. The employment of
an unbiasedmeasure of specificity, the Gini index, has identifiedmany
genes that are expressed exclusively and most strongly in these novel
samples. Some craniofacial abnormalities are caused by defects in
genes that are widely transcribed across many tissues yet manifest as
relatively specific phenotypes. For example, mandibulofacial
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cluster in (a). Combined UMAPs were generated by subsetting matrices to only
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dysostosis in Treacher Collins syndrome is linked to mutations in
several ubiquitously expressed genes, including TCOF1 and compo-
nents of RNA Polymerase I, POLR1C and POLR1D. While such genes are
clearly important for normal craniofacial development, they likely
exert their effects at the post-transcriptional and/or translational
levels, making them difficult to interrogate with the data that we have
collected. However, transcriptomics is well suited to identify genes
with highly specific expression. These CF Gini genes were enriched for
genes known to be involved in CF disorders in humans and mice
(Fig. 2b), and included many genes that were either not known to be
expressed in CF development or not appreciated to have highly
restricted expression. By integration with our previously described
chromatin state segmentations121, we demonstrated that these speci-
fically expressed genes are systematically surrounded by craniofacial-
specific enhancers over distances of ~400 kb. These genes represent
excellent disease candidates and warrant further exploration by the
field (Supplementary Data 7).

Analysis of timeseries differential gene expression revealed
dynamic gene utilization that coincided with known morphological
changes throughout development. Our work identified two subsets of
dynamic genes that are enriched for craniofacial disease ontologies.
Their trajectories of expression peak during 4 to 4.5 post-conception
weeks (CS13-CS14) and again at 5.5 to 6 post-conception weeks (CS15-
CS17) (Fig. 4a). The fusing of major facial prominences is believed to
occur during this time period, the failure of which leads to CL/P. These
pairwise analyses are crucial for helping to understand how gene
expression changes over time; however, many genes that are impor-
tant for craniofacial development with steady expression across our
samples may be overlooked. A prominent example is MSX2 which has
robust expression in our data and is identified by the Gini index, but
does not rise to significance across the time series. To address this
issue, we employed coexpression analysis with a commonly used
approach, WGCNA. WGCNA has been demonstrated to identify bio-
logically relevant gene networks in a variety of contexts and allow for
more nuanced complex gene expression dynamics to be detected.

The WGCNA network we constructed has several modules sig-
nificantly enriched with genes involved in embryonic patterning, cell-
signaling, and cell–cell adhesion (Fig. 5a). More specifically, we found
two modules have enrichment for known craniofacial disease genes
and one of these, the black module, is enriched for CF Gini genes and
CFSE targeted genes. These findings prompted us to examine this
module more closely for candidate disease genes. In particular, genes
that are coexpressed with many other genes or potential “hubs” of
regulation have been shown to be critical for model organisms131,132.

Highly connected hub genes from coexpression analysis are also
likely to be depleted of variants in otherwise healthy humans, and,
thereby, excellent candidates for disease. We showed that genes with
mutational constraint in the humanpopulation are enriched in the hub
genes within our coexpression networks (Fig. 6a). However, it’s
important to note that not all identified hub genes are relevant within
the system133, so it is necessary to integrate other layers of data to
identify candidates genes of craniofacial disease specifically. We
addressed this by incorporating craniofacial-specific expression and
putative craniofacial-specific enhancer targeting and examined all
modules for these characteristics shared with the genes in the black
module. In particular, we observed that the light green and dark slate
blue modules contain many craniofacial-relevant hub genes, such as
those in the WNT family and PHOX2 genes. This allowed us to unbia-
sedly identify 539 genes, 239 of which are not known to be associated
with any human craniofacial disease (Supplementary Data 7). We
showed here this prioritized list was singularly enriched for de novo
mutations in patients with orofacial clefting, particularly those genes
observed in multiple patients. These findings strongly suggest others
in this list of genes and the craniofacial regulatory regions that sur-
round them are likely to be involved in orofacial clefting in humans.

Additional sequencing of expanded numbers of trios affected by
orofacial clefting will be necessary to validate this result.

While we did not observe mutations of EBF3 in the orofacial
clefting trio data, this gene was our top prioritized gene. To explore
this prediction, we examined the EBF3 locus chromatin architecture,
GWAS associations for orofacial clefting, phenotype data from hap-
loinsufficient individuals, and cell-specific expression in both human
and mouse. There are two GWAS variants associated with orofacial
clefting in linkage disequilibrium with enhancers at the locus122,123,134.
One is located in an intronic region of MGMT and therefore was pre-
dicted to affect that gene, however, MGMT is expressed across most
tissues (Gini score 0.23, Fig. 3d). We contend here that EBF3 is a better
candidate due to its conspicuous signals from multiple genomic data
types in our analysis. Indeed our analysis of additional patients with
EFB3 variants or copy number changes revealed a strong increase in
orofacial clefting incidence. When we compared gene expression of
both EBF2 and EBF3 between human and mouse craniofacial tissues
from similar stages of development, we observed considerable dif-
ferences in coexpression in two subtypes ofmesenchyme (Fig. 8c). We
observed the strongest expression of both genes in human mesench-
yme subcluster 1. This subcluster is likely to be from the upper palate
based on RUNX1 expression (Fig. 7a) and could explain how EBF3 is a
risk factor for cleft palate. Given the strong coexpression of these two
genes and similar chromatin state characteristics in human craniofacial
tissue, EBF2 may also be a risk factor for craniofacial disease that
remains to be uncovered.

Whilewehighlighted theexpressionofEBF2 andEBF3 in thesedata,
these data represent the first survey of cell-type level gene expression
during human craniofacial development. We find strong similarities in
overall numbers and proportions of cell types between humans and
mice at CS17 and E12.5, consistent with our findings in bulk gene
expression (Supplementary Fig. 2E). It will be interesting to determine if
there are species-specificdifferences in timingor typeof cells generated
during craniofacial development that could be linked to disease risk or
the substantial phenotypic differences in skull shapes. Further
exploration of gene expression patterns and chromatin accessibility of
individual cell types across multiple stages of craniofacial development
will be needed to better address this issue. It should also be noted that
we have focused much of our analysis on mesenchyme. Neural crest
cells are key contributors to themesenchyme of the craniofacial region
anddefects in neural crest function are linked to a variety of craniofacial
abnormalities. We show here at CS13 that the bulk expression pattern
reflects that of cultured CNCCs (Supplementary Fig. 6D), suggesting
that most of the mesenchyme at this stage is neural crest-derived.
However, mesoderm is also a contributor to mesenchyme. Clearly
defined mesoderm has been described in much earlier human
embryonic stages (CS7)135 and likely not present in substantial numbers
at the stages we have investigated to influence bulk gene expression
patterns. Further analysis of single-cell gene expression ranging from
CS7 through at least CS17would be needed to explore how this cell type
contributes to human craniofacial development.

In closing, by integrating multiple layers of functional genomics
data, including gene expression, chromatin states, chromatin struc-
ture, and population genetics, we have provided compelling evidence
for additional disease genes in human craniofacial development. We
provide all data in formats that are directly comparable to other large
consortia and can be downloaded fromGene Expression Omnibus.We
have updated our existing public track hubs on the UCSC Genome
Browser and the Cotney Lab website. For ease of data exploration, we
have provided the bulk and single-cell data in this study as interactive
shiny applications http://cotneyweb.cam.uchc.edu/craniofacial_
bulkrna/ and http://cotneyweb.cam.uchc.edu/craniofacial_cs17_e12_5/.
We hope these resources can be used by the field to better understand
human craniofacial development and aid clinicians in interpreting
genetic data from craniofacial abnormality patients.
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Methods
Human tissue samples
The useof human embryonic tissuewas reviewed and approved by the
Human Subjects Protection Programat UConnHealth (UCHC 710-2-13-
14-03). Human embryonic craniofacial tissues were collected via the
Joint MRC/Wellcome Trust Human Developmental Biology Resource
(HDBR) under-informed ethical consent with Research Tissue Bank
ethical approval (18/LO/0822 and 18/NE/0290, project 200225).
Donations of tissue to HDBR are made entirely voluntarily by women
undergoing termination of pregnancy. Donors are asked to give
explicit written consent for the fetal material to be collected, and only
after they have been counseled about the termination of their preg-
nancy. Further documentation of all policies and ethical approvals for
HDBR sample collection canbe found at https://www.hdbr.org/ethical-
approvals. Tissues were flash-frozen upon collection and stored at
−80 °C. Upon thawing, the samples were quickly inspected for intact-
ness of the general craniofacial prominences. They were further dis-
sected to exclude other tissues thatmight have been included initially,
such as eye spots or cardiac outflow tracts. The general regions that
were collected are indicated in yellow in Fig. 1a. All CS22 samples were
processed by the laboratory of Axel Visel and retrieved from Facebase
(Supplementary Data 1)34,41.

Mouse embryonic tissue samples
The use of mouse embryonic tissues was reviewed and approved by
the UConn Health Institutional Animal Care and Use Committee
(Protocol AP-2000061-0723). Eight-week-old wild-type male and
female C57BL6/J mice were obtained from Jackson Laboratory. Mice
were housed according to recommendations by Jackson Laboratory
with 12 h light:dark cycle beginning at 7 a.m. The ambient temperature
wasmaintained between 20 and 22 °C and humidity wasmaintained at
40–60%. Mice were given ad libitum access to food and water. Timed
matings were established by the identification of vaginal plugs the
morning following the housing of a single male with multiple female
mice. Embryos were harvested from pregnant mothers at mid-day
12 days after identification of the vaginal plug. The staging was con-
firmed by counting somites and comparing overall morphology to the
Theiler Staging Criteria136. All embryos from a given litter were com-
bined for individual biological replicates. Craniofacial prominences
were collected in a very similar fashion to human samples and subse-
quently prepared for snRNA-Seq.

CNCC differentiation
Dissociated (using 40um filter) H9 ESCs were plated at 30,000 cells
per cm2 in NCC media with 10 ul Rock Inhibitor and 10 uL of 3mM
stock CHIR99021. NCC Media: 48.5 mL DMEM/F12 (Gibco#10565-
018) 500 uL 50 U/mL penicillin, 500 uL 50 U/mL streptomycin, 1 mL
B27. Media was changed daily, the rock inhibitor was added on the
day following plating and not after. Differentiation is complete
by day 5.

RNA-seq
Frozen tissue samples were added to Qiazol (Qiagen) and subjected
to mechanical disruption using a motorized pestle. Homogenates
were then processed using themiRNeasy RNA extraction kit (Qiagen,
217004) with on-columnDNAse treatment (Qiagen, 79254) according
to the manufacturer’s protocol. RNA integrity was checked using
Agilent Tapestation 2200 with Agilent RNA analysis screentapes
(Agilent Genomics, 5067-5576). RNAwith RNA integrity number (RIN)
scores, preferably >8.0, were used in the preparation of RNA-seq
libraries. RNA-seq libraries were prepared from 100–200ng total
RNA using the TruSeq stranded mRNA kit (Illumina, RS-122-2101)
according to themanufacturer’s instructionswith themodification to
use Superscript III Reverse Transcriptase enzyme (Invitrogen,
18080044) during the first strand cDNA synthesis step. Completed

librarieswere checked forquality and average fragment size using the
Agilent Tapestation 2200 with D1000 screentapes (Agilent Geno-
mics, (5067-5582). Molar concentration was determined using the
NEBNext qPCR library quantification kit (NEB, E7630). Libraries were
pooled and diluted to 1.8 pm and sequenced on the NextSeq500
Illumina platform using 75 bp paired-end sequencing according to
themanufacturer’s recommendations. Librarieswere diluted to4 nM,
pooled, and denatured according to the instructions for Illumina
NextSeq 550/500. Libraries were sequenced on the NextSeq 500 or
550 with settings for single-index, paired-end sequencing with 75
cycles per end.

snRNA-seq
Samplesweremechanically disrupted into liquid suspensions, checked
for viability, and counted using Trypan blue staining. Nuclei were
isolated and quantified following the established protocol (10x
Genomics®). Samples were transferred to the Jackson Laboratories
(Farmington, CT) Single Cell Biology Laboratory (SCBL) for processing
which followed the Chromium Next GEM Single Cell Multiome ATAC +
Gene Expressionuser guide from 10xGenomics®. Sequencingwasdone
on an Illumina NovaSeq.

RNA-seq data processing
Human. Quality control was performed on RNA-seq reads using
FastQC (v.0.11.7) andMultiQC (v.1.1)137. Trimming for adapters, quality,
and length was performed using Trimmomatic (v.0.36)138. Trimmed
fastqs were aligned with Rail-RNA (v.0.2.4b)45 using human assembly
GRCh38/hg38. RSeQC (v.4.0.0)139 was used to calculate the read dis-
tribution, gene body coverage and transcript integrity number (TIN)
score140 (Fig. 1b and Supplementary Fig. 1A). The coverage bigWig files
output by Rail-RNA (v0.2.4b) were used as input for the generation of
counts tables by following the instructions and pipeline from recount2
(https://github.com/leekgroup/recount), where the comprehensive
Gencode v.25 annotation was used. The level 3 genes, as defined by
gencodewere excluded. The recount rse_gene objects for each sample
were combined into one rse_gene object and transformed with sca-
le_counts from recount (v.1.8.2). The PCA plots in Fig. 1b and Supple-
mentary Figs. 1, 2 were made using the prcomp function from the
built-in R (v3.5.3) stats package on a DESeq2 (v.1.26.0)141 rlog trans-
formation on the raw counts of the 18597most highly expressed genes
across all craniofacial samples generated in this study.

Mouse. The counts table for mouse data was collected and generated
by the pipeline fromRecount370 R package (v.1.8.0). 500 samples from
17 studies were gathered into a rse_gene object and scaled with
transform_counts function of Recount370 (v.1.8.0). Gencode v.M23
annotation was used. The integrated count’s table was further per-
formed batch correction with RUVs in RUVSeq142 R package (v.1.3.2) A
full listing of samples used in this analysis is provided in Supplemen-
tary Data 1. After generating scaled and batch-corrected counts table,
all pseudogenes and microRNA genes by Annotationdbi143 (v.1.60.0)
were discarded, thereby 26379 genes were used for downstream
analysis. For the PCA plot in Supplementary Fig. 2, we used pcaplot3d
function from pcaExplorer144 package (v.2.24.0) and the plotly func-
tion from the plotly package (v. 4.10.1).

Human andmouse craniofacial data comparison. Trimmed fastqs of
human craniofacial data (CS13–CS17) were aligned and annotated on
GRCh38/Gencode v.26 with Monorail pipeline (v20220219) (https://
github.com/langmead-lab/monorail-external) to build rse object in
recount370. Mouse facial data were from ENCODE (GSE37909,
GSE57230), collected by the recount370 database (compatible SRA ID:
SRP013027 and SRP013703). Each counts table was further performed
with scaling and batch correction, respectively. To combine human
and mice data, only 1:1 orthologs between hg38 and mm10 were used.
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Thereby 15567 genes were used for every downstream analysis for
human and mice craniofacial comparison, in log2-transformed values
with offset 1.

snRNA-seq data processing
Human raw fastqs were aligned to Gencode37 using CellRanger (v6.1.2)
and gene counts per cell were imported into Seurat145 (v3.2.0). Mouse
raw fastqs were aligned to mm10 genome using CellRanger and gene
counts per cell were imported into R. Each mouse mm10 counts table
was converted to human Gencode37 orthologs using a 1:1 orthology
table. Mouse and Human genes with no single ortholog were excluded
from our analyses. Seurat145 (v.3.2.0) was used for filtering, merging of
samples, scaling, normalization, dimensionality reduction (UMAP), and
clustering. Clusters were functionally annotated using GO enrichment
analysis in clusterProfiler146 (v.3.14.3) frommarker genes of each cluster.
Enrichment of the WGCNA module hub genes per cell type (Fig. 7b, c)
were calculated using Seurat145 function AddModuleScore (options
bins = 1, control = 1000, seed= 1, search =TRUE). Coexpression UMAPs
were calculated using FeaturePlot with blend =TRUE and order=TRUE.
Detailed scripts of analyses can be found at our github (https://github.
com/cotneylab/Embryonic_Gene_Expression_and_Chromatin_
Dynamics/tree/master/Craniofacial_Transcriptomics).

GTEx analysis
The rse_gene R data object, or counts table of all GTEx tissues was
retrieved from the recount2 database (https://jhubiostatistics.
shinyapps.io/recount/). The GTEx counts table was generated using
the sameRail-RNA and recount2 pipeline thatwas used to generate the
count tables for our embryonic craniofacial data which is described
above. The GTEx dataset contained 9662 bulk RNA-seq samples which
were combined with 24 embryonic heart samples39, five fetal cortical
plate samples47, and 12 embryonic craniofacial samples. The metadata
for GTEx is provided in a link under the phenotype column from the
recount2 database, and the tissue assignments located under the col-
umnnamed smtswasused, resulting in a total of 34 unique tissues. The
counts were transformed using the scale_counts function from the
recount (v.1.8.2) R package.

The plots in Fig. 1d were analyzed using a down-sampled version
of GTEx, where twelve random samples from each tissue were chosen.
The counts matrix was filtered for lowly expressed genes using row-
Means >50. A transformation was performed using vst function from
DESeq2141 (v.1.26.0). PCAplot wasmade for the top 5000most variable
genes using the prcomp function.

The tSNE plot in Supplementary Fig. 1D was made using GTEX,
embryonic heart, fetal brain, and craniofacial samples counts table
filtered for lowly expressed genes. The filtered counts matrix was
transformed by log10with a pseudo count of 1 added to all values. The
transpose of the log10 transformed matrix was then converted to a
distance matrix using the dist function in R. This distance matrix was
used as input for the tSNE model generated by using the Rtsne func-
tion from the R package Rtsne (v.0.15). The parameters used in Rtsne
were the following: perplexity = 100, max_iter = 1000, theta = 0.5,
dims = 2.

For qualitative signal comparisons across tissues in Fig. 1c, the
UCSC genome browser was used to load the GTEx RNA-Seq Signal
track hub. Expression signals from 30 samples of each tissue type
indicated were randomly selected. BigWigs generated by the Rail-RNA
pipeline above for craniofacial samples were visualized alongside
these tracks at the PAX7 gene locus.

Tissue-specificity of gene expression (GINI)
A total of 34 tissues, 31 from GTEx, and embryonic heart, craniofacial,
and fetal brain was used to calculate the tissue-specificity. The Gini
Index for each gene was calculated using the Gini function from R
library Ineq (v0.2-13) on the average counts across all samples per

tissue. The discrete function used by Ineq:

G=
2
Pn

i= 1
i × xi

n
Pn

i= 1
xi

� n + 1
n

Where x is the raw average count of the gene for tissue, i indexed such
that x_i ≤ x_(i + 1), and n is the number of tissues surveyed.

A gene was given a tissue assignment based on the tissue with the
maximum average count across all tissues for that gene. To create the
heatmap of most restricted genes, the distance matrix of one minus
the transpose of the Pearson correlation of the average expression per
tissue for all genes with a Gini score of 0.7 and above was clustered
using hclust with method = “complete”. For visualization purposes, in
the heatmap of Fig. 2a, sex tissues, including breast, testis, vagina,
cervix uteri, fallopian tube, prostate, ovary, and uterus, were excluded
but are included in Supplementary Data 1. Testis are known to have a
large amount of upregulated genes, thus likely contributing to the
large amount of Gini genes assigned to it36. The average expression per
tissuematrixwasplotted using a pheatmapwith scaled rowsorganized
by the dendrogram calculated from hclust. Disease enrichment ana-
lysis was done using the R package disgenet2r147 (v0.99.2) dis-
ease_enrichment function on genes 0.7 and above. The fold
enrichment score was calculated by dividing the Ratio by the BgRatio
columns and taking the log base 2.

Craniofacial-specific enhancer effects on gene expression
Assignment of enhancers to genes was made using GREAT (v.4.0.4) on
craniofacial-specific enhancers (CFSE) hg19 with the whole genome as
background and using the single nearest gene association rule setting
to 1MB. The line graph in Fig. 3a of the enhancers versus expression
used the average expression per tissue type from GTEx and our heart
enhancer data using geom_smooth from ggplot2 (v3.3.1) with the
method set to “gam”.

Distance to craniofacial-specific enhancers analysis
For Fig. 3b, we used Gencode annotation v25 to get the location of TSS
for all genes. A Gini gene was defined as having ≥0.7 Gini score.
Bedtools148 (v.2.28.0) closest was used to get the distance between the
closestGini TSS to CFSE. A backgrounddistributionwas established by
picking the distance to a random set of 239 Gini genes among all
tissues (n = 33), excluding those assigned to CF at 1000 permutations.
The interpolation lines were plotted using geom_smooth with for-
mula=y~log(x). To get the median closest gene-enhancer for our data,
we only considered enhancer pairs within 400 kb distance as that was
significant over random.

Supplementary Fig. 3A, B use the ref. 149 data. We plotted a his-
togram for their 664 high-confidence enhancer gene pairs to compare
directly to Fig. 3b. Supplementary Fig. 3B is a violin plot of these same
664 high-confidence enhancer gene pairs and our CF Gini- CFSE pairs
that were ≤1Mb (n = 3437).

Differential expression
The scaled rse_gene recount object including NCC, CS13, CS14, CS15,
CS17, and CS22 samples were made into a DESeq2141 (v.1.22.2) object.
Low gene counts were filtered by removing all genes whose mean of
counts across all samples was less than 50. This left a total of 18,597
genes for downstream analysis. Batch effects were mitigated by using
the sva (v.3.30.1) package inR. Included theCS13, CS14, CS15,CS17, and
CS22 for the sva calculation, which resulted in four surrogate variables.
Pairwise differential analysis between CS13, CS14, CS15, and CS17 were
performed with DESeq2141, including the surrogate variables. Differ-
entially expressed genes were plotted in the heatmap of Fig. 4a con-
sidered if they had a Benjamini–Hochberg-adjusted p value of less than
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0.05 and a log2 fold change of greater than absolute value of 1. The
PCA plot in Supplementary Fig. 6A was made as described above,
except on just the 3677 differentially expressed genes. The R package
Venerable (v.3.1.0.9) was used to make Supplementary Fig. 6B.

The heatmap in Fig. 4a was made using the R package pheatmap
(v.1.0.12) on the rlog transformation of the raw counts. The rlog counts
distance matrix of one minus the transpose of the Kendall correlation
was clustered using hclust withmethod = “complete”. The counts were
scaled by setting the pheatmap scale option to “row”. The resulting
hierarchical clustering was used in the pheatmap option cluster_rows
to organize the gene rows and the hierarchical clustering of the sample
columns was from pheatmap default options.

ClusterProfiler146 (v3.12.0)wasused toobtain the gene anddisease
ontology enrichments from the dendrogram clusters (Fig. 4b and
Supplementary Fig. 4E) using the function enrichGO with standard
options. The fold enrichment score was calculated by dividing the
Ratio by the BgRatio columns and taking the log base 2.

In Fig. 4c, the disease ontologies were obtained for the light green
(cluster 2) differentially expressed genes using enrichDGN. The net-
work plot was made using cnetplot from enrichplot (v.1.6.1) using log2
fold change between CS13 and CS17 from DESeq2141.

The heatmap in Supplementary Fig. 6D was made as described
above, utilizing six samples from GEO accession GSE70751, SRX
numbers SRR2096446 through SRR2096451 linked to (ref. 42). The
fastqs were processed using the same Rail-RNA/recount pipeline as all
other data in this paper.

Gene class analysis of differentially expressed genes
Three lists were used to represent most transcription factors57

(n = 1639), RNA-binding proteins (n = 415), and genes annotating the
GO biological process cell–cell signaling, GO:0007267 (n = 1364).
Trajectory plots in Supplementary Fig. 7A, B were made using
geom_smooth from ggplot2 (v3.3.1). The quantitative locations of the
x-axis depicting timepoints were determined by taking the median
x-value for each timepoint from the PCA plot of Fig. 1b. Enrichment
over background (Supplementary Fig. 7C) was determined by ran-
domly selecting 3677 genes from the 18,597 used in the DESeq2141

analysis 1000 times.

ChIP-seq data integration
Across differentially expressed genes. For Supplementary Fig. 8:
Imputed chromatin signals for each histone mark and DNAse hyper-
sensitivity were extracted in a 5 kb window surrounding the tran-
scription start sites of genes from each indicated cluster using
computeMatrix reference-point command in deepTools150 (v.3.5.1).
Histograms and heatmaps were generated using the output of com-
puteMatrix in plotHeatmap command of deepTools.

Differential H3k27ac signal. For Supplementary Fig. 9A: H3K27ac
counts at each craniofacial enhancer region were generated from
bigWig files of imputed H3K27ac −log10(p value) signals using
rtracklayer151 (v.3.17) and GenomicRanges152 in R (v3.5.3) based on an
original read length of 75 bp. Heatmap constructed from H3K27ac
counts filtered for those determined to be significantly different
between CS13 and CS17 using DESeq2 for the following cutoffs:
Benjamini–Hochberg p adjusted <0.01 and a log2 fold change > abs(1).
The counts distancematrix of oneminus the transpose of the Pearson
correlation was clustered using hclust with method = “complete”. The
dendrogramwas cut into twoclusters and theH3K27ac segments from
each cluster were intersected with genome-wide TSS using bedtools148

(v.2.28.0) The permutation test to establish a background of inter-
secting genes was done by randomly selecting segments from the
genome using bedtools148 shufflewith the -chromsetting. The genes of
these TSS’s were intersected with the differentially expressed genes
from Fig. 4.

Weighted gene coexpression network analysis
We generated coexpression networks using the WGCNA106 R package
(v1.69-80) based on recommendations put forth by the Horvath group
(https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/
Rpackages/WGCNA/).

Network construction. The rse_gene object from the recount pipeline
was combined for all samples resulting in a starting matrix of all genes
(Gencode v.25) by 17 samples, including three replicates of CNCC,
CS13, CS14, CS15, and CS17 and two replicates of CS22, the raw counts
were scaled by using scale_counts from recount (v1.8.2). Lowly
expressed geneswerefiltered by excluding all geneswhose sumacross
all samples were lower than 100. SVAwas used to transform the counts
to account for batch effects, four surrogate variables were detected.
All resulting negative counts were set to 0. The counts’ matrix was
further transformed by log2 with a pseudo count of 1.

A soft-thresholding power of 18 was chosen assuming a signed
network and based on recommendations for less than 20 samples. The
modules were detected from the network from the cutreeDynamic
function from the WGCNA package with the following parameters,
minClusterSize = 100, deepSplit = 2. Detected modules were merged
based on their eigengene correlation. To do this, a dendrogram of the
module eigengenes was generated and a threshold value of 0.18 was
chosen as input for the function mergeCloseModules. The resulting
network contained 29 modules. The intra-modular connectivity of
each genewas calculated using the intramodularConnectivity function
from the WGCNA library, which was the metric used to determine the
hub and non-hub designation.

Plotting of modules. A multidimensional scaling of the module
eigenvectors output from WGCNA106 was generated to plot the mod-
ules in 2D space using the function cmdscale from the stats (v.3.6.1) R
package. A Pearson correlation of the module eigenvectors was cal-
culated for the edges. Positive correlations of 0.5 and greater were
included. Modules were plotted that fulfilled the criteria of having
significant adjusted p values (<0.05) from the GO analysis, or sig-
nificant (Benjamini–Hochberg) adjusted permutation p values (<0.05)
in at least two of the gene lists from the Tissue-Specific, gnomAD, or
DisGeNET categories (Fig. 5c). Themodule eigenvectors of each of the
17 modules were plotted using the geom_smooth function with
method = “loess”. The quantitative locations of the x-axis depicting
timepoints were determined by taking the median x-value for each
timepoint from the PCA plot of Fig. 1B. The confidence intervals were
removed for ease of visualization.

Fig. 6c was made using the open-source software
Cytoscape153 (v.3.8.2).

Gene ontology and functional enrichments. RDAVIDWebService154

(v1.22.0) was used to obtain gene ontology enrichment of the genes
within each of the 29 WGCNA106 modules. The gene background list
used was all the genes input into the WGCNA106. The module enrich-
ments of gene lists were determined by a permutation test. The 26,626
genes were randomly scrambled among the same number and size of
modules as the original network and overlapped with the respective
gene lists. This was repeated for 1000 iterations to calculate a per-
mutation p-value adjusted by Benjamini–Hochberg approach.

Protein–protein interaction analysis. To generate the ppi histogram
(Fig. 6a), 100 randomized versions of the WGCNA network were
made. This was done by randomly assigning the 26,626 genes to 29
modules of equal gene sizes to the original network using the R
function sample. The ppi enrichment of up to 500 randomly chosen
genes for each module of each of the 100 randomized versions was
then determined using the STRINGdb155 (v1.24.0) package. Up to
500 genes were used due to constraints from the STRINGdb155
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package. The ppi database was loaded by using STRINGdb$new
with version = ”10” and score_threshold = 0.4. For each iteration,
the output p value of the STRINGdb call get_ppi_enrichment was
adjusted using the Bonferroni method. The number ofmodules that
met the adjusted p value cut off of 0.05 was counted for each
iteration to produce frequency values.

Hub gene LOEUF enrichment. For the LOEUF enrichment analysis
among the hub vs non-hub genes (Fig. 6b), the non-hub genes were
randomly sampled using the R function sample. The number of non-
hub genes sampled were the same number of total hub genes within
the network, the 10% with the highest connectivity of 26,626 genes or
2663 from the non-hub gene list. This process was iterated 1000 times
to get a mean and standard deviation for each LOEUF decile. The
LOEUF score and decile designation for each gene is freely available
through gnomAD v2.1.1

Prioritized gene list. The following parameters were used to generate
SupplementaryData 7. Tobe considered forprioritization, a genemust
have a LOEUF decile score of ≤3. It must then also meet at least two
additional criteria: CF Gini gene, CFSE targeted, or WGCNA hub gene.
Overlaps of genes with de novo mutations reported by Bishop et al.126

were calculated with GeneOverlaps in R (version 1.34.0).

Analysis of whole genomes from trios with orofacial clefts
This work was approved by the institutional review board of Emory
University (protocol IRB00098814). Whole genome sequencing was
performed at the Center for Inherited Disease Research at Johns
Hopkins University (Baltimore, MD) and the Broad Institute as
described previously in refs. 126,127. Sequence and phenotype data
were available from the Database of Genotypes and Phenotypes
(dbGaP) under study accession phs002220.v1.p1, phs001168.v2.p2,
phs001420.v1.p1, and phs000094.v1.p1. De novo variants were iden-
tified as described previously in ref. 126. Annotation of high-
confidence DNMs was completed with ANNOVAR (version 201707).
Overlaps of genes with de novo mutations reported by Bishop
et al.126 were calculated with GeneOverlaps in R (version 1.34.0).

Statistical analysis of patients with EBF3 sequence and copy
number variants
Human subjects research. This work was approved by the institu-
tional review board of Baylor College of Medicine (BCM protocol H-
47546) and was conducted in accordance with the ethical standards of
this institution’s committee on human research and international
standards.

The Baylor Genetics clinical database is a private database that
contains the results of exome sequencing studies performed on a
clinical basis. Coded information from this database was accessed and
reported here in accordance with BCM protocol H-47546. Informed
consent was not obtained from individuals or families since the
research team had access only to data from which all identifying
information was replaced with a number.

The DECIPHER database is an online publicly accessible database
(https://www.deciphergenomics.org/) used by the clinical community
to share and compare phenotypic and genotypic data. The DECIPHER
database contains data from patients who have given consent for
broad data-sharing. No additional consent was obtained since only
aggregate data is being reported in this manuscript.

Statistics. For comparisons of the incidence of orofacial cleft between
populations, we performed two-tailed Fisher’s exact tests using a 2 × 2
contingency table calculator available through GraphPad QuickCalcs
(https://www.graphpad.com/quickcalcs/contingency1/). To calculate
the 95% confidence intervals of orofacial clefting in various popula-
tions, we used the binomial “exact” calculator available through the

UCSF Clinical and Translational Science Institute (http://www.sample-
size.net/confidence-interval-proportion/).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The craniofacial bulk and single-cell RNA-seq data generated in this
study have been deposited in the Gene Expression Omnibus (GEO)
database under accession code GSE197513 and Database of Geno-
types and Phenotypes (dbGAP) under accession code phs002008.
The raw data were available under restricted access for human
genomics data privacy concerns, access can be obtained by appli-
cation to dbGap. Sequence and phenotype data for orofacial cleft-
ing whole genome sequencing is available from the (dbGaP) under
study accessions phs002220.v1.p1, phs001168.v2.p2, phs001420.
v1.p1, and phs000094.v1.p1

The single nuclei and bulk RNA-Seq data can be interactively
explored at http://cotneyweb.cam.uchc.edu/craniofacial_cs17_e12_5/ and
http://cotneyweb.cam.uchc.edu/craniofacial_bulkrna/ respectively.

Mouse craniofacial gene expression generated by ENCODE were
retrieved from GEO through accessions GSE37909 and GSE57230. A
full listing of all data utilized from all 500 mouse samples retrieved
from Recount3 is available in Supplementary Data 1.

Human CNCC RNA-Seq data were obtained from GEO accession
GSE70751, SRX numbers SRR2096446 through SRR2096451.

Code availability
All original code has been deposited in theCotney LabGitHub (https://
github.com/cotneylab/Embryonic_Gene_Expression_and_Chromatin_
Dynamics/tree/master/Craniofacial_Transcriptomics) and is publicly
available.
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