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The reaction-diffusion basis of animated
patterns in eukaryotic flagella

James F. Cass 1 & Hermes Bloomfield-Gadêlha 1

The flagellar beat of bull spermatozoa and C. Reinhardtii are modelled by a
minimal, geometrically exact, reaction-diffusion system. Spatio-temporal ani-
mated patterns describe flagellar waves, analogous to chemical-patterns from
classical reaction-diffusion systems, with sliding-controlled molecular motor
reaction-kinetics. The reaction-diffusion system is derived from first principles
as a consequence of the high-internal dissipation by the flagellum relative to
the external hydrodynamic dissipation. Quantitative comparison with non-
linear, large-amplitude simulations shows that animated reaction-diffusion
patterns account for the experimental beating of both bull sperm and C.
Reinhardtii. Our results suggest that a unifiedmechanismmay exist formotors
controlled by sliding, without requiring curvature-sensing, and uninfluenced
by hydrodynamics. High-internal dissipation instigates autonomous travelling
waves independently of the external fluid, enabling progressive swimming,
otherwise not possible, in low viscosity environments, potentially critical for
external fertilizers and aquaticmicroorganisms. The reaction-diffusion system
may prove a powerful tool for studying pattern formation of movement on
animated structures.

As a paradigm for studying pattern-formation in nature, Reaction-
Diffusion (RD) models have proliferated across the sciences since
Turing’s seminal paper1. Motivated by animal markings, he described a
diffusion-driven instability of a spatially homogeneous state of two
morphogens, that generates heterogeneous equlibria, such as spots or
stripe patterns (Fig. 1a). Non-equilibrium phenomena, such as stable
oscillations, also feature inmanyRDmodelswith a persistent source of
energy; for example, the Belousov-Zabotinsky (BZ) reaction2, or
predator-prey systems3, among other non-morphogenetic reaction
systems4,5. Oscillations can persist if a smaller part of the system is
isolated without diffusion. Coupling the isolated parts, via diffusion,
can entrain oscillators with non-trivial phase differences. This drives,
for example, intricate spiral waving patterns in the BZ reactions6.
However, despite the universality of RD systems whilst describing a
bewildering array of patterns across science, it is still unclear whether
RD theory can be expanded to animated non-equilibrium patterns in
nature— spatio-temporal patterning of self-organised, shape-shifting

structures; the archetype of which is the spontaneous beating of
eukaryotic cilia and flagella, depicted in Fig. 1b7.

Eukaryotic cilia and flagella are slender cellular appendages that
spontaneously generate propagating waves of flagellar curvature8

(Fig. 1b). This time-irreversible patterning of the flagellum is crucial to
evade Purcell’s scallop theorem and enable microswimmers, such as
mammalian spermatozoa to swim, or cilia in the respiratory tract to
generate flows that pumpmucus9–11. The internal core structure of the
flagellum, the axoneme, consists of a central pair of microtubule
doublets with an outer cylindrical structure of nine doublets12, known
as the 9 + 2 structure (see Fig. 2a). Dynein motor proteins, regularly
anchored along the doublets, exert force couples by cross-linking
between neighbouring filament pairs, forcing the sliding of doublets
relative to each other—forming the basis of the so-called sliding con-
trol hypothesis7, as discussed below. Bending of the flagellum occurs
when activity of the dyneins is coupled with sliding constraints7, con-
verting relative sliding to bending. Stable periodic wave propagation,
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however, requires collective activity of the dyneins and the underlying
mechanism of self-organisation remains an open area of research.

In 1975, Brokaw suggested in his seminal work that coupled “local
shear oscillators”, i.e., small sections of a flagellum that undergo
oscillatory shear deformation, might be sufficient to explain global
flagellar bending waves13, if “spatial phase differences could be self-
organised” that would induce propagation14. Whether such a
mechanism could exist has remained an open question [ibid]. Here, we
show that animated beating patterns in eukaryotic flagella (Fig. 1b) can
be understood physically in the manner Brokaw envisioned, and are
congruent with patterns displaying phase differences from classical
oscillatory reaction-diffusion systems, which typically model bio-
chemical patterning3, rather than animated mechanical shaping15. In
contrast to the interpretation of chemical species freely reacting and
diffusing in space, ourmodel system describes the reaction-kinetics of
molecular motors that are anchored in place on the filaments, but the
shear deformation that they generate from sliding deformations can
“diffuse” away via the bending elasticity of the axoneme that couples
neighbouring elements (Fig. 2).

Since fitting complex mathematical models with noisy spatio-
temporal data is challenging, the linear regime of small amplitudes has
been exploited until now to obtain flagellar waveforms that can be
matched via analytical solutions in three seminal papers16–18. In this
approach, the chemical reactions that power the dynein kinetics are
approximated by a geometrical response coefficient, rather than
explicitly modelled, leaving just a single linear “sperm equation” to be
solved16. The linear approximation was crucial to show how self-
organised flagellar bendingwaves could arise via a dynamic instability,
and the influence of boundary conditions on the resulting beating
patterns19,20. Our novel contribution is to show that beyond the linear

regime, where realistic large amplitude flagellar beat patterns are
attained, the dominant balance of moments shifts towards oscillatory
reaction-diffusion dynamics, with wide-ranging consequences, sug-
gesting that extrapolation of conclusions based on scaled-up linear
solutions (since the wave amplitude is not determined) can be pro-
blematic. We derive from first principles the reaction-diffusion theory
and show quantitatively that the resulting animated patterns can
accurately mimic the large amplitude swimming gaits of two eukar-
yotic microorganisms (See Supplementary Videos 1 and 2), in contrast
to previous linearised models17.

The reaction-kinetics of dynein molecular motors and their
response to external forces is the focus of intense debate14. Mechanical
feedback is a possible regulatory mechanism of dynein attachment
and detachment that localises activity to either side of the axoneme
(Fig. 2)21, driving shear and consequently bending. Static images from
cryo-electron tomography show dynein in different conformations in
different regions of the sea urchin spermaxoneme, consistentwith the
switching hypothesis21, while not definitive. Feedback has been hypo-
thesised to come from local curvature22–24, relative shearing/
sliding16,20,25–27 or transverse forces to the doublets28–30 (see refs. 14,31
for reviews). A separate line of enquiry considers the steady action of
dynein that generates cilia-like oscillations via a flutter instability32,33

without requiring dynamical switching of dyneins. Obtaining solutions
for these systems is challenging due to the need of balancing non-local
moments arising from fluid-structure interactions with the molecular-
motor activity26,27; referred to here as chemo-ElastoHydrodynamic
(chemoEH) flagellar models. This difficulty, along with a high-
dimensional parameter space, may be why the quantity of modelling
papers far outweighs the number of quantitative comparisons of
waveform predictions with experiments—to date, only two studies

Fig. 1 | Pattern formation in reaction-diffusion systems. a Generic reaction-
diffusion patterns generated in a web browser based simulator (apps.amanda-
ghassaei.com/gpu-io/examples/reaction-diffusion). The striped central region
resembles the stripes of the zebra (image obtained from Pixabay, 2023). Such
animal markings motivated Turing when deriving his model system1. b Animated
spatio-temporal patterns in eukaryotic flagella. The beating patterns of human,

bovine and sea urchin (S. purpuratus) spermatozoa are shown (figure adaptedwith
permission47, Copyright 2020 Royal Society, 1371128-1) along with the breaststroke
of the two flagella (cis and trans) of the green alga Chlamydomonas reinhardtii
(figure adapted from ref. 78, CC BY 3.0). Kymographs show spatio-temporal stripe
patterns of flagellar curvature that we show can be modelled with reaction-
diffusion dynamics.
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have directly contrasted the sliding control hypothesis against wave-
form data16,17.

The specific molecular motor control mechanism we will
employ26, known as load-dependent detachment, belongs to the
sliding-controlled class of models16,19,20. The detachment rate of motors
is modelled as depending exponentially on the load that they feel in
the direction of sliding motion, which has been observed experimen-
tally for kinesin34. With two teams of antagonistic motors engaged in a
tug-of-war (Fig. 2)25,35, a positive feedback loop is possible whereby if
one team gains the upper hand, the load permotor decreases allowing
moremotors to attach. For the losing team, the load increases leading
to more detachment. In an influential paper16, a linearised model of
sliding-control (the single equation already described)was shown to fit
nonlinear beating patterns of bull sperm with remarkable accuracy.
Later, however, it was shown that the sliding-controlled model could
not account for the beating of C. reinhardtii17. In contrast, a dynamic
curvature control response (i.e., proportional to the time derivative of
curvature) was able to fit the data [ibid]. Current evidence suggests,
then, that there may be different mechanisms by which the beat is
generated in the approximately 50μm flagella of bull sperm compared
to the 10μm cilia of C. reinhardtii17. On the other hand, while the load-
dependent detachment mechanism gives sliding control a plausible
molecular basis, no such mechanism of curvature sensing by dynein
has been proposed, nor observed to date17,18,36.

Until now, experimental fitting has not been attempted with
solutions of a model system with specific molecular cross-bridge
kinetics, and not restricted to the small-amplitude linear regime16–18, an
important test of the validity of these earlier results. To do so requires
comparison with numerical simulations, since analytical solutions are
generally not available for large amplitude motion. Oriola et al.26

considered the limit of small curvature to recast the full chemoEH
system into a geometrically linear, reaction-hyperdiffusion system -
where “hyper” here is linked with the fact that fourth-order space
derivatives appear instead of second-order for diffusion problems37 (A
further example of a reaction-hyperdiffusion system is given in ref. 30,
in the context of the “geometric clutch”). Ref. 26proposed a tug-of-war
dynein kinetics of the flagellum that led to spontaneous and nonlinear
saturation of unstable modes in simulations without the need of ad-
hoc nonlinearities. This prediction was subsequently confirmed via
further numerical simulations of the full chemoEH system27. We go
further than these studies by exploring simulations of a freely-
swimming spermatozoon, and we derive the simpler RD model
which makes comparing simulations with experiments tractable.

Mathematical models of flagellar beating have tended to derive
the governing equations using a sliding-filament mechanism that
considers the equal balance of active, elastic, and viscous (hydro-
dynamic) moments along the flagellum22,24,38. Murase, in contrast,
studied an excitable dynein model assuming zero external viscosity,
that propagated waves along the flagellumwhen periodically forced at
the base39,40. Brokaw found similarly that the wavelength of simulated
flagellar oscillations could be stabilised with enough internal dissipa-
tion relative to external viscosity23,41. The physical implication of a high
internal/external viscosity ratio can be understood by considering the
different approximations that are commonly used for the hydro-
dynamic force on the flagellum, for example: resistive force theory
(RFT)42 (used in refs. 26,30,43) considers only the force contribution
from a locally straight section around each point of arclength, whereas
slender-body theory (used in ref. 27) includes interactions with more
distant parts of the flagellum. In either case, intuitively, hydrodynamic
influence is felt from beyond the directly neighbouring shearable
elements. This is distinct from the nearest-neighbour coupling derived
from bending elasticity that remains upon neglecting external
viscosity.

The no external viscosity assumptionwas used previously only for
ease of numerical computation39,40. Recent experimental studies,

however, provide physical, rather than computational, reasons to
consider this approximation in greater detail, suggesting that the
contribution of external viscous moments to the overall balance may
indeed be small44,45. This is counter-intuitive; after all the flagellum
must do appreciablework on the fluid in order to swim, and the energy
generated by the motors must be dissipated somewhere to sustain
stable oscillations. Accordingly, internal dissipationof energy hasbeen
calculated to be significantly larger than external dissipation in
experiments with beating tethered mouse sperm45, and Chlamydo-
monas reinhardtii44. Similarly, it was recently argued that external
viscous forces must be small compared to internal elastic forces, also
for C. reinhardtii, in a wide range of biochemical conditions18. There
could be varied sources of internal dissipation, and previous simula-
tion studies have included such terms in the governing equations23,24,30.
Nandagiri et al.45 directly measured, however, that a significant pro-
portion of the energy generated by the motors is dissipated within the
workings of the molecular motors themselves. We capitalise on these
findings toderive theRDmodel as the small external, andhigh internal,
dissipation limit observed empirically for the axoneme44,45. We show
howdissipation of energy over the beating cycle only occurswithin the
molecularmotors as they cycle through conformational changes25, and
other potential sources of dissipation from the passive axoneme, such
as microtubule bending friction, may be neglected23,30,39,44. Little is
known when internal dissipation dominates self-organised beating at
the geometrical nonlinear level, in which casewe demonstrate that the
system may be described with chemical reactions and elastic
interactions only.

In this paper, we derive a geometrically nonlinear reaction-
diffusion system for animated patterning in eukaryotic flagella that is
valid far from the quiescent equilibrium state. We show that the
chemo-elastic RD system is a natural consequence of the high internal
dissipation limit of the full chemo-elastohydrodynamic (chemoEH)
system, which embodies the fluid-structure interaction of a freely
swimming microswimmer consisting of a cell body with attached fla-
gellum, driven by tug-of-war reaction-kinetics. As such, the RD theory
can be derived without invoking linearisations of the nonlinear
dynamics and/or its geometry. Self-organised propagating waves are a
feature of the RD system. We demonstrate with numerical simulations
(Python code provided46) the equivalence of the beating generated by
the reaction-diffusion system and the beat of the free-swimmer, in the
region where the RD approximation is valid. For the first time, we fit a
fully nonlinear, large-amplitude and self-organised cross-bridge
kinetics model of the flagellar beat with experimental data from the
literature. Thereafter we are able to make a comparison beyond the
emergence of the flagellar beat, of the self-organised swimming tra-
jectory. This leads to conclusions divergent from small amplitude
theory16,17,20. Most notably, the RD theory is capable of reproducing
accurately the characteristic beating patterns of evolutionarily distant
eukaryotic species: Chlamydomonas reinhardtii (wild-type and mbo2-
mutant)17 and bull spermatozoa47. These differ markedly in the length
of their flagella/cilia, their axonemal structure, flagellar ultrastructure,
cell morphology, and function.

Results
In the Supplementary Information (SI), we derive the model system of
equations for a free-swimming spermatozoon, referred to as the
chemo-ElastoHydrodynamic (chemoEH) flagellar model. From this
system, we derive our flagellar Reaction-Diffusion (RD) model as the
limit in which viscous moments are small compared with passive
shearing moments. In this section and the following we aim for phy-
sical understanding of the RD model and its solutions.

Reaction-diffusion model of the flagellar beat
In order to model two-dimensional beating of a flagellum, we first
project the three-dimensional axonemeonto the plane of bending; see
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Fig. 2a. Each small element of the model flagellum (Fig. 2b) consists of
two filaments which are separated at a fixed distance a and connected
by active and passive cross-linking elements20. When bound, active
molecular motors on either side exert oppositely directed tangential
forces F + and F −, which cause the element to deform in shear, quan-
tified by the sliding displacement Δ. Blue/green motors, correspond-
ing to forces F −/F +, are responsible for positive/negative shear
deformations (since dynein motors walk towards the basal end of the
flagellum, assumed left in Fig. 2b). The loadpermotor ismodelled by a
linear force-velocity relationship F ± = f0(1 ±Δt/v0), where f0 is the force
at stall (Δt =0) and v0 is the velocity when the motors produce no
force. The dyneins are thus force generators with internal damping
elements associated with a constant drag coefficient ξm = f0/v025.

Rather than a single pair of motors per element as depicted in
Fig. 2b, we consider a constant density ρ and the proportions of
motors on the plus and minus filaments n+ and n− which are in the
bound state. The tangentialmotor force per unit length exerted on the
plus filament is then a tug-of-war given by f m = ρ(n+F − − n−F +). Nexin
links resist shearing elastically and are modelled by a force per unit
length f s = −KΔ where K is a Hookean spring constant. The total tan-
gential force per unit length f t = f m + f s on the plus filament fromcross-
linking elements is

f t =ρf 0 ~n� �n
Δt

v0

� �
� KΔ: ð1Þ

where ~n =n� � n+ and �n =n� +n+ . The dynamics of the bound motor
populations n+ and n− are given as in ref. 26 by the two-state system
n±
t =π ± � ϵ± , where π± and ϵ± represent attachment and detachment

rates, respectively (Fig. 2b). More specifically, the motor populations
evolve according to the rate equations

n±
t =π0ð1� n± Þ � ϵ0n

± exp
f 0
f c

1 ±
Δt

v0

� �� �
: ð2Þ

While attachment π± =π0(1− n±) is simply related with the proportion
of unbound motors, the detachment rate ϵ± = ϵ±(Δt) implements a
sliding-controlled feedback mechanism; the base rate ϵ0 is modulated
exponentially by the ratio of the motor force F± to a characteristic
unbinding force fc.

The elements are connected in series, as in Fig. 2c, such that Δ(s)
and n±(s) become functions of arclength s∈ [0, L] (considering the

continuous limit of small elements). Dynein activity leads to differ-
ential tension in the two filaments, which generates an active moment
about the centerline of the structure. The flagellum bends in response,
its orientation at each point characterised by the angle θ(s) between
the tangent vector t(s) to the centerline and the x-axis of the laboratory
fixed frameof reference. Figure 2 uses the common terminology of the
principal (P) bend generated by negative-shearing green motors, and
the reverse (R) bend generated by positive-shearing blue motors48. If
the spacing a is constrained to remain constant, the sliding displace-
ment canbe shown to be given byΔ(s) =Δ0 + aγ(s)20 whereΔ0 accounts
for sliding at the basal end and γ(s) = θ(s) − θ(0) is the shear angle. We
only consider Δ0 = 0 in this paper. The centerline position vector rH(s)
in the fixed head frameof reference can be constructed from the shear
angle via rHðsÞ= R s

0 tds
0 where t= ðcos γ, sin γÞ.

In our limit of interest, the active moment at a point Ma = �
a
R L
s f tds0 is only resisted by the elastic bending moment Mb = Bγs,

where B is the bending rigidity of the flagellar bundle. Any viscous
contribution is considered to be small (see Section S2 in SI), so that
Ma +Mb = 0. Differentiation leads to

a2ρf 0
v0

� �
�nγt =Bγss � a2Kγ +aρf 0~n: ð3Þ

Note that Eq. (3) does not dependon the lab-frame tangent angle θ and
therefore solutions will describe the shaping of the flagellum relative
to the body frame of reference. Finally, wemust specify two boundary
conditions for the shear angle. We consider (i) no shearing at the base,
or γ(0) = 0 and (ii) no external moments at the distal end, so that
Bγs(L) = 0. In this framework, the structure at the base of the axoneme
exerts amoment that resists anybasal shearing, but thebody-flagellum
coupling only affects the global translation/rotation of the swimmer. If
the molecular motors are not present, the moment balance leads to
the filament-bundle elastica equation, Bγss − a2Kγ =0, which also
captures static configurations of the flagellar counterbend
phenomenon49–51, a reversal of curvature when a passive flagellum is
bent with a microprobe52.

The RD model consists of Eqs. (2) and (3) with the boundary
conditions, combining reaction-kinetics with an elastic axoneme
(chemo-elastic). For simplicity, we rewrite the governing equations in a

Fig. 2 |Modellingoverview. aCross sectionof anelement of theflagellar axoneme,
with 9 + 2 structure ofmicrotubules cross-linked bypassive nexin and radial spokes
(red) and active dynein molecular motors (blue/green generating principal (P)/
reverse (B) bends).b Two-dimensional projection of the axoneme into the plane of
bending onto two filaments (+/−) at fixed separation a. Distribution of dynein

represented as single motors attaching/detaching with rates π±/ϵ±, generating
oppositely directed shear displacementΔ via forces F±. cWhen coupled in series via
bending elasticity local oscillations of shearable elements induce emergence of
flagellar waves characterised by tangent angle θ(s) in arclength s.
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non-dimensional form (see SI),

μaζ �nγt = γss � μγ +μa~n, ð4Þ

n±
t = ηð1� n± Þ � ð1� ηÞn± exp½f *ð1 ± ζγtÞ�: ð5Þ

Eqs. (4–5) are a system of partial differential equations in the dyna-
mical variables γ, n+ and n−, with the form of a generalised reaction-
diffusion system. This is more clearly seen by writing the above system
in the matrix form

MðuÞut =Duss +Lu+Nðu,utÞ ð6Þ

for the state vector u = (γ, n+, n−). The entries of thematrices are stated
explicitly in Sec. S2 of SI. Here,M(u) is a state dependent mass matrix,
D = diag(1, 0, 0) is a diagonalmatrix of diffusion coefficients, and L and
N are linear and nonlinear operators. While canonical RD systems
describe reaction and diffusion of all interacting elements, here,
instead, the diffusion coefficients of themotor populations n± are zero,
since they are anchored in place to their respective filaments, Eq. (5).
The shear γ may diffuse, however, owing to the viscoelasticity of the
axoneme that comes from the passive elastic structure combined with
molecular motor dissipation, Eq. (4). There may also be experimental
situationsmodelled using this frameworkwherediffusionofmolecular
motors is present (see discussion). If D =0, Eqs. (4), (5)) only depend
on quantities at the point s in arclength. As we will see below, the RD
model exhibits temporal oscillations of shear, locally, which interact
diffusively to form spatio-temporally animated wave patterns.

Spontaneous oscillations and diffusion of flagellar shear
We first examine an isolated, freely shearing element of the flagellum
(Fig. 2b) that experiences no contact forces and moments from
neighbouring material. Since internal forces must cancel, the force
balance in the tangential direction on either filament is f t =0, where f t

is given in Eq. (1) with Δ and n± now treated as scalar quantities. This
equation suggests the possibility of spontaneous oscillations—balan-
cing on average the input of energy ρf 0~n with dissipation in the
attached motors ρf 0�nΔt=v0—and we find that oscillatory solutions
indeed exist.

The system of ordinary differential equations consisting of f t = 0
and Eq. (2) has an equilibrium solution given by (Δ, n±) = (0, n0). The
value n0 =π0=ðπ0 + ϵ0e

f * Þ gives the proportion of motors in the
attached state at equilibrium.Hence �τ = ðπ0 + ϵ0e

f * Þ�1
is a characteristic

time scale of the motor activity. Solving the linearised system about
this equilibrium (see Section S3 in SI) reveals a Hopf bifurcation of the
non-dimensional ratio νa = (ρf0)/(aK) of a characteristic motor force to
the resistance to shear. At the critical value, given by νcrita = ð2�ζn0ω

2
0Þ

�1
,

the equilibrium solution becomes unstable to small perturbations and
the shearing element starts to undergo spontaneous oscillations. Here
�ζ =a=ðv0�τÞ and the critical frequency of oscillations is given by
ω2

0 = ð1� n0Þf * � 1. Previous studies have instead used τ = ðπ0 + ϵ0Þ�1 as
the characteristic time scale and ζ = a/(v0τ)26,27,53. We will make use of
both the barred and unbarred quantities.

Figure 3a shows an example of spontaneous oscillations of an
isolated element, where an initial condition close to the equilibrium
grows and after a transient saturates into limit-cycle oscillations of (i)
γ =Δ/a and (ii) n±. Blue/green motor activity drives positive/negative
shear after a delay of approximately one-eighth of a period. Panel (iii)
shows the force balance; at the dotted line marked 1 in Fig. 3a, the
element is depicted at its maximum negative shear, where the elastic
restoring force and the active force exactly cancel so that there is no
sliding velocity. From Eq. (2) with γt =0 we see that the motors will
move towards the equilibrium n0, weakening the active force that
depends on ~n. At this point, the restoring force will gain the upper

hand and drive the sliding velocity back in the opposite direction.
Dotted line 2 shows the situation at a 180° phase offset of the oscilla-
tion period (Fig. 3a).

Turning back to a flagellum of length L, we consider now the
case of no sliding feedback mechanism i.e., the detachment rate
ϵ± = ϵ0 is constant. In this special case, the motor populations
relax to the equilibrium value n0 and Eq. (3) becomes a diffusion
equation (also the heat equation) with a restoring force,
γt = Dγss − Eγ where D = (Bv0)/(2n0a2ρf0) is the diffusion coefficient
and E = (Kv0)/(2n0ρf0) is an effective spring constant. This equa-
tion is solved using standard methods with general solution given
by γðs,tÞ=Pkck expf�ðE +Dðk + 1

2Þ
2
π2=L2Þtg sinfðk + 1

2Þπs=Lg for con-
stants ck determined by the configuration when t = 0; i.e., the
shear distribution “diffuses” exponentially on a diffusive time-
scale that scales with L2, that is shifted when E ≠ 0. Note this is in
contrast with hyperdiffusive relaxations of filaments and filament-
bundles elastohydrodynamics that are dominated by external
fluid viscosity, where the relaxation time has a stronger length
dependence of L450,54,55. Figure 3b shows an example of the dif-
fusive behaviour of shear, where the colouring along the fla-
gellum marks the amount of shear γ. The filament relaxes from an
initially curved configuration, where the elastic energy stored in
the bent flagellum is dissipated by the molecular motor cross-
linking, as they are driven by elastic restoring forces.

Emergent flagellar waves
Using linear stability analysis, it canbe shown (Section S3 in SI) that the
RD model (6) exhibits a Hopf bifurcation. We express our results in
terms of the non-dimensional ratio μa = (aρf0L2)/B of the motor force
aρf0 to the elastic bending force B/L2, and the ratio μ = (a2KL2)/B of the
shear resistance to bending resistance (note that νa = μa/μ). The Hopf
bifurcation point is μcrit

a = ðπ2 + 4μÞ=ð8n0
�ζω2

0Þ where ω0 is unchanged;
setting the first summand of μcrit

a to zero reduces it to the single ele-
ment case seen above. We measure activity relative to the bifurcation
with the parameter ϵ= ðμa � μcrit

a Þ=μcrit
a , as in ref. 26. Solutions for the

flagellar shape of the linearised problem take the form
γðs,tÞ=A exp½ðα + iωÞt=τ� sinðπs=ð2LÞÞ, growing oscillations multiplied
by a spatial sinusoid (A is an undetermined constant). This is a self-
organised standing wave where shear oscillations are synchronised in-
phase throughout the flagellum. The growth rate α and frequency ω
can be expressed as functions of ϵ:

α =
ϵω2

0

2ð1 + ϵÞ , ð7Þ

ω2 =
1 + ϵ� 1

4ω
2
0ϵ

2

ð1 + ϵÞ2

" #
ω2

0: ð8Þ

We compare the predictions of Eqs. (7) and (8) (solid lines) with
simulations of the RD system (6) (filled circles) in Fig. 3c, using para-
meter values as in refs. 26,27. The predictions follow closely the
simulated values for ϵ < 0.4 and the theoretical frequency curve
remains a good prediction of the simulated values even far from the
bifurcation where the linear theory breaks down.

Simulations of the RD model for 3 values of ϵ are shown in the
columns (i)–(iii) of Fig. 3d. Near to the bifurcation, we observe
(approximately) a standing wave as predicted above, but as ϵ is
increased further, we find a change in the space-time animated pat-
terning: bend initiation at the base leading to base-to-tip propagation
of flagellar waves with increasing wavespeed (slope of the kymograph
in Fig. 3d). Wave propagation corresponds to a relative phase offset in
the shear oscillations of neighbouring elements. Simulations of a freely
swimming sperm (chemoEHmodel) are shown in the final two rows of
Fig. 3d. The commonly used sperm number Sp = L/lh is the ratio of the
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length of the flagellum to the hydrodynamic length scale lh = ðBτ=ξnÞ
1
4

over which external viscous forces become comparable with the force
required to bend the flagellum in the absence of shear resistance; ξn is
the resistive-force drag coefficient for motion normal to the
flagellum42, see Section S1 in SI. In these simulations, we have set Sp = 1,
using the same parameters otherwise, to highlight the similarities with
the RD system. In the head frame (x0, y0) in Fig. 3d, the beating pat-
terns of RD/chemoEH are indistinguishable (up to an arbitrary phase),
and characterised by a base-to-tip wave propagation. We shall explore
this further in a later section. Viewed from the lab-frame the time-
reversible standing wave in Fig. 3d(i) does not lead to swimming
motion (bottom row), whereas in Fig. 3d(iii) a netmotion isobserved in
the bottom row, in the opposite direction to wave propagation, as
expected from low Reynold’s number hydrodynamics9,10. Finally, the
motor populations n± exhibit out-of-phase propagating waves of
attachment/detachment, shown in Fig. 3e (simulated with parameters
corresponding to case (iii) of Fig. 3d). A principal/reverse bend is
shown at the timesmarked t = t1/t = t2 driven by the green/bluemotors
on the plus/minus filament, using the same motor colour scheme as
in Fig. 2.

The sliding-controlled flagellar reaction-diffusion system fits
animated patterns of eukaryotic flagella
We compared nonlinear simulations of the RD model with experi-
mental data available from previous studies17,47 in Fig. 4. Specifically,
we studied the flagellar beating patterns of a swimming bull
spermatozoon47, and both wild-type and mbo2-mutant Chlamydomo-
nas reinhardtii cilia that were isolated from the cell body, demem-
brenated and reactivated17. Whilst the flagella (or cilia) of these
organisms share the axonemal structure in Fig. 2a, they differ in length
(L ≈ 10μm for C. reinhardtii vs. L ≈ 50μm for bull sperm), and acces-
sory structures surrounding the axoneme.Moreover, in contrast to the
asymmetric wild-type beat, mbo2-mutant C. reinhardtii flagella are
known to beat with an almost symmetric waveform (also at lower
frequency and with a shorter flagellum), causing them to swim
backwards17. Furthermore, it has been shown that the static (asym-
metric) and dynamic (oscillatory) components of the C. reinhardtii
beat are controlled separately56. If the static action of motors is
represented by a constant curvature C in the governing equations, i.e.,
γ→ γ −Cs, then since the time derivative γt and the second space
derivative γss remain invariant, the dynamics of the RD model are

Fig. 3 | Numerical simulations of RD/chemoEH model. a Spontaneous oscilla-
tions of (i) shear γ =Δ/a, (ii) motor populations n± anchored to +/- filament and (iii)
forces on an isolated element (see Fig. 2b). b Diffusion of shear from an initially
curved configuration γðsÞ= ½1� cosð2πs=LÞ�=4 according to γt =Dγss − Eγ in the
absence of sliding-controlled feedback. c Predictions (solid lines) of growth rate α

and frequency ω of oscillations of the RD model from linear stability theory com-
pared with simulations (filled circles) as a function of the bifurcation parameter

ϵ= ðμcrit
a � μaÞ=μcrit

a . Other parameter values (μ, η, ζ) = (100, 0.14, 0.3). d Simulations
of the RD model for increasing activity ϵ, showing progression from (i) standing
waves for small ϵ to (iii) base-to-tip progression for ϵ =O(1). Simulations of the
chemoEH model (Sp = 1) at the same parameter values in both the head frame and
lab frame. e Oscillations of the motor populations n± for the case d(iii). Time t1
shows a principal (P) bend and time t2 a reverse (R) bend.
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superposed on the static part of the beat, consistent with being
separately controlled56. Hence, for simplicity, we focus here on fitting
only the symmetric oscillatory part of the beat.

Simulations were carried out varying the three parameters
(μa, η, ζ), where η =π0τ, whichcharacterise theproperties of the dynein
molecular motors (see Methods). We used order of magnitude esti-
mates for μ, which combines passive elastic properties of the flagellum
that have been estimated previously. For bull sperm, μ ≈ 100 has been
calculated26,27. For C. reinhardtii, ref. 57 gives a2K ≈ 80pN/rad and
B ≈ 840pNμm, from which we estimate μ ≈ 10. The difference in μ can
mostly be attributed to the fact that μ ~ L249.

We compared experimental waveforms with simulations through
their Fourier transform in time (see Methods). Given the experimental
fundamental Fourier mode ~γexpðsÞ at the dominant frequency of
oscillation ωexp, and the corresponding mode of a simulation ~γsimðsÞ,
we quantify the quality of fit via

R2ð~γexp,~γsimÞ= 1�
PN

i = 1 j~γexpðsiÞ � ~γsimðsiÞj2PN
i= 1 j~γexpðsiÞj2

: ð9Þ

where the si mark discrete points of arclength along the flagellum,
similarly to ref. 16. We chose the simulation corresponding to the

Fouriermodewith the highestR2 scoreover all parameter values asour
fitted result.

The real and imaginary parts of three example simulated modes
(solid lines) are compared with the corresponding experimental
modes (filled circles) in Fig. 4a, with scores R2 = 0.94/0.98/0.93 for
wild-type/mbo2/bull sperm. Inset are the reconstructed fundamental
modes and experimental power spectra showing a large peak at the
fundamental mode (simulated waveforms equally display a large peak
at the fundamental mode, see Fig. S3b). Figure 4b directly compares
the experimental beating pattern with nonlinear simulations from the
RDmodel. The accuracy of fitting across the three cell types is striking
given the large differences of their beating envelope and the reduced
number of fitted parameters.

Across n = 10 wild-type and mbo2-mutant C. reinhardtii
waveforms17, we found the fitting score R2 and the estimated values of
the three fitted parameters (μa, η, ζ) (see Table 1). We calculated
ϵ = 21.6/19.1/5.92 using the average fitted parameters for wild-type/
mbo2/bull sperm, respectively, suggesting the flagellar beat occurs
very far from equilibrium in the strongly nonlinear regime. Between
wild-type and mbo2-mutant C. reinhardtii, the estimated parameters
showcomparable values for ζ, related to the internal dragcoefficient of
motors, but suggest thatmbo2mutants have lower activity and a larger
duty ratio than their wild-type counterparts (although the relative
distance to the bifurcation ϵ is similar). Videos of the beating cycles at
the average fitted parameter values in Table 1 can be found in the
Supplementary Information. Supplementary Video 1 shows the simu-
lations of the RD model for the wild-type and mbo2 mutant C. rein-
hardtii parameters, while Supplementary Video 2 shows the simulated
trajectory of bull sperm using the fitted parameters and fixing the
sperm number Sp = 1 for nonlinear chemoEH simulations.

Optimal swimming speeds are observed when viscousmoments
are small and the flagellar reaction-diffusion system is valid
In this section, we numerically examine the region of validity of the RD
system, and how the relative amount of external and internal dissipa-
tion affects swimming performance. Figure 5a depicts simulations of

Fig. 4 | Fourier mode data fitting. a Comparison of representative experimental
(~γexp, filled circles) and simulated (~γsim, solid lines) Fouriermodes of wild-type/mbo2-
mutant Chlamydomonas reinhardtii and bull sperm, real and imaginary parts. Inset
are the reconstructed fundamental mode shapes and strongly peaked experimental
power spectra. b Comparison of experimental and simulated beating patterns

corresponding to fitted modes in a, with fitting parameters (μa,η, ζ). The experi-
mental time average shear �γexp has been added to the wild-type C. reinhardtii and
bull sperm waveforms for visualisation, so that �γexp + ~γexp=sim expðiωexp=simtÞ+ c:c is
shownover one period of oscillation. This is not done for thembo2-mutant, however,
since the beat is approximately symmetric, i.e., �γexp≈0.

Table 1 | Estimated parameter values (μa, η, ζ) and best R2
fit-

ting scores (mean ± standard deviation) comparing experi-
mental waveforms17,47 with simulations of the RD system:
n = 10 wild-type (wt) C. reinhardtii, n = 10 mbo2-mutant C.
reinhardtii, n = 1 bull sperm. The value of μ = a2KL2/Bwas fixed
as indicated

wt (μ = 10) mbo2 (μ = 10) bull sperm (μ = 100)

R2 0.880 ±0.044 0.967 ± 0.012 0.932

μa = aρf0L
2/B 1570 ± 377.0 490.0 ± 192.1 2000

η = π0τ 0.096 ±0.033 0.332 ±0.103 0.34

ζ = a/(v0τ) 0.96 ± 0.092 0.880 ±0.044 0.6
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the chemoEH system over a single beating cycle showing base-to-tip
wave propagation, for varying sperm number Sp and motor activity
parameter μa. In these simulations, we have not neglected the con-
tribution of viscous moments Mv(s) to the internal moment balance.
We model viscous forces using local resistive-force theory for slender
bodies10,42. The viscousmoment is related to the internal contact force
N(s) in the normal direction to the flagellum through Mv

s =N. More-
over, it is related to the rate of external viscous dissipation through
Pv =

R L
0 Nγt ds (see Section S2 in SI). The balance of moments for the

chemoEH model, Eq. (3), now reads

μaζ �nγt = γss � μγ +μa~n+Nb, ð10Þ

expressed here in non-dimensional quantities whereNb =NL2/B and we
have made the changes s→ s/L and t→ t/τ. This equation is supple-
mented by the force balance conditions on the flagellum, as used in
previous works26,27,53, and cell body boundary conditions at s =0 (see
Section S1 for details). The balance of moments, Eq. (10), is shown at
the point s = L/2 over three periods of oscillation in Fig. 5a(i)–(iii) for
Sp = 1/3/5 (blue/orange/green triangles) with fixed μa = 2800 and
μ = 100 (bottom row). For Sp = 1, the contribution of viscous moments
(through Nb in red), and hence external dissipation, is visually
negligible compared to the other terms (Fig. 5a(i, ii)), consistent with
our assumption in deriving the RD model. As Sp increases the
contribution of Nb becomes more significant (Fig. 5a(iii)).

To quantify the hydrodynamic contribution in shaping the beat,
we introduce the ratio Ĥ = stdðNbÞ=stdðμγÞ of the standard deviations
(overmany periods and over arclength) of the contact forceNb and the
restoring forceμγ (see Fig. 5b(i)). Thedashed linemarks thedecoupling

region (DR), taken to bewhere Ĥ is less than 5%, approximately passing
through the orange triangle simulation at Sp = 3 (Fig. 5a(ii)), so that the
blue/green triangles are representatives of inside/outside the decou-
pling region, corresponding to Fig. 5a(i) and (iii), respectively. As
activity μa increases, the oscillations increase in amplitude, and
therefore the resistance to shear is also higher in the denominator of Ĥ
(Fig. 5b(i)). This allows for a wider range of sperm numbers in the
decoupling region and results in the approximately straight line rela-
tionship visible in Fig. 5b(i). For such small relative contributions, the
effect of viscous moments can be neglected in comparison with
moments from elastic shear resistance, and the waveform is well
approximated by the RD equations only. We have seen examples of
this likeness previously in Fig. 3d and further evidence can be found in
Fig. S3a showing the result R2ð~γCEHsim ,~γRDsimÞ of applying the above fitting
procedure to compare the simulated chemoEH and RD waveforms,
finding R2 ≈ 1 in the decoupling region, justifying our choice of 5% for
the demarcation line.

We characterise the swimming ability by thehead velocity vh in the
swimming direction (see Fig. 5b(ii)). The highest swimming perfor-
mance is found at low Sp, and is non-monotonic in μa (as reported in
ref. 58). Crucially the peak values lie within the decoupling region, and
thesewaveforms qualitatively resemble swimming spermatozoa in low
viscosity47,59. For larger Sp, swimming velocity is reduced, with the
waveforms characterised by large angular deviations of the head and
little forward motion. Swimming performance is correlated with the
wavenumber q, which divides the parameter space into left (red) and
right (blue) regions in Fig. 5b(iii), with wavenumbers ≈ 2π to the left
(corresponding to a wavelength of L), and ≈ 4π to the right (with
wavelength L/2). Crossing from red to blue in Fig. 5b(iii) leads to a

Fig. 5 | Decoupling of flagellar shaping and swimming. a Simulations of the
chemoEH model in (Sp, μa) parameter space. Moment balance at s = L/2 (below)
showing increase in contribution of Nb with increasing Sp (blue/orange/green tri-
angles). b (i) Contribution of viscous moments Nb relative to elastic restoring

moments μγ quantified by the ratio of standard deviations Ĥ. Decoupling region
(DR) demarcated by Ĥ = 5%. (ii) Progressive velocity vh peaked in the decoupling
region. (iii) Wavenumber q, divided into left (red) and right (blue) regions of q ≈ 2π
and q ≈ 4π respectively.
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catastrophic reduction of swimming speed in Fig. 5b(ii). All waves
propagated from base-to-tip in the simulated parameter space for the
chemoEH system, in further agreement with the RD model.

Fitted motor parameters from the flagellar reaction-diffusion
system reproduce bull sperm swimming kinematics
Here, we provide a direct comparison beyond the emergence of the
flagellar beat in Fig. 4, at the level of the swimmer’s self-organised
trajectory. For this, we simulate the full flagellar chemoEH system at
the fitted motor parameter values for bull sperm in Table 1, as derived
from the simplified flagellar RD system above, setting the sperm
number low (Sp = 1), rather than fitting it, to locate the system within
the decoupling region (Ĥ =3:4× 10�4, see Fig. 5b(i)). Figure 6 shows
the qualitative similarity of the predicted bull sperm swimming tra-
jectorywith experiments47. An excellent agreement is observed for the
distance travelled per beat, shape of the head trajectory, amplitude
and frequency of head yawing oscillations resulting from the self-
organisedflagellarbeating. Unlike Fig. 4b, the static asymmetricpart of
the beat �γexp has not been added in Fig. 6 to highlight the contribution
of the emergent symmetric (oscillatory) part of the simulated beat. As
a result, a straight trajectory is observed in Fig. 6 rather than the
slightly curved trajectory of the experiment due to the presence of an
asymmetric static component of the waveform (Fig. 4b)43.

Discussion
Flagellar patterning can be explained by a minimal reaction-
diffusion system invoking the balance of four moments
We have seen that a balance of the motor force, motor friction and
elastic shear resistance is sufficient to produce sustained shear oscil-
lations in a small flagellar element. Oscillations of a flagellar section
then exert moments on neighbouring elements that are resisted by
bending elasticity. This is the flagellar reaction-diffusion (RD) model
for animated patterns, which displays a Hopf bifurcation to standing
wave oscillations at a critical value of the activity parameter μa. As the
bifurcation parameter ϵ increases from zero, the oscillations increase
in amplitude and begin to propagate from base-to-tip with increasing
wavespeed, providing a plausible mechanism for generating self-
organised metachronal shear oscillations from oscillatory local
elements14,40, as first hypothesised by Brokaw13. Furthermore, by
varying the only three molecular motor parameters (μa, η, ζ), the RD
model produces diverse beating patterns that mimic those of eukar-
yotic flagella. This was demonstrated by fitting numerically simulated
shapes to experimental data from the literature17,47.

As well as external hydrodynamic forces and the cell body cou-
pling condition, many other effects have been assumed to be negli-
gible; to name only a few: the three-dimensional nature of the beat of
bull sperm60, bending friction in the microtubules44,61, internal fluid

viscosity23, basal elasticity16,62, variable bending stiffness from the fla-
gellar ultrastructure63, and nonlinearity of the force-velocity relation-
ship of axonemal dynein, which is known to exist for kinesin64.We have
also not considered any asymmetry of the beating patterns in this
work17, utilising the fact that the static and dynamic components of the
beat of C. reinhardtii appear to be independently controlled56 to con-
centrate only on the oscillatorymotion.We have shown, however, that
the minimal reaction-diffusion model is sufficient to capture char-
acteristic waveforms within a small range of parameters.

Including other sources of internal dissipation in the RD model
would change the ratio of external to internal dissipation and itmay be
possible to extend the region of validity of the RDmodel to higher Sp,
or equivalently, higher external fluid viscosity. Additionally, it is pos-
sible that a higher quality of fit may be achieved if μ was allowed to
vary, but we have restricted our focus here to the unknown motor
parameters. The lower average R2 for wild-type vs.mbo2 (0.88 vs. 0.97)
suggests important differences in mechanical properties of the two C.
reinhardtii cell types, also not accounted for here; it was suggested by
the fitting results of ref. 17 that thembo2-mutant should have a 20-fold
smaller basal stiffness than the wild-type, for example. Interestingly,
although the fitted parameter values μa and η for the two C. reinhardtii
genotypes appear quite different, the average relative distance from
the bifurcation ϵ = 21.6/19.1 is similar, suggesting similar beating
amplitudes (the supercritical amplitude for aHopf bifurcation tends to
be ∼

ffiffiffi
ϵ

p
). The lower value of μa for thembo2-mutant could arise from,

for example, the inactivity or absence of some of the inner/outer arm
dyneins in the axoneme of this mutant.

Fitting nonlinearity unifies dynein regulatorymechanism in two
eukaryotic species
Previous studies fitting model beating patterns to flagellar centerline
measurements16–18 have been based on the fact that near the Hopf
bifurcation, the elastohydrodynamic system is well-modelled by its
linear terms20, reducing to the hyperdiffusive equation,
ξnθt = � Bθssss +af

t
ss, in the absence of molecular motor reaction

kinetics. At this level, the feedback mechanism reduces to a linear
relation between the motor force and the particular mode of defor-
mation that regulates motor activity (sliding, curvature or normal
forces), but which does not contain the specific details of the cross-
bridge reaction kinetics— the latter is only retained at the nonlinear
level26. Canonically, ~f

m
= χ~Δ linearly relates the fundamental mode of

the active force ~f
m

to the sliding ~Δ, where χ is a (complex) linear
response coefficient (see Table S2 in SI). Nonlinear solutions allow,
instead, a direct comparison between model prediction (simulations)
and experiments, as depicted in Fig. 4b, since the waveform (ampli-
tude, frequency and phase) arises dynamically via the nonlinear
saturation of unstable modes. Such direct comparison is not possible
with linear models, as the amplitude of beating is undetermined, and
thus, generally, fitted for comparison purposes16–18.

In a seminal work, ref. 16 found for the first time that the beat of
free swimming bull sperm were accurately described using the sliding
response coefficient χ (average R2 = 0.96). For the single cell studied
here, we find the value of R2 = 0.93, in apparent agreement with this
earlier result. However, there are crucial distinctions, in addition to the
points discussed above: (i) basal sliding, the subject of many experi-
mental studies62,65, is not considered here, though deemed essential to
find satisfactory fits in ref. 16, where precise values of basal resistance
appear to be necessary (appearing as eigenvalues of the linear pro-
blem), (ii) our fit uses large-amplitude, highly nonlinear solutions, far
from the onset of the Hopf bifurcation, with ϵ = 5.92, in contrast
with ref. 16 that focused on the linear regime with oscillations near
equilibrium—the linear solutions for the RD model in Fig. 2d are
standing waves, highlighting the qualitative differences between the
RD model and previous work, (iii) The formulation in ref. 16 requires
seven unspecified parameters for the free-swimming case, compared

Fig. 6 | Fitted motor parameters reproduce bull sperm swimming motion.
Qualitatively similar distance travelledper beat, amplitude, frequency, and shapeof
the head trajectories of (a) simulated bull sperm from the full flagellar chemoEH
system at the fitted motor parameters (μa, η, ζ) derived from the simplified RD
system, as given in Table 1, and Sp= 1 (not fitted), and (b) image captured from the
Supplementary Video 1 in ref. 47 (adapted with permission from ref. 47, Copyright
2020 Royal Society), fromwhich the bull sperm data used for fitting was extracted.
Note that the empirical average �γexp of the beat, leading to the curved trajectory,
was not included in (a) to highlight the true contribution of the emergent sym-
metric (oscillatory) waveform mode on the swimming motion, as predicted from
the full chemoEH system.
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to only three parameters required by the RD model: the amplitude of
the beating (not determined at the linear level, but emergent here), the
complex response coefficient χ and basal response �χ (2 parameters
each), and the translational and angular drag coefficients of the sperm
head, and (iv) the fitted parameters here were not optimised con-
tinuously over the parameter space, as is more easily achieved with
analytical solutions16. Instead, the best fitting shape, with highest R2

score, was found from a set of 5460 simulations. Hence, the space of
models we are fitting from here is vastly more constrained (only 3
parameters), no parameters require fine-tuning, as in the case of the
basal response coefficient, and higher values of R2 may be possible still
for parameter values outside our test set. This result should be viewed
in this light; a considerable reduction in model freedom with no sig-
nificant loss of fitting accuracy.

We have assumed the bull sperm cell is in the decoupling region
(Fig. 5b(i)) in order to fit with the RDmodel. Supposing the decoupling
assumption is violated, so that hydrodynamic effects on the emer-
gence of the beat are significant for this cell, it could be the case that
these effects (including the effect of the cell body) may be compen-
sated for within our model by tuning the fit parameters. If this was the
case, however, then when calculating the overall translation and
rotation of the sperm using RFT, see Fig. 6, we would expect these
unaccounted for hydrodynamic effects to cause significant deviations
from the experimental trajectory, and this is not observed. The valueof
Ĥ =3:4× 10�4 confirms the chemoEH simulation is in the decoupling
region; this is strong evidence that the decoupling assumption applies
for this cell.

At the swimming trajectory level, even small errors in eachbeating
cycle can be accumulated into large discrepancies of the swimming
trajectory aftermany cycles. Swimming trajectories thatwere obtained
via the boundary element method66, a highly accurate hydrodynamic
theory, demonstrate how these discrepancies accumulate in the dis-
tance travelled per beat even when two or three principal components
of the experimentally observed beating pattern, that very accurately
capture the waveform, are used; this is in contrast to the chemoEH
simulations inFig. 6. Therefore, it is remarkable that this closematch in
swimming characteristicshas emerged at themicroscale just by setting
the nanoscale parameters (μa, η, ζ) to their fitted values in Table 1, and
is derived from a simplified flagellar RD system that does not account
for hydrodynamic interactions. Further experimental tests with larger
numbers of cells are required, however, to determine if this result
applies more generally than in the case of this particular cell; similarly
for the results of ref. 66. In all, the framework developed here allows
for the first time direct hypothesis testing beyond the emergence of
the flagellar beat (Fig. 4), encompassing the resulting self-organised
swimming motion observed in the laboratory fixed frame of reference
(Fig. 6), to gain better understanding of the validity of a given model,
thus closing the modelling cycle.

Wild-type and mbo2-mutant C. reinhardtii were previously fitted
very well by a dynamic curvature response coefficient, i.e., propor-
tional to θst, averaging R2 = 0.95/0.95 for wild-type/mbo2-mutant by
ref. 17. Recently, thismethodwas commendably used on amuch larger
waveform data set for C. reinhardtii axonemes under various experi-
mental and genetic perturbations, and similarly excellent fits were
reported18. The sliding control mechanism, however, was not able to
produce good fits within the framework presented in ref. 17, only
averaging R2 = 0.49/0.72 for wild-type/mbo2-mutant see (Fig. 7). Cru-
cially, since the linear fitting method uses a generic sliding-controlled
response coefficient16,17,20, the poor fitting observed for sliding control
in ref. 17 would seem to be evidence against any sliding-controlled
mechanism—indicating instead that different motor control mechan-
isms bywhich the beat is generatedmay exist in the 50μmlongflagella
of bull sperm compared to the 10 μm cilia of C. reinhardtii17. A key
result presented here, however, is a dramatic improvement inR2 values
for a sliding-controlledmechanism,with the averageR2 = 0.88/0.97 for

the samewaveformdata set used in ref. 17. The improvement is seen to
be striking in the direct comparison with the RD model in Fig. 7. A
summary of the distinctions discussed in this section between the
fittingprocedurepresentedhere andpreviousfittings16,17 is provided in
Table S2 in the Supplementary Information.

Although it is known that weakly nonlinear waveforms should
resemble the linear modes used in the previous fitting studies67, our
results highlight that there can be large differences between the shape
of patterns generated in the linear regime close to the bifurcation, and
the strongly nonlinear regime where our fitted average values lie
(ϵ = 21.6/19.1 for wild-type/mbo2). We thus argue that it is essential to
includemolecularmotor and geometric nonlinearities when collecting
evidence for particular flagellar control mechanisms. Seeking simpli-
fications such as the high internal dissipation limit can reduce com-
plexity and enable this. We have shown that nonlinear solutions of a
sliding-controlled RD model with a specific motor cross-bridge reac-
tion-kinetics can in fact capture accurately the beating patterns of C.
reinhardtii, unifying two distant eukaryotic species (bull sperm and C.
reinhardtii) under a single motor-control mechanism. Furthermore, as
molecular mechanisms for curvature-sensing by dynein are at present
unknown (the small strains involved make this hard to envisage, as
recognised in refs. 17,18), whereas the load-dependent detachment of
dynein suggests a physical basis for sliding-control, we argue that the
sliding-control hypothesis, of the two, should be favoured as themore
parsimonious given current evidence. Regulation of dynein by trans-
verse forces, a waybywhich dyneinmay sense curvature indirectly28,30,
was described as unlikely inC. Reinhardtii17 despite good fitting scores,
due to large intraspecies variation in the fitted parameter values. Fur-
ther research is needed to confirm or refute this finding for large
amplitude nonlinear beating, in light of the current work. A dynamic
flutter instability32,33 also offers an attractive and simple alternative
mechanism, but it remains to be seen whether this model can account
quantitatively for experimental beating patterns, including the
observed high internal dissipation by the flagellum.

We may further speculate about the possibility of a universal,
minimal pattern formation mechanism for animating cilia and flagella
that is capable of robustly generating travelling waves, independently
of, and without relying on, the external fluid viscosity, when small (see
below). The intrinsic internal dissipationmay equip cilia and flagella of
species living in low viscosity environments, such as green algae,

Fig. 7 | Comparison between the fitting accuracy of the geometrically exact RD
sliding-controlled model (left column) and linearised elastohydrodynamic
sliding-control model17 (right column). Real/imaginary parts of the fundamental
Fourier mode of typical theoretical (solid lines) and experimental (dotted lines)
beats of wild-type andmbo2-mutant C. reinhardtii fitted with: (i) the RDmodel with
tug-of-war sliding-controlled motor kinetics and geometrical nonlinearities
retained (left column), and (ii) a complex sliding-controlled linear response coef-
ficient χ and free amplitude, adapted from ref. 17 (CC BY 4.0, right column).
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aquatic microorganisms, and external fertilizers47,68 with the capacity
to generate autonomous, hydrodynamic propulsion—not possible
with the external fluid dissipation alone (Fig. 3d(i)). The quality of
fitting suggests that the experimental beats in low viscosity considered
heremay indeed beoperating in the hydrodynamicdecoupling region,
uninfluenced by external viscous friction, consistent with previous
energy calculations18,44,45.

Internal dissipation enables progressive swimming in low visc-
osity environments
Figure 5 suggests a possible explanation for the seeming inefficiencyof
the high internal dissipation regime. For a fixed, low activity level μa,
increasing Sp increases the external hydrodynamic dissipation, but the
workdoneon thefluid isnot propulsive, and thereforedoesnot induce
any increase in swimming speed vh. At low sperm number much of the
energy converted from chemical energy (ATP) to mechanical work is
dissipated internally, however, the result is a faster swimmer
(Fig. 5b(ii)), with a more hydrodynamically efficient stroke. This is due
to the symmetry-breaking instigated by the intrinsic internal dissipa-
tion, which transforms time-reversible standing waves for low activity
(Figs. 3d(i) and 5), and zero net propulsion, into propulsive travelling
waves for increased activity (Figs. 3d(iii) and 5). It is noteworthy that
the difference in the mathematical structure of the governing equa-
tions to previous works employing elastohydrodynamics of flagella
leads to very different solutions and instability types, namely, standing
waves which do not lead to swimming (see Fig. 3d(i)). Compare this
with Camalet and Julicher [22], where propagation is still observed for
small amplitudes and the direction depends on the boundary condi-
tions. Instead, symmetry breaking in the RDmodel is only observed for
increased activity far away from the instability (Fig. 3d(iii)).

The internal dissipation thus allows the flagellum to break Pur-
cell’s scallop theorem, and its time-reversibility constraint, before
the hydrodynamic dissipation becomes relevant, when Sp is low. As
discussed above, this may be a critical mechanism allowing the
emergence of autonomous travelling waves in low viscosity, as non-
zero hydrodynamic propulsion in elastohydrodynamic systems
operating near-zero sperm number are, generally, not possible37,50,55.
Passive filaments and filament-bundles (without internal dissipation),
actuated externally, require Sp ≈ 2 for elastohydrodynamic dissipa-
tion to symmetry-break effectively stiff filaments (non-propulsive,
standing-waves) into flexive travelling waves with net propulsion. In
this case, the propulsive force reaches a maximum, before decaying
due to the excess in viscous friction as Sp continuously
increases37,50,55. Similarly, in the limit of high internal dissipation, the
hydrodynamic propulsion reaches a maximum for increasing activity
(see Fig. 5b(ii) for Sp = 1 and increasing μa). As such, the motor
activity for the RDmodel can play a similar role as the sperm number
for propulsive elastohydrodynamics37.

Although we have used local resistive-force theory here, the dis-
tribution of swimming speeds shown in Fig. 5b does not change
appreciably with the inclusion of non-local hydrodynamics through
slender-body theory, as was reported recently in ref. 58. The wave-
length of beating patterns in the decoupling region is approximately
equal to the length of the flagellum L and this is observed in C. rein-
hardtii (see Fig. 3c of ref. 18) and bull sperm43. These patterns have the
benefit of being robust to external hydrodynamic perturbations, and
to a significant loss of swimming velocity when crossing from left to
right in Fig. 5b(iii), although this abrupt change could be due to the
specific exponential formof thedetachment kinetics usedhere, Eq. (2).
At higher Sp, the wavelengths are shorter (≈L/2). This observation is
consistent with experiments with human spermatozoa in high
viscosity59; recall that Sp∼ ðξnÞ

1
4.

Figure 5a suggests, however, that thewave amplitudedecreases as
the wave propagates for increasing Sp, which is not observed
experimentally11. Moreover, increasing the viscosity experimentally

does not always lead to a drop in swimming speed11, as Fig. 5b(ii) would
suggest. Hence our chemoEH model is not capturing some aspects of
the beating for higher Sp, and further research is required to investi-
gate flagellar waveform modulation by viscosity59. For example, there
may be an effect of curvature, in addition to sliding on the motor
recruitment, such asused in ref. 36,where higherwavenumber beating
is possible without reduced amplitude of propagation. A combined
sliding/curvature control approach was also considered in ref. 27 for
asymmetric waveforms, whereas the effective curvature-controlled
moments model-type24 gave promising results recently for human
sperm in high viscosity, consistent with this idea69. The limited
applicability of the chemoEH model to the high viscosity regime,
however, is less relevant to the results of this paper,which focus on the
hydrodynamic decoupling region and the RD model.

Outlook
By isolating the essential elements of the flagellar beat in a minimal
model, we discovered that reaction-diffusion dynamics account well
for the observed flagellar beating patterns. The oscillatory dynamics
are analogous to those observed in chemical systems like the BZ
reaction—oscillations can persist in an isolated, small section of the
system2. With diffusive coupling between subsystems, metachronal
waves can emerge, inducing animated beating patterns in the case of a
flagellum, analogous to target waves in the BZ reaction. Since hydro-
dynamics applies only a small perturbation to the beating pattern in
the decoupling region, there is the potential in future work to apply
phase-reduction techniques to study the hydrodynamic synchronisa-
tion of many self-organising flagella70–72, driven by reaction-diffusion
dynamics.

The simplified RD model may be of interest to many researchers
studying molecular motor organisation, or in mathematical biology
more generally, since analytical progress and numerical simulations
become easier in this framework, avoiding complexities arising from
the hydrodynamic coupling. The RD framework can thus be used as a
fundamental building block for future hypothesis testing, and gen-
eralised to the multi-physics of flagellar interactions, to include, for
example, transmembrane dynamics of ion channels that modulate
asymmetric gaits of the beat via calcium fluxes, stochastic oscillations
in cilia and flagella, cell chemotaxis and rheotaxis, flagella rheology,
signalling and multi-flagellar interactions10,11,14, to name a few. The fact
that themolecular shaping of the emergent flagellar beat is decoupled
from the hydrodynamics of swimming (in the decoupling region)
allows researchers to exploit a diversity of low Reynolds number
hydrodynamic methods to solve for the kinematics of flagellated
swimming separately10 (without requiring full chemoEH simulations in
Fig. 6); using, insteadof ad-hocprescribedwaveforms that are typically
invoked42, the self-organised animated beating pattern (Supplemen-
tary Video 2) obtained from the RD tug-of-war model that has been
validated against experimental observations, and as such, it may
appeal to the micro-hydrodynamics community in general.

Our reaction-diffusion framework may not be limited to flagellar
beating. For example, oscillations have been observed in-vitro for
microtubules73 and actin filament-bundles36 in the presence of free
kinesin and myosin motors, respectively. In ref. 36, the authors
employed a phenomenological model that also neglected external
viscous friction over internal friction, and compares well with the
observed oscillations of actin bundles. They suggest that the source of
this internal friction could be the transiently cross-linked myosin
motors (modelled by a shear friction coefficient ξΔ), in further con-
gruence with our results in which the motor friction was explicitly
modelled. In contrast to the tug-of-war reaction kinetics used here, the
myosin binding/unbinding kinetics were based on a curvature con-
trolled attachment rate, in addition to advection of myosin molecules
along filaments [ibid], whereas our dyneins are anchored in place.
These elements can be incorporated into the reaction-diffusion
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framework described here through simple alterations to the govern-
ing equation, Eq. (6). Other possible extensions could allow for easier
comparison of molecular motor control mechanisms such as the
geometric clutch28,30 and flutter instability32,33, or support investiga-
tions into the internal rheology of flagella. For this, we include a simple
interactive Python implementation of the RD model so that research-
ers may explore these possibilities further.

As experiments at the nano-scale canbecostly and challenging, an
alternative route to understanding is the practical design and engi-
neering of artificial swimmers74, animate materials or Turing patterns
more generally75,76. We should heed from these studies, however, that
distinct mechanisms may bring about the same patterns, and this
complicates judging whether models of flagellar beating are truly
describing the underlying physics, for which more research will be
required. That said, we hope this paper is a step towards an under-
standable, minimal model of flagellar patterning that is amenable to
mathematical analysis, in the spirit of Turing’s work1, and may appeal
to researchers interested in pattern forming structures of reaction-
diffusion systems at large.

Methods
Interpolation of data and Fourier analysis
Weobtained the rawdata forChlamydomonas reinhardtii (10wild-type
and 10 mbo2-mutant trajectories) from ref. 17. This consists of the
tangent angle θexp(si, tj) in the lab frame at 19 points of arclength si at
times tj with Δt = 1ms. We then calculated the relative angle
γexpðsiÞ= θexpðsiÞ � θexpðs0Þ. We interpolated the signal (using the
Python function interp1d with cubic splines) at m = 101 points of
arclength in order to compare with our simulated waveforms. For the
bull sperm trajectory (obtained from ref. 47) the curvature was sup-
plied at 30 points of arclength at time intervals of Δt = 4ms, so the
relative angle γexpðsi,tjÞwas obtained via a single numerical integration
before interpolating.

To obtain the fundamental Fourier mode ~γexpðsiÞ of the inter-
polated waveforms, we Fourier transformed > 20 periods of the signal
in time.Weobtained the fundamental frequency by finding the peakof
the spatially averaged power spectrum, as in refs. 16,17. The mode
shape ~γexpðsiÞ is then extracted in correspondence with this funda-
mental frequency. Applying the same Fourier decomposition to
simulated beating patterns, we then compared the experimental and
simulated fundamental Fourier modes with the R2 measure (Eq. (9)).
Before calculating R2 we firstmultiply ~γsim by a phase factor eiϕ to bring
the phases of the simulated and experimental oscillations into
alignment.

Calculating the wavenumber q
The wavenumber q of a signal θ(si, tj) was calculated using the auto-
correlation function Ak =∑iθ(si+k)θ(sk), averaged over > 20 time peri-
ods. The peaks/valleys of the signal are located where the derivative
changes sign; we took the peak of maximal magnitude for the wave-
number (or twice the value of the valley of maximal magnitude if the
wavenumber is smaller than one full oscillation).

Numerical methods
To discretize the continuous system of partial differential equations
for computation,we start by samplingm = 101 equally spaced points of
arclength γ0 − γm−1 along the flagellum. For spatial derivatives, we use
second-order finite differences, centred on the interior of the domain
and sided at the boundaries. The RD system then reads in non-
dimensional form

γt,0 + γ0 =0 ð11Þ

μγi �m2ðγi + 1 � 2γi + γi�1Þ+μaðζ �niγt,i � ~niÞ=0 ð12Þ

μγm�1 � 2m2ðγm�2 � γm�1Þ+μaðζ �nm�1γt,m�1 � ~nm�1Þ=0 ð13Þ

ðn± Þt,i � ηð1� n± ,iÞ+ ð1� ηÞn± ,ie
f *ð1∓ζγt,iÞ =0 ð14Þ

where i runs over the interiorm − 2 points. The γ0 term in Eq. (11) is a
penalization term that dampens any small deviations from zero at
the point s = 0. This is a system of 3m − 2 equations in 3m − 2
unknowns. It is possible to solve for the time derivatives in the
above equations, and step forward in timeusing themethodof lines
(MOL), i.e., to use an ODE time-stepping algorithm on the 3m − 4
unknowns. An interactive Python implementation in a Jupyter
notebook can be found at the github link provided. We found
simulations to be more numerically stable at high μa with a DAE
(differential-algebraic equation) solver. These are used for systems
that contain a combination of differential equations and algebraic
equations. This method also generalises straightforwardly to the
chemoEH model (see Section S1.6 in SI), where we have constraint
equations that are algebraic.

We used the IDA solver in the Sundials suite77 to solve the DAE
system. The left-hand sides of Eqs. (11)–(14) are supplied as the resi-
duals to be minimised by the solver. Although written in the C lan-
guage, interfaces to the solver are available through higher level
languages like Python and Julia. All simulations were started from a
small Gaussian perturbation centred at the midpoint,
γðs,0Þ=0:001 expð ðs � 0:5Þ=0:1� �2Þ, with the bound motor popula-
tions set to the constant equilibrium value n±(s, 0) = n0. We stepped
forward each simulation for many periods (100 non-dimensional time
units) in order to ensure convergence to the limit cycle. Simulations
were carried out using the parameters in Table S1 in the Supplemen-
tary Information. The step sizes in parameter space for (μa, η, ζ) were
(100, 0.04, 0.1), (1000, 0.04, 0.1) for μ = 10, 100, with a total of 3250 at
μ = 10, and 2210 simulations at μ = 100.

Data availability
All data used in this paper can be found in two repositories made
available in previous studies: •https://doi.org/10.5061/dryad.0529j17•
https://doi.org/10.7910/DVN/CPAPV147.

Code availability
An implementation of the reaction-diffusion model is provided in a
Jupyter notebook written in Python. The code is available via the
GitHub repository: https://github.com/polymaths-lab/reaction-
diffusion-flagella, or on Zenodo46.
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