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Profiling neuronal methylome and
hydroxymethylome of opioid use disorder in
the human orbitofrontal cortex

Gregory Rompala1,15, Sheila T. Nagamatsu 2,3,4,15,
José Jaime Martínez-Magaña 2,3,4, Diana L. Nuñez-Ríos2,3,4, Jiawei Wang 5,6,
Matthew J. Girgenti 2,4, John H. Krystal 2,3,4, Joel Gelernter 2,3,4,
Traumatic Stress Brain Research Group*, Yasmin L. Hurd 1 &
Janitza L. Montalvo-Ortiz 2,3,4

Opioid use disorder (OUD) is influenced by genetic and environmental factors.
While recent research suggests epigenetic disturbances in OUD, this is mostly
limited to DNAmethylation (5mC). DNA hydroxymethylation (5hmC) has been
widely understudied. We conducted a multi-omics profiling of OUD in a male
cohort, integrating neuronal-specific 5mC and 5hmC as well as gene expres-
sion profiles from human postmortem orbitofrontal cortex (OUD= 12; non-
OUD= 26). Single locus methylomic analysis and co-methylation analysis
showed a higher number of OUD-associated genes and gene networks for
5hmC compared to 5mC; these were enriched for GPCR, Wnt, neurogenesis,
and opioid signaling. 5hmCmarks also showed a higher correlation with gene
expression patterns and enriched for GWAS of psychiatric traits. Drug inter-
action analysis revealed interactions with opioid-related drugs, some used as
OUD treatments. Our multi-omics findings suggest an important role of 5hmC
and reveal loci epigenetically dysregulated in OFC neurons of individuals
with OUD.

Opioid use disorder (OUD) is a serious public health problem because
of its high disease burden, as measured by hospitalization and drug
overdose death rates1, and involvement in the criminal justice system
based on high incarceration rates2. In the U.S., opioid overdose deaths
reach 17.8 per 100,000 individuals. This opioid epidemic worsened
during the COVID-19 pandemic, as shown by a significant steep rise of
29.4% in opioid overdose deaths in 20203.

OUD is associated with a wide range of acute effects and long-
term brain neuroadaptations related to intoxication, tolerance, and
dependence, which can contribute to compulsive opioid use4,5. Acti-
vation of µ, ∂, and k opioid receptors alters the activity of stress and

reward circuitry. In both animals and humans, the orbitofrontal cortex
(OFC) has been implicated in the development and maintenance of
drug addiction, deficits in the inhibition of impulsive behavior, and
distortions in reward-related decision-making processes6–9.

Multiple epigenetic modifications regulate gene expression that
impacts behaviors relevant to opioid addiction10. We and others have
evaluated the relationship between 5mC and opioid-related traits in
humanperipheral tissue andpostmortembrain tissue. For example, an
epigenome-wide association study (GWAS) in European women iden-
tified three differential DNA methylated sites associated with opioid
dependence in peripheral blood11. In the human postmortem brain, a
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study evaluating 5mC in individuals that experienced heroin abuse
who died from overdose reported differential 5mC of several gene
classes, including those implicated in glutamate neurotransmission,
axonogenesis, synaptic processes, and the regulation of gene
expression12. A more recent 5mC study in the dorsolateral prefrontal
cortex (dlFPC) reported 13 CpG sites nominally associated with opioid
intoxication (p < 1.0 × 10−5); with no CpG sites surviving multiple test-
ing correction13. Another recent study in the dlFPC conducted an
integrative analysis of epigenomic and transcriptomic data in the
context of OUD, identifying potential regulatory genes associatedwith
OUD-related expression patterns, and co-methylated modules asso-
ciated with OUD-enriched neurogenesis, nervous system develop-
ment, and generation of neurons14.

5mC is actively oxidized to hydroxymethyl-cytosine (5hmC) by
ten-eleven translocation (TET) enzymes. Recent work has found that
5hmC is a relatively stable epigeneticmark, highly enriched in neurons,
and associated with transcription activation15. Studies have also shown
that 5hmCplays a key role in brain development processes16. Genome-
wide differential 5hmC studies in the human postmortem brain have
suggested an associationwith antemortempsychiatric traits, including
depression17 and alcohol use disorders18. Although there are no prior
studies of 5hmC in humanOUD, a study in rodents chronically exposed
to morphine reported changes in both global and promoter-specific
5mC and 5hmC levels across multiple brain regions19.

To date, epigenetic studies in postmortem human brain tissue
have been limited to analyses of bulk tissue samples containing diverse
neuronal and non-neuronal cell types. Since epigenetic marks regulate
gene expression in a cell type-specific manner, the presence of mixed
cell types in bulk tissue may obscure cell type-specific findings.

In this study, we conducted a parallel 5mC and 5hmC profiling of
OUD in neuronal nuclei from the human postmortem OFC of a male
cohort. Further, we integrated gene expression data to elucidate the
impact of differential 5mC and 5hmC on gene transcription. Lastly, we
performed a GWAS enrichment analysis to investigate whether dif-
ferential 5mC and 5hmC marks are associated with genetic variations
linked to OUD. Our integrative multi-omics study uncovered func-
tional marks of neuronal 5mC and 5hmC, as well as co-methylation
networks associated with OUD in the human OFC.

Results
Demographics and clinical characteristics
Brain samples from the OFC included 12 OUD cases and 26 individuals
without OUD (non-OUD group) (Table 1). All brain samples were from
males of European and African ancestry. There was no significant

difference in the age of death between the OUD and non-OUD groups
(p value = 0.15), or in smoking status (p value = 0.0770). However, we
did observe significant differences in the prevalence of post-traumatic
stress disorder (PTSD; p value = 0.0026), and major depressive dis-
order (MDD) (p value = 0.0086).

Assessment of 5mC and 5hmC in OFC Neurons
We utilized fluorescence-activated nuclei sorting (FANS) with the
postmitotic neuronal marker NeuN and reduced representation oxi-
dative bisulfite sequencing (RRoxBS) to profile 5mC and 5hmC in OFC
neuronal nuclei isolated from postmortem brain samples (Fig. 1a,
Supplementary Fig. 1). All CpG sites (CpGs)with≥10 base pair coverage
was analyzed, with most CpGs having coverage between 40 and 60×
(Fig. 1b). An average of 10× coverage was obtained for ~3.5 million
CpGs. Overall, we analyzed 1,844,968 CpGs for 5mC and 1,653,870 for
5hmC. Principal component analysis of all 5mC and 5hmC samples
identified two outlying subjects, which were subsequently removed
from the final analysis (Supplementary Fig. 2). The majority of CpGs
(44%) were in gene promoter regions (±1 kb from the transcription
start sites—TSS), followedby intergenic regions (30%), intronic regions
(22%), and exonic regions (4%) (Fig. 1c). We observed a significant
reduction in 5mC and 5hmC levels in the promoter and intron regions
of neuronal-marker genes compared to non-neurons markers,
although 5hmC was increased in exons for neuronal genes (Fig. 1d, e).
Furthermore, we analyzed previously established differentially
methylated regions in cortical neuronal nuclei20 and found a strong
relationship between total methylation (5mC+5hmC) at CpGs in neu-
rons of that dataset and neuronal OFC total methylation of the same
CpGs in this study (R2 = 0.66, p <0.0001; Fig. 1f). Similarly, CpG
methylation in OFC NeuN+ neurons showed an inverse correlation
with CpG methylation previously observed in cortical non-neuronal
nuclei (R2 = −0.44, p <0.0001; Fig. 1f). We observed reduced 5mC at
neuronal-marker genes compared to non-neuronal genes, which is
consistent with our sample being neuronal-specific. We anticipate a
permissive 5mC signature promoting active gene expression15 and a
more repressive 5mC signature at non-neuronal genes. Moreover, in
line with 5hmC being associated with active gene expression in the
genebody (mainly exons), wedemonstrate that 5hmC levels are higher
in neuronal-specific (active) genes compared to non-neuronal-specific
(inactive) genes.

Differential 5mC and 5hmC associated with OUD
Individual CpGswere evaluated for differential 5mCand5hmC levels in
individuals with OUD compared to those without OUD (top genes
indicated in Table 2). For 5mC, we found 397 differential CpGs (357
genes) (Supplementary Data 1); while for 5hmC, we identified 1740
differentialCpGs (1453 genes) (SupplementaryData 2). The λ values for
5mCand 5hmCwere 1.07 and 0.92, respectively. QQ plots are included
in Supplementary Fig. 3. Therewas no overlap between the differential
5mC and 5hmC marks. However, at the gene level, we observed 38
overlapping genes between the differential 5mC and 5hmC marks
(9.6% of 5mC-linked genes and 2.2% of 5hmC-linked genes) (Fig. 2a, b).
Evaluating differential CpGs across genomic loci indicated that most
5mC and 5hmC CpGs were in promoter regions within 1 kb of a TSS.
(Fig. 2c). Moreover, examining genomic regions with known associa-
tions with the histonemodification H3K27ac indicates that these CpGs
likely reside in active promoter and enhancer regions21. Furthermore,
the enrichment was more pronounced in neuron-specific regions
compared to non-neuronal-specific H3K27ac regions (Fig. 2d, Supple-
mentary Data 3). Differential 5mC marks were most significantly enri-
ched in GABAergic neuronal-marker genes, while differentially 5hmC
CpGs were significantly enriched in neuronal-marker genes (i.e., genes
increased in both GABAergic and glutamatergic neurons compared to
non-neuronal cell types) (Fig. 2e, Supplementary Data 3). The differ-
ences observedbetween thedifferential 5mCand5hmCCpGs, in terms

Table 1 | Demographics summary

OUD− (N = 26) OUD+ (N = 12) P value

Age (µ ± SD) 43.1 ± 11.55 37.6 ± 8.9 0.1518

PMI (µ ± SD) 30.65 ± 8.15 29.6 ± 7.5 0.7200

Ancestry

AA 5 4 0.4428

EA 19 8

Cigarette smoking 13 10 0.0770

Alcohol dependence 5 3 0.6893

PTSD 13 12 0.0026

Major depressive
disorder

5 8 0.0086

Polysubstance abuse 4 7 0.0174

Removed outliers 2 0 1.0000

The table shows themain information for individualswithoutOUD (OUD−) andwithOUD (OUD+).
A statistical test was performed to evaluate if the OUD− group differed from OUD+ group. The P
value indicated was calculated using the Fisher test.
AA African American, EA European American.
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of cell type enrichment and CpG location, suggest distinct gene reg-
ulatory mechanisms among these two epigenetic modifications. Gene
ontology (GO) enrichment analyses revealed no significant pathways
among the OUD-associated 5mC genes. However, trending top ontol-
ogies (FDR-adjusted p value < 0.1), included nicotine- and opioid-
signaling pathways (Fig. 2g, Supplementary Data 4). In comparison,
OUD-associated 5hmC genes were significantly enriched for several
terms (FDR-adjusted p value < 0.05), many of which were related to
neuronal function (e.g., G protein signaling, postsynaptic differentia-
tion, and GABAB receptor signaling). Opioid-signaling pathways were
also observed (FDR-adjusted p value = 0.05, Fig. 2h, Supplemen-
tary Data 5).

We compared our findings with those of Kozlenkov et al.12, who
examined 5mC in the postmortemOFC of individuals with a history of
heroin use that died from opioid overdose (N = 87) using the Illumina
450K Infinium microarray. Very few differentially methylated CpGs
identified in their study had sufficient read coverage to be examined in
the present study (175 of 1391). None of these sites showed differential
5mC or 5hmC in our study. This discrepancy may be due to technical
differences, low coverage in those CpG sites, or demographic differ-
ences between the studies. However, when comparing genes with
differential CpGs and using the same significance threshold as in
Kozlenkov et al.12 (p 0.001), we found that 256 CpGs were commonly
differentially methylated between opioid overdose and OUD. The
overlap increased to 327 CpGs when considering both 5mC and 5hmC
(Fig. 2f, Supplementary Data 6). GO analysis revealed that the over-
lappedgeneswithKozlenkovet al. were associatedwith axon guidance

(5mC+ 5hmC; odds ratio = 3.08, FDR-adjusted p value < 0.001, Sup-
plementary Data 7).

We also assessed the overlap between our findings and the
existing literature on opioid epigenomics. When considering recent
5mCstudies evaluating the dorsolateral prefrontal cortex in relation to
opioid-related traits, we identified an overlap of three genes
(SMARCA4;14 JUN;14 TAF313). In terms of 5mC studies in peripheral tis-
sues, we found one overlapping gene from an EWAS study of opioid
self-administration in patients who underwent dental surgery using
saliva tissue22. Furthermore, we identified 127 overlapping genes when
compared to two studies on the placenta investigating neonatal opioid
withdrawal syndrome23,24, and six overlapping genes in a study exam-
ining recent opioid medication use25 (Supplementary Data 8).

To ascertain the potential impact of comorbid post-traumatic
stress disorder on our findings, we examined the gene-level overlap
between our results and previously 5mC associations with PTSD
(“PTSD-associated genes” in Supplementary Data 1 and 2). We found
minimal overlap when considering both 5mC and 5hmC differential
sites, indicating that our findings are not primarily driven by comorbid
PTSD effects.

Gene-drug interaction analyses of differential 5mC and 5hmC
We assessed predicted drug interactions for the annotated genes of the
differential 5mC and 5hmC CpGs and identified 616 interactions for
5mC and 2,562 interactions for 5hmC (Supplementary Data 9 and 10).
Additionally, we observed interactions with 15 opiates (Fig. 3). Among
the differential 5mC CpGs, we found a single interaction with
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Fig. 1 | Analyzing the neuronal methylome and hydroxymethylome in OUD.
a Experimental workflow. Fluorescence-activated nuclei sorting was used to isolate
neuronal nuclei from postmortem OFC. Nuclei were processed for genomic DNA,
undergoing reduced representationoxidative bisulfite sequencing to examine 5mC
and 5hmC at CpG-dense loci. Figure created with BioRender.com. b An average of
10x coverage was obtained for ~3.5 million CpG sites. c 44% of CpG sites were in

promoter regions and 30% in intergenic regions. d, e Neuronal 5mC occurs mainly
in intergenic regions, while 5hmC occurs in introns, exons, and intergenic regions
(n = 38 biologically independent samples; 26 OUD+; 12 OUD−). Data are presented
asmean values ± SD, and p value were generated using ANOVA. f Contrastingmean
5mC levels at neuronal (NeuN+) vs. non-neuronal (NeuN−) marker genes.
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apomorphine in the CALY gene (with the 5mC CpG located in the gene
body). In the case of 5hmC, we found predicted interactions between
opioidswith seven genes:CBFB,GRIN1,HCN1,HMOX2,MPO,RUNX1, and
SOD2. CBFB, HCN1, HMOX2,MPO, RUNX1, and SOD2. The CpGs in those
genes were in the gene body, while the CpG annotated in theGRIN1was
downstream (<200bp) of the gene. Among all the genes with differ-
ential 5hmC, only HCN1 interacted exclusively with opioids (specifically
tramadol). In addition to opioids, MPO interacts with other drugs,
including anti-inflammatory drugs (i.e., nimesulide, tolmetin, and
diclofenac). GRIN1 also showed interactions with glutamate receptor
drugs (i.e., dizocilpine, (d)-serine), and pain management drugs (e.g.,
ketamine, ralfinamide, orphenadrine, orphenadrine citrate). CBFB
interacts with a dopamine receptor agonist drug called ergocornine.

Co-methylation analysis of OUD
In addition to conducting EWAS, we performed co-methylation
analysis using weighted gene co-expression network analysis
(WGCNA) to identify clusters of CpG sites (modules) with similar
methylation levels. This approach allowed us to assess the inter-
correlation among CpG sites and identify epigenetically defined gene
networks associated with OUD. A similar co-methylation analysis has
been previously applied in the context of alcohol use disorder in the
human postmortem brain26. Our co-methylation analysis identified
626 modules for 5mC and 572 for 5hmC. We analyzed module
eigengene associated with OUD (|cor|> ±0.4 and p value < 0.05),
resulting in 10 modules for 5mC (Fig. 4a) and four modules for 5hmC
(Fig. 4b). Module membership versus gene significance is shown in
Supplementary Fig. 5. Among the 5mC modules, six showed enrich-
ments for GO terms (Supplementary Data 11), with the top 10 terms
displayed in Fig. 4c. The 5mC module that exhibited the strongest
correlation with OUD (cor = 0.48) was the Steelblue1 module,

enriched for Pre-NOTCH Transcription and Translation (p
value = 5.71E-03; Supplementary Data 12. Most of the OUD-associated
5mC modules showed enrichment for transcription regulation, cell
differentiation, nervous system development, morphogenesis, and
generation of neurons. Additionally, two of these modules, tur-
quoise3, and lightpink2, displayed enrichment for Reactome path-
ways, including inhibition of Voltage-Gated Ca2+ Channels via Gbeta/
gamma Subunits, activation of GABAB Receptors (p value range:
1.44E-02 to 6.55E-03, turquoise3), angiotensin II-stimulated signaling
through G proteins and beta-arrestin and Signaling by WNT (p value
range: 1.38E-02 to 4.44E-02, lightpink2). The OUD-associated 5hmC
modules showed enrichment for organ development, nervous sys-
tem development, neurogenesis, transcription regulation, and mor-
phogenesis (Supplementary Data 13, Fig. 4d). Enriched Reactome
pathways (Supplementary Data 12) included GPCR Ligand Binding
(p value = 1.77E-03; thistle1), Class B/2 (Secretin Family Receptors)
(p value = 7.60E-03, rosybrown1), PI3K Cascade, and Insulin Receptor
Signaling Cascade (p value range: 1.18E-02 to 4.95E-02, orange4). In
our module-based analysis, we found OPRM1 in the lightpink2 mod-
ule, a gene commonly reported in the opioid literature.

Protein-protein interaction (PPI) analyses were performed for the
OUD-associated 5mC and 5hmC modules (Fig. 5) using co-expression
evidence. The PPI networks showed enrichment for several biological
pathways, including regulation of biological process (GO:0050789),
nitrogen compound metabolic process (GO:0006807), neurogenesis
(GO:0022008), cell differentiation (GO:0030154), gene expression
(GO:0010467), neuron development (GO:0048666), regulation of
neurogenesis (GO:0050767), regulation of cell communication
(GO:0010646), and response to stimulus (GO:0050896).

We also assessed the enrichment of differential 5mC and 5hmC
marks in the identifiedOUD-associatedmodule networks. For the 5mC

Table 2 | Top 10 genome-wide significant OUD-associated CpGs from the 5mC and 5hmC differential analysis

5mC

Chr Start q value Δ 5mC Nearest
gene ID

Position to the
nearest gene ID

chr19 54096075 1.13E-289 −0.40 OSCAR Gene_body

chr7 108569763 4.00E-240 0.07 THAP5 Upstream

chr11 128891189 3.19E-185 −0.21 KCNJ5 Downstream

chr14 99480992 4.06E-183 0.22 SETD3 Upstream

chr19 56120943 2.36E-121 −0.21 ZNF787 Gene_body

chr14 105526298 8.33E-86 0.12 TMEM121 Downstream

chr11 3165259 4.65E-66 0.52 OSBPL5 Gene_body

chr6 12008931 1.95E-54 −0.26 HIVEP1 Gene_body

chrX 9465553 6.36E-53 −0.19 TBL1X Gene_body

chr9 126805077 6.36E-53 −0.37 ZBTB43 Gene_body

5hmC

Chr Start q value Δ 5hmC Gene symbol Position to the nearest gene ID

chr1 109042116 1.05E-306 −0.22 WDR47 Upstream

chr16 67416523 2.02E-306 −0.15 ZDHHC1 Gene_body

chr6 163413930 2.72E-305 0.03 CAHM Gene_body

chr17 27793835 3.12E-291 −0.21 NOS2 Gene_body

chr5 181190518 3.74E-291 −0.21 LINC01962 Gene_body

chr19 639763 6.76E-291 0.40 FGF22 Downstream

chr4 37891265 2.85E-290 −0.31 TBC1D1 Gene_body

chr9 120928860 5.78E-287 0.08 TRAF1 Gene_body

chr5 149960747 6.32E-260 −0.22 SLC26A2 Downstream

chr2 96760842 6.92E-260 −0.19 CNNM4 Downstream

The table includes the chromosomal location,q value statistics, effect size, annotated geneusing the nearest Gene ID, andposition to the nearest gene ID (i.e., downstream, upstream, or in the gene
body, considering a maximum TSS distance of 1500bp).
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OUD-associated modules, we identified DDX31 in the turquoise3
module. In the wheat1 module, we found one differential 5mC anno-
tated gene that was antisense to the JDP2 gene. No differential CpGs
were enriched in the aquamarine1, ghostwhite, lightpink2, or tur-
quoise1 modules. In the 5hmC OUD-associated modules, we identified
three genes (RPL21, RPS21, and ALYREF) with differential 5hmC CpGs
enriched in the navajowhite3 module. In the thistle1 module, we
detected differential 5hmC CpGs in the ARPC1B, DIMT1, PTBP1, and

CCT2 genes. The rosybrown1 module showed enrichment of differ-
ential CpGs in the genes RPLP2, EIF3B, CCT2, NDUFB10, and ELAVL1.
Lastly, we identified two genes, SRSF7 and POLG2, with differential
CpGs enriched in the orange4 module.

GWAS enrichment analysis
We conducted a GWAS enrichment analysis to further assess the
functionality of the identified differential 5mC and 5hmC genes using

Fig. 2 | Differential 5mC and 5hmC marks of OUD. a Distribution of differential
sites into Chromosomal location of hyper- and hypomethylation for 5mC and
5hmC. b Comparison between differential 5mC and 5hmC sites for CpG and gene,
showing a gene overlap of 56 annotated genes. c Distribution of differential CpGs
across genomic loci showed the promoter region with the highest number of 5mC
and 5hmC differential CpGs. d, e Enrichment analysis for neuronal regions showed

that 5mC and 5hmC differential CpGs weremostly enriched for neuronal H3K27ac.
f Comparison of our differential 5mC and 5hmC CpGs with differential 5mC mar-
kers detected in the OFC of opioid overdose cases (Kozlenkov et al.) showed an
overlap of 129 genes. g Gene ontology analysis for OUD-associated 5mC genes.
h Gene ontology analysis for OUD-associated 5hmC genes. Enrichment analyses
were calculated using Fisher exact tests.
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deposited datasets in the FUMAGWAS. No GWAS enrichment was found
for differential 5mC genes. However, differential 5hmC genes showed
enrichment for skeletal domain, primarily related to height and
movement structure (adj. p value range: 4.25E-12 to 1.86E-09; Supple-
mentary Data 14, Supplementary Fig. 6A). We also observed GWAS
enrichment in the psychiatric domain, including hyperkinetic dis-
orders, pervasive developmental disorders, bipolar affective disorder,
sleep functions, temperament and personality functions, and schizo-
phrenia at the subdomain level (adj. p value range: 5.03e-7 to 0.044).
Additionally, we tested the OUD GWAS enrichment of the differential
5mC and 5hmC genes using data from a recent OUD GWAS in indivi-
duals of African and EuropeanAmerican ancestry27. For 5mC, we found
five overlapping genes (SupplementaryData 8), butwedidnot observe
a significant enrichment (odds ratio = 1.4371, p value = 0.2758). How-
ever, for the differential 5hmC genes, we observed a significant
enrichment (odds ratio = 1.8757, p value = 0.0028) with 27 overlapped
genes (Supplementary Data 8).

GWAS enrichment analysiswas also performed for all 14 identified
OUD-associated co-methylation modules (Supplementary Data 15,
Supplementary Fig. 6B). We observed a similar enrichment pattern to
the differential 5hmC CpG sites, with a higher enrichment of sites
associated with the skeletal domain (adj. p value range: 2.96E-30 to
0.018). Additionally, for the 5hmC OUD-associated modules navajo-
white3, orange4, thistle1, and rosybrown1, as well as the 5mC OUD-
associated module lightpink2, we detected enrichment of genes rela-
ted to the cognitive function domain (adj. p value range: 0.00090 to
0.046). Furthermore, both the 5mC and 5hmC OUD-associated mod-
ules showed enrichment in the psychiatric domain, including various
subchapter levels such as sleep functions, depressive episode, schi-
zophrenia, bipolar affective disorder, temperament and personality
functions, recurrent depressive disorder, failure of genital response,
hyperkinetic disorders, mental and behavioral disorders due to use of
tobacco, and mental and behavioral disorders due to use of alcohol
(adj. p value range: 2.83E-19 to 0.047).

Bulk OFC gene expression analyses
A differential gene expression (DEG) analysis was performed on 38
bulk tissue samples (OUD= 12, non-OUD= 26), using the same samples
as in the 5mC/5hmC analyses. After Bonferroni correction, only one
gene, Hemoglobin Subunit Beta (HBB), showed differential expression

in association with OUD (p value = 1.58E-06, Supplementary Data 16,
Fig. 6a). We also conducted a correlation analysis between bulk gene
expression and neuronal-specific 5mC/5hmC levels to explore the
effect of these epigenetic marks on gene regulation. We identified 64
differential 5mC CpGs (Supplementary Data 17) and 257 differential
5hmC CpGs (Supplementary Data 18) that were correlated with gene
expression levels. Notably, the two genes with the highest correlation
between differential 5mC/5hmC and gene expression were the long
non-coding RNA LINC01002 and TMIGD3.

Discussion
This study represents a comprehensive parallel investigation of neu-
ronal 5mC and 5hmC in the context of OUD in the human brain. Our
main findings suggest an important regulatory role of 5hmC inOUD, as
evidenced by a higher number of differential CpGs and OUD-
correlated modules identified, along with a stronger concordance
with gene expression patterns. The dysregulated 5mC and 5hmCCpGs
and modules showed enrichment for neuronal function and develop-
ment and exhibited nominal associations with opioid signaling.
Moreover, the OUD-associated 5hmC marks showed enrichment for
the G protein signaling pathway, Wnt signaling, and psychiatric
domains. The drug interaction analysis revealed opioid interactions
with one gene with differential 5mC and seven genes with differential
5hmC, including RXN1, GRIN1, and CBFB. Additionally, we identified
HBB as a differentially expressed gene in OUD and observed correla-
tions between 5mC/5hmCandgene expressionpatterns, indicating the
role of these epigenetic marks on gene regulation.

Genome-wide differential CpG analysis identified 397 CpGs for
5mC and 1740 CpGs for 5hmC associated with OUD. Our 5mC and
5hmC findings showed overlap with other recently published 5mC
studies of opioid-related traits. In the human postmortem brain, we
observed a replication in a previous study assessing 5mC in the post-
mortem OFC of individuals that experienced heroin abuse and died
from overdose12, in which 327 genes overlapped (127 with 5mC; Sup-
plementary Data 6). When considering recent 5mC studies in the
dorsolateral prefrontal cortex of opioid-related traits13,14, we identified
two overlapped genes (SMARCA4; JUN) identified as potential tran-
scriptional regulators in a multi-omics study of OUD in postmortem
brain tissue14. Expanding to a multi-tissue comparison, we observed
overlap between our 5mC and 5hmC annotated genes in studies
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evaluating placenta23,24, saliva22, and blood25. Most of the convergence
was observed with 5mC studies in the placenta evaluating neonatal
opioid withdrawal syndrome23,24. When examining OPRM1, one of the
most reported associated genes in the opioid literature, we found that
this gene was identified in our 5mC co-methylation analysis, specifi-
cally in the OUD-associated lightpink2 module. Taken together, our
findings are consistent with the literature identifying previously
reported associations, but also potentially unknown ones, that may
play an important regulatory role in OUD in the human brain.

When evaluating the enrichment of the differential 5mC and
5hmC genes, only 5hmC showed significant enrichment after multiple
testing corrections in several pathways, some of which have been
previously implicated with OUD, including Wnt signaling28 and

G-protein signaling. Morphine and other opioids are known to activate
μ-opioid G protein-coupled receptors to elicit tolerance and
dependence29. We also observed nominal enrichment in both 5mC and
5hmC for opioid-related pathways: 5mC CpGs were enriched in the
opioid proenkephalin pathway and opioid proopiomelanocortin
pathway and 5hmC CpGs in opioid signaling. Moreover, the GWAS
enrichment analysis of 5hmC differential genes identified enrichment
for an OUD GWAS27.

For the co-methylation analysis, we observed the enrichment of
several pathways previously associated with opioids, including Reac-
tome pathway Pre-NOTCH Transcription and Translation, Wnt signal-
ing pathway, inhibition of voltage-gated Ca2+ channels via inhibition
of G protein-gated potassium channels, class B/2 (secretin family
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receptor), and insulin receptor signaling cascade. NOTCH signaling
has been implicated in the adaptation to chronic morphine exposure
and proposed as a potential target for pain management30. Voltage-
gated Ca2+ channels have been involved in the release of pain

neurotransmitters31. Wnt signaling pathway was enriched in the dif-
ferential 5mC analysis and has been linked to opioid-related with-
drawal symptoms in mice28. Class B/2 (secretin family receptor) was
also identified in a co-expression analysis of maternal exposure to

EGFRFHL2

GTPBP4

BYSL

DDX56

CKAP2

TTK

ASPM

CENPF

PRC1

HMMR

HNRNPF

HNRNPH1
HNRNPL

ALYREF

PSMA3

GNB2L1

RPL31

RPS21

RPL24RPS16

RPL19

RPSA

RPL21

RPLP2

Navajowhite3 Thistle1

FHL2

EGFR
ACTR2

ARPC1B

RACGAP1

CCNB1

TACC3

ASPM

EXO1

DIMT1

BYSL

HNRNPL

PTBP1

U2AF2

TNNC2 PDLIM7RPL5

UBA52

RPS7
RPL22

CCT2

CCT6A

ACTR2ARPC4

JDP2

FOS

PSMD1
PSMD11

RPL10A

RPS5

RPL7A ASF1B

CDT1

CCNA2

CDC20

MCM6

PLK1

Wheat1

Turquoise1

ELAVL1

PTBP1

HSP90B1

PDIA4

HNRNPA0

PTBP1

TPI1GPI

RPS18

RPL37

PSMC1

RPL18A
MCM2MCM7

Ghostwhite

NACA

RPL13

RPLP0

RPL8

BMS1

RRP1

DDX55
DDX31

HNRNPA2B1

PTBP1

SRSF3

RBM14

ERH

SSB

Turquoise3

Rosybrown1

NDUFV1

NDUFS1

CDK1 MCM4

TOP2A

DSCC1

CDC45

RFC4

SYNCRIP
ELAVL1

TARDBP

CIRH1A

BOP1

TSR1

DDX27

NDUFAB1

NDUFB10

NDUFA8

PSMB4
PSMA7

CCT2

PSMA3

CCT5

PSMD14

RPL21

RPS16
RPLP2

RPL18A

EIF3B

RPS17 RPL10A

RPL13A

RPS26

EEF2

RPS11

Orange4

BIRC5NUSAP1

CDC6
FBXO5

ILF3

SRSF7

HNRNPF
TAF15

HNRNPL

U2AF2

PTEN
SPRTN

PKP3
PPL

S100A10

EGFR

FHL2

EPRS

POLG2

CYC1 COX5B

MCM7 POLA2

RPS19

EEF1G

RPS14 RPS11

PSMA5

PSMB4

SNRNP70

HNRNPF
ILF2

HNRNPA0

HNRNPA2B1

PTBP1

Aquamarine1

Regulation of biological process

Nitrogen compound metabolic process

Response to stimulus

Neurogenesis

Neuron development

Regulation of neurogenesis

Cell differentiation

Gene expression

Regulation of cell communication

Fig. 5 | Network of 5mC- and 5hmC-significant modules associated with OUD.
The figure shows the PPI analyses for 9 modules detected with a significant asso-
ciation with OUD in 5mC (wheat1, ghostwhite, turquoise3, aquamarine1, tur-
quoise1) and 5hmC (navajowhite3, orange4, rosybrown1, thistle1). The colors

represent a different biological process in which the modules were enriched. In
5hmCOUD-associatedmodules, we observed a higher number of annotated genes
involved in neurogenesis and regulation of neurogenesis.

Article https://doi.org/10.1038/s41467-023-40285-y

Nature Communications |         (2023) 14:4544 8



oxycodone32. Chronic exposure to opioid drugs, such as morphine, is
known to inhibit the insulin signaling pathway, leading to alterations in
glucose homeostasis, and an increased risk of developing insulin
resistance and associated comorbidities33,34. The PPI analysis for the
modules showed evidence of co-expression in genes involved in neu-
rogenesis pathways,which corroborates previous studies showing that
opioids decrease neurogenesis by inhibiting cell division, mainly
through blocking the S phase35. It also revealed an interaction with one
differential 5hmC annotated gene, CCT2, present in the navajowhite3
and rosybrown1modules, while no annotated genes were observed for
5mC. CCT2 is a chaperoninwith a role in hypoxia in colorectal cancer36.
Our findings unveil epigenetically dysregulated gene networks in OUD
involving the Wnt, immune, and pain signaling pathways, as well as
neurogenesis.

Our gene-drug interaction analyses with opioids revealed a higher
number of associations with differential 5hmC marks, suggesting a
more significant functional role of 5hmC in OUD. Evaluating the indi-
vidualswhodied fromdrug intoxication,weobserved in the gene-drug
interaction analysis that only one of the opioids (fentanyl) was detec-
ted at the time of death. However, further investigation is needed to
clarify whether the effects of gene methylation/hydroxymethylation
are associated with drug intoxication. CALY was annotated in the 5mC
differential genes, and it has been previously associated with smoking
initiation in Chinese and American populations37. In the 5hmC differ-
ential genes, we identified the gene codingGRIN1, known to regulateμ-
Opioid activity;38 SOD2, previously described as associated with the
risk of heroin dependence in an Iranian population (n = 1241);39 and
HCN1, in which the protein is shown to be required for the activation of
the μ opioid receptor40. We also identified opioid interactions with the
gene that codes for RUNX1, known to bind in the promoter region of

the ADRA1A gene. Hypermethylation in the ADRA1A gene has been
previously associated with OUD in a candidate gene study in the Han
Chinese population41.HMOX2,MPO, andCBFB, also identified, have not
been previously described in OUD. Lofexidine and tizanidine, drugs
previously used for the treatment ofOUD symptoms,were observed in
5hmC annotated genes with described interactions with ADRA2A, a
gene involved in the release of neurotransmitters. Our results
demonstrate that epigeneticmarks,mostly 5hmC, functionally interact
with opioids and pinpoint promising targets for OUD treatment.

To better understand the impact of 5mC and 5hmC alterations on
gene expression, we conducted a DEG analysis followed by integration
with 5mC and 5hmC data. Differential analysis of RNA sequencing data
from bulk tissue identified the HBB gene as associated with OUD. HBB
has been reported in neurodegenerative neurons associated with
Parkinson’s42, and Alzheimer’s43. Neurodegeneration has been
observed in opioid use studies44,45. Further, hemoglobin acts as an
oxygen-storagemolecule in hypoxia, which is suggested to be induced
by opioids in rodents46, indicating a potential increase in brain hypoxia
in individuals with OUD. Our findings suggest that HBB, an important
gene involved in the regulation of oxygen homeostasis, is also asso-
ciated with OUD. However, future studies are needed to disentangle
this association. The correlationanalysis between 5mC/5hmCandgene
expression levels detected an overlap of 64 differential CpG sites for
5mCand 257 for 5hmC.Additionally, a higher correlationwasobserved
for 5hmC CpGs in the TMIGD3 (Transmembrane and Immunoglobulin
Domain Containing 3) gene. TMIGD3 can act as a repressor of NF-κB47,
an essential protein that regulates inflammation and is altered in
individuals with OUD48,49. These results suggest a higher impact of
5hmC than 5mC on gene regulation in OUD.

This study has several strengths. In this study, we assess 5hmC in
parallel with 5mC in OUD. Most studies have used bulk tissue, where
molecular changes may be obscured, as also evident in our bulk gene
expression results. We performed FANS-sorted neuronal nuclei,
allowing us to conduct cell type-specific mapping of 5mC/5hmC in the
human OFC. Leveraging RRoxBS resulted in three times more CpG
coverage than the latest and most used microarray technology (Infi-
nium MethylationEPIC Array). We also conducted RNA sequencing
analysis for the same subjects and integrated it with 5mC and 5hmC
data to evaluate the effects of these epigenetic modifications on gene
transcription. 5mC and 5hmC patterns were assessed using two ana-
lytical approaches: CpG site and co-methylation analysis, enabling the
identification of associations not only at the single-CpG loci level but
also within epigenetically regulated gene networks. We also integrated
our epigenetic findings with GWAS data, showing an association of
OUD-associated 5hmC genes and modules with psychiatric disorders,
including traits related to substance use disorders.

The study is limited by the small sample size, but it is comparable
to similar work in the humanpostmortem brain. Notably, our cohort is
heterogeneous in terms of comorbidities and drug intoxication at the
time of death. For example, all individuals with OUD were comorbid
with PTSD. We addressed this issue by adding PTSD as a covariate in
the model (PTSD is present in 50% of the non-OUD group) and repli-
cated previous work assessing 5mC in the OFC of individuals that
experienced heroin abuse12. Furthermore, some of the samples from
the non-OUDgroupwerepositive for opioid intoxication at the timeof
death. RNA sequencing data were conducted in bulk tissue, whichmay
impede our ability to identify OUD DEGs and directly evaluate the
impact of differential 5mC/5hmC on gene expression in a cell type-
specific manner. Another limitation is the sole inclusion of males,
mostly of European ancestry. Future work will expand to female sub-
jects and other ancestries to identify potential sex- and population-
specific effects. Further, additional comorbidities (e.g., MDD and other
SUDs) should be also examined. This study evaluated 5mC and 5hmC
at CpG sites; future studies should evaluate the role of 5mC and 5hmC
in non-CpG sites in the context of OUD, which have been suggested to
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play a crucial role in the development of neuropsychiatric diseases50.
Given the enrichment of differential 5mC and 5hmC genes and mod-
ules in GWAS studies, future work should evaluate potential methyla-
tion/hydroxymethylation quantitative trait loci to assess whether
differential 5mC/5hmC is influenced by genetic background. Although
the enrichment of GWAS signals may be indicative of potential causal
effects of the OUD-associated 5mC/5hmC marks, research in model
organisms (e.g., animalmodels, human induced pluripotent stemcells,
brain organoids) could help confirm whether the identified marks are
the cause or consequence of OUD.

In summary, our findings identified 5mC and 5hmC dysregulation
in OFC neurons from individuals with OUD. The results suggest that
5hmCplays an important role in OUD, as shown by themagnitude and
functionality of differential marks and networks, as well as its potential
impact on gene expression patterns. We have identified clinically
relevant pathways, such as NOTCH signaling processes, Wnt signaling,
andGprotein signaling pathways, aswell as enrichment for psychiatric
domains, including substance use disorders. Lastly, multiple gene-
drug interactions between differential 5mC/5hmC and opioids were
identified, revealing targets of well-known and potential OUD treat-
ments. Our study supports the important role of 5hmC on OUD and
demonstrates a multi-omics dysregulation of OUD in the human OFC,
identifying well-known and potential targets that may inform prog-
nostic and treatment efforts in the future.

Methods
Sample description
Postmortem human brain specimens were obtained from the National
Post-Traumatic Stress Disorder (PTSD) Brain Bank51 (NPBB), a brain
tissue repository at the U.S. Department of Veterans Affairs (VA).
Consent was obtained next-of-kin. In addition, brain tissue samples
were collected from the orbitofrontal cortex (OFC; BrodmannArea 11).
The cause of death in the non-OUD group included natural causes
(n = 13, 34.21%), suicide (n = 5, 13.16%), accident causes (n = 7, 18.42%)
mainly by body injuries and gunshots, and alcohol and drug intoxica-
tion (n = 3, 7.89%, including two opioid-related intoxications). None of
the individuals in the non-OUD group had a history of OUD diagnosis.
All individuals in the OUD group were diagnosed with OUD and died
from drug and/or alcohol intoxication, including, but not limited to,
opioids. Table 1 presents the demographics and clinical characteristics
of the study cohort. Diagnoses were conducted using two approaches:
an antemortem assessment protocol for antemortem donors and a
postmortem diagnostic assessment for postmortem donors, as
described by Friedman and colleagues51. This study was approved by
the Institutional Review Board Committees of the Department of
Veterans Affairs and Yale School of Medicine.

Fluorescence-activated nuclei sorting
For each specimen, OFC tissue (100–200mg) was lysed in homo-
genization buffer (0.1% Triton, 0.32M sucrose, 5mM CaCl2, 3mM
MgCl2, 10mM Tris-HCl) on ice in a glass Dounce homogenizer. The
homogenized sampleswere then filtered through a 40 µMcell strainer,
loaded onto a 1.8M sucrose cushion, and ultracentrifuged (SW-41
rotor, Beckman Coulter, Brea, California, USA) at 24,000 rpm for
1 hour at 4 °C. Nuclei were resuspended in 0.5% bovine serum albumin
and stained for 30min at 4 °C with Anti-NeuN-PE (Millipore-Sigma,
FCMAB317PE). Before sorting, 4′,6-diamidino-2-phenylindole (DAPI)
was added as a nuclei label, and samples were again filtered through a
40 µm strainer. Fluorescence-activated nuclear sorting (FANS) proce-
dureswerecarried out at the Icahn School ofMedicine FlowCytometry
CoRE using a BD 5-laser cell sorting system.

DNA extraction
Between 0.5–1MNeuN+ nuclei were collected via FANS and processed
for DNA extraction. First, sorted nuclei were pelleted by centrifugation

at 1500 × g for 15min at4 °C.Next, the supernatantwas aspirateddown
to 500 µL and 50 µL proteinase K (Cat. #69504, Qiagen, Valencia, CA)
and 20mg/mL RNAse A (Cat. #12091021; Thermo-Fischer, Waltham,
MA) were added. The samples were processed following the manu-
facturer’s protocol of the DNeasy Blood and Tissue Kit (Cat. #69504,
Qiagen). Finally, the eluted samples were concentrated to a final
volume of 20 µL using the Zymo Genomic DNA Clean and
Concentrator-10 kit (Cat. #D4010, Zymo Inc., Irving CA) and stored
at −80 °C.

Reduced representation oxidative bisulfite sequencing
(RRoxBS)
RRoxBS was carried out at the Weill Cornell Epigenomics Core (New
York, NY). Briefly, two libraries were prepared from 400ng of DNA to
analyze methylation and hydroxymethylation at CpG dinucleotides in
each subject using the NuGEN Ovation RRoxBS Methyl-Seq library
preparation kit. One library underwent bisulfite treatment to convert
unmethylated cytosines to uracils (BS), while the second library
underwent oxidation prior to bisulfite sequencing (oxBS) to convert
both unmethylated and hydroxymethylated cytosines to uracils. The
prepared libraries were multiplexed and pooled for single-end
1 × 50bp sequencing to a mean depth of 42.7 ± 1.5 (µ ± SEM) million
reads per library on an S4 flow cell using the Illumina
NovaSeq6000 system.

Bioinformatic analysis
Raw data were processed by the Weill Cornell Epigenomics Core (New
York, NY). The Bismark bisulfite read mapper52 was used to map
sequencing reads to the CRCh38 human genome and detect bisulfite
treatment of converted and unconverted cytosines. Two libraries were
sequenced for each sample: 1. Bisulfite sequencing (BS), which con-
verts unmethylated andunhydroxymethylated cytosines into thymine;
and 2. Oxidative BS (oxBS), which allows the conversion of hydro-
xymethylated cytosines into thymine. Beta values (% unconverted
cytosines) are calculated for 5hmC as the difference in methylation at
each CpG site between BS and oxBS libraries (e.g., if β = 100% in the BS
library and β5mC = 60% in the oxBS library, then 5hmC=40%). Analyzed
CpGs were filtered for a minimum of 10× coverage in all subjects and
were normalized for coverage variability.

The annotation of CpGs overlapping with neuronal active
enhancer regions (H3K27ac) was performed using previously pub-
lished ChIP-seq datasets53 generated from glutamatergic and
GABAergic cell types of the human orbitofrontal cortex53. In addition,
non-neuronal enhancers were taken from Nott et al.54. Cell type-
specific gene markers used for enrichment analysis were derived from
McKenzie et al.55. Regions with total differential methylation
(tmC=5mC+5hmC) between NeuN+ and NeuN− populations (>50%
difference in tmC) of the human prefrontal cortex fromRizzardi et al.20

were utilized for comparison with our NeuN+ dataset.

Differential analysis of methylation and hydroxymethylation
Differential analysis of 5mC and 5hmC was performed at single-CpG
resolution with the methylkit R package56. Logistic regression with
correction for overdispersion and chi-squared significance testing was
applied, and the analysis was benchmarked to achieve the best balance
of sensitivity and specificity57. P values were calculated using the
logistic regression and adjusted to q value using Sliding Linear Model
(SLIM)58, which incorporates simulated data to account for data
structure and hypothesis. Q value thresholds were applied at 0.05.
Bonferroni-adjusted findings are also reported in Supplementary
Data 1 and 2, using a more stringent threshold (5mC: p = 2.71E-8;
5hmC: p = 3.02E-8) to assess the results. Additionally, we evaluated
these epigenetic marks summed over neuronal H3K27ac regions with
≥3 CpGs at ≥10× coverage. Age, ancestry, postmortem interval (PMI),
cigarette smoking, and PTSD were included as a priori covariates. The
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5mC and 5hmC analyses were performed separately, and significance
was set at false discovery rate (FDR)-adjusted p value < 0.05.

To investigate functional gene sets enriched for differential CpGs,
gene ontology (GO) analysis was conducted using the methylGSA
Bioconductor package59. Gene lists from the NCATS BioPlanet, Gene
OntologyConsortium, andKyoto Encyclopedia ofGenes andGenomes
(KEGG) databases were analyzed. Furthermore, enrichment of differ-
entially 5mC and 5hmCmarkers for genomic regions and featureswere
assessed using one-sided Fisher’s exact tests.

Differential 5mC and 5hmC annotation
Annotation of the closest Ensembl transcript ID of the differential sites
was performed using the Genomation60 R package. The annotation
considered any distance between the site and the transcription start
site (TSS). Gene symbols were annotated using the biomaRt61 R pack-
age. In addition, a complimentary annotation was conducted using the
UCSC genome browser62 to identify the gene region location. A
threshold of 1500bp63was applied (“Position to theNearest gene ID” in
Supplementary Data 1 and 2).

Co-methylation analysis
Co-methylation analysis was conducted separately for 5mC and 5hmC
using the WGCNA R package64. Quality control was performed to
remove sites with missing values. In the co-methylation analysis,
1,835,925 sites were retained for 5mC and 1,638,378 sites for
5hmC.Age, ancestry, PMI, PTSD, and smoking status were included as
covariates using the empiricalBayesLM function from the WGCNA
package. The blockwiseModules function was used for module
detection, with a soft-threshold power of 5 and TOMType set as signed
for both analyses. The eigengene calculated for eachmodule was used
for correlation analysis with OUD. Correlation with an absolute value
greater than |±0.4| and p value < 0.05 were considered significant.
Enrichment analysis was performed using AmiGO65, considering Gene
Ontology (GO) for biological processes and Reactome pathways.

The nearest gene IDs were subjected to protein-protein interac-
tion (PPI) using STRING66. Genes from the top 20 biological processes
GO terms, after PPI analysis, were selected to reduce the number of
nodes. For the thistle1 module, genes from the top 10 biological pro-
cesses GO termswere used. The parameters were set to show evidence
based on co-expression data, with a minimum required interaction
score of 0.9.

RNA sequencing
RNA was extracted from bulk tissue medial OFC (BA 11) for all
samples67. Briefly, 20mg of tissue was isolated using the RNeasy Mini
Kit (Qiagen) with genomic DNA elimination. RNA integrity and con-
centration were assessed using a Bioanalyzer (Agilent) and rRNA was
depleted using Ribo-Zero Gold Kit (Illumina). Libraries were con-
structed using the SMARTer® Stranded RNA-seq Kit (Takara Bio) and
sequenced at 75 bp paired-end on an Illumina HiSeq4000. RIN values
for the non-OUD and OUD groups were similar (mean non-
OUD= 7.64 ± 1.14 and mean OUD= 8.38 ± 0.50).

Differential gene expression
FASTQ files were mapped using STAR (v.2.5.3a) and counted using
featureCounts (v.1.5.3). Further, it was annotated using the GTF file
downloaded from ENSEMBL (release 79, GRCh38) and the biomaRt
package in R. Differentially expressed genes (DEGs) were calculated
using theDESeq2 package in R68. The statistical framework enabled the
calculation of log2 fold-change values (log2FC) for each gene in the
PTSD +OUD and PTSD +CON raw count data. This model considered
the following covariates to measure the association with opioid use:
age, RNA integrity number (RIN), PTSD diagnosis, and smoking status.
Genes with zero expression were dropped. Differentially expressed

genes (DEGs) were defined using an FDR-adjusted p value < 0.05
(Benjamini–Hochberg).

Correlation analysis between gene expression and 5mC/5hmC
The correlation between gene expression and 5mC/5hmC data was
calculated using the MatrixEQTL package69. Pearson correlation ana-
lysis was performed in cis and trans. Cis was defined using the default
parameters from the Matrix_eQTL_main function, that is, within the
threshold of 1e-6 bp from the starting or ending of the annotated gene,
while trans included everything outside that threshold. The raw count
data from the RNA-seq analysis was normalized using variance stabi-
lization transformation. Covariates included age, ancestry, RIN, PMI,
PTSD, smoking status, and three surrogate variables. Significance was
defined as an FDR-adjusted p value < 0.05.

GWAS enrichment analysis
GWAS enrichment analysis was conducted to test the probability of
overlapping genes between the 5mC/5hmC analysis and published
GWAS findings. The analysis was performed using the FUMA online
website70, which applies a hypergeometric test for enrichment.
Ensembl IDs were transformed to Entrez IDs using David71 and sub-
mitted to FUMA’s GENE2Function web tool. Enrichment results were
merged with domains and traits reported by the GWAS Atlas using in-
house scripts. Additionally, GWAS enrichment specific to OUD was
conducted using data from a recently published GWAS in European
and African Populations27 For this, we used Fisher’s exact test and a
similar background to the Metascape platform (30,182 genes)70. Sig-
nificance was defined as FDR <0.05 in both approaches.

Drug interaction analysis
Drug interaction analysis was conducted for the annotated genes of
the differential 5mC and 5hmC CpGs using the Drug Gene Interaction
Database (DGIdb; https://www.dgidb.org)72. From the gene–drug
interactions identified, we further evaluated those in 15 opiates: apo-
morphine, codeine, diacetylmorphine, hydrocodone, methadone,
morphine, oxycodone, oxymorphone, tramadol, methadone, pro-
poxyphene, fentanyl, hydromorphone, heroin, and levorphanol. In
addition to opioids, we also evaluated other drugs that showed inter-
actions with the same annotated genes.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
We have published our repository at https://doi.org/10.5281/zenodo.
7942472 and our data73 at https://doi.org/10.5281/zenodo.7958290
(GEO: GSE235818). Source data are provided with this paper.

Code availability
The scripts used in the manuscript may be accessed on the mon-
talvoortizlabGitHub74 (https://github.com/montalvoortizlab/RRoxBS).
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