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Macrocyclizationof linearmolecules bydeep
learning to facilitate macrocyclic drug
candidates discovery

YanyanDiao1, Dandan Liu1, HuanGe1, RongrongZhang1, Kexin Jiang1, Runhui Bao1,
Xiaoqian Zhu1, Hongjie Bi1, Wenjie Liao1, Ziqi Chen1, Kai Zhang2, Rui Wang1,
Lili Zhu1, Zhenjiang Zhao1, Qiaoyu Hu2 & Honglin Li 1,2,3

Interest in macrocycles as potential therapeutic agents has increased rapidly.
Macrocyclization of bioactive acyclicmolecules provides a potential avenue to
yield novel chemical scaffolds, which can contribute to the improvement of
the biological activity and physicochemical properties of these molecules. In
this study, we propose a computational macrocyclization method based on
Transformer architecture (which we name Macformer). Leveraging deep
learning, Macformer explores the vast chemical space of macrocyclic analo-
gues of a given acyclic molecule by adding diverse linkers compatible with the
acyclic molecule. Macformer can efficiently learn the implicit relationships
between acyclic andmacrocyclic structures represented as SMILES strings and
generate plenty of macrocycles with chemical diversity and structural novelty.
In data augmentation scenarios using both internal ChEMBL and external ZINC
test datasets, Macformer display excellent performance and generalisability.
We showcase the utility ofMacformerwhen combinedwithmolecular docking
simulations and wet lab based experimental validation, by applying it to the
prospective design of macrocyclic JAK2 inhibitors.

Macrocycles, typically defined as cyclic small molecules or peptides
with ring structures consisting of 12 or more atoms, has emerged as
promising chemical scaffolds in the field of new drug discovery1,2.
The distinct physicochemical properties, including high molecular
weight and abundant hydrogen bond donors3, render this structural
class occupy a chemical space beyond Lipinski’s rule of five4. In
comparison to their linear analogs, macrocycles tend to adopt pre-
organized constrained conformations and establish extended con-
tacts with targets. Consequently, they have the potential to exhibit
enhanced binding affinities, improved selectivities or superior
pharmacological characteristics5,6. Macrocycles have been success-
fully used as potential therapeutic agents for various pharmaceutical
targets, such as kinases, proteases and G-protein-coupled receptors.
In particular, due to the distinctive features, macrocycles are

regarded as a privileged chemotype for targeting some challenging
proteins that are hardly tractable by traditional small molecule
drugs7, thus bridging the gap between small molecules and large
biologics. For instance, macrocycles predominate the marketed
inhibitors of hepatitis C virus NS3/4A, which possesses a shallow and
solvent-exposed groove that poses challenges for small molecule
binding8. The advantages of macrocycles have also been reported in
modulating protein-protein interactions with large, flat, and dynamic
surfaces9.

In addition to naturally occurring macrocycles, synthetic analogs
derived from principles of medicinal chemistry are another important
source of macrocyclic compounds10,11. Macrocyclic modification of
known acyclic active compounds is a straightforward and effective
strategy to obtain novel macrocyclic scaffolds bypassing intellectual
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property restrictions, and can achieve desired pharmacological
properties12. For instance, Lorlatinib, a FDA-approved macrocyclic
inhibitor targeting anaplastic lymphoma kinase, was derived from the
acyclic Crizotinib. Lorlatinib displayed improved kinase selectivity and
enhanced exposure to the central nervous system13. This demonstrates
how macrocyclic modification of known compounds can lead to the
development of new and improved drugs. Although there have been
more than 80 macrocyclic drugs approved for clinical use14, macro-
cycles are still sparsely exploited within drug design projects, partially
owing to their synthetic intractability and deficiency of efficient mac-
rocyclization approaches15.

Given a biologically active linear molecule as the starting point,
the reported successful rational design of macrocycles generally
involves two key steps. Firstly, there is the addition of macrocyclic
linkers that are compatible with the linear compound, resulting in the
formation of macrocycles. Secondly, the compatibility between the
macrocycles and the binding pocket of the target is evaluated. For the
second step, available research methods are relatively explicit, and
many simulation methods commonly used in drug design, such as
conformation optimization and molecular docking, can assist this
process. If we can generate abundant macrocycles with chemical
diversity by adding structurally diverse linkers in the first step, the
chance of obtaining novel macrocyclic candidates after subsequent
target-compound binding prediction will undoubtedly increase.
Nevertheless, the macrocyclization of linear compounds in the initial
stage is primarily driven by the empirical knowledge of the medicinal
chemists. While the final results are often presented, the detailed
procedures involved are often inadequately described in scientific lit-
erature. This opaque and non-standardized procedure is difficult for
inexperienced researchers to follow, and the empirical knowledge is
insufficient to cover the vast chemical space of themacrocyclic linkers.

Although rarely mentioned in publications, computational tools
have demonstrated successful applications in facilitating the macro-
cyclization process16,17. Wagner et al. 18 and Sindhikara et al. 19 utilized
geometrically constrained linker database searching and linker con-
nection strategy to generate macrocycles from acyclic ligands. In the
studies, a conformer ensemble of linker fragments were first con-
structed, from which the linkers were usually filtered by applying
geometric criteria, e.g., distance and angle compatibility between the
atoms to be connected, to form initial macrocycles using the three-
dimensional (3D) structure of the acyclic ligand. Using molecular
docking, MM/GBSA, and/or free-energy perturbation calculation in
combination to assess the interactions with the target, promising
candidates were identified from the generated macrocycles. However,
these methods can only enumerate pre-built linker libraries, without
the ability to derive new structurally novel linkers. Additionally, the
focus on local conformational matching of connected atoms may not
provide a comprehensive understanding of the overall macrocyclic
structure. Besides, these tools are not publicly available, which hinders
widespread use and collaboration. As concerns on the studies of
macrocyclic drug candidates have grown at a remarkable rate in both
industry and academic institutions, there is an urgent need to develop
practical computational tools to assist in the cyclization of linear
bioactive molecules.

Artificial intelligence, particularly deep learning technology, has
exhibited great potentials in various stages of drug discovery process,
including de novo molecule generation, scaffold hopping, structural
optimization, and activity prediction20–24. However, training neural
networks typically requires large amounts of data in order to achieve
high precision and generalization ability25. Hence, current applications
of deep learning in the field of drug development havemainly focused
on drug-like small molecules. To the best of our knowledge, the
implementation of macrocyclization for linear molecules by utilizing
deep learning algorithms remains an underexplored area. The under-
neath reasons are complicated, while the relatively small number of

macrocycles available for model training, rooted from their long-term
underexploited state, is probably the most relevant one.

Chemical molecules can be represented as Simplified Molecular
Input Line Entry System (SMILES) strings26, a chemical language
naturally suitable for sequence-based deep learning models. Different
SMILES representations of a same chemical structure have been used
as a data augmentation method to obtain generalizing models for
small-data regimes27–29. Herein, we propose a Transformer-based
model called Macformer for automated macrocyclization. Given a
linear compound represented as a SMILES string with two cyclization
site labels, Macformer aims to explore the vast chemical space of its
macrocyclic analogs by leveraging the benefits of deep generative
models. Unlike the computational cyclization methods mentioned
above, Macformer tackles themacrocyclic skeleton design problem as
amachine translation task throughhandling SMILES sequences end-to-
end. By employing a data augmentation strategy with randomized
SMILES strings, Macformer efficiently learns the implicit mapping
relationships between the SMILES syntax of acyclic and macrocyclic
structures. It can automatically fill in the missing linker of the input
acyclic fragment to generate corresponding macrocyclic scaffolds
with chemical diversity and structural novelty. We applied Macformer
to the macrocyclization of Fedratinib, a FDA-approved JAK2 inhibitor.
As macrocycles were inferred without the constraints of specific tar-
gets inMacformer, themacrocyclic analogs of Fedratinib generated by
Macformer were subjected to molecular docking calculations. Based
on the docking poses in the ATPbinding site of JAK2 and an estimation
of synthetic accessibility, three macrocycles were ultimately selected
for synthesis and testing throughboth in vitro and in vivo experiments.
The representative compound 3 has improved kinase selectivity and
pharmacokinetic properties than Fedratinib. Notably, it displays
comparable in vivo efficacy to Fedratinib at a lower dose. These results
demonstrate the great potential of Macformer in the discovery of
macrocyclic drug candidates.

Results
Model overview
Starting from an acyclic bioactive molecule, sampling broad chemical
space of macrocyclic linkers would efficiently improve the hit prob-
ability of macrocyclic lead compounds. The schematic representation
of the Macformer framework is illustrated in Fig. 1. It is a deep gen-
erative model designed to generate diverse and novel macrocyclic
analogs of the given acyclic molecules. Due to the absence of explicit
targets for many bioactive macrocycles, the target information is not
involved in Macformer.

We collected 18357 bioactive macrocycles from ChEMBL
database30, and the filter conditions are that the number of macro
ringwith 12 ormore atoms is inferior to 1 and the SMILES strings length
is inferior to 200. Tomimic the realmacrocyclization process, through
traversing every combination of two single bonds on the macro ring
and subsequent linker filtration, 237728 unique acyclic-macrocyclic
SMILES pairswere yielded formodel training and evaluation (seemore
details in Data Preparation section of Methods part). The data pro-
cessing procedure can be regarded as the reverse process of macro-
cyclization (Fig. 1a) which dramatically increased the number of data
available for deep learning. The acyclic SMILES strings, containing
dummy atoms (*) to label the cyclization site, represent the linear
compounds to bemacrocyclized and will be fed to the neural network
as source sequences. The macrocyclic SMILES strings are the target
sequences expected to be output by the model. Consequently, the
macrocyclization problem is tailored as a chemical language-based
sentence completion task, where the missing linkers of the input
acyclic compounds are added and the intact macrocyclic compounds
aregenerated.Ourmethodproposedhere is basedon theTransformer
architecture31, which is the state-of-the-art neural network model to
deal with sequential data. Different from previously popular recurrent
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neural networks that process data sequentially in a token by token
manner, Transformer adopts attention mechanisms and positional
embeddings for holistic processing of input sequential data (Fig. 1c).
The attention mechanism enables the model to capture contextual
information for tokens at any position, allowing for the identification
of long-rangedependencies between tokens in a sequence. Thismeans
that all tokens in the source acyclic SMILES strings, albeit with varing
attention weights, contribute to the generation of the macrocyclic
SMILES strings in Macformer. Benefiting from the global information
modeling method over the input acyclic SMILES sequences, Macfor-
mer is anticipated to infer more suitable macrocyclic linkers compa-
tible with the given acyclic molecules and generate novel macrocycles
closer to the chemical space of the bioactive macrocycles used as the
training dataset. The details of our model are fully described in Mac-
former section of Methods part.

Canonical SMILESnotation, a string representationunique to each
molecule, is widely used due to its simplicity. However, recent studies
have shown that data augmentation by using a batch of chemically
identical but syntactically different randomized SMILES during

training and inference can greatly modify the performance of deep
learning methods28,32. In order to improve the quality of our model,
data augmentation was performed for both source and target
sequences of the training dataset. Notably, the input acyclic scaffolds
are substructures of the output macrocycles. If we feed this prior
knowledge to the model in the form of aligned SMILES strings, it will
help themodel understand the relationship between input and output
sequences. During this process, randomized SMILES of the acyclic
scaffolds were firstly generated by randomly selecting the starting
atom and the direction of the molecular graph enumeration. Subse-
quently, substructure searching were performed and the atom num-
bers of the macrocycles were re-ordered according to that of the
acyclic substructure. The randomized SMILES of themacrocycles were
finally acquired based on the new atom numbers (Fig. 1b). Such a
substructure-aligned strategy minimizes the gap between the input
andoutput sequences, favoring themodel to paymoreattention to the
inference of macrocyclic linker.

Four models with different augmentation levels (none, ×2, ×5,
and ×10) were trained. The non-augmented scenario contains only

`
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Fig. 1 | Overviewof theworkflowofMacformer. aData preprocessing protocol to
generate acyclic-macrocyclic SMILES pairs for model training and evaluation, and
the “N_7” token indicates the number of heavy atoms on the shortest path of the
linker. b Augmentation of acyclic-macrocyclic pairs using randomized SMILES in a

substructure-alignedmanner.cThemodel networkarchitectureofMacformer. The
scaled-dot attention layer takes threematrices as input: thematrixQ packedwith a
set of queries, the matrix K with keys, and the matrix V with values.
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canonical SMILES strings. In addition to one copy of canonical
SMILES, the n-fold augmented scenarios contain n−1 chemically
equivalent but randomized SMILES. All models converge very
well after running for 50,000 steps (Supplementary Fig. 1). During
the evaluation process of the model using test datasets, each
experiment was performed ten times using various SMILES strings.
This approach allows us to assess the predictive ability of the trained
models across diverse SMILES representations. Beam search
algorithm33 was applied to infer multiple candidate sequences on the
test datasets, and top 10 predictions were generated for each input
sequence.

To compare our model with previously reported non-deep
learning computational approaches for automatic macrocyclization,
we propose a pipeline to construct macrocycles from 3D structures of
linear compounds through linker database searching (termed as
MacLS, Supplementary Fig. 2), following the works of refs. 18,19. In
MacLS, the linkers were selected based on the compatibility of
attachment vectors between the acyclic compound and the linker. For
an acyclic molecule or a linker, an attachment vector is the bond
between the atom at the cyclization site and the leaving atom that will
not be included in the generated macrocycles. Likewise, the target
information is not considered in MacLS for a fair comparison to
Macformer. The linkers of the ChEMBL training dataset were used and
a conformer ensemble containing 163,924 structures was produced.
For internal ChEMBL and external ZINC test datasets, the conforma-
tions of the linear chemical structures were obtained in two ways. The
first approach involves generating conformations from scratch based
on the SMILES strings of the acyclic structures (termed asMacLS_self).
The second approach involves extracting the conformations from the
low-energy 3D structures of corresponding target macrocycles
(termed asMacLS_extra). The linker databasewasfirst enumerated and
filtered through the distance and dihedral angle constraints of atoms
on the attachment vectors. By connecting the remained linkers to the
acyclic skeleton, the macrocyclic compounds were acquired, ranked
by the root-mean-square deviation (RMSD) values between the atoms
of the attachment vectors in the acyclic fragments and that in
the linkers. Top 10 macrocycles were reserved for each acyclic struc-
ture in internal ChEMBL and external ZINC test datasets for a fair
comparison.

Evaluation on internal ChEMBL test dataset
Given an acyclic molecule, the purposes of Macformer and MacLS are
to generate diverse and novel macrocyclic analogs before further
evaluation of binding potential against the target of interest. For the
specific task, the assessment criteria were not clearly indicated in
previously studies. In this work, we applied the widely used metrics
from deep generative models to evaluate the performance of our
method. These metrics include the reconstruction of target molecule
and the assessment of chemical validity, novelty, and uniqueness of
the generated compounds. The novelty of infered linkers and the

macrocyclization ratio of the generated compounds were also calcu-
lated as additional metrics (see more details in Model Evaluation
Metrics section of Methods part).

The performances of Macformer and the non-deep learning
approachMacLS on ChEMBL test dataset are summarized in Table 1. In
comparison to the baseline model without augmentation, amplifying
the training dataset by two-fold brought about better performance in
terms of allmetrics, especially for recovery (96.09% vs 54.85%), validity
(80.34%vs 66.74%), and linker novelty (Noveltylinker, 58.91% vs 40.56%).
This indicates that the model trained with substructure-aligned ran-
domized SMILES is advantageous not only for reconstructing macro-
cyclic skeletons but also for learning the fundamental syntax of the
chemical language. Consequently, the model is capable of generating
chemically meaningful SMILES strings with structurally diversity and
novelty. However, models trained with five- or ten-fold data augmen-
tations did not result in further significant improvement of perfor-
mance on ChEMBL test dataset. This phenomenon is accordant to the
conclusion of a previous study that an optimal degree of data aug-
mentation is important for a given learning task27. It is worth noting
that all models could achieve over 95% macrocyclization ratio, illus-
trating the ability of Macformer for the purpose of generating mac-
rocyclic compounds. The overall uniqueness values are lower than
66%, whichmay be attributed to the redundancy of target compounds
in the ChEMBL test dataset. Among the 23771 acyclic-macrocyclic
SMILES pairs in the test dataset, there are 10,222 unique macrocycles,
resulting in an external uniqueness rate of 43%. In spite of this, the
macrocyclic compounds generated byMacformer exhibit significantly
higher uniqueness compared to the original test dataset. The results
confirm the capability ofMacformer in creating diverse and previously
unseen macrocyclic structures that go beyond the available ChEMBL
macrocycle dataset.

For assessment of the MacLS method, the conformations of the
acyclic compounds were first constructed directly from their SMILES
notations. In this scenario, MacLS_self only generate 17.05% valid
macrocycles. The very low validity is principally attributed to the linear
extended conformations of the parent acyclic compounds that are not
suitable for macrocyclization. When using the more folded con-
formations extracted from the preformed 3D structures of the target
macrocycles, the validity of macrocycles generated by MacLS_extra is
greatly improved, implying the high dependence of the non-deep
learning macrocyclization method on the given conformations of the
acyclic scaffold. Compared to Macformer, MacLS performs better in
terms of uniqueness andmolecular novelty (Noveltymol). Nevertheless,
MacLS can not derive new linkers of structural novelty, leading to the
Noveltylinker values of 0%. Additionally, MacLS reconstructs the target
macrocycles at very low ratios, only 0% and 4.16% for MacLS_self and
MacLS_extra, respectively. The results are not surprising, as MacLS
merely takes into account the geometrical constraints associated with
attachment vectors, which are local information of little aid in recon-
structing the target macrocycles.

Tabel 1 | Comparison of Macformer with different augmentation numbers and MacLS on ChEMBL test dataset

Method aug.a Recovery (%) Validity (%) Uniqueness (%) Noveltymol (%) Noveltylinker (%) Macrocyclization (%)

Macformerb None 54.85 ± 14.28 66.74 ± 2.29 63.18 ± 6.38 89.30 ± 1.94 40.56 ± 2.33 95.00±0.74

×2 96.09 ± 0.61 80.34 ± 1.38 64.43 ±0.23 91.58 ± 0.15 58.91 ± 0.36 98.62 ± 0.17

×5 97.54 ± 0.16 81.94 ± 1.42 65.36 ±0.13 91.79 ± 0.16 62.11 ± 0.65 98.80 ±0.11

×10 97.02 ± 0.05 82.59 ± 1.57 64.44 ±0.46 91.76 ± 0.22 60.27 ± 0.96 98.46 ± 0.04

MacLS_selfc / 0.01 ± 0.01 17.05 ±0.29 95.33 ±0.01 100 ±0.00 0.00 ±0.00 100 ±0.00

MacLS_extrac / 4.16 ± 0.20 89.65 ±0.03 96.32 ± 0.06 99.65 ±0.02 0.00 ±0.00 100 ±0.00
aThe fold of augmentation of ChEBML training dataset.
b Data are mean ± SD, n = 10 independent experiments using different source SMILES strings. Source data are provided as a Source Data file.
c Data are mean ± SD, n = 3 independent experiments using top 3 low-energy conformations. Source data are provided as a Source Data file.
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Evaluation on external ZINC test dataset
These methods were further evaluated on an additional external test
dataset containing 5551 acyclic-macrocyclic SMILES pairs, which were
extracted from 486 bioactive macrocycles in ZINC database. Com-
paring with those from ChEMBL database, these macrocycles have
lower molecular weights and shorter SMILES lengths (Supplementary
Fig. 3). As shown in Table 2, the augmented models can also provide
systematically improved performance on the external ZINC dataset.
Both models trained with 5- and 10-fold augmentations could recover
over 80% of the original macrocyclic compounds, generate over 84%
valid SMILES strings, and achieve over 99% novelty and macro-
cyclization. These results indicate that Macformer has excellent gen-
eralization ability in data augmentation scenarios.

The performance of MacLS on the external ZINC test dataset is
similar to that on the ChEMBL test dataset. Fundamentally, MacLS
could not learn sufficient prior knowledge through the training pro-
cess like Macformer, hence the evaluation results of MacLS on the two
test datasets are similar and can theoretically be extrapolated to other
datasets.

Properties of generated novel macrocycles
Irrespective of the derivation of structurally novel linkers, both
Macformer and MacLS demonstrate the ability to generate macro-
cyclic compounds with structural novelty. This raises the question of
whether there are distinctions between the chemical spaces of these
novel compounds. To explore this question, we first assessed the
structural similarity between generated novel and ground-truth tar-
get macrocycles using Morgan fingerprints (2 bond radius) imple-
mented in RDKit v2020.03.3.034. For a given target compound, its
Tanimoto coefficient (Tc) values with all the corresponding gener-
ated novel compounds were calculated and averaged to obtain the
final score. As illustrated in Fig. 2a, the majority of generated novel
compounds have average Tc scores higher than 0.7, due to the
common substructures between the acyclic and macrocyclic com-
pounds. However, Macformer tend to generate new chemicals with
higher structural similarity to the target macrocyclic compounds
than MacLS_extra.

The above result is somewhat unexpected, since Macformer can
infer novel linkers that are not present in the training dataset,
whereas MacLS_extra does not possess this ability. Subsequently, we
probed the chemical space of the novel linkers by calculating their
1024-bit Morgan fingerprints. Additionally, we utilized the uniform
manifold approximation and projection (UMAP) algorithm35 for
dimensionality reduction. UMAP can better preserve the similarity
relations between data points in the original high-dimensional space
than t-distributed stochastic neighbor embedding36. As shown in
Fig. 2b, the structurally novel linkers generated by Macformer on
ChEMBL test and ZINC datasets are both located in the chemical
space surrounding the linkers from the ChEMBL training dataset.
Meanwhile, in addition to executing macrocyclization, Macformer
can simultaneously introduce minor modifications on the starting

linear substructure to generate new structures with high similarity to
the target macrocycles (Fig. 2c).

Furthermore, we utilized Pipeline Pilot v201737 to calculate seven
molecular properties: molecular weight (MW), AlogP, polar surface
area (PSA), the number of hydrogen bond acceptors (NHA), the
number of hydrogen bond donors (NHD), quantitative estimates of
drug-likeness (QED), and synthetic accessibility (SA). For bothChEMBL
test and ZINC datasets, the novel macrocycles generated by MacL-
S_extra tend to have more significant statistical differences to the
targets than those generated byMacformer (Supplementary Fig. 4 and
5). The results indicate that the chemical space of the Macformer
generated novel macrocycles is closer to that of the real bioactive
ones. This may benefit from the data augmentation strategy by using
substructure-aligned randomized SMILES, which exposes the struc-
tural information of a same molecule from various views and renders
Macformer powerful in understanding the constraints of the macro-
cyclic chemical space.

Model interpretability via attention weights analysis
To disclose how Macformer works in this specific automatic macro-
cyclization task, attention weights between input and output sequen-
ces were analyzed from the substring and token scale, respectively
(Supplementary Fig. 6). The substrings or tokens in the input
sequences tend to have the greatest impact on the generation of the
same substrings or tokens in the predicted sequence, which guarantee
the reproduction of the starting acyclic fragment in the generated
macrocycles. When inferring the macrocyclic linker substring, our
model displayed a systematic manner, as the discrepancies in terms of
attention weights among different substrings of the source sequence
are not significant. This indicates that Macformer is able to combine
the latent features of the input acyclic SMILES sequence, and incor-
porate appropriate linker to the original linear fragment. This cap-
ability stems from the prior knowledge it has learned about the
relationship between the acyclic fragments and their corresponding
macrocyclic linkers in the training dataset.

Design of macrocyclic JAK2 inhibitors using Macformer and
molecular docking
In recent years, macrocycles have gained significant attention for their
potential as kinase inhibitors. For prospective evaluation purpose,
Macformer was employed to design macrocyclic Janus kinase 2 (JAK2)
inhibitors. JAK2 belongs to the intracellular non-receptor protein tyr-
osine JAK family kinases and is an important target for the treatment of
myeloproliferative neoplasms and rheumatoid arthritis38,39. In combi-
nation of molecular docking simulation and medicinal chemistry-
based analysis, William et al. designed the macrocyclic JAK2 inhibitor
Pacritinib40. This inhibitor was derived from the heavily patented
phenylaminopyrimidine structure and has been approved to treat
myelofibrosis41.

In our study, the starting acyclic structure was derived from
Fedratinib, a small molecule JAK2 inhibitor approved for the

Tabel 2 | Comparison of Macformer with different augmentation numbers and MacLS on ZINC test dataset

Method aug.a Recovery (%) Validity (%) Uniqueness (%) Noveltymol (%) Noveltylinker (%) Macrocyclization (%)

Macformerb None 2.70 ± 1.31 72.91 ± 2.05 47.74 ± 8.98 96.10 ± 0.81 44.24 ± 2.05 96.39 ±0.71

×2 76.37 ± 3.23 81.97 ± 1.20 44.99 ± 5.37 99.31 ± 0.19 53.03 ±0.65 99.48 ±0.08

×5 81.86 ±0.75 84.73 ± 1.01 45.14 ± 4.60 99.39 ±0.09 53.98 ± 1.00 99.53 ±0.05

×10 84.25 ± 0.84 85.35 ± 1.33 45.26 ±0.46 99.43 ±0.09 50.00 ±0.95 99.27 ± 0.07

MacLS_selfc / 0.00 ±0.00 13.02 ± 0.79 83.68 ±0.74 100 ±0.00 0.00± 0.00 100 ±0.00

MacLS_extrac / 4.52 ± 0.20 89.67 ± 0.07 95.04 ± 0.14 99.99 ±0.00 0.00± 0.00 100 ±0.00
a The fold of augmentation of ChEBML training dataset.
bData are mean ±SD, n = 10 independent experiments using different source SMILES strings. Source data are provided as a Source Data file.
cData are mean ±SD, n = 3 independent experiments using top 3 low-energy conformations. Source data are provided as a Source Data file.
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therapy of myelofibrosis42. Fedratinib is reported to be highly
selective to JAK2 over other JAK kinase, but its selective profile
against the wider kinome is disappointing43,44.The off target effects
on other kinases may cause undesirable adverse reactions. We hope
that macrocyclization would obtain proprietary skeletons with
improved kinase selectivity and other properties. The macro-
cyclization connection points were set on the two terminal phenyl
rings. Meanwhile, the tert-butyl sulfonamide moiety, which may
cause unfavorable contacts with Asp99445, was removed in order to
improve synthetic feasibility of generated macrocycles. Tokens
representing the number of heavy atoms on the shortest path of the
linkers ranging from three to nine were added prepended to the
SMILES sequence to maximize the variety of the macrocyclic lin-
kers. To increase the diversity of predicted macrocycles, each
source SMILES sequence was augmented by ten-fold. Inferring by
Macformer with beam size of 10, 700 output SMILES sequences
were finally obtained, which included 281 unique novel macrocyclic
molecules (Fig. 3).

The traditional MacLSmethod was also evaluated for its potential
in macrocyclization of Fedratinib, and top 300 macrocyclic analogs
were reservedbasedon the crystallographic bioactive conformationof
Fedratinib in complex with JAK2 kinase domain (PDB code 6VNE)45.
Using the GlideSP protocol of Maestro v10.146, the macrocycles gen-
erated by both methods were docked, respectively, into the ATP
binding site of JAK2. The docking scores, the lower (morenegative) the
better, were used as the evaluation metrics. A comparison of the
docking scores (Supplementary Fig. 7) showes that macrocycles gen-
erated byMacformer have lower values than those byMacLS, meaning
that Macformer is more likely to generate active JAK2 macrocyclic
inhibitors. Wemay explain this phenomenon from two aspects. On the
one hand, the non-deep learning MacLS method merely consider the
matching of geometric parameters related to the formation of new
macrocyclic chemical bonds, in order to maintain the bioactive
orientation of the linear compound. However, during the overall
structural optimization or target-induced binding of the macrocyclic
compounds, the conformations of many acyclic substructures may
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Morgan fingerprints of the linkers in the ChEMBL training dataset (n = 9243 linkers)
and the novel linkers generated by Macformer on ChEMBL test (n = 9039 linkers)
and ZINC (n = 2082 linkers) datasets, respectively. c Retrospective macrocycliza-
tion of a Checkpoint Kinase 1 (CHK1) inhibitor64 by Macformer. The Tc values
between the generated novel and target compounds were labeled. Source data are
provided as a Source Data file.
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slightly change to deviate from the active one. On the other hand,
Macformer could grasp the complete structural information of the
acyclic and macrocyclic compounds through global modeling on
SMILES sequences with Transformer architecture and infer linkers
matching the given acyclic molecules. The overall compatibility of the
starting acyclic compounds with the linkers may help preserve
the active conformations of the acyclic substructures and facilitate the
binding of the macrocycles with the target.

In the prospective case study, our efforts mainly focus on the
introduction of macrocyclic linkers, hence the generated compounds
with extra substituent groups on the starting fragment and those
undergo scaffold hopping were ignored. The ultimately eligible 218
macrocyclic compounds generated by Macformer were reserved for
further in-depth study. After visual inspection of docking poses and
estimation of synthetic accessibility based on experiences, three
compounds were finally selected for synthesis and evaluation for their
potency against JAK2. As shown in Fig. 3, the starting acyclic moiety
display similar binding pose to that of Fedratinib, and macrocycliza-
tion retains the critical hydrogen bond interactions between com-
pounds 1–3 and residue Leu932 in the hinge region. Despite the

structural novelty of the three selected compounds, their introduced
linkers are seen in many macrocycles of the ChEMBL training dataset.
Specifically, the linkers of compounds 2 and 3 are present in the
approveddrugs Lorlatinib andPacritinib, respectively. However, to the
best of our knowledge, the linker of compound 1 has not been
reported for the design of macrocyclic and selective JAK2 inhibitor.
Rather than extremely pursuing the novel linkers, synthesizing these
macrocyclic compounds is ourmainconcern,which is also thepremise
of further activity evaluation. The presence of these linkers in
authentic macrocycles generally implies better synthetic feasibility,
and the three macrocycles covering three distinct chemical skeletons
were ultimately synthesized through three different routes (Supple-
mentary Methods, Supplementary Fig. 9–17).

Upon retrospective examination of the 300 macrocycles gener-
ated by MacLS, none of the three compounds were found, demon-
strating the practicality of our deep learning method in identifying
potent macrocyclic JAK2 inhibitors that may have been overlooked by
traditional methods. Interestingly, there are only two macrocycles in
common between the compounds generated by Macformer and by
MacLS. Although not practiced in this study, we believe that the

Fedratinb Attachment Points 
Definition

Starting Acyclic Fragment

700
Output 
SMILES

281
Unique
Novel
Macrocycles

218
Only 
Introduce 
Linker

Step-by-step Filtering

Docking Score: -9.558 kcal/mol Docking Score: -9.317 kcal/mol Docking Score: -9.261 kcal/mol

… … … …

Macformer

Compound 3Compound 2Compound 1

Augmentation by 10-fold

Docking Visual inspection

…
…
…

N_3*c1cccc(Nc2nc(Nc3ccc(OCCN4CCCC4)c(*)c3)ncc2C)c1
N_3*c1cccc(c1)Nc1nc(ncc1C)Nc1ccc(OCCN2CCCC2)c(*)c1
N_3N(c1nc(ncc1C)Nc1ccc(c(c1)*)OCCN1CCCC1)c1cc(ccc1)*
N_3N1(CCCC1)CCOc1c(cc(Nc2nc(c(cn2)C)Nc2cccc(c2)*)cc1)*
N_3C1CN(CCOc2ccc(cc2*)Nc2nc(Nc3cccc(c3)*)c(C)cn2)CC1
N_3c1(cc(ccc1)*)Nc1nc(ncc1C)Nc1ccc(OCCN2CCCC2)c(c1)*
N_3c1ccc(Nc2c(C)cnc(Nc3cc(c(cc3)OCCN3CCCC3)*)n2)cc1*
N_3C1N(CCC1)CCOc1c(*)cc(cc1)Nc1nc(c(cn1)C)Nc1cc(*)ccc1
N_3C1CN(CCOc2ccc(Nc3nc(Nc4cc(ccc4)*)c(cn3)C)cc2*)CC1
N_3c1(cc(ccc1OCCN1CCCC1)Nc1ncc(C)c(Nc2cccc(c2)*)n1)*

N_9c1cc(cc(c1)Nc1nc(ncc1C)Nc1cc(c(cc1)OCCN1CCCC1)*)*
N_9C1CCCN1CCOc1c(cc(cc1)Nc1nc(c(C)cn1)Nc1cccc(c1)*)*
N_9C1CCCN1CCOc1c(*)cc(cc1)Nc1nc(c(C)cn1)Nc1cc(ccc1)*
N9N1(CCCC1)CCOc1c(cc(cc1)Nc1nc(c(cn1)C)Nc1cc(ccc1)*)*
N_9c1(cccc(c1)Nc1c(C)cnc(n1)Nc1cc(c(OCCN2CCCC2)cc1)*)*
N_9C(C Oc1c(cc(cc1)Nc1nc(c(cn1)C)Nc1cccc(c1)*)*)N1CCCC1
N_9c1c( OCCN2CCCC2)c(cc(c1)Nc1nc(c(cn1)C)Nc1cccc(c1)*)*
N_9C1CN(CC Oc2c(cc(cc2)Nc2ncc(C)c(n2)Nc2cccc(c2)*)*)CC1
N_9C1CN(CC1)CCOc1c(cc(cc1)Nc1nc(c(C)cn1)Nc1cccc(c1)*)*
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Fig. 3 | Schematic representation of the procedure for design of macrocyclic
JAK2 inhibitors starting from Fedratinib. The macrocyclization connection
points, labeled by asterisks (*) for clear identification, are deliberately located on
the two terminal phenyl rings of Fedratinib. To enhance the diversity of predicted
macrocycles, tokens denoting the number of heavy atoms on the shortest path of

the linkers (N_x) ranging from three to nine are inserted at the beginning of the
SMILES sequence. Subsequently, each source SMILES sequence is augmented by
ten-fold. In the putative docking poses of the macrocyclic JAK2 inhibitors, the
critical hydrogen bonds are highlighted as black dashes.
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chances of obtaining potent macrocyclic lead compounds will be
greatly increased if compounds obtained by the two methods are
combined for further investigation.

Activities of compounds 1–3 at enzymatic and cellular level
Enzymatic assays of compounds 1–3 against JAK2 were subsequently
performed and the IC50 values of compounds 1–3weremeasured to be
0.07, 0.364, and 0.006μM, respectively (Table 3). The most potent
compound 3 exhibits similar single-digit nanomolar range activity
compared to Fedratinib. To assess the specificity of the two most
potent macrocycles, 1 and 3, their kinase selectivity profiles against a
diverse panel of 468 kinases were tested at the concentration of
100nM across DiscoveRx KINOMEscan platform, and Fedratinib was
used as the control (Fig. 4). Only 10 and 17 wild-type kinases are
affected by compounds 1 and 3, respectively, while the number ofwild-
type kinases inhibited by Fedratinib is 34 (percent control <35%).
Fedratinib shows binding to a wide range of kinases, whereas com-
pounds 1 and 3 mainly target the TK group and have negligible effect
on CMGC, CAMK, and AGC group. The results suggest that the mac-
rocyclic compounds 1 and 3 have superior kinome selectivity profiles
than Fedratinib.

Antiproliferative effects of compounds 1–3 on human ery-
throleukemia (HEL) and megakaryoblastic SET-2 cells, both of which
are JAK2V617F-dependent, were also investigated. The results revealed
that compounds 1 and 3 could suppress the proliferation of both cell
lines, with compound 1 displaying comparable single-digitmicromolar
potency in comparsion to Fedratinib. Like other type I JAK2
inhibitors47,48, compounds 1 and 3 increased the phosphorylation of

JAK2 at Y1007/8 site in HEL cells, but efficiently blocked the phos-
phorylation at Y221 site in a dose-dependent manner (Fig. 5), which is
essential for JAK2 fully activation49. In addition, both the compounds
significantly inhibited the activation of its downstream signaling
molecule STAT3 and STAT5.

In vivo pharmacokinetic analysis of compounds 1 and 3
The preliminary in vivo pharmacokinetic (PK) properties of com-
pounds 1 and 3 and Fedratinib in mice following intravenous (iv,
5mg/kg) and oral (po, 5mg/kg) administration were investigated.
The PK profiles are shown in Supplementary Fig. 8, and the analysis
of PK parameters is summarized in Table 4. Compound 3 displayed
overall superior PK properties than Fedratinib, except for the slightly
lower bioavailability (F, 9.4% vs 11.7%). After oral dosing, compound 3
showed longer half-life (T1/2, 10.07 vs 4.70 h) and higher systemic
exposure (AUCinf, 114.69 vs 50.19 h*ng/mL). Compared to Fedratinib,
the macrocyclic compound 1 also displayed advantages in terms of
oral PK properties, e.g., the higher systemic exposure (106.00 vs
50.19 h*ng/mL) and bioavailability (14.1% vs 11.7%). The holistically
favorable PK profiles of the two macrocycles suggest that macro-
cyclization is an efficient strategy to improve the in vivo metabolic
stability of Fedratinib.

In vivo activities of compound 3
Overexpression of JAK2 has been reported in patients with inflamma-
tory bowel disease (IBD), which means that inhibiting JAK2 may con-
tribute to the treatment of IBD50,51. To assess the therapeutic potential
of the macrocyclic JAK2 inhibitors for IBD, we established the dextran

Table 3 | Structures and in vitro activities of compounds 1–3

Compd Structure Enzyme Inhibitory Activity (IC50, μM)a Cellular Antiproliferative Activity
(IC50, μM)b

HEL SET-2

1 0.070 ± 0.006 2.41 ± 0.20 1.64 ±0.03

2 0.364 ±0.007 7.34 ±0.44 >25

3 0.006 ±0.001 3.06 ± 0.39 11.09 ±0.13

Fedratinib 0.003 ± 0.001 1.34 ± 0.06 1.12 ± 0.08
aData are mean ±SD, n = 3 parallel experiments. Source data are provided as a Source Data file.
bData are mean ±SD, n = 2 independent experiments with three replicates each. Source data are provided as a Source Data file.
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sulfate sodium (DSS)-induced colitis model52. The DSS colitis model
recapitulates many clinical and pathological features of human IBD,
such as bloody stools, weight loss, diarrhea, and inflammatory cells
infiltration, and iswidelyused in IBD research as a preclinicalmodel for
initial studies. Salicylazosulfapyridine53 was used as a positive control.
After comprehensively considering the enzymatic and cellular activity,
kinome selectivity, and PK properties, the macrocyclic compound 3
was selected for in vivo efficacy test. According to previous PK results,
Fedratinib was administered at twice (10mg/kg) the dose of

compound 3 (5mg/kg). As shown in Fig. 6a, the administration of
compound 3 and Fedratinib could alleviate the decrease of body
weight caused by 3.5% (w/v) DSS. The disease activity index (DAI)
scores of compound 3 and Fedratinib treating groupwere significantly
decreased fromday 8 (Fig. 6b).Moreover, it was found that compound
3 and Fedratinib treatment decreased the ratio of colon weight to
length, a surrogate measure of colon inflammation, compared to the
model group (Fig. 6c). The severity of colonic inflammation was then
analyzed by H&E staining. Obviously, there was a significant

Fig. 4 | Kinase selectivity profiles of compounds 1 (a) and 3 (b) and Fedratinib (c) against 468 kinases. The affinity is defined as the percent of the DMSO control
(percent control), where the lower value suggests stronger inhibition. Source data are provided as a Source Data file.
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inflammatory response in the model group, which was characterized
by significant inflammatory cells infiltration, goblet cell loss, near-
complete crypt loss, reactive epithelial hyperplasia, sub-mucosal
edema, and irregular colonic villi. In contrast, compound 3 and
Fedratinib treated mice exhibited less inflammatory cell infiltration in
colon tissue, intact colonic architecture with less apparent ulceration,
and lower histological scores (Fig. 6d–f). Collectively, these results
indicate that compound 3 and Fedratinib are able to ameliorate the
symptoms in DSS-induced murine colitis, and that compound 3
showed comparable therapeutic efficacy to Fedratinib at a lower dose.

As a JAK2 inhibitor, the macrocyclic compound 3 has shown
preliminary therapeutic efficacy for IBD in our initial study using the
acute DSS colitis model. However, there are still many issues to be
addressed by extensive research. From the mechanistic point of view,
JAK2 deeply engages in the signaling of hematopoietic cytokines and
hormones, and the potential side effect of myelosuppression renders

JAK2 controversial as a therapeutic target for IBD54. Therefore, the
indicators associated with myelosuppression should be carefully
monitored for in vivo test, in order to clarify the efficacy and safety of
selective JAK2 inhibitors for IBD. Meanwhile, chronic IBD animal
models are recommended to better mimic the chronic pathological
conditions in humans.

Discussion
To tackle the automatic macrocyclization problem by leveraging the
benefits of deep learning, we developed the Macformer model on the
basis of Transformer architecture. Starting from an acyclic structure
represented as SMILES strings and labeledwith two attachment points,
Macformer is dedicated to automatically generate corresponding
cyclized analogs. With data augmentation skills using substructure-
aligned randomized SMILES notations, Macformer is able to capture
the hidden connections between the source linear and target

Table 4 | PK parameters of compounds 1 and 3 and Fedratinib

Parametera Compound 1 Compound 3 Fedratinib

Route iv (5mg/kg) po (5mg/kg) iv (5mg/kg) po (5mg/kg) iv (5mg/kg) po (5mg/kg)

T1/2 (h) 5.35 4.47 0.52 10.07 0.3 4.70

Tmax (h) 4.00 6.00 0.083 4.00 0.083 1.00

Cmax (ng/mL) 76.57 10.35 351.23 6.64 275.23 6.81

AUCinf (h*ng/mL) 752.47 106.00 443.20 114.69 226.74 50.19

Tlast (h) 7.63 7.99 4.63 15.94 2.09 7.45

F (%) 14.1 9.4 11.7
aT1/2 elimination half-life, Tmax time of the maximum observed plasma concentration, Cmax maximum observed plasma concentration, AUCinf area under the plasma concentration–time curve from
time zero to infinity, Tlast time of last measurable concentration, F bioavailability.
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Fig. 6 | Effects of compound 3 on DSS-induced colitis mice. a The daily weight
changes in each group (n = 8 mice per group). b The DAI score change curves
during experiment (n = 8 mice per group). c The ratio of colon weight to length in
each group. Control, n = 8 colon tissues; model, n = 8 colon tissues; SASP, n = 8
colon tissues; compound 3,n = 7 colon tissues; Fedratinib,n = 7 colon tissues.dThe
histological scores based on Ameho criteria62 in each group. Control, n = 8 colon
tissues; model, n = 7 colon tissues; SASP, n = 8 colon tissues; compound 3, n = 7

colon tissues; Fedratinib, n = 5 colon tissues. e Representative H&E-stained tissue
sections illustrating the features of colon from each group. Scale bar, 500μm.
f Representative H&E-stained tissue sections illustrating the features of colon from
each group.Scale bar, 100μm. Values are shown as means ± SEM, and statistical
analysis was performed with one-way ANOVA followed by LSD post-hoc test.
Source data are provided as a Source Data file.
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macrocyclic SMILES sequences of the ChEMBL training dataset and
efficiently producemacrocycleswith chemical diversity andnovelty on
both internal ChEMBL and external ZINC test dataset. The excellent
performance and generalization capability of Macformer imply its
potential for the design of macrocyclic compounds, thus expanding
the application of deep learning technology in the field of drug
discovery.

The ultimate goal of computational method development is to
assist in practical drug design process. Following this philosophy,
Macformerwas utilized to designmacrocyclic JAK2 inhibitors, with the
core structure of Fedratinib as the original acyclic scaffold. The mac-
rocycles generated by Macformer were docked into the ATP binding
site of JAK2 to further evaluate their interactions with the target, which
were used as an import criterion for subsequent compound selection.
Among the 218 generated novel macrocycles with distinct linkers,
three were synthesized and tested for their biological activities.
Among them, compounds 1 and 3 exhibited inhibition activities
against JAK2 at both enzymatic and cellular level, and displayed an
improved selectivity profile against 468 kinases and favorable PK
properties than Fedratinib. Additionally, compound 3 manifested
in vivo anti-inflammatory effect on DSS induced murine colitis at a
lower dose than Fedratinib. The prospective case study validates the
practicability of Macformer, which can provide potential macrocyclic
scaffolds for further development of drug candidates targeting the
JAK2 kinase as well as other drug targets. It is expected that, as a
powerful complement to the traditional macrocyclization method,
Macformer will play a valuable role in the design of macrocyclic drug
candidates.

Methods
Data preparation
The macrocyclic dataset was collected from ChEMBL database30, and
only compounds satisfying the following criteria were retained: 1)
contain only onemacro ringwith 12 ormore atoms; 2)molecule type is
labeled as “small molecule”; 3) bioactivity data is not empty; 4) cano-
nical SMILES strings length is inferior to 200. The canonical SMILES
representation was generated using RDKit, and the stereochemical
information was removed for simplification. After filtration of dupli-
cate structures, 18,357 unique macrocycles were derived.

To acquire matched acyclic-macrocyclic pairs, the macrocycles
were fragmented to two substructures through simultaneously cut-
ting two single bonds of the macro ring. The substructure with more
heavy atoms was classified as the acyclic analog and the other the
linker. For each macrocyclic compound in the dataset, the frag-
mentation process would create multiple combinations of acyclic
analog and corresponding linker. From the perspective of synthetic
accessibility, the structurally simple macrocycle linker should be
preferrable. Consequently, the linkers were filtered according to the
following criteria: 1) contain only one ring structure with 6 atoms or
less; 2) the number of heavy atoms on the shortest path is restricted
within the range of 3–9; 3) the ratio between the number of heavy
atoms on the shortest path and the whole linker is more than 0.6; 4)
the ratio between the number of heavy atoms of the linker and the
original macrocyclic compound is less than 0.25. The SMILES strings
of the acyclic analog were also canonicalized using RDKit, with the
two cutting points marked with dummy atoms. The information in
terms of linker length was added as a token prepended to the
sequence. By corresponding linker length tokens55, the resulting
dataset containing a total of 237,728 unique matched acyclic-
macrocyclic pairs was randomly split into a training set (80%), a
validation and a test set (10% for each).

We collected 486 bioactive macrocycles from ZINC database, all
of which are not present in ChEMBL dataset. Then 5551 acyclic-
macrocyclic SMILES pairs were extracted from them as external test
dataset using the same data processing protocol.

Data augmentation
Multiple randomized SMILES were generated using RDKit as a means
to achieve data augmentation. A molecule can be represented as a 2D
graph, from which linear SMILES notations can be derived through
enumerating nodes of the graph following a certain topological
ordering. By setting the doRandom parameter of the MolToSmiles
function as True, RDKit would randomly select a starting node and the
topological path to enumerate the molecule graph, then randomized
SMILES of the input acyclic scaffolds were generated. The randomized
SMILES of the target macrocycles were generated in a restricted
manner. After substructure matching by RDKit, the indices of the
macrocycle’s atoms that match the acyclic substructure query would
be returned. These indices were placed first, followed by the atomic
numbers of other structural moiety, in order to reorder the atoms of
themacrocycle. The randomized SMILES of the target macrocycle was
finally obtained according the new atomic numbers.

Macformer
The model was implemented based on Transformer architecture31,
which has a stepwise autoregressive encoder-decoder architecture.
Both source and target SMILES sequences are tokenized and embed-
ded into trainablematrix, with the embedding vector size set as 256 for
each token. Besides, the sine and cosine functions are utilized as
positional encoding to indicate the position of different tokens in the
sequence:

PE pos,2ið Þ = sin
pos

10000
2i

demb

0
@

1
A, PE pos,2i+ 1ð Þ = cos

pos

10000
2i

demb

 !
ð1Þ

where pos is the position and i denotes the iterator used to construct
this vector, which runs from 0 to demb/2. The positional encodings are
added to the token embeddings, and each sequence is finally repre-
sented as follows:

X = ðx1,x2, . . . ,xnÞ ð2Þ

where xi is the vector of the ith token (with positional vectors added) in
a sequence containing n tokens.

The embeddingmatrices of the source sequences are fed into the
encoder to generate a latent representationL = (l1, l2,…, ln,) to initialize
the decoding process. Both encoder and decoder are stacked by
identical layers. Each encoder layer consists of a multi-head attention
sublayer and a positional feed forward network sublayer. Unlike the
encoder, an extra encoder-decoder attention sublayer is inserted to
each decoder layer, which performs multi-head attention over the
output of the encoder stack and helps the decoder focus on appro-
priate places in the input sequence.

The multi-head attention mechanism allows the encoder and
decoder to peek at different tokens simultaneously, thus the trans-
former mode can successfully cope with long-range dependencies. A
multi-headattention unit comprises eight parallelly running scaled-dot
attention layers in this study, which are concatenated and projected
into the final values. The scaled-dot attention layer takes three matri-
ces as input: the matrix Q packed with a set of queries, the matrix K
with keys, and the matrix V with values. The attention is computed as
follows:

attentionðQ,K,VÞ= sof tmax
QKTffiffiffiffiffiffi

dk

p
 !

V ð3Þ

where dk is a scaling factor depending on the size of the weight
matrices.

At the end of the Transformer model, linear transformation and
softmax function are successively applied to convert the decoder
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output to predicted next-token probabilities. For a particular source
sequence, the training objective is to minimize the gap between the
predicted sequence and its corresponding target sequence, which is
estimated by cross-entropy loss function:

Loss = �
Xk

i = 1

yi logðmiÞ ð4Þ

where k is the token number of the target sequence, and yi andmi are
the ground truth and predicted values at the ith position of the target
sequence, respectively.

In our study, the Transformer model was constructed with four
encoder and decoder layers of size 256, respectively, resulting a total
of 12M trainable parameters. A dropout rate of 0.1 was used in both
dense and attentional layers to preform regularization. Themodel was
optimized using the Adamoptimizer56 with β1 =0.9 and β2 =0.998, and
the learning rate varied using8000warmup stepsduring the course of
training. The batch size was set to 2048 tokens and the gradients were
accumulated over four batches before updating parameters. The
model was trained 200,000 steps on one GPU (NVIDIA TESLA V100).
One checkpointwas saved every 10,000 steps and thenwas applied for
model validation on the validation set. Teacher forcing strategy was
adopted during training and validation courses, hence the output
token was predicted based on the ground truth value from previous
timestep57. All experiments were carried out with the PyTorch version
of OpenNMT58.

Beam search algorithm33 was adopted to decode the source
sequences of the test datasets. As the predicted sequences are con-
structed, the beam search expands all possible next tokens while
keeping track of the top-k sequences based on the product of the
probabilities of each token.

MacLS
To ensure that macrocycles are constructed using the same data as
that of Macformer, 9243 unique linkers from the ChEMBL training
dataset were used to construct the 3D linker database. A maximum of
20 low-energy conformations were generated for each linker and a
total of 163,924 structures were acquired. This process was imple-
mented using RDKit, following the procedure proposed by ref. 59. The
conformations of the acyclic and macrocyclic compounds were gen-
erated using the same method, and top 3 low-energy conformations
were reserved for each chemical structure. To speed up the macro-
cyclization process, linkers were first filtered through geometric cri-
teria. For the 3D acyclic structures and linkers, two distance
parameters were calculated, one was between the two leaving atoms
on the two attachment vectors and the other between their adjacent
atoms. The dihedral angle of the two attachment vectors was also
calculated as an additional parameter (Supplementary Fig. 2). The
distance threshold between the acyclic structure and the linker is set to
0.5 Å, and the dihedral angle threshold was set to 20°. After super-
imposing the attachment vectors of the given acyclic structure and
that of the linkers satisfying the geometric constraints, the RMSD
values between the atoms of the attachment vectors were calculated
(https://github.com/charnley/rmsd), and top 10 linkers were used to
construct macrocycles.

Model evaluation metrics
The performances of Macformer and MacLS were evaluated by the
metrics widely used in previous molecular generation work60.

Recovery is the percentage of correctly predicted target macro-
cycles of the test dataset.

Validity is the percentage of generated chemically valid
molecules.

Uniqueness is the percentage of unique molecules in the gener-
ated valid molecules.

Noveltymol is the percentage of the novel molecules, which are
not present in the training set, in the generated validly unique
molecules.

Noveltylinker is the percentage of the novelmolecules, which have
novel linkers that are not present in the training set, in the generated
validly unique molecules.

Macrocyclization is the percentage of macrocycles in the gen-
erated validly unique molecules, and it is a distinct metric for the
macrocyclization method.

Molecular docking
The crystal structure of JAK2 binding with Fedratinib (PDB code 6VNE)
was derived from the Protein Data Bank and prepared using the Pro-
tein Preparation Wizard of Maestro v10.1. The grid-enclosing box was
placed on the centroid of the crystallographic ligand and a scaling
factor of 0.8 was set to van der Waals radii with partial atomic charges
of less than 0.15 to soften the nonpolar parts of the receptor. The
three-dimensional structures of compounds were generated and
minimized with Ligprep v3.3 module. Standard precision (SP)
approach of Glide was adopted to dock themolecules into the binding
site with the default parameters, and only the top one pose was
retained for each molecule.

Enzyme assay
JAK kinase activity assays were performed using Z’-LYTETM kinase
assay kit (Life Technologies, pv4122). Enzyme reactions include 10μL
volumes of 1 × kinase buffer (50mMHEPES pH7.5, 10mMMgCl2, 1mM
EGTA, 0.01% Brij-35) along with 25μM ATP, 0.05–0.42 ng JAK2, 2μM
peptide substrate (Tyr06), and various concentrations of compounds.
The mixture was added into the 384-well microplate, shaken gently,
and then incubated at room temperature for 1 h. Subsequently, 5μL
development solutionwas added to thewell for incubating another 1 h.
Finally, 5μL stop reagent was added to stop the reaction. The fluor-
escence wasmeasured with excitation at 400nm, and emission at 445
and 520nm. IC50 values were calculated using GraphPad Prism v8.0.3,
and three parallel experiments were performed.

Cell proliferation assay
The human erythroid leukemia (HEL 92.1.7) cells were purchased from
theAmericanType CultureCollection (ATCC, TIB-180), and the human
megakaryoblastic (SET2) cells were obtained from German Collection
of Microorganisms and Cell Cultures (DSMZ, ACC 608). The anti-
proliferative activities of compounds were evaluated using WST-8 cell
counting kit-8 (Elabscience). HEL and SET-2 cells were seeded at 5000
cells/well in 70μL RPMI-1640 medium (Hyclon) with 10% FBS (Gibco)
to the 96-well plate and incubated overnight at 37 °C with 5% CO2. The
compoundswere serially diluted in RPMI-1640medium, and cells were
treated separately with 30μL various concentrations of compounds
for 72 h. The final DMSO concentration in the culture wells was 0.1%,
whichhadnoeffecton the cell viability. Finally, 10μLofCCK-8 solution
was added into the wells. 4 h later, the absorbance values at 450nm
were recorded. IC50 values were determined using GraphPad Prism
v8.3.0, and three parallel experiments were performed.

Western blot analysis
HEL cells were added into six-well plates (2 × 106 cells/well) and then
put into the incubator (37 °C, 5% CO2). After 24 h, the tested com-
pounds were diluted in RPMI-1640 medium (final DMSO concentra-
tion =0.1%) with different concentrations (0μM, 0.3μM, 1μM, 3μM,
and 10μM) was added separately into the wells, and incubated for
another 0.5 h, then cells were collected and lysed. Proteins from each
sample were isolated by SDS-PAGE and transferred to PVDF mem-
brane. Themembranes were blocked in 5%milk (TBST) for 1 h at room
temperature, and subsequently incubated with the indicated primary
antibody in blocking buffer overnight at 4 °C. Primary antibodies were
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used as follows: p-Y1007/8-JAK2 (#3771, CST, 1:1000), p-Y221-JAK2
(#11150, SAB, 1:500), p-Y705-STAT3 (#11045, SAB, 1:1000), p-Y694-
STAT5 (#13386, SAB, 1:2000), STAT3 (10253-2-AP, Proteintech,
1:4000), STAT5 (12071-1-AP, Proteintech, 1:4000), JAK2 (E-AB-70193,
Elabscience, 1:2000) and β-Actin (E-AB-20034, Elabscience, 1:10000).
Then the membranes were washed with TBST (3 × 5min), incubated
with HRP-conjugated secondary antibody for 1 h at room temperature,
washed again, and then exposed by chemiluminescencemethod using
the enhanced ECL immunoblotting system (Tanon, Shanghai, China).
All the experiments were repeated in triplicate. Blot bands were
quantified by densitometry using Image J software v1.51.

Kinase selectivity profile
The kinase selectivity profile was performed by using the DiscoveRx
KINOMEscan platform. The compounds were screened at a con-
centration of 100 nM against a panel of 468 kinases. Test compounds
were prepared as 40× stocks in 100% DMSO and directly diluted into
the assay. The results were defined as a percentage of signal between
the negative (DMSO, 100% control) and the positive (control com-
pound, 0% control) control, which was calculated as follows: percent
control = [(test compound signal − positive control signal)/(negative
control signal − positive control signal)] × 100.

In vivo PK study
ThePKparameters of the compounds inmaleBALB/cmice (6–7weeks,
20–25 g, Shanghai SLRC laboratory animal Co. Ltd) were conducted by
Hangzhou Leading Pharmatech Co., Ltd. The mice were kept in a
temperature-control room (22–25 °C, relative humidity 52–63%) with
12 h dark/light cycles, and were allowed free access to food and water
for 3 days to be adapted to the environment before experiment. The
1mg/mL dosing solutions of compound 3 and Fedratinib were pre-
pared in the solubilizing vehicle (5% DMSO/30% PEG400/65% saline)
for intravenous and oral administration. The same vehicle was used for
compound 1 in oral administration, while 5% DMSO/15%(100%Solu-
tion)/80% saline was used in intravenous administration. The mice
were separately administered to a group of three mice per time point
for intravenous (5mg/kg) or oral administration (5mg/kg). Blood
samples were collected at 0.083, 0.25, 0.5, 1, 2, 4, 8, and 24 h after
intravenous administration, and at 0.25, 1, 2, 3, 4, 6, 8, and 24 h after
oral administration. Then the samples were separated by centrifuga-
tion and analyzed by LC-MS/MS (XEVO TQ-S) to determine the plasma
drug concentrations. The PK parameters were calculated using the
noncompartment model with Phoenix WinNonLin v8.0. The animal
experimental procedures were approved by the Medicine Research
Ethics Committee of Hangzhou Leading Pharmatech Co., Ltd.

In vivo efficacy study
Male BALB/cmice (6weeks, ~20 g)were obtained fromShanghai Sippr-
BK laboratory animal Co. Ltd. The mice were kept in a temperature-
control room (25 °C, relative humidity 40–60%) with 12 h dark/light
cycles, andwere allowed free access to food andwater for 1 week to be
adapted to the environment before experiment. All animal experi-
mental procedures were approved by the Medicine Research Ethics
Committee of East China University of Science and Technology.

Acute colitis was induced by replacing the drinking water with
3.5% DSS (MW: 36,000–50,000, YEASEN) for 7 days (from day 1 to day
7), during which healthy control mice received normal drinking water.
Model mice were divided into four groups and eight mice were
included in eachgroup on day 8. The compounds to be evaluatedwere
formulated in the solubilizing vehicle (5% DMSO/30% PEG400/65%
saline) and given intragastrically, a routine administrationmethod that
was also used in the previously repored in vivo test on mice of
Fedratinib61, to different groups at a fixed time from day 8 to day 14.
Meanwhile, solvent was given intragastrically to the control group and

model group. On day 15, the mice were sacrificed, and the length and
weight of each colon were measured.

Body weight, the stool consistency, and the presence of blood in
feces were recorded daily in themorning. The DAI was assessed by the
criteria: 0, body weight loss less than 1%, normal stool, no rectal
bleeding; 1, body weight loss 1–4.99%, softer stool, weak rectal
bleeding; 2, body weight loss 5–10%, moderate diarrhea, visual blood
in stool; 3, body weight more than 10%, diarrhea, fresh rectal bleeding.
The maximum score was 9, which was the sum of the scores. About
1-cm colon tissue, which is 0.5 cm away from the anal margin, was
collected, and the ileocecal area was used for histopathological
examination. After H&E staining, the tissues were scored under single-
blind conditions to evaluate the levels of inflammation and tissue
damage in the colons following the criteria proposed by ref. 62. Sta-
tistical analyses were performed using SPSS v24.0.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The crystallographic structure of Fedratinib in complexwith JAK2 used
in this study is available in the PDB database under accession code
6VNE. The acyclic-macrocyclic SMILES pairs extracted from ChEMBL
and ZINC database, respectively, and the pretrainedmodels generated
in this study are available at GitHub https://github.com/yydiao1025/
Macformer. Source data are provided with this paper.

Code availability
The source code of Macformer and associated data preparation
python v3.6.10 scripts are available at GitHub (https://github.com/
yydiao1025/Macformer)63.
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