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Genomic dissection of endemic carbapenem
resistance reveals metallo-beta-lactamase
dissemination through clonal, plasmid and
integron transfer

Nenad Macesic1,2, Jane Hawkey 1, Ben Vezina1, Jessica A. Wisniewski 1,
Hugh Cottingham1, Luke V. Blakeway1, Taylor Harshegyi 1, Katherine Pragastis1,
Gnei Zweena Badoordeen1, Amanda Dennison3, Denis W. Spelman1,3,
Adam W. J. Jenney1,3 & Anton Y. Peleg 1,2,4

Infections caused by metallo-beta-lactamase-producing organisms (MBLs) are
a global health threat. Our understanding of transmission dynamics and how
MBLs establish endemicity remains limited. We analysed two decades of
blaIMP-4 evolution in a hospital using sequence data from 270 clinical and
environmental isolates (including 169 completed genomes) and identified the
blaIMP-4 gene across 7 Gram-negative genera, 68 bacterial strains and 7 distinct
plasmid types. We showed how an initial multi-species outbreak of conserved
IncC plasmids (95 genomes across 37 strains) allowed endemicity to be
established through the ability of blaIMP-4 to disseminate in successful strain-
genetic setting pairs we termed propagators, in particular Serratia marcescens
and Enterobacter hormaechei. From this reservoir, blaIMP-4 persisted through
diversification of genetic settings that resulted from transfer of blaIMP-4 plas-
mids between bacterial hosts and of the integron carrying blaIMP-4 between
plasmids. Ourfindings provide a framework for understanding endemicity and
spread of MBLs and may have broader applicability to other carbapenemase-
producing organisms.

Carbapenemase-producing organisms (CPOs) are now endemic in
many regions.While there has been a significant focus on blaKPC due to
its spread through North America and Europe, metallo-beta-
lactamases (MBLs) (e.g. blaNDM, blaIMP and blaVIM) are endemic
through much of Asia and Oceania including Australia, where blaIMP

carbapenemases have dominated1–9. Treatment options for infections
caused by CPOs, particularly MBL-harbouring organisms, remain
severely limited, highlighting the need to stop further spread of these
extensively drug-resistant organisms. The mechanisms for carbape-
nemase spread differ according to carbapenemase type. Some

carbapenemases spread through close associations with successful
strains or lineages (e.g. blaKPC-2/3 and Klebsiella pneumoniae clonal
complex 258),while for others, spread ismediated through association
with specific plasmids (e.g. blaOXA-48 and broad-host range IncL
plasmids)10,11. Notably, MBLs spread through both lineage-related clo-
nal expansion and diverse plasmid types12,13. While surveillance studies
have captured some of these data, there have been few efforts to
assess how these mechanisms of spread evolve over time. Under-
standing the transmission dynamics of carbapenem resistance genes
will be crucial to inform future infection prevention efforts.
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Previous work from our group and others have identified that
the spread of MBLs, and particularly blaIMP-4, is often driven by
dissemination by transposons of a class 1 integron that has been
able to insert into several genetic settings (henceforth defined as
either chromosomal integration or different plasmid types car-
rying blaIMP-4)

2,4,6,9,14,15. Furthermore, the gene cassettes (such as
that carrying blaIMP-4) may also be a source of dissemination by
being able to enter different class 1 integrons16. The ability to
study horizontal gene transfer has been significantly advanced by
long-read sequencing, which enables high-quality de novo
assembly of bacterial genomes, including highly repetitive
regions such as plasmids. Utilising long-read sequencing to gen-
erate completed, closed bacterial genomes provides a unique
opportunity to study the complex, multi-level (bacterial strain,
plasmid, gene) transmission dynamics that are likely occurring
during MBL spread. When combined with short-read sequencing
data, an unprecedented level of detail of the genetic context and
likely mechanisms of an outbreak or endemicity is possible.

MBL-producing Gram-negative bacteria, dominated by blaIMP-4,
have been isolated in our institution (The Alfred Hospital) since
20025–7,15. After an initial outbreak period in 2004–2005, we experi-
enced hyperendemicity, with a repeated outbreak period from
2017–2020. We aimed to assess the genetic settings of blaIMP-4, its
evolution over time, and the transmission pathways that resulted in
repeated outbreaks and endemicity.

In this work we used long- and short-read whole genome
sequencing to characterise the genetic settings of blaIMP-4 in bac-
terial chromosomes and plasmids from 277 clinical and environ-
mental isolates from 2002–2020. This allowed us to track the
spread of blaIMP-4 in 7 plasmid types and multiple chromosomal
settings. In the 18-year period, we noted incredible plasticity of
blaIMP-4 persistence, with vertical spread through the transmission
of dominant strains and horizontal spread of both plasmids and the
class 1 integron carrying blaIMP-4. We also identified a persistent
reservoir of blaIMP-4 in IncC plasmids in both clinical and environ-
mental isolates. Our findings highlight the need for integration of
long-read sequencing into CPO surveillance, as well as for multi-
modal infection prevention approaches that address the diverse
forms of CPO spread.

Results
blaIMP-4 found in diverse clinical and environmental isolates
spanning two decades
We sequenced 277 blaIMP-4-harbouring isolates from an institutional
collection of carbapenem-resistant isolates systematically collected
from 2002–2020, including 264 clinical isolates from 196 patients
and 13 environmental isolates (Supplementary Dataset 1). This
included short-read (Illumina) data on all isolates and long-read
(Oxford Nanopore) data on 172 isolates that best represented the
strains across the study time periods. Seven isolates failed quality
control and were excluded. In total, we analysed 270 isolates that
were made up of 68 bacterial strains (defined as unique species/
multi-locus sequence type [MLST] combinations) from 7 Gram-
negative genera, highlighting the diversity of bacterial hosts for
blaIMP-4 (Fig. 1a). The five most frequent strains accounted for 190/
270 (70%) genomes and included Serratia marcescens (52/270 iso-
lates, 19%), Enterobacter hormaechei ST190 (44/270 genomes, 17%), E.
hormaechei ST93 (36/270 genomes, 13%), Pseudomonas aeruginosa
ST111 (35/270 genomes, 13%) and E. hormaechei ST114 (23/270 gen-
omes, 9%) (Fig. 1a). In addition to blaIMP-4, 8/270 (3%) genomes car-
ried other carbapenemase genes (4 blaOXA-58, 2 blaNDM-7, 1 blaNDM-1, 1
blaKPC-2, 1 blaOXA-500) and 121/270 (44%) carried mcr-9.1, a novel
determinant of colistin resistance14 (Supplementary Dataset 1).

blaIMP-4 detected in multiple plasmid and chromosomal genetic
settings across three distinct time periods
We first determined the genetic setting of blaIMP-4 using 169 com-
pleted, circularised genomes (three non-circularised genomes were
excluded). blaIMP-4-carrying plasmids were clustered using MOB-
typer17, which uses a whole-sequence-based typing system to provide
cluster codes for reconstruction and tracking of plasmids. Repre-
sentative plasmids from each cluster were then used as references for
mapping of the 99 genomes with short-read data only and the three
non-circularised genomes (Supplementary Dataset 1). Overall, 230 and
40 isolates carried blaIMP-4 on a plasmid or on the chromosome,
respectively, with seven distinct plasmid types identified and chro-
mosomal integration inmultiple strains (Fig. 1b and Supp. Table 1). No
genomes showed concurrent chromosomal integration and plasmid
carriage of blaIMP-4. For the majority of isolates (151/169, 89%), blaIMP-4
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Fig. 1 | Summary of bacterial host species, multi-locus sequence types and
genetic settings of blaIMP-4 in sequenced isolates. a Pie chart showing key bac-
terial host strains of blaIMP-4. blaIMP-4 was noted in 7 bacterial genera and 68

bacterial host strains. b Genetic settings and bacterial host species of blaIMP-4 over
course of study, as definedby three distinctperiods. Abbreviations: Nonumber, Lin
lineage, ST sequence type.
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was situated in a class 1 integron most commonly comprising the
blaIMP-4-qacG-aacA4-catB3-qacE-sul1 cassette array. The bacterial host
strain-plasmid relationships evolved over the course of the study, with
three distinct time periods (Fig. 1b).

Outbreak initiation and establishment of blaIMP-4 endemicity
blaIMP-4 was first noted in a clinical S. marcescens isolate in 2002, with
blaIMP-4 being carried on an IncC plasmid (Supp. Fig. 1). It took ~2 years

before further blaIMP-4-carrying Gram-negative bacteria were identi-
fied, and these were dominated by an IncC genetic setting or chro-
mosomal blaIMP-4 in P. aeruginosa (Fig. 1b). Notably, the first S.
marcescens lineage (here called lineage 1) with IncC-carrying blaIMP-4

became a successful lineage across the entire study period (Fig. 1b). S.
marcescens lineage 1 included 47 genomes from both clinical and
environmental (intensive care unit [ICU] sinks) isolates. Based on their
genetic relatedness (median pairwise single nucleotide variant [SNV]
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Fig. 2 | Phylogenetic analysis of blaIMP-4-carrying S. marcescens and IncC plas-
mids and analysis of blaIMP-4 flanking regions in Pseudomonas aeruginosa
ST111. a Phylogenetic analysis of blaIMP-4-carrying S. marcescens genomes from
AlfredHospital. Inset panel locates S.marcescens genomes from the AlfredHospital
in a global S. marcescens phylogeny. Outer panel shows Alfred Hospital genomes
only, indicating that they formed two distinct lineages and were detected both in
clinical and environmental samples. b Phylogenetic analysis of blaIMP-4 IncC plas-
mids using Mashtree. IncC plasmids entered 37 bacterial host strains but remained
stable with four flanking region clusters and one integron SNV profile accounting

for 93% and 90% plasmids, respectively. c Analysis of blaIMP-4 flanking regions in P.
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distance of 8 [IQR 4–11]), vertical transmission was most likely (Fig. 2a
and Supp. Table 2). The IncC plasmid was rapidly noted in diverse
bacterial hosts, with expansion from S. marcescens into 13 other bac-
terial strains in 2004 alone. Ultimately, this plasmid was noted in 95
genomes across 37 strains (Fig. 2b), with S. marcescens genomes
accounting for the majority (52/95 [54.7%]). Despite the diversity of
IncC-carrying bacterial hosts over the 18 years, IncC plasmids were
highly conserved, with only 11 SNVs across the plasmid backbone
(median pairwise distance of 0 SNVs) (Supp. Table 3) and almost all
(70/71, 98.5%) IncC plasmids belonged to the same MOB-typer pri-
mary/secondary clusters (AA860 AJ266, Supp. Table 1). We noted
seven IncC mosaic plasmids with additional replicon types that were
excluded from further clustering analyses (Supp. Table 4).

We used Mashtree18 to further characterise relatedness of the 64
non-mosaic IncC plasmids, which highlighted the similarity of plas-
mids across bacterial hosts and different time periods (Fig. 2b). This
was also reflected in the blaIMP-4 flanking regions and integron
sequences. Cluster analysis of the flanking regions up to 5000bp
upstream and downstream of blaIMP-4 using Flanker19 identified only
four flanking regions (excluding singletons) in IncC plasmids,
accounting for 67/71 (94%) genomes (Fig. 2b). The blaIMP-4 containing
integrons in the IncC plasmids were also highly similar, with a single
SNV profile (TGGTCGACGCCT) accounting for 63/69 (91%) plasmids
with intact integrons (Fig. 2b). Taken together, these findings suggest
that blaIMP-4 containing IncC plasmids dominated the early outbreak
period and established endemicity through their ability to rapidly
spread across different bacterial hosts while maintaining stability. S.
marcescenswas a persistent host and reservoir for blaIMP-4 IncC during
this time period (2002–2010) (Supp. Fig. 1).

In addition to blaIMP-4 IncC plasmids, chromosomal integration of
blaIMP-4 into P. aeruginosa ST111 (a global MDR lineage)20 was also a
dominant feature of this early time period (Fig. 1b and Supp. Fig. 1).

These isolates were rapidly noted in nine patients in 2004 and con-
tinued to be isolated until 2018. The pseudomonal isolates were highly
related (mean pairwise SNV distance of 1.6 SNVs vs 38.7 SNVs between
Alfred and publicly available ST111 genomes [P <0.001]) (Supp. Fig. 2a)
but the blaIMP-4 containing integron and the flanking regions differed
depending on the time period of isolation, and were also different to
the integron and flanking region sequence of the IncC plasmids
(Fig. 2c). Despite being temporally associated, the chromosomal
integration of blaIMP-4 in P. aeruginosa ST111 with a different integron
structure and flanking regions suggests that blaIMP-4 entry into P. aer-
uginosa likely arose independently of the blaIMP-4 IncC plasmids.

Low endemicity of blaIMP-4 and entry into novel plasmids
Apart from ongoing isolation of blaIMP-4 IncC plasmids (pre-
dominately in S. marcescens) and chromosomal blaIMP-4 P. aerugi-
nosa, the evolution of the following time period (2011–2015) was
characterised by blaIMP-4 entering novel plasmids in E. hormaechei
ST114 (a global MDR nosocomial Enterobacter clone)21 (Fig. 1b and
Supp. Fig. 1). At the start of the outbreak, there were a small number
of E. hormaechei ST114 with blaIMP-4-carrying IncC plasmids, but
during this period, E. hormaechei ST114 acquired blaIMP-4-carrying
IncFIB and IncFIA/IncFIB/IncP plasmids (Fig. 1b). Phylogenomic ana-
lysis showed that the E. hormaechei ST114 isolates were more diverse
(median pairwise SNV distance 35, IQR 27–46) but the AlfredHospital
isolates still clustered more closely than other publicly available
genomes (Fig. 3a and Supp. Table 2). To determine if the IncC plas-
mids were the source of blaIMP-4 in the IncFIB and IncFIA/IncFIB/IncP
plasmids, we analysed the blaIMP-4 flanking regions across the three
plasmids (Fig. 3b). We noted homology of the 3850 bp upstream and
305 bp downstream regions of the integron in IncC, IncFIA/IncFIB/
IncP and IncFIB plasmids (clusters A, B and C) with Tn3 transposons
and DNA recombinases (hin) located immediately upstream.
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(Fig. 3b). These three plasmids also shared the same integron SNV
profile (TGGTCGACGCCT) (Supp. Fig. 3). Taken together, these
findings suggested that as the blaIMP-4-harbouring IncC plasmids
became endemic during the first time period (2002–2010), the out-
break evolved whereby the IncC plasmids served as a blaIMP-4 reser-
voir not only for inter-strain plasmid transfer, but also transfer of the
blaIMP-4 integron and flanking regions between IncC, IncFIA/IncFIB/
IncP and IncFIB plasmids.

Hyperendemicity and repeat outbreaks driven by clonal
expansion of new bacterial strains and inter-species plasmid
spread
The most recent time period (2016–2020) was characterised by
complex, multi-level transmission dynamics resulting from the
emergence of several new and highly successful blaIMP-4 plasmids
and clonal expansion of E. hormaechei ST190 and ST93 host strains
(Fig. 1b). Ongoing circulation of blaIMP-4 in genetic settings and
bacterial strains from prior periods was also observed (Fig. 1b). Early
in this period, blaIMP-4 was identified in a new plasmid, IncL/M, first in
E. hormaechei ST114, which was its fourth blaIMP-4 carrying plasmid,
and then in a wide range of other bacterial strains (n = 16) (Fig. 1b). All
IncL/M plasmids belonged to the sameMOB-typer cluster, shared the
same SNV profile in the integron (GGGTCGACGCCT) and 14/17
shared the same flanking cluster (Cluster G) (Fig. 3b). The three
plasmids with other flanking clusters had minor variations in the
Cluster G flanking region leading to them being clustered as single-
tons. These flanking regions were distinct from all other blaIMP-4

plasmids, however the same integron SNV profile was also noted in
other plasmids (Supp. Table 5 and Supp. Fig. 3).

In 2017,blaIMP-4wasdetected for thefirst time in IncHI2Aplasmids
in a small outbreak of Klebsiella oxytoca ST278 and Klebsiella michi-
ganensis ST50 (Fig. 1b). The first IncHI2Aplasmid (type 1—as definedby
MOB-typer cluster AA739 AJ055) then spread to E. hormaechei ST190
and a second IncHI2A plasmid (type 2—MOB-typer cluster AA739
AJ058) emerged in E. hormaechei ST93, with both bacterial strains
undergoing significant clonal expansion and contributing to a repe-
ated outbreak and hyperendemicity from 2017–2020 (Figs. 1b and 4a).
Bacterial isolates carrying blaIMP-4 on these two IncHI2A plasmids
ultimately accounted for 98/161 (61%) of the sequenced genomes in
that period (with 36/98 E. hormaechei ST93 and 43/98 E. hormaechei
ST190) (Fig. 4a). The E. hormaechei ST93 and ST190 bacterial hosts
were highly clonal with a median pairwise SNV distance of 9 (IQR 2-14)
and 3 (IQR 2–4), respectively (Supp. Fig. 2b and 2c, Supp. Table 2). In
addition to these two strains, the IncHI2A plasmids were found in 13
other strains (Fig. 4a). Analysis of the blaIMP-4 flanking regions and
integrons in the IncHI2A plasmids showed the same flanking sequence
(Cluster F) across 36/47 (77%) plasmids and the same integron SNV
profile (GGGTCGACGTCT) in 35/47 (74%) plasmids across both
IncHI2Aplasmid types (Fig. 4a). Theseflanking sequences and integron
SNV profiles were not found in other plasmid types (Supp. Fig. 3),
suggesting that they may have arisen independently of other blaIMP-4

genetic settings.
To understand the rapid appearance of blaIMP-4 IncHI2A plasmids,

we compared them to carbapenem-susceptible, non-blaIMP-4 IncHI2A
plasmids in single E. hormaechei ST114, ST190 and ST93 genomes from
our institution. The plasmids were highly similar between blaIMP-4 and
non-blaIMP-4 bacterial strains (Fig. 4b). The IncHI2A type 1 plasmids
from blaIMP-4 E. hormaechei ST190 had the addition of a 33 kbp region
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Fig. 4 | Phylogenetic analysis of blaIMP-4-carrying IncHI2A plasmids and com-
parison to non-blaIMP-4 IncHI2A plasmids. a Phylogenetic analysis of IncHI2A
plasmids using Mashtree. Two distinct plasmid types (IncHI2A type 1 and type 2)
were noted from 2016–2020 and rapidly entered 15 bacterial strains. These plas-
mids shared flanking regions and integron SNV profiles, which were distinct to
those noted in other plasmid types. b, c Comparative analysis of blaIMP-4-carrying
IncHI2Aplasmids to non-blaIMP-4 IncHI2Aplasmids from E. hormaecheiST190, ST93

and ST114 from Alfred Hospital. IncHI2A type 1 plasmids from E. hormaechei ST190
had homology over 100% of the non-blaIMP-4 plasmid, with the addition of a 33 kbp
region carrying the class 1 integron in the blaIMP-4 plasmid. IncHI2A type 2 plasmids
from E. hormaechei ST93 shared homology across 97.6% of the non-blaIMP-4 plas-
mid, with the blaIMP-4 integron contained in amosaic region. Abbreviations: bp base
pairs, SNV single nucleotide variant, ST sequence type.
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carrying the class 1 integron with blaIMP-4 (Fig. 4b). The IncHI2A type 2
plasmids from blaIMP-4 E. hormaechei ST93 shared 97.6% homology
with the non-blaIMP-4 plasmid, with the blaIMP-4 integron contained in a
mosaic region (Fig. 4b, c). These data suggested integration of blaIMP-4

into pre-existing carbapenem-susceptible Enterobacter carrying
IncHI2A plasmids, with mobilisation of the regions upstream and
downstream. These flanking regions in IncHI2A plasmids were distinct
to those in other blaIMP-4 plasmids, with a different IS110-like insertion
sequence/Tn3 transposon combination (Fig. 4c).

While the arrival of new IncHI2A and IncL/M plasmids was the
major contributor to the repeated outbreak and hyperendemicity
during this period, we saw ongoing circulation of blaIMP-4 in prior
genetic settings. In particular, we saw IncC plasmids circulating (32/161
genomes, 19.9%), including in a novel lineage of S. marcescens in 2019
(lineage 2—Fig. 2a). We also noted blaIMP-4-harbouring P. aeruginosa
ST111 (1 genome) and E. hormaechei ST114 with blaIMP-4 IncFIA/IncFIB/
IncP plasmids (9 genomes). This reflected a cumulative trend where
the prior blaIMP-4 genetic settings persisted in the context of new
bacterial strains and plasmids, rather than waxing and waning
over time.

An environmental reservoir of blaIMP-4 plasmids
In response to the outbreak in the most recent time period, we con-
ducted environmental screening of ICU sinks from 2019–2020 and
cultured 34 blaIMP-4 isolates (33 S. marcescens and one E. hormaechei),
with 11 isolates selected for sequencing. Despite E. hormaechei pre-
dominating in blaIMP-4 clinical isolates, 6 genomes were S. marcescens
lineage 1, 4 S. marcescens lineage 2, and one E. hormaechei ST190.
These genomes closely matched clinical isolates, with blaIMP-4 being
located on IncC plasmids and IncHI2A type 1 plasmids in S. marcescens
and E. hormaechei ST190, respectively (Figs. 2b and 4a). This indicated
that sinkswere a possible reservoir for blaIMP-4 andmayhave explained
the persistence of S. marcescens with closely matching IncC plasmids
throughout the study (Fig. 2b).

Within-patient and between-patient blaIMP-4 analyses show
importance of diversification of genetic settings through plas-
mid transfer
Patients with serial blaIMP-4-harbouring genomes available followed
different trajectories of blaIMP-4 carriage (Fig. 5a).Multiple colonisation
events were noted in 5/41 patients, with blaIMP-4 being located in dis-
tinct genetic settings (i.e. differing plasmids and/or chromosomal
integration). Flanking region/integron SNV profiles also differed,
making within-patient integron transfer unlikely. Possible within-
patient inter-strain transfer of key blaIMP-4 plasmids (IncC, IncL/M,
IncHI2A types 1 and 2) occurred in 10/41 patientswith the same blaIMP-4

plasmid types beingnoted inmultiple strains (Fig. 5a). In 7 patients, the
evidence was particularly compelling as plasmids had identical flank-
ing sequences and integron SNV profiles across different bacterial
hosts. Persisting colonisation was noted in 26 patients, with the same
strain and same blaIMP-4 genetic setting repeatedly isolated.

We then used patient movement data (available in 127 patients
from 2013 onwards) to establish putative transmission events (Fig. 5b),
defined as spatiotemporal overlap between patients and genomic
evidence of potential transmission. For genomic evidence, we con-
sidered both strain transmission (same bacterial host strain carrying
blaIMP-4 in the same genetic setting) and plasmid transmission
(detection of the same plasmid by MOB-typer cluster in different
bacterial strains). We linked 71/127 (56%) patients using these defini-
tions and identified the ICU as a major transmission site with 36/76
(47%) potential transmission events across 7/16 (44%) transmission
networks, including the two largest networks (23 and 9 patients,
respectively). While strain transmission contributed significantly, use
of long-read sequencing to detect potential plasmid transmission
allowed us to detect an additional 5/10 (50%) wards, 7/16 (44%)

transmission networks and link 22/71 (31%) patients beyond what was
identified for strain transmission alone (Fig. 5b). We measured
betweenness centrality to identify key patients involved in
transmission22. The patient with the highest betweenness centrality
(164.0 vsmean4.9) had a > 4-month ICU admission andwas implicated
in 7 transmission events, placing them at the centre of the large 23-
patient network spanning those two strains and plasmid types (E.
hormaechei ST190with IncHI2A type 1 plasmid and E. hormaechei ST93
with IncHI2A type 2plasmid) (Fig. 5b). A further transmissionevent to a
single patient then occurred during an admission on the Cardiology
ward 6months later.

Discussion
The spread of carbapenemases is the major driver of carbapenem
resistance globally23 and has been the focus of numerous cross-
sectional studies12,13,24. To date, there have been limited efforts to study
carbapenem resistance over extended time periods25,26. In this study
we had a unique opportunity to analyse two decades of blaIMP-4 car-
bapenemases inour institution andgained important insights intohow
blaIMP-4 caused outbreaks and perpetuated endemicity. blaIMP-4 spread
occurred through multiple mechanisms including strain transmission,
plasmid transmission and transfer of the blaIMP-4 class 1 integron. Each
of these had a different qualitative and quantitative contribution to
blaIMP-4 persisting at our institution, highlighting that endemicity is a
nuanced process requiring these mechanisms to act in concert. These
findings carry important implications for prevention of future carba-
penemase endemicity.

From a pathogen perspective, we propose that there are two key
conditions required for blaIMP-4 endemicity. Firstly, there is a need for
diversification of genetic settings for the resistance determinant,
which in our study occurred through extensive inter-strain transmis-
sion of key blaIMP-4 plasmids (IncC, IncHIA2 type 1 and type 2, IncL/M),
as well asmobilisation by transposons of the class I integron and entry
into new plasmids (IncFIB, IncFIA/IncFIB/IncP). This ability to diversify
led to the initial establishment of endemicity with IncC plasmids, and
also to the period of hyperendemicity due to the emergence of a novel
context in IncHI2A and IncL/M plasmids. To study this emergence, we
demonstrated that blaIMP-4 IncHI2A plasmids were highly similar to
non-blaIMP-4 IncHI2A plasmids in E. hormaechei ST93, ST114 and ST190
thatmayhave served as acceptors for the blaIMP-4 integron. In addition,
therewaspossible importation fromoutside sources: blaIMP-4 has been
found in both IncHI2A and IncL/M plasmids in Australian isolates2,4,9,27

and blaIMP-4-harbouring IncHI2A plasmids are emerging as a global
issue, having been noted in a recent multi-hospital outbreak in the
United Kingdom28.

The second condition is propagation of blaIMP-4 through the
establishment of high-risk strain-genetic setting pairs we term propa-
gators. While we noted blaIMP-4 in 68 strains during the study, five
strains accounted for 190/270 (70%) genomes and 140/196 (71%)
patients colonised with blaIMP-4. The first of these was S. marcescens
lineage 1 (IncC plasmids), which defined the early period of the study
and continued to persist throughout. This propagator pair was able to
act as a reservoir of blaIMP-4, likely through occupying an environ-
mental niche as we noted during sampling of ICU sinks. The coloni-
sation of hospital plumbing by CPOs has been well documented9,29–32,
including blaIMP-4-harbouring S. marcescens in an Australian setting
that was unable to be eradicated33. This environmental colonisation
probably enabled clonal spread of blaIMP-4 -harbouring S. marcescens
and may have driven diversification through inter-strain transfer of
blaIMP-4 IncC plasmids and inter-plasmid transfer of the blaIMP-4 class I
integron. Other propagators emerged at various junctures including P.
aeruginosa ST111 (chromosome) and E. hormaechei ST114 (IncFIA/
IncFIB/IncP plasmids), then E. hormaechei ST190 and ST93 (IncHI2A
type 1 and type 2 plasmids, respectively). Clonal spreadof propagators
was therefore central to establishing and maintaining blaIMP-4
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endemicity, as well as leading to a repeated outbreak and hyper-
endemicity in the final period of the study. These findings broadly fit
the ‘multiple lineages, multiple plasmids’ designation proposed by
David et al. when analysing carbapenemase spread in K. pneumoniae12

but we demonstrated that the dynamics of carbapenemase endemicity
in our setting were significantly more complex with clonal transmis-
sion of propagator strains, inter-strain plasmid transmission and inter-
plasmid integron transmission all playing important roles.

In addition to pathogen factors, we were able to analyse patient
factors. While genomic surveillance previously focused on lineage-
level analysis, long-read sequencing technologies have improved
analysis of plasmids and other mobile genetic elements12,28,34. In our
study, these insights proved informative both for understanding
within-patient andbetween-patientblaIMP-4 spread.Withinpatients,we
detected different trajectories of colonisation. Patients who undergo
multiple colonisation events may be at the core of multiple transmis-
sion networks, as demonstrated by the patient colonised with two
IncHI2A plasmids and highest betweenness centrality. Patients with
inter-strain plasmid transfer may facilitate the diversification of
genetic settings for blaIMP-4, thus increasing the risk of newly suc-
cessful propagators emerging13, in turn fuelling outbreaks. Of note, we
did not find clear evidence of blaIMP-4 integron transfer events within-
patients, suggesting that they may play a lesser role. Long-read tech-
nologies also allowed us to analyse putative plasmid transmission
between-patients, which implicated an additional 50% of wards, 44%
transmission networks and 31%patients over strain transmission alone.
We used detection of blaIMP-4 plasmids of the same MOB-typer pri-
mary/secondary clusters as a simple definition17 but quantitative
thresholds incorporating changes in plasmid backbones and large-
scale recombination events across a diverse array of bacterial hosts,
plasmids and resistance determinants are needed35.

Our study had several limitations. Firstly, it was based on an iso-
late collection that spanned two decades with some patient data from
the early part of the study being incomplete. Similarly, approaches to
isolate sampling changed during that time, in particular since the
inception of a statewide CPO detection programme that mandated
screening in high-risk areas36 and likely led to increased detection of
CPO colonisation in the last 4 years of the study. Finally, our study
focused on blaIMP-4 and was from a single centre, which may limit the
generalisability of findings to outbreaks at other centres.

In summary, we showed that blaIMP-4 endemicity and repeated
outbreaksweredue to diversification of genetic settings through inter-
strain blaIMP-4 plasmid transfer and inter-plasmid blaIMP-4 integron
transfer in combination with clonal expansion that led to an evolving
cascade of high-risk strain-genetic setting pairs. Our findings provide a
framework for understanding endemicity of MBL-producing organ-
isms and may have broader applicability to other CPOs. Our study
highlights that stopping the spread of CPOs will require adequate
surveillance todetect not only thepresence of resistancedeterminants
and their bacterial host strains but also their genetic context and
plasmid-integron transmission dynamics, thus enabling early detec-
tion of novel and potentially hidden threats.

Methods
The study was approved by the Alfred Hospital Ethics Committee
(Project No: 44/20) with a waiver of consent for patient data due to its
retrospective and observational nature.

Isolate selection
We systematically reviewed an institutional collection spanning all
CPO isolates from 2002 to 2020. The collection contained isolates
collected as part of routine clinical care, as well as environmental
screening of sinks from 2018–2020. Routine antimicrobial suscept-
ibility testing was performed using Vitek2 (BioMérieux). We identified
blaIMP-4 carriage through polymerase chain reaction (PCR) screening.

GoTaq Flexi DNA polymerase (Promega, Wisconsin, USA) was used as
per manufacturer’s instructions and 10 µmol of the primers
Imp4_screen_F (5′-CCAGGACACACTCCAGATAACC-3′) and Imp4
_screen_R (5′-CAAGAGTGATGCGTCTCCAGC-3′) in 25μL reaction
volumes. PCR was performed using the following cycle conditions:
98 °C for 2min, followed by 30 cycles of 98 °C for 30 sec, 55 °C for
30 sec, 72 °C for 30 sec. Amplicons were resolved by agarose gel
electrophoresis on a 1% w/v agarose gel.

We selected 277 blaIMP-4 isolates for whole genome sequencing
(WGS) based on bacterial strain (species/MLST combination) and year
of isolation. For species with <30 isolates, we sequenced all available
isolates. For species with >30 isolates, we performedWGS on selected
isolates based on collection date to ensure that we had sequencing
data available for all study periods. We sequenced at least one isolate
of all strains across all study periods with both short-read (Illumina)
and long-read (Oxford Nanopore) technologies (n = 172). We also
selected one carbapenem-susceptible E. hormaechei ST93 and one E.
hormaechei ST190 isolate for short- and long-read WGS.

Culture, DNA extraction and sequencing
All bacterial isolates were grown on cation-adjusted Mueller-Hinton II
agar (Becton-Dickinson) for 16 h at 37 °C, and sub-cultured into cation-
adjustedMueller-Hinton broth (Becton-Dickinson) for a further 16 h at
37 °C. Bacterial genomic DNA was extracted from liquid culture using
the GenFind V3 Reagent Kit (Beckman Coulter) as per manufacturer’s
instructions. Libraries for short read sequencing were prepared using
the Nextera Flex DNA Library Prep Kit (Illumina), and 150bp paired-
end sequencing was performed on the NovaSeq 6000 system (Illu-
mina). Libraries for long-read sequencing were prepared using the
Ligation Sequencing Kit with Native Barcoding Expansion (Oxford
Nanopore Technologies) and sequenced on the MinION instrument
with an R9.4.1 flow cell (Oxford Nanopore Technologies) for 48 h.
Basecalling was performed with Guppy v.4.0.14 using the ‘high accu-
racy’ basecalling model.

De novo assembly and annotation
We constructed de novo assemblies of all isolates with only short-read
data using the Shovill v1.0.4 wrapper for SPAdes, which also utilizes
Trimmomatic for read trimming and Pilon for read error
correction37–40. For long-read assembly, long reads were filtered using
Filtlong v.0.2.041 with the following parameters: ‘--min_length 1000
--keep_percent 90 --target_bases 500000000’. Hybrid assemblies
incorporating short- and long-read data were created using Unicycler
v.0.4.08 with standard parameters42 with Unicycler output used to
assess circularisation. If blaIMP-4 contigs were non-circularised, we re-
assembled genomes using a long-read-first assembly using a bespoke
pipeline (https://github.com/HughCottingham/clinopore-nf) that
incorporates Flye v2.9.2 with subsequent polishing with Medaka
v1.8.0, Polypolish v0.5.0 and Polca v3.4.143–46. Assembly quality was
checked usingQuast47 v5.2.0 and species identification was performed
using GTDB-Tk48 v1.0.2 and checked against isolate identification
performed at time of isolate collection. We excluded genomes (n = 7)
with a species mismatch, as well as genomes whose assemblies had
>1000 contigs, N50< 10,000 or assembly length >7.5Mb.

On the remaining assemblies (n = 270), we annotated the gen-
omes using Prokka v1.14.649. We then performed resistance gene and
plasmid replicon detection with Abricate v.1.0.050, using the NCBI
Antibiotic Resistance and PlasmidFinder databases, respectively. We
determined in silico multi-locus sequence type (ST) using ‘mlst’
v.2.19.051. All inconclusive ST calls with ‘mlst’ were checked with
SRST252 v0.2.0.

Core genome-based phylogenetic analyses
We performed core genome-based phylogenetic analyses on key
STs, defined as those with ≥5 isolates available from our
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institution. This included E. hormaechei ST93, ST114, and ST190
and P. aeruginosa ST111. Due to the absence of an MLST schema
for S. marcescens we identified all RefSeq S. marcescens genomes
and used Assembly Dereplicator v0.1.0 (https://github.com/
rrwick/Assembly-Dereplicator) with a Mash distance threshold
of 0.001 to remove duplicate assemblies. We then used these
assemblies, in conjunction with S. marcescens genomes from our
institution to construct a phylogeny using Mashtree18 v1.2.0. In
brief, this tool uses non-alignment based assessment of sequence
similarity through use of the min-hash algorithm, as implemented
in Mash53, to generate distance metrics between input sequences.
These are then used to cluster sequences using the neighbour
joining algorithm. This allowed us to identify that Alfred Hospital
genomes belonged to two lineages, for which we conducted the
same phylogenetic analyses as we did within STs for other
species.

This consisted of identifying RefSeq genomes of the same ST and
including them for context in phylogenetic analyses. We chose one
completed, closed assembly fromour institution for eachST touseas a
reference. Mobile genetic elements were excluded from these refer-
ence assemblies using PHASTER and IslandViewer 454,55. A core chro-
mosomal SNV alignment was generated using Snippy v.4.6.056 and
recombination was removed using Gubbins57 v3.3. We then used this
core genome alignment in IQtree v.2.0.3 to generate maximum like-
lihood phylogenies for each ST58, with the best-fit model chosen using
ModelFinder59. For each ST, median SNV distances between isolates
from our institution were then calculated. Phylogenetic trees were
visualized and annotated with metadata using ‘ggtree’60 with addi-
tional editing in Adobe Illustrator v2020.24.3.

Plasmid phylogenetic analyses
Using Abricate, we identified blaIMP-4-harbouring contigs that were
putative plasmids in our hybrid assemblies. We then used the MOB-
typer v1.4.9 tool to determine plasmid replicons present, as well as to
assign clusters17. In addition, we used COPLA61 to assign plasmid
taxonomic units to keyplasmid types asdeterminedbyMOB-typer.We
identified possible mosaic plasmids resulting from fusion events by
examining plasmid replicon content within MOB-typer cluster and
identifying plasmids which had presence of additional plasmid repli-
cons then manually inspecting the assemblies.

We then conducted analyses within key plasmid groups within
our dataset, as determined by MOB-typer cluster. These included
IncC, IncHI2A type 1, IncHI2A type 2, IncFIA/IncFIB/IncP, IncFIB, IncL/
M, and untypeable plasmids from Acinetobacter spp. In order to
identify SNVs in the plasmid backbone, we used Snippy v.4.6.056 to
create a core SNV alignment by mapping short reads to a reference
plasmid from our institution from each plasmid group. We then used
Mashtree18 to generate distance metrics between plasmids belonging
to the same group, excluding mosaic plasmids. The R package
‘ggtree’ v3.0.4 was used to visualize the resulting trees60 and to
annotate with metadata. Adobe Illustrator v2020.24.3 was used to
merge different parts of the figures together. We also used fastANI
v1.3 to generate pairwise average nucleotide identities between
plasmids belonging to the same plasmid group62. We used pro-
gressiveMauve v2.4.0.r4736 to align all plasmids within a plasmid
group and assess for structural re-arrangements63, then visualized
this in Easyfig v2.2.264.

Analysis of blaIMP-4 integron and flanking sequences
We used Flanker19 v0.1.5 to identify and cluster flanking sequences
around blaIMP-4 from hybrid contigs. We performed clustering
5000bp upstream and downstream of the blaIMP-4 gene across win-
dows in 500bp increments. Geneious v10.2.6 (https://www.geneious.
com) was used to visualize and assess for structural re-arrangements,
with subsequent manual annotation in Adobe Illustrator v2020.24.3.

We also assessed for SNVs in the blaIMP-4 integron by aligning blaIMP-4

genetic settings from completed, circularised assemblies to a pre-
viously reported blaIMP-4 integron (GenBank accession number
JX101693)4 using MUSCLE v3.8.155165. Assemblies with large scale
insertions or deletions in the integron were excluded (e.g. P. aerugi-
nosa ST111 genomes).We extracted SNVs from the resulting alignment
using SNP-sites v2.5.166 and grouped plasmids according to the SNV
profile.

Short-read mapping to plasmid sequences
For genomes which only had short-read data available, we created a
database of plasmids from all MOB-typer clusters (described above)
and used the Nextflow implementation of the REDDog pipeline
(V1.beta10.3; available at https://github.com/scwatts/reddog-nf) to
map short-reads to this database. We used the following parameters:
‘mapping_cover_min = 1, mapping_mapped_min =0.5, mapping_depth_
min = 10’ then analysed the data. A read set was considered to have a
match to a plasmid in the database if there was >90% coverage of the
plasmid with <10 SNVs.

Patient data and transmission events
Clinical data were extracted from the electronic medical record.
Clinical data were missing for 7 isolates from 2009–2012. Patient
movement data were available from 2013 onwards, including 127/196
(65%) patients in the study. As patients did not undergo systematic
surveillance for blaIMP-4, we considered that the patient may have
been colonised in the 30 days prior to the first isolation of a blaIMP-4-
harbouring organism and identified overlaps on the same ward at the
same time as potential transmission events between patients. We
then applied genomic criteria to further confirm potential trans-
mission events. In the first instance, patients would have to have
blaIMP-4-harbouring bacteria of the same strain for a potential trans-
mission event to be considered. These events were then further
classified on basis of SNV distance, with a cutoff of 10 SNVs. In the
second instance, patients would have to have blaIMP-4 in the same
genetic setting (defined as the same MOB-typer primary/secondary
cluster), as determined either through completed assemblies or by
having a match to a reference plasmid using the short-read mapping
approach described above. We then used the R package ‘ggraph’
v2.0.5 to visualize putative transmission networks with patients as
nodes and potential transmission events as edges. Betweenness
centrality was calculated using the ‘betweenness’ function in the
‘iGraph’ R package (v1.2.11)67.

Statistical analysis
Categorical variables were compared using χ2 or Fisher’s exact tests
and continuous variables were compared using Student’s t-test or
Mann–Whitney–Wilcoxon, as appropriate. Statistical analyses were
performed in R (v4.1.1).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Illumina/Nanopore read data generated in this study have been
deposited in the NCBI Sequence Read Archive under project accession
PRJNA924056. The completed genome assemblies are available in
GenBank; accessions are listed in Supplementary Dataset 1. The addi-
tional phylogenetic data generated in this study are provided in the
Source Data file. Source data are provided with this paper.

Code availability
The code generated during this study is available on GitHub (https://
github.com/nenadmacesic/imp4_ncomms)68.
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