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HypoRiPPAtlas as an Atlas of hypothetical
natural products for mass spectrometry
database search
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Recent analyses of public microbial genomes have found over a million bio-
synthetic gene clusters, the natural products of the majority of which remain
unknown. Additionally, GNPS harbors billions of mass spectra of natural pro-
ducts without known structures and biosynthetic genes. We bridge the gap
between large-scale genome mining and mass spectral datasets for natural
product discovery by developing HypoRiPPAtlas, an Atlas of hypothetical
natural product structures, which is ready-to-use for in silico database search
of tandem mass spectra. HypoRiPPAtlas is constructed by mining genomes
using seq2ripp, a machine-learning tool for the prediction of ribosomally
synthesized and post-translationally modified peptides (RiPPs). In HypoR-
iPPAtlas, we identify RiPPs in microbes and plants. HypoRiPPAtlas could be
extended to other natural product classes in the future by implementing
corresponding biosynthetic logic. This study paves the way for large-scale
explorations of biosynthetic pathways and chemical structures of microbial
and plant RiPP classes.

The natural products of cultured microbes have served as a major
source of lead compounds for antibiotics1, drug2, food preservative3,
and analgesic agent4,5 discoveries. However, antibiotics with diverse
modes of actions are needed to combat antibiotics resistance, and a
continued focus on the abundant molecules from culturedmicrobes is
ineffective due to high rates of rediscovery. Traditional approaches rely
on repeated fractionation and bioactivity testing, followed by isolation
and structure elucidation of the molecules of interest, which is a time-
consuming and expensive process. The Synthetic-Bioinformatic Nat-
ural Products (syn-BNPs)6, proposed as an alternative strategy, relies on
predicting chemical structures with existing bioinformatic tools, and
thus, its effectiveness is constrained by the limitations of these tools.

During the past decade, two distinct breakthroughs have revolu-
tionized the field of natural product discovery. First, in the 2000’s
genome mining approaches made it possible to predict the biosyn-
thetic gene clusters (BGCs) of natural products from microbial DNA
sequences7. Later, machine learning approaches enabled partial pre-
diction of the building blocks of natural products from their BGCs8–10.
Recently, several repositories have been developed containing mil-
lions of natural product BGCs extracted from hundreds of thousands
of microbial genomes11–13. However, connecting these BGCs to their
molecular products has not kept pace with the speed of microbial
genome sequencing. For example, IMG-ABC reports that out of
411,007 BGCs discovered from microbial genomes in public
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repositories, less than 0.3% (1285) are connected to their molecular
products11. Existing genome mining approaches usually only predict
partial structures of natural products and theirmonomers10,14, accurate
methods for the prediction of complete structures of natural products
are not available.

Since 2015, global natural product social (GNPS) molecular net-
working infrastructure has brought together over two thousand mass
spectral datasets from over five hundred principal investigators con-
taining over seven hundred thousand samples obtained from micro-
bial isolates, host-oriented and environmental communities15.
Accompaniedwithmolecular networking16 (a network ofmass spectra,
where similar spectra are connected with an edge), GNPS is a valuable
resource for future natural product discovery. However, over 98% of
the billion mass spectra currently stored at GNPS represent the ‘dark
matter of metabolomics’17 since all attempts to interpret them have
been failed. This ‘dark matter’ likely consists of spectra of unknown
molecules produced by BGCs encoded in existing genomic
repositories.

It is challenging to directly link spectra fromGNPS to BGCs from
IMG-ABC11, antiSMASH-db12 and BiG-SLiCE13, as predictions of natural

product (NP) structures from BGCs remain difficult due to knowl-
edge gaps in NP biosynthesis. To bridge this gap, we present
HypoRiPPAtlas, a repository of hypothetical ribosomally synthesized
and post-translationally modified peptides (RiPPs) predicted from
microbial BGCs (Fig. 1). RiPPs are a group of peptidic natural pro-
ducts with highly diverse structures, functionalities, and
bioactivities4. RiPPs are usually synthesized as short precursor pep-
tides (below 200 amino acids) consisting of a leader peptide, a core
peptide, and a follower peptide. Then, the core peptide is post-
translationally modified by tailoring enzymes usually present in a
cluster around the precursor peptide.

To populate the HypoRiPPAtlas, we developed seq2ripp, a
machine-learning tool for predicting the complete chemical structure
of mature RiPPs from genomic data. Seq2ripp contains four modules
for doing this. Starting from a microbial genome, genome2bgc,
bgc2orf and orf2core modules predict RiPP BGCs, precursor peptides
and core peptides, respectively. Then, based on the tailoring enzymes
present in the BGC, the core2rippmodule predicts a combinatorial list
of feasible mature RiPP structures for each core peptide (Fig. 2).
Machine learning methods, including profile hidden Markov models18

(a) biosynthetic gene clusters

(f) NP-spectrum matches (g) expansion through

molecular networking

(d) predicted spectra(b) hypothetical NPs

(c) filtering by taxonomic information

(e) mass spectra
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Fig. 1 | Thepipeline forRiPPdiscovery byHypoRiPPAtlas. aThepipeline extracts
BGCs frommicrobial genomes available at RefSeq and IMG/M11, or uses the readily
available BGCs from IMG-ABC11, antiSMASH database12, and BiG-SLiCE13. Colored
boxes represent annotated domains. bHypoRiPPAtlas is constructed by predicting
the hypotheticalmolecule structures from the BGCs. Three hypothetical structures
are distinguished and labeled using different colors. c The Atlas is further filtered
down to specific taxonomies/gene clusters based on the taxa/metagenomic infor-
mation available from the samples of interest. dMass spectrometry fragmentation

of the hypothetical molecules in the Atlas are predicted, along with known RiPPs
from PubChem74 and NP-atlas75. eMass spectra are collected on the environmental
samples/microbial isolates, e.g. from a GNPS dataset15. fMass spectra are searched
against the predicted spectra of hypothetical molecules, and high-scoring RiPP-
spectrum matches are reported. g The identifications are further expanded
through propagation in the molecular network15. Steps (a–d) are done only once
and stored in a repository, while steps (e–g) are repeated for every new mass
spectral dataset.
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and deep neural networks (DNNs), are used in the development of
genome2bgc, bgc2orf and orf2core. An efficient subgraph isomorph-
ismalgorithmhasbeendeveloped for predicting themodification sites
in core2ripp allowing for applying post-translational modifications. By
predicting multiple hypothetical structures, seq2ripp increases the
chance of capturing correct mature RiPPs. HypoRiPPAtlas relies on
seq2ripp for prediction of the small molecule structure of RiPPs for
subsequent generation of their hypothetical mass spectra.

Existing peptidogenomics strategies and tools support a subset
of features provided by the seq2ripp pipeline. MetaMiner19 is limited
to modeling RiPPs as strings of amino acids, which is considerably
less sensitive than a graph-based representation. RODEO20 and its
updated version, RODEO221, predict precursor and core peptides
using motif search and machine learning for lassopeptides, class I-IV
lanthipeptides, sactipeptides/ranthipeptide, graspetide, linaridin,
pyritide, and thiopeptides. RiPPER22 builds upon RODEO outputs to
predict class-independent RiPP precursors by addingORF prediction
via a custom build of gene prediction software Prodigal23. PRISM 424,

like seq2ripp, is a full pipeline for prediction of RiPP structures from
genomic information, but does not includemass spectral analysis for
validation of predictions. DeepRiPP25 predicts RiPP precursors and
core peptides with generative models and recurrent neural net-
works, respectively. NeuRiPP26 predicts RiPP precursors with con-
volutional and recurrent neural networks. RiPPminer27 predicts RiPP
precursors, RiPP classes, cleavage sites, and cross-links with support-
vector machines and random forest classifiers. The Hypothetical
Structure Enumeration and Evaluation (HSEE)28 method similarly
operates onmolecular structures and utilizes mass spectrometry for
locating post-translational modifications. However, this method
does not automatically extract post-translational modifications and
requires external tools for generating the theoretical spectra. None
of these methods provide a comprehensive pipeline to extract
hypothetical molecular structures that aren’t tied to a particular
subclass of RiPPs.

HypoRiPPAtlas includes hypothetical RiPPs predicted from 22,671
complete microbial genomes. HypoRiPPAtlas reports on hypothetical
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Fig. 2 | Seq2ripp pipeline. The process of generating hypothetical RiPPs from
genomes in seq2ripp involves four steps: genome2bgc, bgc2orf, orf2core and
core2ripp. Genome2bgc extracts BGCs from the input genome by searching RiPP-
related genes. Bgc2orf extracts all ORFs from each BGC and identifies the RiPP
precursor ORFs. Orf2core identifies the potential cleavage site within the ORFs and

produces cores. Core2ripp generates hypothetical chemical structures of the RiPP
from the core and the enzymes in the BGC. For example, the colored region in each
compound indicates the modification introduced by the enzyme with the corre-
sponding color in the BGC.
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BGCs, ORFs, and core sequences extracted from a genomic input. In
addition to these sequences, it predicts mature RiPP structures for
each identified RiPP BGC. Searching 46 mass spectral datasets from
GNPS against HypoRiPPAtlas resulted in the discovery of numerous
known and novel RiPPs, including two lassopeptides and one lanthi-
peptide from Streptomyces sp. NRRL B-2660, WC-3904 and WC-3560.
Moreover, ribosomal peptides discovered from the humanmicrobiota
showed high affinity against human G-protein-coupled receptors
(GPCRs) showing the potential of HypoRiPPAtlas in bioactive RiPP
identification. Finally, a RiPP class with a newly confirmed post-
translational modification (PTM) was characterized by HypoRiPPAtlas
from the silverberry plant showcasing that unrevealed RiPP classes can
be discovered by our platform.

Results
Outline of natural product discovery by HypoRiPPAtlas
Figure 1 illustrates the pipeline for natural product discovery using
HypoRiPPAtlas that includes the following steps detailed in the
Methods section: (a) BGCs are identified from IMG-ABC/antiSMASH-
db/BiG-SLiCE, (b) hypothetical natural products are pre-calculated by
seq2ripp in the case of RiPP BGCs. (c) the atlas can be filtered using
specific taxonomic information, and (d) spectra for these molecules
can be predicted using Dereplicator+29. (e) Predicted spectra can be
searched against mass spectral datasets using Dereplicator+, yielding
(f) molecule-spectrum matches. (g) These matches can be expanded
using molecular networking15. (h) Links are automatically added
between GNPS, HypoRiPPAtlas, and IMG-ABC/BiG-SLiCE.

Outline of the seq2ripp algorithm
Figure 2 illustrates the seq2ripp pipeline that includes the following
steps described in theMethods section: (i) genome2bgc identifies RiPP
BGCs based on the biosynthetic enzymes from a microbial genome
sequence, (ii) bgc2orf identifies RiPP precursor ORFs from a BGC, (iii)
orf2core identifies RiPP core peptides from an ORF, and (iv) core2ripp
generates a combinatorial list of feasible mature RiPPs for each core
peptide based on the tailoring enzymes present in the BGC.

Genome2bgc extracts RiPP BGCs in the following steps: (i) the
genome sequence is translated in six frames, (ii) RiPP-related proteins
are identified using hmmsearch18, (iii) contigs are defined by extracting
genome sequence from the middle of the protein to 10,000 bp
upstream and downstream, (iv) BGCs are identified after merging
overlapping contigs.

Bgc2orf identifies RiPP precursor ORFs in the following steps: (i)
the DNA sequence of the BGC is translated in six frames, (ii) RiPP
biosynthetic enzymes are identified using hmmsearch18, (iii) ORFs in
the vicinity of the biosynthetic enzymes are extracted (default 10,000
bp), (iv) candidate RiPP precursors are identified using ORF prediction
tools30, and (v) bgc2orf filters this list of candidate ORFs using a deep
neural network (see Fig. 3).

Orf2core predicts RiPP core peptides from their ORFs in the fol-
lowing steps: (i) top k N-terminal and C-terminal cleavage sites from
eachORF are identifiedusing adeepneuralnetwork (k is a user-defined
threshold), (ii) a combinatorial list of putative core sequences (up to k2

cases) is generated, and (iii) when the precursor contains repetitive
patterns (e.g. cyanobactins31,32 and plant RiPPs33–36), a repeat-specific
core finding strategy is used to identify core sequences from repeated
leader and follower patterns.

Outline of the Dereplicator+ algorithm
The Dereplicator+29 model constructs a theoretical fragmentation of a
molecule and scores the predicted theoretical spectrum against a
given experimental spectrum. Starting at the original molecule, Dere-
plicator+ first disconnects all C-C, O-C, and N-C bonds. The resulting
connected components are condensed into nodes and re-connected
with the previously broken bonds, resulting in the intermediate graph,

referred to as themetabolite graph. Theoretical fragments are defined
as the connected components resulting from removing a bridge or a
2-cut in the metabolite graph. Fragments are computed recursively
starting at the original metabolite graph and repeating for any child
fragments until a user-specified max fragment depth. A theoretical
fragment is considered annotated if its corresponding mass can be
explained by an experimental peak. A path in the fragmentation graph
is considered a fully annotated path if it begins at the root fragment
and consists of only annotated fragments. The final score is the num-
ber of peaks in the experimental spectrum that belong to fully anno-
tated paths in the theoretical spectrum.

Datasets
22,671 complete microbial genomes from RefSeq and 2002 draft
Streptomycesmicrobial genomes were used for constructing the Atlas.
We further analyzed the 46 paired datasets of spectra and genomic
data from the Paired Omics Data Platform (PoDP) (917 strains,
7,604,198 MS/MS scans)37, and a paired dataset of Actinomyces
(119 strains, 409,245 MS/MS scans, MSV000083738.)

Identification of radamycin, grisemycin and lacticin 481
We first illustrate the performance of seq2ripp pipeline on radamycin,
grisemycin, and lacticin 481. Radamycin is a thiopeptide from Strep-
tomyces globisporus isolated from tomato flowers38,39. Grisemycin is a
linaridin from Streptomyces griseus IFO 1335040. Lacticin 481 is a lan-
thipeptide from Lactococcus lactis subsp. lactis41. Radamycin acts as a
signaling peptide to regulate the gene expression in Streptomyces
lividans39,42. There is no antimicrobial activity detected in grisemycin40,
whereas lacticin 481 shows antibacterial activity43.

Genome2bgc identifies 20 hypothetical RiPP BGCs in Strepto-
myces globisporus NRRL B-2709, including the radamycin BGC44

(Supplementary Data). Bgc2orf further finds 48 ORFs in these BGCs,
and orf2core identifies 273 cores in these ORFs. Finally, core2ripp
discovers 120,701 hypothetical mature RiPPs in this strain, including
the correct radamycin RiPP. Searching mass spectra collected on the
extracts of Streptomyces globisporus against these 120,701 RiPPs using
Dereplicator+ results in a top scoring match with score 25 and p-value
3.0 × 10−46 that corresponds to the correct radamycin structure (Fig. 4
and Fig. 5). MetaMiner, which ignores fragmentations between O-C
and C-C bonds and higher fragmentation depths, assigns a score of
9 and a p-value of 3.0 × 10−17 to the correct radamycin. NeuRiPP26 and
DeepRiPP25 are both able to identify the correct radamycin ORF.
However, DeepRiPP can not identify the correct core sequence
(NeuRiPP currently does not contain a core-findingmodule). Similarly,
for grisemycin and lacticin 481, seq2ripp identifies the correct struc-
ture among top predictions, and Dereplicator+ correctly picks the
correct structure as the most significant match to their mass spectra
(Supplementary Figures 1–4).

Mining microbial genomes
Genome2bgc found 328,676 hypothetical RiPP BGCs in 22,671 micro-
bial genomes. Bgc2orf found hypothetical 55,100 ORFs in these BGCs.
Orf2core found hypothetical 1,207,991 cores in these ORFs. Figure 6
summarizes the number of hypothetical BGCs, ORFs and cores
retrieved by different seq2ripp modules. DeepRiPP extracts more
ORFs than bgc2orf, while NeuRiPP extracts fewer ORFs. DeepRiPP
extracts fewer cores than orf2core leading to a larger number of pre-
dicted core peptides by seq2ripp modules compared to DeepRiPP
across the sampled genomes. The BLASTmethod, which finds regions
of local similarity between potential and known ORFs, extracts the
fewest number of ORFs and cores, while the exhaustivemethod, which
extracts all the substrings of the ORFs with lengths ranging from 3 to
30 amino acids, results in the largest amount of ORFs and cores45.
Unfortunately, it is not possible to compare the sensitivity and speci-
ficity of different methods on a large scale.
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Identifying RiPPs from the PoDP datasets
Analyzing 46 PoDP datasets with 1036 genomes, seq2ripp predicts
17,505 hypothetical BGCs, 54,605 hypothetical ORFs, 118,052 hypo-
thetical cores and 30,687,610 unique hypothetical RiPPs (Fig. 6).
After searching these RiPPs against corresponding spectra with
Dereplicator+, three RiPPs are identified (Fig. 7).

Lasso-1648 is identified from Streptomyces NRRL B-2660, con-
taining a N-terminal macrolactam ring between N1 and D8 (Fig. 7a and
Supplementary Figure 5). Based on Seq2ripp predictions, the PTM is
applied by Asn-synthetase (PF00733.18). Lasso-1795 is identified
from Streptomyces NRRL B-2660 and WC-3560, containing a
N-terminal macrolactam ring between Q1 and D8 (Fig. 7b and Sup-
plementary Figure 6). The PTM is applied by Asn-synthetase
(PF00733.18). Lanthi-1794 is identified from Streptomyces WC-
3904. A dehydroalanine (Dha) located at S6, and three dehy-
drobutyrines (Dhb) located in T2, T10, T15 are potentially connected
to one of the cysteines in the core peptide, forming lanthionine (Lan)
or methyl-lanthionine (MeLan) rings (Fig. 7c and Supplementary
Figure 7). The PTM is applied by Lantibiotic dehydratase (PF05147.6

and PF04738.6). The DTGHCSGVCTVLVCTVAVC core identified by
seq2ripp for lanthi-1794 does not appear in the survey conducted by
Walker et al.46. However, the precursors and cores for lasso-1648 and
lasso-1795were previously reported by RODEO20. Seq2ripp validated
that these lassopeptides are expressed naturally by the producing
microorganisms through mass spectral search.

We searched mass spectral datasets from the PoDP database
against the corresponding RiPP molecules from HypoRiPPAtlas using
Dereplicator+29. At a false discovery rate (FDR) of 1% (score threshold
of 15), 64 unique RiPPs (131 molecule-spectrum matches) were dis-
covered. Supplementary Figure 8 shows the number of peptide-
spectrum matches (PSMs) and unique peptides identified at different
score thresholds in target and decoy.

Identifying RiPPs from 2002 draft Streptomyces microbial
genomes
Seq2ripp found 48,542 hypothetical RiPP BGCs, 86,562 hypothetical
ORFs, and 2,159,946 hypothetical cores in 2,002 Streptomyces draft
microbial genomes (Fig. 6).
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Fig. 3 | Bgc2orf andorf2coremodels.As illustrated in (a) and (b), from left to right,
the red peptide is a RiPP ORF, and the yellow section is the RiPP core. The green
blocks are two 1DCNNs, and the purple blocks are bidirectional LSTMwith a dense
layer and a CRF layer in bgc2orf and orf2core, respectively. a Bgc2orf model is a
binary classifier that computes the probability of a given ORF peptide sequence
being a RiPP ORF. Bgc2orf model consists of (1) a padding process and an
embedding layer (shown inblue), (2) two 1DCNNs (shown in green), and (3) a single
layer bidirectional LSTM, aflattening layer, and a dense layer (shown in purple). The
output is a probability and the default cutoff is 0.5. b The orf2core model shares a
similar architecture with bgc2orf. However, the flattening and dense layers are
replaced with a conditional random fields layer (shown in purple), which predicts

the probability of each amino acid is one of the < start > , < before> , < core> , <
after> , < end > tokens. The orf2coremodel takes a RiPPORF as input and identifies
kN-terminal and kC-terminal cleavage sites given the predicted tokens, where k is a
user-defined hyperparameter. N- and C-terminal cleavage sites are defined as the
transition from< before > to < core> and from< core > to < after > , respectively.
Then, cores are predicted based on the combination of N- and C-terminal cleavage
sites. c An alternative core finder is used to search the repeated leader-follower
patterns, which are highlighted in gray, and to identify the core sequence in the
patterns, highlighted in yellow. The alternative core finding is enabled for cyano-
bacteria BGCs (which contain the YcaO gene motif) and plants.
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Benchmarking bgc2orf
We compared bgc2orf with DeepRiPP and NeuRiPP, state-of-the-art
tools for RiPPORF identification. SinceDeepRiPP andNeuRiPP are pre-
trained with different datasets, two separate experiments were con-
ducted to compare the prediction accuracy between bgc2orf and
DeepRiPP/NeuRiPP on the MIBiG47 dataset. In the first experiment, we
discarded MIBiG RiPPs that were used in the DeepRiPP training data,
and in the second experiment, we discarded MIBiG RiPPs that were
present in the NeuRiPP training data. In the first experiment, bgc2orf
achieved 75.0% accuracy in comparison to 70.0% for DeepRiPP, while
in the second experiment, bgc2orf achieved 83.3% accuracy, in com-
parison to 68.4% for NeuRiPP. Supplementary Figure 9 shows the loss
function of bgc2orf network based on the number of epochs. Sup-
plementary Figure 10 shows the re-sampling strategy to avoid data
imbalance.

Benchmarking orf2core
Orf2core generates top k cleavages for each ORF, where k is a user-
adjusted parameter. Supplementary Figure 11 shows the tradeoff
between accuracy and the number of predicted core peptides for
selecting k. Moreover, orf2core includes a repeat-finder module for
the identification of coreswith repetitive patterns (e.g. cyanobactins
and plant RiPPs). On a test dataset of 165 cores fromMIBiG database
(excluding training data of DeepRiPP and orf2core), orf2core cor-
rectly identified 48.48% of cores, in comparison to 35.00% for
DeepRiPP. When the top 5 pairs of cleavage sites were allowed,
orf2core correctly identified 63.03% of cores. Supplementary

Figure 12 shows the loss of orf2core network based on the number of
epochs.

Cross-validation (CV) of bgc2orf and orf2core
10-fold CVwas conducted to estimate the performance of bgc2orf and
orf2core. Datasets for each model were split into ten subsets. In each
fold, one subset was used for the test and the other nine subsets were
merged for training and validation. Each subset was only used for the
test once in the 10-fold CV. 10-fold CV provides a better estimation of
the model performance, especially when training data is limited. The
average test accuracies for bgc2orf and orf2core are 94.20% and
73.31%, respectively. The test accuracy among 10-fold CV in each
model is consistent, indicating that each model is generalized to all
available data we can collect at the time of the experiment (Supple-
mentary Figure 13).

A comparison of RiPP discovery methods
Wecompared seq2ripp’smodules against the following computational
tools identified by Russel and Truman, 202048 and described in Fig. 8a.

BAGEL449 uses manually-curated HMMs to detect and annotate
RiPP BGCs and ORFs. AntiSMASH650, though not specific to RiPP bio-
synthesis, predicts and characterizes RiPP BGCs, including the identi-
fication of putative precursor and core peptides for some RiPP classes
using manually-curated HMMs in conjunction with tools such as
KnownClusterBlast51 and RODEO20. RiPPMiner27 predicts chemical
structures from precursor peptides for select classes of RiPPs using
Support Vector Machines. NeuRiPP26 predicts genuine precursor
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peptides from an input list of putative precursor sequences using a
deep neural network. DeepRiPP25 is a tool with three modules:
NLPPrecursor, BARLEY, and CLAMS. BARLEY failed to run in batch
mode and CLAMS requires mass spectral input and therefore was not
included inour genomemining benchmark. NLPPrecursor, is amodule
of DeepRiPP25 that was included in this benchmark and uses a deep
neural network to verify if an input sequence is a RiPP precursor
peptide and, if so, it predicts the RiPP class and core sequence. The
inputs and outputs for these tools are summarized in Fig. 8a.

The following tools, though relevant to RiPP discovery, were not
benchmarked against. ThioFinder52 cannot be run in batch mode and
only supports thiopeptide BGC prediction. PRISM 424 is also unable to
be run in batch mode. RiPPER22 takes protein accessions as input and
consequently is not suitable for a genome mining approach. The

publicly available version of RODEO253 is deliberately restricted to
running on GenBank accessions, so it was not compared against.
Pep2Path54, HSEE28, and CycloNovo55 require mass spectral input to
generate hypothetical RiPPs, while this benchmark experiment focuses
only on genome mining approaches.

For each MIBiG RiPP BGC where a core and a molecular structure
is reported in the literature, we downloaded the genome sequence of
their producer microorganisms. In cases where genome sequences
were not available, we used genome sequences of other strains within
the same species with BLAST similarity of at least 96% against the ORF
sequence with exact match to core sequence. Finally, 71 genome
sequences encoding for 84 RiPPs were retained (Supplementary
Table 1), andused as inputs for seq2ripp, BAGEL449, and antiSMASH650.
For tools that take ORFs as input (RiPPMiner27, NeuRiPP26, and
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0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0

20

40

60

80

Metric Cutoff

N
um

be
r o

f B
G

C
s 

Sc
or

in
g 

Ab
ov

e 
C

ut
of

f

Method
antiSMASH

NeuRiPP

NLPPrecursor

RiPPMiner

seq2RiPP

(a)

(b)

Fig. 8 | Comparisons of seq2ripppipeline and variousRiPPs searching tools. aA
comparison of inputs and outputs for six benchmarked genome mining approa-
ches for RiPP discovery. NLPPrecursor is a module of DeepRiPP. b A comparison of
various tools for mining RiPPs from genomes. Metrics for ORF and Core detection

are maximum normalized Levenshtein similarity to the correct core. For RiPPs, the
metric was Tanimoto similarity between the true and predicted structures. Plots
show the number of reference BGCs for which the tools' best predictions exceeded
the metric cutoff.

Article https://doi.org/10.1038/s41467-023-39905-4

Nature Communications |         (2023) 14:4219 9



NLPPrecursor25), seq2ripp ORFs were supplied as inputs for a com-
parison against seq2ripp’s downstream pipeline.

We evaluated three metrics for the benchmarked tools: one for
each predicted ORF, core, and RiPP. We assessed the accuracy of the
ORF and core sequence predictions based on Levenshtein distance,
which measures the minimum number of insertion, deletion, and
substitution operations needed to convert one string into another.
For ease of comparison, we further normalized the Levenshtein dis-
tance by the length of the reference sequence and converted it into a
similarity score by subtracting the normalized distance from 1. Our
ORF detection metric is the maximum normalized Levenshtein
similarity between the correct core and the substrings of all of the
predicted ORFs. Our core detection metric is the maximum nor-
malized Levenshtein similarity between the correct core and the
predicted cores. Our RiPP detection metric is the maximum Tani-
moto similarity with radius 2 Morgan fingerprints56 between the
correct and the predicted structures. Tanimoto similarity between
two molecules is the number of shared bits in their fingerprints
divided by the total number of unique enabled bits across both fin-
gerprints. All three metrics range between 0 and 1 with 1 denoting a
perfect match. Seq2ripp outperformed all the other methods in the
detection of ORFs, cores, and RiPPs (Fig. 8b, Supplementary Fig-
ure 13). Among 84 RiPP BGCs, seq2ripp correctly predicted 61 ORFs,
40 cores, and 12 RiPP molecular structures (Table 1, Supplementary
Figure 14).

Two RiPPs, lasso-1648 and lasso-1795, were discovered from
Streptomyces sp. NRRL B-2660 datasets and one RiPP, lanthi-1794, was
discovered from Streptomyces sp. NRRL WC-3904 datasets. To evalu-
ate the performance of existing genomemining tools in predicting the
RiPPs, these genomes were analyzed by antiSMASH650 and BAGEL449,
and the ORFs containing the correct core for the RiPPs were used as
inputs for RiPPMiner27 and NLPPrecursor25. Similarity was measured
using normalized Levenshtein similarity.

ORFs predicted by antiSMASH650 did not contain the correct core
for any of the RiPPs. BAGEL449 did not predict anyORFs corresponding
to lasso-1648 and lasso-1795 and in the case of lanthi-1794, the pre-
dicted cores were wrong.

Given ORFs containing the correct cores for the RiPPs from their
genome assemblies, RiPPMiner27 did not predict any cores and was
therefore unable to predict the chemical structures of the RiPPs. Given
the same input ORFs, NLPPrecursor25 was able to correctly predict the
core from lasso-1648, but failed to correctly predict the cores for
lanthi-1794 and lasso-1795.

These results indicate that a combination of other computational
tools (without using seq2ripp modules) would not discover all of the
novel RiPPs. The closest competitor module was NLPPrecursor, which
was only able to retrieve one of the three cores.

Discovery of bioactive ribosomal peptides from the human
microbiota
Three N-formylated ribosomal peptides, fMEIVTSIISIIKTILG, fMAG-
DIISTIVDFIKL, and fMNDLFGFITKVIDFLRSILVNGEPRR, were dis-
covered by HypoRiPPAtlas from the human microbiota
(MSV000080673) and subsequently tested for their bioactivity against
human GPCRs57.

Our results show that these peptides have significant agonist
activity at formyl peptide receptor 1 (FPR1) bymeasuring the induction
of β-arrestin 2 recruitment57 (Supplementary Figure 15). These results
demonstrate the potential of HypoRiPPAtlas in discovering bioactive
ribosomal peptides.

Discovery of cyclic plant RiPPs with novel PTMs
Plant-seq2ripp is a variant of seq2ripp algorithm tuned for discovering
BURP-domain-derived RiPPs from plant species, i.e. lyciumin, legu-
menin, mono- and bicyclic cyclopeptide alkaloids, cercic acid, and
stephanotic acid (Supplementary Figure 16)35,36.

The algorithm was applied to transcriptomic and metabolomic
datasets collected on 62 plant species (Supplementary Table 2) in
order to test its potential for characterizing new RiPP chemistry from
plants. Within these datasets, plant-seq2ripp correctly connected
knownplant RiPPs of known classes with corresponding BURP-domain
precursor peptides, for example, legumeninwith AhyBURP, lyciuminB
with LbaLycA, cercic acid with CcaBURP1, stephanotic acid-[LV] with
CcaBURP2, and cyclopeptide alkaloids selanine A and B with
SkrBURP36. Moreover, the algorithm discovered plant RiPPs of known
classes including four bicyclopeptide alkaloids (cores: ILLYPSY,
VLFYRSY, FLLYPY, FLLYPSY) and one monocyclic cyclopeptide alka-
loid (core: ILLY) derived from Selaginella kraussiana precursor
SkrBURP, two lyciumins (core: QPFGVFAW, QPFGVFSW) derived from
a BURP-domain precursor of Jeffersonia diphylla, and a stephanotic
acid (core: QLKVW) derived from Cercis canadensis precursor Cca-
BURP2 (Supplementary Figure 17). Among these, Jeffersonia diphylla is
a member of the Berberidaceae, and in this plant family no lyciumins
have previously been reported. The validation of aforementioned
plant RiPPs is generally conducted by transient expression of the
matched BURP-domain precursor gene in N. benthamiana (Supple-
mentary Table 3). For six of the plant RiPPs, we conducted transient
expression of the matched BURP-domain precursor gene in N. ben-
thamiana via Agrobacterium tumefaciens LBA4404 infiltrationwith the
pEAQ-HT expression system58. After collecting LC-MS/MS data of
methanolic extracts of the transgenic tobacco leaves six days after
infiltration, MS/MS spectra corresponding to the observed BURP-
domain ORFs were detected by seq2ripp, confirming that the pre-
dicted spectra are indeed derived from the predicted ORFs (Supple-
mentary Figure 18).

Finally, plant-seq2ripp predicted eight plant RiPPs with new PTMs
which included a BURP-domain-derived cyclic pentapeptide with a
mass of 615.773 Da, a core peptide of LPIIY, and a Pro-Tyr-
macrocyclization from Elaeagnus pungens (Fig. 7 and Supplementary
Figure 19). This macrocyclization was not a part of the seq2ripp PTM
databasebut using variablemass spectral search59 seq2rippwas able to
discover this PTM without any a priori information. This predicted
crosslink was characterized by NMR of the purified natural product
(Supplementary Figure 20 and Supplementary Table 4) named
elaeagnin. The elaeagnin PTM, a macrocyclic ether bond between the
β-carbon of a proline and the phenol-hydroxyl-group of a tyrosine, was
previously proposed in a plant peptide derived from soybean BURP-
domain precursor GLYMA_04G18040036 (Supplementary Figure 21).
Elaeagnin features an unmodified N-terminus in contrast to N-termini
of characterized BURP-domain-derived RiPPs which are modified as a
glutamine-derived pyroglutamate or via N,N-dimethylation36. Elaeag-
nin structure elucidation by 1D and 2D NMR and Marfey’s analysis
(Supplementary Figure 20 and Supplementary Table 4) establishes the

Table 1 | Success rate of different genomemining approaches
across 84 RiPPs

Median (Exact Matches)

ORF Core RiPP

seq2ripp 1.0 (61) 0.970 (40) 0.932 (12)

antiSMASH 0.353 (4)

BAGEL4 0.975 (42)

NeuRiPP 0.487 (30)

NLPPrecursor 0.934 (26)

RiPPMiner 0.375 (28) 0.867 (6)

Reported are the median metric and the number of exact matches of each method for each
pipeline step it supported. ORF and core detection metrics are maximum normalized
Levenshtein similarity to the correct core. The RiPP metric is the maximum Tanimoto similarity
between true and predicted structures. The distributions of scores are shown in Figure S14.
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structure of this RiPP class and it was verified as a RiPP by transient
expression of the corresponding BURP-domain precursor gene
derived from the E. pungens transcriptome as a truncated precursor
with five core peptide repeats, in N. benthamiana and subsequent LC-
MS/MS-based detection of elaeagnin in methanolic extract of trans-
genic tobacco leaves after six days (Supplementary Figures 18 and 22).
The discovery of elaeagnin showcases the power of seq2ripp in iden-
tifying classes of RiPPs with novel modifications.

HypoRiPPAtlas server
The HypoRiPPAtlas web server currently includes hypothetical RiPPs
from 22,671 complete microbial genomes from RefSeq. Users can
select organisms and download the corresponding BGC, ORF, core,
and molecular structure data. Additionally, the HypoRiPPAtlas web
server supports the processing of inputpaired genomic and spectral
data from users.

Discussion
Breakthroughs in genome mining and mass spectrometry data col-
lection have revolutionized the field of natural product discovery
during the last decade. Development of popular genomemining tools
such as antiSMASH has made it possible to quickly profile microbial
genomes for detecting natural product BGCs. However, the current
state-of-the-art approach for connecting BGCs tomolecules is through
the expression of the BGC in a heterologous host and subsequent
isolation and structure elucidation of the product, which is a slow and
expensive process. Therefore 99% of BGCs extracted from microbial
genomes and stored in public repositories remain orphan, i.e. they are
not linked to any small molecules.

On the mass spectrometry front, the development of the GNPS
repository along with molecular networking has made it possible to
annotate known natural products and discover their novel variants.
Currently, GNPS hosts more than a billion mass spectra from more
than five hundred laboratories. However, only 2%ofGNPS spectra have
been annotated as known molecules or their analogs. It has been
hypothesized that a portion of the annotated spectra from GNPS is
likely to correspond to orphan BGCs from microbial genomes.

To fully utilize the power of recently developed repositories of
microbial BGC and mass spectral datasets, computational techniques
for high-throughput linking of BGCs to mass spectra are needed.
However, in order to link mass spectral datasets to BGCs from
microbial genomes, one first needs to predict the hypothetical struc-
ture of themolecular product of these BGCs. In order to fill in this gap,
we present HypoRiPPAtlas, a public repository of hypothetical natural
products predicted by mining microbial genomes. In the case of RiPP
natural products, using the seq2ripp algorithmwe populated this Atlas
with hypothetical RiPPs from 22,671 complete microbial genomes
available from RefSeq.

Seq2ripp identified threemicrobial RiPPs from the PoDP datasets,
and ten plant RiPPs from 62 plant metabolomic and transcriptomic
datasets. Through variable mass spectrometry, seq2ripp discovered a
plant RiPP with a novel PTM, which was not included in the PTM
training set of the algorithm, from Elaeagnaceae, highlighting the
power of this method for the identification of novel classes of natural
products that were missed by the previous approaches. Bgc2orf and
orf2core modules within seq2ripp are capable of identifying RiPP
precursors and cores without overfitting.

Hypothetical molecules from HypoRiPPAtlas can be filtered to
user-specified taxonomic clades, and the retained molecules can be
queried againstmass spectral datasets using Dereplicator+, an in silico
database search tool available from GNPS. Previous techniques mod-
eled RiPPs as strings of amino acids, along with post-translational
modifications. In contrast, HypoRiPPAtlasmodels RiPPs as graphswith
atoms and chemical bonds, improving accuracy in representations of
post-translational modifications (e.g. cyclizations). The graph model

also improves the accuracy of in silico methods in predicting the
fragmentation of RiPPs containing nonstandard amino acids (e.g.
oxazole and thiazole).

Another challenge in linking mass spectral datasets to microbial
BGCs is that over 99% of spectra from GNPS are collected on strains
with unknown DNA sequences from complex environments. HypoR-
iPPAtlas infrastructure supports searching mass spectral datasets
against taxonomic clades, allowing for natural product discovery from
datasets without genomic information. This often results in the dis-
covery of natural products frommass spectra of one strain against the
genome of a different strain. For example, radamycinwas identified by
searching mass spectra of a marine Streptomyces against the genome
of a tomato flower symbiont Streptomyces.

Currently, HypoRiPPAtlas reports on average 84 hypothetical
ORFs, 1605 hypothetical cores, and 1753 hypothetical molecules per
RiPP BGC. Multiple RiPPs have been recorded per BGC because (i)
many RiPP BGCs have multiple molecular products, e.g. many cyano-
bactin and plant RiPPs have multiple cores per each ORF, and (ii) the
activity ofmany RiPP enzymes remain ambiguous resulting inmultiple
possibilities. By keeping track of multiple hypothetical RiPPs per BGC,
we can increase the chance of capturing all the correct RiPPs. In
comparison to the state-of-the-art RiPP identification tools, seq2ripp
captured more correct cores, ORFs, and RiPPs. However, the natural
drawback of this strategy is that the majority of RiPPs in the Atlas will
be spurious and require validation via mass spectrometry before
downstream analysis. As our mass spectral search tools improve,
prioritizing sensitivity over specificity in our genome mining tools
becomes more appealing. By searching against mass spectral reposi-
tories, HypoRiPPAtlas enables the identification of a large number of
RiPPs, providing the training data for machine learning approaches to
improve the prediction accuracy of post-translational modifications.

HypoRiPPAtlas currently only supports ribosomally synthesized
and post-translationallymodified peptides. For amore comprehensive
atlas, we are currently working on extending functionality to support
non-ribosomal peptides and polyketides.

Methods
Natural product discovery by HypoRiPPAtlas
The pipeline for natural products discovery by HypoRiPPAtlas consists
of the following steps.

Extracting BGCs and predicting hypothetical RiPPs. BGCs are either
imported from IMG-ABC, antiSMASH-DB, and BiG-SLiCE, or mined
from RefSeq/IMG-M. Hypothetical RiPPs are predicted from BGCs
using seq2ripp.

Filtering the Atlas using taxonomic information. The entire Atlas is
too large for downstream analysis. Users can filter the Atlas using
specific taxa terms, and then download the entire hypothetical mole-
cules in that clade in the SMILES format, along with corresponding
BGCs, ORFs and cores. For example, the Atlas contains 20 BGCs, 48
ORFs, 273 cores and 120,701 molecules for the strain Streptomyces
globisporus NRRL B-2709.

Predicting spectra of hypothetical molecules from the Atlas. We
used Dereplicator+ to pre-calculate the fragmentation graphs for all
the molecules from the Atlas. The fragmentation graphs are stored as
binary files, and they are also downloadable for user-specified taxo-
nomic clades. It is much faster to search mass spectra against pre-
calculated fragmentation graphs using Dereplicator+ than it is to
search against raw SMILES structures.

Database search of mass spectra against HypoRiPPAtlas. Mass
spectral datasets can be searched against the SMILES structures/pre-
calculated fragmentation graphs using Dereplicator+ from the GNPS
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infrastructure. HypoRiPPAtlas has been designed in a way that its
interface is fully compatible with GNPS.

Reporting false discovery rates. False discovery rate (FDR) based on
target decoy analysis reported by Dereplicator+ are used.

Computing statistical significance of PSMs. Dereplicator+ approx-
imates p-values by assuming that theoretical fragment annotations
occur as Bernoulli trials. The whole fragmentation graph is assigned a
probability of achieving a score at least as high as the observed score n
by computing the probability that a Poisson-Binomial distribution
consistingof Bernoulli trials for each theoretical fragment has at leastn
successes. The approximation process is described in Dereplicator+29.

Molecular networking. Currently, feature-based molecular
networking15 supports annotations from Dereplicator+, and these
networks can be visualized through the GNPS infrastructure.

Overview of MetaMiner
In the past, we developed MetaMiner, a computational technique for
discovery of RiPPs19. The MetaMiner pipeline analyzes the paired
genome/metagenome assemblies and tandem mass spectra from iso-
lated microbes or bacterial or fungal communities. Starting from the
genome assemblies, MetaMiner (i) identifies putative BGCs and their
corresponding precursor peptides, (ii) constructs target and decoy
putative RiPP structure databases modeling them as strings, and (iii)
matches tandem mass spectra against the constructed RiPP strings
using Dereplicator60.

Overview of seq2ripp algorithm
Given a microbial genome sequence in fasta format, seq2ripp predicts
hypothetical RiPP molecules (in the SMILES format) in the
following steps.

From genome to BGCs. For the identification of RiPP enzymes in the
genome sequences, we used hidden Markov models (HMMs), which
are popular models extensively used for the identification of protein
motifs in genome sequences18. We collected 26 HMM profiles from
Table S3 in Metaminer19. An additional 126 HMM profiles were manu-
ally collected by literature search and from Dataset S6 in DeepRiPP25.
They were either collected with their Pfam ID or generated with
hmmbuild fromgene sequences in literature. Relevant referenceswere
taken from all RiPPs in the MIBiG47 repository. In total, 152 HMM pro-
files (Supplementary Table 5) are used by genome2bgc for the iden-
tification of RiPP BGCs and the detection of tailoring enzymes. Hits to
HMM profiles are filtered by an HMMER E-value threshold of 10−5.
Domains of unknown function (DUFs) are not automatically detected
by the genome2bgc module. However, we do include DUFs that have
been previously linked to the biosynthesis of RiPPs, such as DUF4135
for the synthesis of lanthipeptides61.

FromBGCs toORFs. ORFs are extracted fromBGCsbybgc2orf, a deep
neural network (Fig. 3a). Additionally, we also support the exhaustive
strategy recruited by MetaMiner19, a BLAST-based strategy, and stra-
tegies from DeepRiPP25 and NeuRiPP26. In the exhaustive strategy, we
consider all shortORFswith lengths longer than 10 aa as feasibleORFs.
While this strategy is very sensitive, it can result in a high number of
false positives. In BLAST-based strategy, ORFs identified by the
exhaustive search strategy are aligned against a database of 525 known
RiPP ORFs with blastp, and those with E-value lower than 0.01 are
retained. In bgc2orf, we train a sequence classification model which
contains a Convolutional Neural Network (CNN) and a Long Short-
TermMemory (LSTM) Network, based on 2,726 amino acid sequences
of known RiPP ORFs and 19,224 amino acid sequences of non-RiPP
ORFs26. Then for each short ORF in the BGC, we will predict whether

the ORF is a structural ORF or not, and only consider those with high
probabilities (higher than 50%) as hypothetical structural ORFs.

Bgc2orf is trained as follows: first, all input sequences are padded
to a length of 200 amino acids. Each amino acid, including the padding
symbol, is tokenized and embedded into a vector of size 100. The
model includes two 1D CNNs. One CNN convolves the input sequence
in terms of its topology, the other CNN convolves the tokenized vec-
tors. The convolution on the sequence helps the model to detect the
RiPP features on amino acids; the convolution on the token vector
summarizes the embedded character information in high dimensional
space. The outputs from the two CNNs and the input embeddings are
concatenated and fed into a single-layer bidirectional LSTM. The LSTM
learns and summarizes the sequential features from the amino acid
chain. The output of the LSTM is flattened and converted to a binary
output with a flattened layer and a dense layer. The prediction loss is
calculated by cross-entropy loss during the training of the model. The
learning rate begins with 1e-3 and decreases 10% every 40 epochs.

From ORFs to cores. Core peptides are detected from ORFs by orf2-
core, a deep neural network (Fig. 3b). Similar to the previous step, we
also support an exhaustive strategy from MetaMiner19, DeepRiPP, and
a BLAST-based strategy. In the exhaustive strategy, all the peptide
fragmentswith lengths between 3 to 30 aa are considered as candidate
core peptides. In the BLAST-based strategy, the ORFs are aligned with
525 known RiPP cores by blastp, and the part of ORFs aligning with the
core sequence with e-value lower than 0.001 are extracted (allowing
for an error of up to two bases on each side). In orf2core, we framed
the task as a phoneme discovery problem, where the input is an amino
acid sequence, and the output is putative cleavage sites. We then
trained a CNN-LSTM-Conditional Random Field (CRF) model on the
cleavage site information of 3169 known RiPP ORFs, detailed below.

We use a discriminatory deep learning model to predict core and
non-core framesof sequences given the amino acid sequenceof anORF
as the continuous input. All input sequences are padded to a length of
200 amino acids. Each amino acid is tokenized and embedded into a
vector of size 25. Themodel includes two 1DCNNs. OneCNNconvolves
the input sequence in terms of its topology, and the other CNN con-
volves the tokenized vectors. The convolution on the sequence helps
themodel detect amino acids surrounding the enzymatic cleavage site.
The convolution on the token vector summarizes the embedded
character information in high-dimensional space. The outputs from the
two CNNs, and the input embeddings are concatenated and fed into a
single-layer bidirectional LSTM. The LSTM learns the translation from
the amino acid chain to core and non-core frames of sequences. The
prediction loss is calculated by a conditional random field layer, which
calculates the negative log-likelihood during the training of the model,
and performs the Viterbi algorithm to optimize labels during predic-
tion. An additional approach will be triggered when repeat patterns are
observed in anORF, by searching repeated leader and follower patterns
in the sequence (Fig. 3c, Supplementary Figure 23).

Fromcores toRiPPs. In order to useDereplicator+ for the discoveryof
RiPPs, one needs to derive the complete chemical structure graph of
RiPPs from their BGC (rather than a precursor peptide along with
modification masses, required by Dereplicator). To enable this, we
start with precursor peptides and model tailoring enzymes as graph-
modifiers. Each enzyme searches a particular chemical motif in the
molecular graphof aRiPP, andwhenever itfinds themotif, it optionally
applies the corresponding tailoring modification (Fig. 9).

Core2ripp predicts hypothetical molecules by applying mod-
ifications corresponding to tailoring enzymes present in the BGC. We
do this by extracting all the information from the knownRiPP tailoring
enzymes and their corresponding modifications by literature mining4,
and parsing them in a computer-readable format. Our format consists
of a motif (stored as a SMILES string) along with a series of graph
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modifications (addition/removal of nodes and edges) that are applied
to the molecular structure whenever the motif is observed (Fig. 9).
Supplementary Figure 24 and Supplementary Table 6 summarize all
the modifications from Arnison et al. (2013)4, and our in-house
database19. Core2ripp does not contain any learned parameters,
instead relying on enzymatic domain-modification associations
extracted from literature.

Core2ripp models RiPPs as graphs, where nodes represent atoms
and edges represent chemical bonds. This graph representation not
only facilitates handling complex post-translational modifications, but
also enables saving hypothetical RiPP structures in molecular formats
such as SMILES, which are commonly employed by small molecule
mass spectral database search tools such as Dereplicator+ and

MolDiscovery29,62. This graph-based database search scoring improves
on the string-based scoring of MetaMiner in that (i) Dereplicator+
handles fragmentations of N-C, O-C and C-C bonds (rather than amide
bonds only), improving its accuracy in modeling fragmentation of
peptides containing nonstandard amino acids, e.g. dehydrated ala-
nine, and dehydrated butyrine, oxazole and thiazole, and (ii) Derepli-
cator+ utilize a fragmentation graph model that enables capturing
higher depth fragmentations (fragmentation depth is the number of
times that a graph can be fragmented recursively).

Given a core sequence and a list of tailoring enzymes, core2RiPP
predicts all the hypothetical RiPP structures using the following steps.
First, the chemical structure of the core sequence is represented as a
graph,where eachvertex is an atomwith an indexnumber and the type
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Fig. 9 | An illustration of finding motifs through subgraph isomorphism and
motif-basedmodification. In (a) and (b), the query is highlighted in orange, while
the subject is highlighted in blue. a First, the hydrogens are removed from the
query and the subject. Next, the atoms are labeled by a breadth-first traversal of
each graph from the first non-hydrogen atoms in the inputfile. Finally, an adjacency
matrix for each graph is prepared. (b) Only the mappings that define an iso-
morphism are kept. Converting known enzymatic modifications of RiPPs into a
computer-readable format for (c) dimethylation of N-terminal, e.g. in cypemycin76

and (d) oxidative decarboxylation, e.g. cypemycin and epidermin77. In our format,
we use commands disconnect/connect (for bonds) and add/remove (for chemical

substructures). For example, inpart (c), “disconnect 1 5” removes thebondbetween
the nitrogen atomwith index 1 and the hydrogen atomwith index 5, while “remove
5” removes the hydrogen atom with index 5, and “Add 1 CH3” adds a methyl group
to the nitrogen atom indexed 1 (methylation). In part (d), “connect 9 14 2” adds a
double bond between atom 9 and atom 14. Each step of the modifications is dif-
ferentiated by different colors, both in the action on the right and in the molecule
on the left. We converted all the modifications from Arnison et al.4, Montalbán-
López et al.78, and our in-house database of modifications into this format (Sup-
plementary Figure 24 and Supplementary Table 6).
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of atom, and each edge is a bond between two indexed atoms and the
type of chemical bonds. Next, for each modification, the locations of
motifs are collected by subgraph isomorphism63 (see details below).
Finally, the putative combinations of modifications will be calculated
and applied to the core sequence (see details below). The final product
will be stored in the SMILES format.

Finding motifs by subgraph isomorphism. We model the problem
of searching motifs in the precursor RiPP sequence as a subgraph
isomorphism problem. In the subgraph isomorphism problem,
given graphs A (query) and B (subject), the problem is to deter-
mine if there is a subgraph of graph B that is isomorphic to graph
A. Here, the subject is the chemical structure of the precursor
peptide sequences, and the query is the chemical structure of the
motifs. For both the subject and the query, vertices are atoms,
and the edges are bonds. The subgraph isomorphism problem is
shown to be NP-hard64.

We slightly revise Ullman’s subgraph isomorphism algorithm for
motiffinding63, whichmakes it threeorders ofmagnitude faster than the
original approach. Ullman’s subgraph isomorphism algorithm builds an
m by n binary correspondence matrix, wherem is the number of nodes
in the query, and n is the number of nodes in the subject. The corre-
spondence matrix has a 1 whenever the following two constraints hold:
(i) the corresponding query and subject atoms have the same label (e.g.
they are both carbon), and (ii) themultiset of neighboring nodes for the
query is a subset of the multiset of neighboring nodes for the subject.
Then, for every row in the correspondence matrix, a single column
containing a 1 is selected. This results in a mapping from query node
indices to subject node indices. Then, the algorithmcheckswhether this
mapping defines an isomorphism, i.e. all the edges in the query are
present in the subject. Whenever this constraint is violated, the algo-
rithm backtracks to select a new column with 1 from one of the rows.

We modified the Ullman algorithm by incorporating edge-level
labels: themultiset of neighboring node and edge pairs for the query is
a subset of the multiset for the subject, where the edge is labeled as a
single/double/triple bond. We further remove the hydrogen atoms
from both query and subject to accelerate the algorithm and avoid
unnecessary computations. Moreover, by constructing the query and
the subject into spanning trees, we are able to enforce that in each
iteration, the atom selected from the query/subject be connected to
the query/subject atoms added in the previous iterations without
additional computations (Fig. 9a, b).

Motif-based modification. MetaMiner models RiPPs as strings of
amino acids, and then modifications are applied to amino acids as
mass shifts. In contrast, seq2ripp models RiPPs as graphs, and mod-
ifications are applied as graphmodifications on the reactionmotifs.We
define modifications in a computer-readable format, using four
actions: add, remove, connect, and disconnect. The add/remove
actions are used for adding and removing atoms, while connect/dis-
connect actions are for adding and removing edges (Fig. 9c, d).

Given a list of tailoring enzymes in the BGC, core2ripppredicts the
hypothetical products by adding the different combinations of mod-
ifications on the core peptide according to Supplementary Figure 24
and Supplementary Table 6. If there are 10 feasible modifications at
different locations, this procedure produces 1024 possible products.
These hypothetical structures are saved in SMILES format.

Construction of training/validation/test datasets and
cross-validation
For training bgc2orf, We collected a dataset of 2726 known RiPP
(positives) and 19224 ORFs that are not RiPPs (negatives)26. We allo-
cated 81% of these data-points for training, 9% for validation, and 10%
for testing. To avoid data imbalance, negative data is sampled ran-
domly to match the number of positive training/validation/testing

datasets. The validation datasets are used to evaluate models during
the training process but not to update the model weights. To avoid
leakage, the test data is only used for the final evaluation after models
are trained.

For orf2core, we used a dataset of 3169 known ORFs with their
cores. We allocated 81% of these data-points for training, 9% for vali-
dation, and 10% for testing. The validation datasets are used to eval-
uate models during the training process but not to update the model
weights. To avoid leakage, the test data is only used for the final eva-
luation after the models are trained.

Orf2core architecture design and hyperparameter tuning
In orf2core, we frame the task of identifying cores from ORFs as a
sequential pattern-searching problem. Orf2core is designed to capture
two correlated objectives simultaneously, (i) the peptidase cleavage
sites, and (ii) the class-specific patternof the core sequence. Therefore,
the model learns to predict the core/non-core sequences based on
these two objectives.

Core peptides are cleaved by peptidases. Peptidases usually have
high substrate specificity based on their local biochemical and bio-
physical properties, such as the composition of amino acids in the
peptide sequence, the binding affinity of surrounding amino acids to
the peptidase, and the accessibility of the site to the peptidase in three-
dimensional space. Predicting the cleavage site of peptidases is a
challenging problem65.

Additionally, it is possible to infer the class of peptidases based on
the class of RiPPs, which in turn can be predicted from the amino acid
sequenceofORFs and other enzymes present in the BGC. For example,
the peptidases that cleave class I lasso peptides are usually very dif-
ferent from those that cleave class II peptides, with distinct
cleavage sites.

Becauseof variations in the lengthof inputpeptide sequences, the
inputs are either paddedwith a placeholder or truncated to a length of
200 to ensure the data is represented by vectors of fixed size. Addi-
tionally, to convert a string of amino acids into numerical values, an
embedding layer is necessary. Each amino acid is embedded to a
vector of size 100.

Since the input peptide sequence is a string of amino acids, and
the model needs to predict the core versus non-core label of each
amino acid, we first incorporated a long short-term memory condi-
tional random field (LSTM-CRF) layer, which is a popular machine
learning model for incorporating string inputs for label prediction66

(Supplementary Figure 25a, b).However, if only one layer of LSTM-CRF
is used, the highest accuracy for prediction of the cleavage site is
54.20% before starting to overfit. Since the surrounding amino acids
are informative for the prediction of the cleavage sites, a one-
dimensionalCNN layer is further added to incorporate the information
from surrounding amino acids, increasing the accuracy from54.20% to
62.59%67 (Supplementary Figure 25c–g). Additionally, to avoid over-
fitting the model, regularization methods such as dropout and ReLU
are added. These regularization methods prevent an increase of the
validation loss and reduce its fluctuation during the training
process68,69. Adding these regularizations increased the accuracy from
62.59% to 73.08%, without overfitting (Supplementary Figure 25h–o).
The highest accuracy was achieved by embedding size of 100 (Sup-
plementary Table 7a), strides of length 1 and kernel size of length 5
(Supplementary Table 7b), and dropout with p =0.2 before CRF layer,
along with a ReLU layer (Supplementary Table 7c). Training and vali-
dation loss plots show that the model is stable and not overfitting
(Supplementary Figure 26). All of the experiments are conducted on a
single GeForce RTX 2080 Super 8GB GDRR6.

Bgc2orf architecture design and hyperparameter tuning
In brg2orf, we frame the task of identifying RiPP ORF as a sequential
pattern-searching problem. Bgc2orf is designed to recognize the
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class-specific patterns in ORFs. The architecture of bgc2orf is identical
to orf2core, except for the final layer, where the CRF layer is replaced
with a linear layer. This layer outputs a probability that the inputORF is
a RiPP ORF. Moreover, in order to avoid overfitting a ReLU layer is
added after each 1D CNN layer. These changes increase the validation
accuracy from 94.46% to 95.94% (a cut-off of 0.5 is used).

Bioactivity of human microbiome peptides
The three peptides from human microbiota were synthesized by
GenScript Biotech, New Jersey. Screening of compounds in the
PRESTO-Tango GPCR-ome was accomplished using previously
describedmethods with several modifications57. First, HTLA cells were
plated in DMEM with 2% dialyzed FBS and 10 U/mL penicillin-
streptomycin. Next, the cells were transfected using an in-plate PEI
method70. PRESTO-Tango receptor DNAs were resuspended in Opti-
MEM and hybridized with PEI prior to dilution and distribution into
384-well plates and subsequent addition to cells. After overnight
incubation, drugs diluted inDMEMwith 1% dialyzed FBSwere added to
cells without replacement of the medium. After another overnight
incubation, the culture medium and peptide-including buffer were
removed by aspiration. 20 μl of Bright-Glo solution (Promega) diluted
20-fold in assay buffer was added into each well. The cells were incu-
bated with buffer at room temperature for 15-20 minutes. Then, the
luminescence was measured in a Trilux luminescence counter. The
relative luminescence units (RLU) were collected from the machine
and calculated by fold change based on the basal RLU.

Overview of plant-seq2ripp algorithm
Plant-seq2ripp is structured similiar to seq2ripp algorithms, with the
differences that (i) plant-seq2ripp allows for transcriptomics input
data in fasta format, instead of genomics, and (ii) a plant-specific set of
enzymes and modifications are used. Transcriptomics data was
assembled using SPAdes (v3.13 (version of the assembled
transcriptomes))71.

The HypoRiPPAtlas server
HypoRiPPAtlas was built using Svelte and Kubernetes, fully hosted on
Amazon Web Services. Data for BGCs, ORFs, cores, and RiPPs from
publicly available data can be browsed. Users can also upload their
own genomes and mass spectra to run seq2ripp. Results can be both
visualized and downloaded. A walkthrough of usage of the server can
be found at https://github.com/mohimanilab/seq2ripp.

Data availability
All theMS datasets are publicly available from the GNPS infrastructure
under the following accession code (microbes: Supplementary
Table 8; plant: MassIVE MSV000088918 [ftp://massive.ucsd.edu/
MSV000088918/ and https://gnps.ucsd.edu/ProteoSAFe/result.jsp?
task=afd60fcca2194035849ef9bbe4657da2&view=advanced_view].
All plant transcriptomics datasets have been deposited and publicly
available in the Zenodo72 database under accession code 6253747
[https://zenodo.org/record/6253747]. The genome sequences of all
the microbial organisms investigated in this study are available from
NCBI RefSeq (GCF_000718455.1, GCF_000719185.1, GCF_000718755.1,
GCF_000720725.1). The biosynthetic gene clusters analyzed in this
study are available from MIBiG (BGC0001753). The gene sequence of
BURP-domain precursor peptide EpuBURP has been deposited in
GenBank (OR257605).

Code availability
HypoRiPPAtlas is available from https://github.com/mohimanilab/
seq2ripp73. Instructions for using HypoRiPPAtlas as a web-server are
also available on the GitHub page.
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