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Elevated pre-mRNA 3′ end processing activ-
ity in cancer cells renders vulnerability to
inhibition of cleavage and polyadenylation

Yange Cui 1,4, Luyang Wang1,4, Qingbao Ding1, Jihae Shin2, Joel Cassel3,
Qin Liu 3, Joseph M. Salvino 3 & Bin Tian 1

Cleavage and polyadenylation (CPA) is responsible for 3′ end processing of
eukaryotic poly(A)+ RNAs and preludes transcriptional termination. JTE-607,
which targets CPSF-73, is the first known CPA inhibitor (CPAi) in mammalian
cells. Here we show that JTE-607 perturbs gene expression through both
transcriptional readthrough and alternative polyadenylation (APA). Sensitive
genes are associated with features similar to those previously identified for
PCF11 knockdown, underscoring a unified transcriptomic signature of CPAi.
The degree of inhibition of an APA site by JTE-607 correlates with its usage
level and, consistently, cells with elevated CPA activities, such as those with
induced overexpression of FIP1, display greater transcriptomic disturbances
when treated with JTE-607. Moreover, JTE-607 causes S phase crisis and is
hence synergistic with inhibitors of DNA damage repair pathways. Together,
our data reveal CPA activity and proliferation rate as determinants of CPAi-
mediated cell death, raising the possibility of using CPAi as an adjunct therapy
to suppress certain cancers.

Almost all eukaryotic protein-coding and long noncoding genes
employ cleavage and polyadenylation (CPA) for 3′ end processing of
their pre-RNA1. The site for CPA, also known as the polyadenylation
site (PAS), is defined by surrounding sequence motifs2,3. The con-
stellation of PAS motifs determine the strength, or usage level, of a
given PAS4. Most mammalian genes have multiple PASs, resulting in
expression of alternative cleavage and polyadenylation (APA)
isoforms5–9. FormRNAgenes, APA in the last exon generally alters the
length of 3′ untranslated region (3′UTR)10, whereas those in introns
lead to transcripts with different coding sequences or truncated,
unstable transcripts11–13. The APA site usage profile can vary sub-
stantially among cell types14,15, and during cell differentiation and
development16,17. Owing to their high proliferative rates, cancer cells
generally favor proximal APA site usage18. However, considerable
APA isoform expression differences have been reported in different
cancer types19.

The PAS is recognized by the CPA machinery, which is composed
of over 20 core factors in mammalian cells1,20,21. Most of the CPA pro-
teins form distinct sub-complexes, including CPSF, CstF, CFI and CFII.
CPSF can be further divided into two functional modules20, namely,
mammalian polyadenylation specificity factor (mPSF), including CPSF-
160, CPSF-30, WDR33, and FIP1, and mammalian cleavage factor
(mCF), including CPSF-100, CPSF-73, and Symplekin. In addition, CFI
includes CFI-25, CFI-59, and CFI-68; CstF includes CstF-50, CstF-64 and
CstF-77; CFII includes CLP1 and PCF11. Moreover, RBBP6, Poly(A)
polymerase, PAPN1, and RNA polymerase II (Pol II) are also key com-
ponents of the CPA machinery1. Among the growing number of
mechanisms that impact APA isoform expression, regulation of core
factor expression level appears to have a substantial influence on APA
site usage, resulting in global shifts between proximal and distal PAS
isoforms7. This regulatory scheme has been implicated in 3′UTR size
regulation in cell proliferation and differentiation17,22.
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In addition to 3′ end processing, CPA plays a critical role in ter-
mination of transcription23, which takes place within a variable region
after the PAS24. Inhibition of CPA, here termed CPAi for simplicity,
could lead to transcriptional readthrough25–27, a phenomenon that has
been observed in cells under stress conditions28,29 and upon viral
infection30–32, as well as in certain cancer cells33. Transcriptional read-
through could cause transcriptional interferencebetweenneighboring
genes23 and lead to chimeric transcripts containing sequences from
two adjacent genes33.

Developed about 20 years ago as an inhibitor for cytokine
production in human cells34, JTE-607 is a compound which was
recently found to inhibit the activity of CPSF-7335,36, the endonu-
clease in CPA machinery. While CPSF-73 inhibitors have been used
in multiple parasitic protozoans37,38, JTE-607 is the first known CPAi
compound in human cells. JTE-607 has also been shown to suppress
certain cancer cells, including those from acutemyeloid leukemia39,
Ewing’s sarcoma36, some lung and hepatocellular carcinoma36,
breast cancer40 and pancreatic cancer41. However, some cancer cells
appear quite tolerant of the compound36, raising the question as to
what cellular features are deterministic for cell survival upon JTE-
607 treatment. Here, we profile mature poly(A)+ RNA and nascent,
chromatin-bound RNA in multiple cancer cells treated with JTE-607.
We identify genomic and RNA features associated with gene
expression disturbance by JTE-607. By analyzing APA regulation, we
reveal rules by which JTE-607 inhibits PAS usage. We show that the
CPA activity of a cell is a key determinant of its responsiveness to
JTE-607. In addition, cell proliferation contributes to JTE-607-

elicited cell death, due likely to S phase crisis and DNA damage
caused by transcription-replication conflicts. We further examine
synergy between JTE-607 and DNA damage repair-based inhibitors.
Our results raise the prospect of CPAi-based therapeutics for sup-
pressing certain cancers.

Results
Widespread gene expression changes in HeLa and HepG2 cells
treated with JTE-607
We were interested in understanding genomic and cellular features
associated with cell sensitivity to JTE-607, the first known CPAi com-
pound formammalian cells36. To this end, we first used human cervical
carcinoma cell line HeLa and the hepatocellular carcinoma cell line
HepG2 (Fig. 1a) because of their markedly different tolerance levels to
JTE-607 (IC50 > 50 µM for HeLa and <10 µM for HepG2). We subjected
these two cell lines to 1 and 10 µM of JTE-607 for 8 h, and used the
QuantSeq sequencing method to examine poly(A)+ RNAs (See Meth-
ods). Note that QuantSeq reads are biased to the 3′ end, enabling
analyses of both gene expression and APA42.

We observed widespread gene expression changes (P < 0.05
after BenjaminiHochberg [BH] adjustment for false discovery rate,
Fisher’s exact test; fold change ≥ 1.2; Fig. 1b, c) in both HeLa and
HepG2 cells after JTE-607 treatment. In each cell line, as expected,
10 µM JTE-607 led to more genes regulated as compared to 1 µM JTE-
607 (Fig. 1b, c). Consistent with the IC50 difference, HepG2 cells
displayed more regulated genes than HeLa cells did at either JTE-
607 concentration (Fig. 1b, c). Interestingly, there were more genes

Fig. 1 | Widespread gene expression changes in HeLa and HepG2 cells treated
with JTE-607. a Schematic showing JTE-607 treatments to HeLa and HepG2 cells,
followedbymRNAanalysis by using theQuantSeqmethod.b Scatterplots showing
gene expression level change (y-axis) vs. expression level (x-axis) after 1μM(left) or
10μM (right) JTE-607 treatment in HeLa cells. Each dot is a gene. Significantly
regulated ones (BH-adjusted P <0.05, Fisher’s exact test; fold change >1.2) are
highlighted in red (upregulation, UP) or blue (downregulation, DN). The numbers
of UP and DN genes are also indicated. c As in b except that data are for HepG2
cells.dHeatmap showing commonly expressed genes inHepG2 andHeLa cells that
were significantly regulated in at least one sample after JTE-607 treatment. Genes

were clustered based on expression changes (log2Ratio, JTE-607 vs. DMSO). The
number of genes in the heatmap is indicated. e UpSet plot summarizing data in d.
The number of genes with dose-dependent regulation after JTE-607 treatment in
HepG2 or HeLa cells are shown. Genes are divided into eight groups based on their
regulation in the two cell lines. Gray bars indicate different directions of regulation
in the two cell lines. The ratio of downregulated gene number to upregulated gene
number (DN/UP) is indicated. f Gene ontology (GO) terms associated with genes
downregulated (top) or upregulated (bottom) in both HeLa and HepG2 cells after
JTE-607 treatment (indicated in d). Source data are provided as a Source Data file.
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downregulated than upregulated (note the respective gene num-
bers in Fig. 1b, c), a trend that becamemore pronouncedwhen a fold
change ≥2 was used to select genes (Supplementary Fig. 1a). How-
ever, it should be noted that our gene expression analysis was based
on the assumption that the total amount of poly(A)+ RNA was
constant before and after treatment, which may not hold in all
conditions.

Pair-wise scatter plot analysis (Supplementary Fig. 1b) and
cluster analysis (Fig. 1d) of genes that were commonly expressed in
both HeLa and HepG2 cells showed general correlations in gene
expression regulation between these two cell lines, indicating that
JTE-607 impacted gene expression similarly in HepG2 and HeLa
cells, despite that the degree of regulation was greater in the former
than the latter. These results were further corroborated by the
UpSet plot analysis using only genes showing dose-dependent
regulation (stronger regulation after 10 µM treatment than 1 µM,
Fig. 1e): more genes were regulated in HepG2 cells than HeLa cells,
and downregulated genes in both cell lines were 1.6-fold greater in
number than upregulated ones. Gene ontology (GO) analysis
showed distinct functions associated with different gene groups in
the UpSet plot (Fig. 1f and Supplementary Fig. 1c). The top GO terms
associated with commonly downregulated genes in HeLa and
HepG2 cells included ‘ncRNA metabolic process’, ‘mitochondrial
gene expression’, ‘carbohydrate derived metabolic process’, etc.
(Fig. 1f, top), whereas the top ones associated with commonly
upregulated genes included ‘mRNA metabolic process’, ‘negative
regulation of macromolecule biosynthetic process’, ‘RNA proces-
sing’, etc. (Fig. 1f, bottom). Overall, the GO analysis appeared to
indicate that JTE-607 has a pleiotropic effect on gene expression in
these two cell lines.

JTE-607 elicits global transcriptional readthrough
Previous studies of JTE-607 treatment and CPSF-73 knockdown
showed transcriptional readthrough in these conditions25,26,36. We next
carried out chromatin RNA sequencing (chrRNA-seq) to examine
transcriptional readthrough, using HepG2 or HeLa cells treated with
1 µM JTE-607.We reasoned that the transcriptional readthroughwould
be quickly observable after JTE-607 treatment and hence harvested
cells after 2 h of treatment (Fig. 2a). Indeed, both cell lines displayed
substantial transcriptional readthrough, as indicated by increased
chrRNA-seq readsmapped to the region downstreamof the last PAS (5
kilobase, kb) across genes (Fig. 2b and Supplementary Fig. 2a). Meta-
gene plots indicated that the transcriptional readthrough appeared
stronger in HepG2 cells than in HeLa cells (Fig. 2b and Supplementary
Fig. 2a), as exemplified by the gene PHF3 (Fig. 2c). Using the ratio (log2)
of chrRNA-seq read density in the 4 kb downstream region to that in
the gene body (from transcriptional start site to the last PAS), we cal-
culated a readthrough score (RTS) for eachgene (illustrated in Fig. 2d).
Based on difference of RTS between JTE-607-treated and DMSO-
treated cells, or ΔRTS, we found that while both HeLa and HepG2 cells
displayed positive ΔRTS values (median = 0.86 and 1.41, respectively,
Fig. 2e), transcriptional readthrough inHepG2was significantly greater
than HeLa (P =0, K–S test, Fig. 2e). Therefore, the difference in extent
of transcriptional readthrough elicited by JTE-607 in HeLa vs. HepG2
cells correlates with gene expression change difference between the
two cell lines.

Previous studies have identified genes that tend to have tran-
scriptional readthrough under stress conditions, named Pan-
Downstream of Genes (Pan-DoGs)29. However, there was no sig-
nificant difference in ΔRTS values between Pan-DoGs and other genes
in our data (HepG2 cells) when gene expression levels were controlled

Fig. 2 | JTE-607 elicits widespread transcriptional readthrough. a Schematic
showing JTE-607 treatments to HeLa and HepG2 cells, followed by chromatin RNA
extraction and sequencing. bMetagene plots of chrRNA-seq reads in the genomic
region around the last annotated PAS (±5 kb) inHeLa (top) orHepG2 (bottom) cells
after JTE-607 (red line) or DMSO (gray line) treatment. The chrRNA-seq reads were
normalized for each gene. The number of genes used in each plot is indicated. cAn
example gene PHF3 showing transcriptional readthrough after JTE-607 treatment
as indicated by the chrRNA-seq read profiles. d Schematic showing calculation of
readthrough score (RTS) for gene of interest (GOI). RTS is ratio (log2) of chrRNA-
seq readdensity in the 4 kbdownstreamregion to thatof genebody (definedas the

region between the transcriptional start site and the last PAS). e Cumulative dis-
tribution function (CDF) curves of RTS difference (ΔRTS) between JTE-607-treated
and DMSO-treated samples for HepG2 (orange line) and HeLa (blue line) cells. The
number of genes analyzed, median (med) for each cell line, and P (K–S test)
comparing ΔRTS between the two cell lines are indicated. fCDF curves ofΔRTS for
upregulated (red) anddownregulated (blue) genes inHeLa (left) andHepG2 (right)
cells after 10μM JTE-607 treatment (Fig. 1b, c). Number of genes for each group is
indicated. P values (K–S test) indicating significance of ΔRTS difference between
upregulated and downregulated genes are shown. Source data are provided as a
Source Data file.
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(Supplementary Fig. 2b), indicating that, unlike stress-induced tran-
scriptional readthrough, JTE-607-elicited readthrough is quite uni-
versal to all genes. In bothHeLa andHepG2 cells, downregulated genes
had significantly higher ΔRTS values than upregulated genes (P <0.01,
K–S test, Fig. 2f), suggesting that transcriptional readthrough could
negatively impact gene expression.

Genomic feature analysis connects JTE-607 treatment with
PCF11 inhibition
To gain more insights into what gene features are associated with
mRNA expression regulation, we carried out a linear regression ana-
lysis comparingmRNA expression changes with various gene features,
including GC content, gene size, gene density, etc. (See Methods). We
focused on the data from HepG2 cells treated with 10 µM JTE-607
because of its clearer effects on gene expression than other samples
(Fig. 3a and Supplementary Fig. 3a). ΔRTS was also used as a feature,
with the goal of gauging the contribution of transcriptional read-
through to gene expression changes as compared to other features. In
addition, we included a feature related to RNA stability, named RNA
stability score (illustrated in Fig. 3b), a value we recently generated
based on the ratio of pre-existing RNA abundance to newlymade RNA
abundance in HepG2 cells by using metabolic labeling with
4-thiouridine13. A high RNA stability score thus indicates greater RNA
stability.

The cumulative R2 based on all features was 0.33 (Supplementary
Fig. 3a), indicating that all features combined could explain 33% of
gene expression changes. The top ten features accounted for an R2

value of 0.30 (Fig. 3a). GC content of genic region and RNA stability
score were the top two features with the highest individual R2 values

(R2 = 0.24 and0.16, respectively, Fig. 3a), both ofwhichwere negatively
correlated with gene expression changes (log2Ratio, JTE-607 vs.
DMSO). The next set of features with high R2 values fell into two
groups: (1) features related to gene density, which had negative cor-
relations with log2Ratio, such as gene density per 100 kb or 1 million
base region; (2) features related to gene size, which had positive cor-
relations with log2Ratio, such as overall intron size (all introns com-
bined), gene size, and the size of largest intron.

Some of the top features were correlated to one another. For
example, GCcontent waspositively correlatedwith RNA stability score
and gene density, but negatively correlated with gene size (Fig. 3c),
raising the possibility that some of the features were confounding.
However, removal of either GC content or RNA stability led to an ~10%
reduction of overall R2 (Fig. 3d), whereas removal of both decreased
the overall R2 by 33% (Fig. 3d), indicating that they each had important
contributions to gene regulation despite that they are correlated with
each other.

The gene features associated with JTE-607-elicited gene regula-
tion were reminiscent of those we previously identified for gene reg-
ulation inmousemyoblast cells after knockdown (KD) of another core
CPA factor Pcf1143. To explore this further, we used the RNA-seq data
for HeLa cells treated with PCF11 siRNAs (siPCF11) that were previously
generated by Kamieniarz-Gdula et al.27. Interestingly, the gene
expression changes in JTE-607-treated HepG2 or HeLa cells were well
correlated with those in siPCF11-treated cells (r =0.54 and 0.46,
respectively, Pearson correlation, Fig. 3e). Consistently, we found that
the top features associated with gene regulation by siPCF11 matched
well with those associated with JTE-607-elicited gene regulation
(Supplementary Fig. 3b). Together, these data indicate that JTE-607

Fig. 3 | Genomic and RNA features associated with JTE-607-induced gene
expression changes. a Top features correlatedwith gene expression regulation by
JTE-607 (10 μM) in HepG2 cells. Features are sorted by their individual R2 values,
with blue color indicating negative correlation with gene expression changes and
red color positive correlation. CumulativeR2 of a feature (shown in gray) isbasedon
the feature combined with all other features that have a higher individual R2.
b Schematic showing calculation of the RNA stability score, which is the ratio (log2)
of RNA abundance of pre-existing RNA (FT) to newly made RNA (4sU labeled).
c Boxplots showing that GC content is correlated with gene size, gene density, or
RNA stability score. All genes with detectable expression (n = 11,663) were divided

into five equally sized bins based on the GC content of genic region. The top and
bottom of each box represent the 75th and 25th percentile values, respectively; the
median is shownas a line in the box.dBar graph showing overallR2 after removal of
either GC content or RNA stability score feature, or both. e Scatter plot showing
correlation of gene expression changes (log2Ratio) between HeLa cells (left) or
HepG2 cells (right) treated with 10μM JTE-607 (this study) and HeLa cells with
PCF11 siRNA knockdown (a previous study by Kamieniarz-Gdula et al.). Genes with
detectable expression in all samples (n = 8584) were used. Pearson correlation
coefficient (r) is indicated in each plot. Source data are provided as a Source
Data file.
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could phenocopy PCF11 KD in gene regulation, underscoring a unified
transcriptomic signature of CPAi.

Neighboring gene analysis reveals impacts of transcriptional
readthrough on gene expression
We found that ΔRTS had a low correlation value with log2Ratio
(R2 < 0.01, Supplementary Fig. 3a), despite an overall negative impact
on gene expression (Fig. 2f), suggesting that transcriptional read-
through per se does not downregulate gene expression. Because gene
density negatively correlated with log2Ratio, we reasoned that tran-
scriptional readthrough may have differential impacts on genes in
different genomic regions, which was also observed with PCF11KD27,43.
To this end, we focused on gene pairs with opposite transcriptional
directions, or a tail-to-tail relationship (tail being the end of gene,
illustrated in Fig. 4a).We put all gene pairs, i.e., a gene of interest (GOI)
and its nearest neighbor gene (NNG), into five equally sized bins with
increasing intervening distances (bins 1 and 5 having the shortest and
longest distances, respectively). Interestingly, a strong positive corre-
lation between gene pair distance and gene expression change could
be discerned in all samples (Fig. 4b), with the data from HepG2 cells
treated with 10 µM JTE-607 showing the strongest trend (P =0 for bin 1
genes vs. bin 5 genes, Wilcoxon test, Fig. 4b). This result suggests that
some gene downregulation events elicited by JTE-607 could be due to
collision of readthrough Pol II traveling on opposite strands.

To address Pol II collision more explicitly, we developed a score,
named ChrRNA-seq Overlapping Signal Score (CROSS), based on
chrRNA-seq read signals (used as proxies of Pol II abundances) on
antisense vs. sense strands in the last 1 kb region of GOI (Fig. 4a). As
expected, genes with a shorter distance to its neighbor (tail-to-tail
only) displayed higher CROSS values than those with a longer distance
in both HeLa and HepG2 cells (Fig. 4c). Importantly, downregulated
genes had significantly higher CROSS values than unchanged genes
(P = 1.8 × 10−15, K–S test, Fig. 4d). When we separated genes by both
CROSS values and the distance between neighboring genes, the genes
with higher CROSS values showedmore downregulation in all distance
groups (Fig. 4e), supporting the notion that Pol II collision, not gene-
to-gene distance per se, is chiefly responsible for gene downregulation
(summarized in a schematic shown in Fig. 4f).

We next examined gene pairs in the same transcriptional direc-
tion, or a tail-to-head relationship (head being the start of gene), with
GOI being downstream of NNG (Fig. 4g). While we also saw a positive
correlation between gene expression change and gene-to-gene dis-
tance, the trend was much weaker compared to tail-to-tail gene pairs
(Fig. 4h vs. 4b). Interestingly, when we stratified short-spaced gene
pairs (bins 1 and 2) based on expression levels of GOI and NNG, we
found that a gene actually tended to be upregulated when its expres-
sion level was low (bottom row in Fig. 4i), suggesting that readthrough
Pol II from an upstream gene could cause upregulation of the down-
stream gene, or Pol II read-in (illustrated in Fig. 4j).

To further examine the Pol II read-in scenario, we developed a
score named ChrRNA-seq Intervening Signal Score (CRISS), based on
change of chrRNA-seq read abundance between two neighboring
genes after JTE-607 treatment (Fig. 4g). We found that for genes that
were lowly expressed and upregulated by JTE-607, their CRISS values
were significantly higher than nonregulated genes (P = 2.0 × 10−12, K–S
test, Fig. 4k, left), a trend thatwas substantially subduedwhen all genes
were used (P = 7.4 × 10−4, K–S test, Fig. 4k, right). This result is in good
agreement with the read-inmodel (Fig. 4j), in which readthrough Pol II
from an upstream gene upregulates expression of its downstream
gene, especially when the latter is lowly expressed.

JTE-607 causes widespread APA changes
We next reasoned that by analyzing APA isoform changes, we could
gain insights into how JTE-607 regulates PAS usage. To this end, we
first examined isoforms using 3′UTR APA sites (last exon only) in HeLa

and HepG2 cells (illustrated in Fig. 5a). We found that most genes in
HeLa and HepG2 cells showed 3′UTR lengthening, i.e., increased rela-
tive abundance of distal PAS (dPAS) isoform to that of proximal PAS
(pPAS) isoform (Fig. 5b). As with gene expression changes, 3′UTR
lengthening was stronger in HepG2 cells than HeLa cells (indicated by
colors in Fig. 5b), despite general correlations between these two cell
lines (r =0.60 for cells treated with 10 µM JTE-607, Pearson Correla-
tion, Supplementary Fig. 4a). Basedondose-dependentAPA regulation
events, we found that genes displaying 3′UTR lengthening out-
numbered those with the opposite trend by 5.3-fold (Fig. 5c). The
example gene SPTLC3 showed dose-dependent 3′UTR lengthening in
bothHeLaandHepG2cells (Fig. 5d),with the latter beingmoreobvious
than the former (Fig. 5d). Note that the 3′UTR APA elicited by JTE-607
in HeLa and HepG2 cells were also correlated with those in HeLa cells
with PCF11 KD (Supplementary Fig. 4a), highlighting a common 3′UTR
lengthening signature induced by CPAi.

We found that genes showing 3′UTR lengthening had a modest,
albeit significant, trend of being upregulated at the level of gene
expression as compared to those showing 3′UTR shortening (P = 0.04,
Wilcoxon test, Fig. 5e, left). However, these two gene groups were not
significantly different in transcriptional readthrough changes (P =0.9,
Wilcoxon test, Fig. 5e, right). Therefore, APA regulation in the last exon
by JTE-607 has a mild effect on gene expression and is largely inde-
pendent of transcriptional readthrough.

We next examined intronic polyadenylation (IPA) regulation by
JTE-607, using 3′ terminal (or last) exon PASs (TPAs) as a reference
(Fig. 5f). In both HepG2 and HeLa cells, IPA was generally suppressed
by JTE-607 treatment (Fig. 5g). Genes showing dose-dependent IPA
suppression in both HepG2 and HeLa cells outnumbered those
showing the opposite trend by 4.8-fold (Fig. 5h). Interestingly, the
genes showing IPA activation were significantly more downregulated
than the genes showing IPA suppression (P < 1.0 × 10−28, Wilcoxon test,
Fig. 5i, left). In contrast, these two gene groups did not differ in tran-
scriptional readthrough (P =0.13, Wilcoxon test, Fig. 5i, right). The
effect of IPA regulation on gene expression is due likely to the fact that
IPA isoforms are generally unstable compared to last exon PAS
isoforms13. An example case is IPA suppression of PCF11 after JTE-607
treatment, which is coupled with upregulation of the isoforms using
last exon PASs (Fig. 5j). As with 3′UTR APA, IPA change correlations
could be discerned between JTE-607-treated HepG2 and HeLa cells
(r =0.57 for cells treated with 10 µM JTE-607, Pearson Correlation,
Supplementary Fig. 4b) as well as between JTE-607 treatment and
PCF11 KD (r ≥ 0.40 for HepG2 cells treated with JTE-607, Pearson
Correlation, Supplementary Fig. 4b), adding IPA suppression as
another signature to CPAi-mediated APA regulation.

We noticed that some IPA activation events were caused by
downregulation of transcripts using last exon PASs and IPA isoform
expression was largely unchanged (an example geneMRPL12 is shown
in Fig. 5k). This pattern appeared to be more obvious for genes with a
single PAS in the last exon. Indeed, when we directly compared genes
with multiple PASs in the last exon (each with >10% of all isoform
expression) and genes with only one major PAS in the last exon (>95%
of all isoform expression), we found that the latter were significantly
more downregulated than the former after JTE-607 treatment (P =0,
K–S test, Supplementary Fig. 4c). This finding is in line with our gene
feature analysis result, inwhich thenumber of PASs of a genepositively
correlated with gene expression changes after JTE-607 treatment
(Fig. 3a and Supplementary Fig. 3a). Taken together, our APA analysis
results indicate that JTE-607 generally suppresses pPAS usage, the
extent of which is greater in HepG2 cells than in HeLa cells. While 3′
UTR APA regulation has only a modest effect on gene expression, IPA
regulation significantly impacts gene expression. In addition, genes
harboring multiple PASs are less likely to be downregulated after JTE-
607 treatment, suggesting that APA sites in the last exon could help
mitigate CPAi’s effect on gene expression.
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APA analysis reveals mode of action of JTE-607 in PAS usage
regulation
We found that the degree of 3’UTR lengthening after JTE-607 treat-
ment, as measured by the difference in dPAS isoform to pPAS isoform
abundance ratio, or Δlog2(dPAS/pPAS), was a function of the distance

between the two APA sites (Fig. 6a). For simplicity, the region between
pPAS and dPASwas named alternative UTR, or aUTR, (Fig. 5a). Because
pPAS is transcribed earlier than dPAS during transcription, a longer
aUTR would favor pPAS usage. As such, the correlation between
degree of 3′UTR lengthening and aUTR size suggests that APA sites

Fig. 4 | Transcriptional readthrough impacts expression of neighboring genes.
a Schematic of a gene pair with opposite transcriptional directions. GOI, gene of
interest; NNG, nearest neighbor gene. The last 1 kb region of GOI was used to
calculateChrRNA-seqOverlapping Signal Score (CROSS) asdescribed.bExpression
changes of GOI as a function of distance fromNNG. All GOI-NNG pairs were divided
into five equally sized bins based on their distance. The number of genes used in
each plot is indicated. P value (K–S test) for bin 1 vs. bin 5 comparison is indicated
for HepG2 cells treated with 10μM JTE-607. c CROSS as a function of distance
between GOI and NNG. P value (K–S test) for bin 1 vs. bin 5 comparison is indicated
for both HepG2 and HeLa cell data. d CDF curves of CROSS for genes regulated in
HepG2 cells treated with 10 μM JTE-607. P values (K–S test) for comparisons
between upregulated genes (red line) or downregulated genes (blue line) and not
regulated genes (gray line) are indicated. e Heatmap showing gene expression
changes based on CROSS (x-axis) and GOI-NNG distance (y-axis). Each gene was

assigned to one of the 25 bins based on CROSS and distance values. The median of
gene expression changes (log2Ratio in HepG2 cells treated with 10μM JTE-607) of
each bin is represented by color. f Schematic indicating that collision of Pol II on
two opposite strands leads to gene downregulation. g Schematic showing GOI and
its upstream NNG having the same transcriptional direction. Calculation of
ChrRNA-seq Intervening Signal Score (CRISS) is described. h As in b except that
GOI-NNG pair is based on g. i. As in e, except that the 25 bins are based on GOI
expression level (y-axis) and NNG expression level (x-axis). j Schematic indicating
that readthrough Pol II from an upstream gene leads to read-in of downstream
gene, causing the latter being upregulated. k CDF curves showing CRISS vs. gene
regulation for lowly expressed genes (left) and all genes (right). P values (K–S test)
for comparisons of upregulated genes or downregulated genes with not regulated
genes (gray lines) are indicated. Source data are provided as a Source Data file.
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with higher usage levels tend to be more inhibited by JTE-607. Inter-
estingly, we also found that this correlation was stronger in HepG2
cells than in HeLa cells (Fig. 6a), suggesting a cell type difference in
CPA activity.

To further examine the CPA difference between HepG2 and HeLa
cells, we profiled APA isoforms in these two cell lines. By comparing
relative abundances of two APA isoforms, we found that HepG2 cells
displayed a higher pPAS to dPAS isoform abundance ratio in general,

eitherwhenbothAPA siteswere in the same3′UTR (last exons only, 1.2-
fold bias, Fig. 6b) or when the pPAS was in an intron and the dPAS was
in the last exon (4.4-fold bias, Supplementary Fig. 5a), indicating that
HepG2 cells have a general preference of pPAS usage as compared to
HeLa cells. This result suggests that HepG2 cells have a higher CPA
activity than HeLa cells. Interestingly, these two cell lines had a similar
proliferation rate (Supplementary Fig. 5b), a feature previously asso-
ciated with 3′UTR size difference between cells16. Regardless of the

Fig. 5 | Widespread APA isoform changes in HeLa andHepG2 cells treatedwith
JTE-607. a Schematic showing two 3′UTR isoforms using proximal PAS (pPAS) and
distal PAS (dPAS), respectively. The region between the two PASs is named alter-
native UTR (aUTR). b Heatmap showing relative expression difference of the top
two 3′UTR isoforms (Δlog2Ratio, dPAS isoform vs. pPAS isoform, JTE-607 vs.
DMSO). c UpSet plot showing genes with dose-dependent 3′UTR isoform changes
after JTE-607 treatment in HepG2 or HeLa cells. Data are based on b. Genes are
divided into eight groups based on 3′UTR isoform regulation. Gray bars indicate
different directions of regulation in the two cell lines. d An example gene SPTLC3
showing dose-dependent 3′UTR lengthening in both HeLa and HepG2 cells.
e Boxplots showing expression changes (left) and ΔRTS (right) for genes showing

lengthened 3′UTRs (red) or shortened 3′UTRs (blue) in HepG2 cells treated with
10μM JTE-607. P values (Wilcoxon test) indicating significance of difference
between the two gene groups are shown. Each box represents the 25th and 75th
percentile values, with the median shown as a line. f Schematic of intronic poly-
adenylation (IPA) isoforms and 3′ terminal exon polyadenylation (TPA) isoforms.
g As in b, except that data for TPA isoforms vs. IPA isoforms is shown. h As in
c, except that IPA regulation data is shown. i As in e, except that IPA suppressed
genes (red) and IPA activated genes (blue) are analyzed. j PCF11 displays IPA iso-
form suppression and concomitant TPA isoform upregulation in HepG2 cells
treatedwith 10μM JTE-607. k As in j, except thatMRPL12 displays TPA suppression
without IPA activation. Source data are provided as a Source Data file.
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Fig. 6 | APA reporter assays indicate that CPA inhibition by JTE-607 correlates
with PAS usage level. a The degree of 3′UTR lengthening elicited by JTE-607, as
indicated by the relative expression difference of top two 3′UTR isoforms (Fig. 5a),
is a function of aUTR size. All genes with detectable expression of 3′UTR isoforms
(n = 2205) were divided into five equally sized bins based on their aUTR size. The
aUTR size range for each bin is shown. Error bars are standard error of mean.
b Scatter plot comparing 3′UTR isoform abundance difference between HepG2
and HeLa cells. Each dot represents a gene with two selected 3′UTR isoforms.
Genes showing lengthened and shortened 3′UTRs in HepG2 compared to HeLa are
in red and blue, respectively. c Schematic of the pTRE-RiG construct. TRE tetra-
cycline response element, RFP red fluorescent protein, GFP green fluorescent
protein, IRES internal ribosome entry site. As indicated, ratio of red to green
fluorescent signals, or log2(R/G), reflects the relative usage of pPAS vs. dPAS.
d Schematic showing two versions of pPAS, i.e., AD and AE, with different PAS
motifs. e Percentage of long isoform expressed in HepG2 or HeLa cells after

transfection of various constructs. f Reduction of log2(R/G) value in HepG2 and
HeLa cells transiently transfected with pTRE-RiG-AD (weak pPAS, 1× GFP) after JTE-
607 treatments. Linear regression is based on averaged values of two biological
replicates. P value (t-test) comparing values for 10μM JTE-607 data is indicated.
g The degree of inhibition of pPASusage by JTE-607, based onΔlog2(R/G) between
10μM and 0.1μM (y-axis), correlates with its usage level in the control condition
(DMSO-treated), as indicated by the percent of short isoform expressed (x-axis).
Polynomial regression is based on averaged values of two biological replicates.
h Bar graph showing pPAS usage levels of pTRE-RiG-AD, indicated by log2(R/G), in
HeLa and HepG2 cells. Data for episomal form (transient transfection) or genomic
form (integrated via piggyBac transposase) of the reporter are shown. P values are
based on t-test. i As in f, except that the construct was genome-integrated.
j Schematic summarizing mode of action of JTE-607 (CPAi) in APA regulation.
Source data are provided as a Source Data file.
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underlying mechanism(s) responsible for the CPA difference between
HeLa and HepG2 cells, the differential APA isoform regulation by JTE-
607 in these two cell lines (Fig. 6a) suggests that PASs are more
strongly inhibited by JTE-607 in cells with higher CPA activities.

To validate our hypotheses, we employed a reporter construct,
named pTRE-RiG44 (illustrated in Fig. 6c), in which pPAS usage leads to
expression of a transcript encoding a red fluorescent protein (RFP),
whereas dPAS usage leads to expression of a transcript encoding both
RFP and green fluorescent protein (GFP). As such, the ratio of red
fluorescent signal to green fluorescent signal, or log2(R/G), reflects the
relative usage of pPAS vs. dPAS (Fig. 6c). In addition, a promoter
containing the tetracycline response element (pTRE), inducible by
Doxycycline (Dox), drives the expression of reporter transcripts.

We used two pPASs with different strengths17 and a constant,
strong dPAS (SV40 early PAS, Fig. 6d). The relatively weaker pPAS
(named AD) led to long isoform expression level of 13% (Fig. 6e),
whereas a stronger one (named AE), containing additional UGUG
motifs downstreamof the PAS, gave rise to long isoform expression of
5% (Fig. 6d, e). In addition, increasing the distance between pPAS and
dPAS by adding one additional copy of GFP (Fig. 6c) led to a 2-3-fold
decrease of long isoform expression for both AD and AE constructs
(Fig. 6e), confirming that the distance between APA sites positively
impacts pPAS usage.

We next applied JTE-607 at various concentrations to HepG2 or
HeLa cells transfected with different reporter constructs. As exempli-
fied in Fig. 6f, a dose-dependent decrease of log2(R/G) value could be
observed in both HepG2 and HeLa cells, indicating that the reporter
construct recapitulates pPAS inhibition by JTE-607 as observed with
endogenous genes. Interestingly, we found that, in both HepG2 and
HeLa cells, the pPASs with higher usage levels in control cells (DMSO,
x-axis, Fig. 6g) were more strongly inhibited by JTE-607 (Δlog2[R/G]
between 10 and 0.1 µM JTE-607 treatments, y-axis, Fig. 6g), with
R2 = 0.99 and 0.93 for HepG2 and HeLa cells, respectively (Fig. 6g),
which is in good agreement with the regulatory trend observed with
endogenous APA sites (Fig. 6a).

Because our reporter constructs showed only modest differences
between HepG2 and HeLa cells in APA (Fig. 6e) or APA changes
in response to JTE-607 (Fig. 6f), not in full accord with the data of
endogenous genes, we wondered if inserting the plasmids into the
genome would recapitulate endogenous gene regulation results bet-
ter. To this end, we used a piggyBac transposase to insert one of the
constructs, pTRE-RiG-AD, into the genomes of HepG2 and HeLa cells.
Strikingly, the genome-integrated construct showed significantly
higher pPAS usage in HepG2 cells than HeLa cells (P <0.05, t-test,
Fig. 6h). In addition, the genome-integrated constructs showed much
stronger pPAS inhibition by JTE-607 in HepG2 cells than HeLa cells
(note the slopes of fitted lines in Fig. 6i). Similar results were also
obtained when we used a reporter construct designed for IPA analysis
(Supplementary Fig. 5c). Again, a genome-integrated construct
showed greater IPA suppression in HepG2 cells than HeLa cells (Sup-
plementary Fig. 5d), a trend that was much subdued when the con-
struct was used episomally by transient transfection (Supplementary
Fig. 5e). Taken together, our reporter assays confirm that a higher PAS
usage level renders more CPA inhibition by JTE-607 and, by the same
logic, a PAS is inhibited to a greater degree when expressed in cells
with higher CPA activities (illustrated in Fig. 6j).

U937 cells and differentiated U937 cells with higher CPA activ-
ities respond to JTE-607 differently
To further examine how the CPA activity of a cell could impact JTE-607
functions, we used the humanmyeloid leukemia model cell line U937,
which was previously found highly sensitive to JTE-607 for cell
survival36. Its mouse xenograft was also used as an in vivo model for
JTE-607’s function in suppression of leukemia39. U937 cells are
monocyte-like cells that can be differentiated into macrophage-like

cells by Phorbol-12-Myristate-13-Acetate (PMA). For simplicity, the
differentiated U937 cells are called U937MP cells (Fig. 7a). Compared
to U937 cells, U937MP cells were significantly less proliferative (dou-
bling time >200h vs. 16 h for U937, Fig. 7b) and, consistently, U937MP
cells are mostly in the G0/G1 phase (Supplementary Fig. 6a). In addi-
tion, U937MP cells were more tolerant of JTE-607 than U937 cells
(IC50 = 16.2 µM vs. 0.4 µM, Fig. 7c).

Using the QuantSeqmethod for transcriptome analysis, we found
that gene expression profiles are drastically different between U937
and U937MP cells (Supplementary Fig. 6b) and GO analysis of differ-
entially expressed genes supported the view that U937MP cells are
more differentiated and less proliferative (Supplementary Fig. 6c).
Interestingly, we found that genes overall displayed shorter 3′UTRs in
U937MP cells than in U937 cells (5.8-fold gene number difference
between shortened and lengthenedgenes, Fig. 7d), suggesting theCPA
activity increases during differentiation of U937 cells. Therefore, U937
and U937MP cells represent an isogenic system which could help
unravel the relationships between CPA activity and JTE-607-elicited
transcriptomic changes and cell death.

We treated U937MP and U937 cells with 1 µM JTE-607 and carried
out chrRNA-seq and QuantSeq at 2 h and 7 h post treatments,
respectively (Fig. 7e). Note that no cell death was discernable at 7 h
post treatment for either cell line (Supplementary Fig. 7a). Overall,
gene expression changes after JTE-607 treatment were correlated
between these two cell types (r =0.53, Pearson Correlation, Supple-
mentary Fig. 7b) and were similar to those in HepG2 cells (Supple-
mentary Fig. 7b). Interestingly, in contrast to their IC50 difference,
more genes were regulated in U937MP cells than in U937 cells (Fig. 7f).
In addition,whilemore genesweredownregulated thanupregulated in
both cell types, this trend was more obvious in U937MP cells (Fig. 7f).
We also found that both cell types showed global 3′UTR lengthening
after JTE-607 treatment (Fig. 7g), and the 3′UTR APA regulation was
generally correlated between the two cell types (r =0.5, Pearson Cor-
relation, Supplementary Fig. 7c) and compared to HepG2 cells (r >0.5,
Pearson Correlation, Supplementary Fig. 7c). However, U937MP cells
displayed more 3′UTR APA changes than U937 cells (Fig. 7g) and the
degree of 3′UTR lengtheningweremore strongly correlatedwith aUTR
size in U937MP cells than U937 cells (P = 3.9 × 10−5 for genes in bin 5,
Wilcoxon test, Supplementary Fig. 7d).

Based on ΔRTS scores (JTE-607 vs. DMSO, chrRNA-seq data), we
found that transcriptional readthrough after JTE-607 treat-
ment increased much more in U937MP cells than U937 cells (P = 1.1 ×
10−4, K–S test, Fig. 7h; Supplementary Fig. 7e). An example gene
HNRNPD is shown in Fig. 7i. Using chrRNA and RT-qPCR with primer
sets targeting regions downstream of the last PAS (readthrough
region) and gene body (as a control), we found that while JTE-607
elicited transcriptional readthrough on HNRNPD in both U937 and
U937MP cells (Fig. 7j), the latter was much stronger than the former
(note the scale difference in Fig. 7j). Taken together, despite that U937
cells are more sensitive to JTE-607 than U937MP cells in cell survival,
the latter displays much stronger response in transcriptomic changes
than the former, including gene expression, transcriptional read-
through, andAPA. This result is in goodagreementwith thenotion that
cells with higher CPA activities (U937MP) tend to have more PAS
inhibition by JTE-607. On the other hand, this result indicates that the
JTE-607-elicited transcriptomic changes are not the sole factor leading
to cell death.

FIP1 overexpression leads to global activation of CPA
To address the conundrum of cell death vs. transcriptomic change by
JTE-607, we set out to establish an isogenic system in which the CPA
activity is tunable while there are no other major changes to the cell.
Studies from our lab and others have shown that knockdown of the
core CPA factor FIP1 leads to global 3′UTR lengthening, indicating its
importance for controlling the CPA activity45,46. FIP1 has at least
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20 splicing isoforms documented in the NCBI database (Supplemen-
tary Fig. 8a). We cloned the open reading frame of the longest isoform
(NM_030917.4), encoding 595 amino acids, into a lentiviral vector
under the control of a TRE-containing promoter (Fig. 8a). On the same
vector, an internal ribosome entry site (IRES)-enhanced GFP (EGFP) or
IRES-blue fluorescent protein (BFP) sequence was placed after the
FIP1 sequence so that the expression level of this exogenous FIP1 could
be tracked by EGFP or BFP levels (Fig. 8a, d).

Using HEK293T cells transduced with the inducible FIP1 vector
(named HEK293T/iFIP1 cells), we found that induction of FIP1
overexpression (OE) for 24 h led to global 3′UTR shortening

(2.5-fold bias for pPAS isoform vs. dPAS isoform, Fig. 8b) as well as
IPA activation (4.4-fold bias for IPA isoform vs. TPA isoform, Fig. 8c),
indicating that FIP1 OE elevates CPA activity in the cell, leading to
general activation of pPAS usage. In addition, using a genome-
integrated reporter construct pTRE-RiG-AD (Fig. 6c), we found that
cells with high blue fluorescent signals had a high log2(R/G) value as
compared to cells with low or no blue fluorescent signals (Fig. 8e),
indicating that FIP1 expression leads to more usage of pPAS of the
reporter gene. Importantly, cells with high FIP1 OE tended to have
greater dose-dependent inhibition of pPAS usage as compared with
cells with low or no FIP1 OE (see slope differences in Fig. 8f),

Fig. 7 | U937 cells respond to JTE-607 differently after differentiation.
a Schematic showing differentiation of monocyte-like U937 cells to macrophage-
like U937MP cells after treatment of 10 ng/mL Phorbol-12-Myristate-13-Acetate
(PMA) for 48 h. b Cell doubling time analysis of U937 and U937MP cells. Error bars
are standard deviation based on biological replicates (n = 6 and = 3 for U937 and
U937MP cells, respectively). P value (t-test) for significance of difference in cell
doubling time is indicated. c IC50 analysis of U937 andU937MP cells in response to
JTE-607, as determined by the AlamarBlue assay. Error bars are standard deviation
(n = 3). d Scatter plot comparing 3′UTR isoform abundance difference between
U937MP and U937 cells. Each dot is a gene with two 3′UTR isoforms. Genes with 3′
UTR significantly lengthened and shortened in U937MP cells as compared to U937
cells are shown in red and blue, respectively (see Methods for gene selection
details). The number of genes for each group is indicated, and so is their ratio.
e Schematic showing QuantSeq and chrRNA-seq analyses of U937 and U937MP

cells treated with JTE-607. f UpSet plot showing numbers of genes with significant
expression changes inU937cells and/orU937MP cells after JTE-607 treatment (BH-
adjusted P <0.05, Fisher’s exact test; fold change ≥2). Genes are divided into eight
groups based on regulations in the two cell lines. Gray bars indicate different
directions of regulation between the two cell lines. The ratio of number of down-
regulated genes to that of upregulated genes is indicated. g As in f, except that 3′
UTR APA data are shown. h CDF curves of ΔRTS in U937 and U937MP cells. The
number of genes analyzed, themedian value of each cell line, and P value (K–S test)
for significance of difference between the two cell lines are indicated. iAn example
gene HNRNPD showing readthrough difference between U937 and U937MP cells.
j qRT-PCR analysis showing JTE-607-elicited transcriptional readthrough of gene
HNRNPD in U937 (left) or U937MP (right) cells (n = 2). chrRNA signal in read-
through region was normalized to that in gene body. P values (t-test) for sig-
nificanceofdifferenceare indicated. Sourcedata areprovided as a SourceDatafile.
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supporting the notion that the degree of PAS inhibition by JTE-607
correlates with its usage level.

We next transduced HepG2 andHeLa cells with the FIP1 OE vector
and subjected the cells (named HepG2/iFIP1 and HeLa/iFIP1 cells,
respectively) to JTE-607 treatments. After three days of treatment, we
analyzed cells for their fluorescent signals (Fig. 8g).We reasoned that if
FIP1 OEmade cellsmore sensitive to JTE-607, cellswith low fluorescent
signals, corresponding to low FIP1 expression levels, would be more
abundant than cells with high fluorescent signals. Indeed, we found
that HepG2 cells with FIP1 OE had a higher ratio of low fluorescent cells

to high fluorescent cells after JTE-607 (1 µM) treatment as compared to
DMSO-treated cells (Fig. 8h, i). A similar result was obtained with HeLa
cells with FIP1 OE after JTE-607 (50 µM) treatment (Fig. 8j and Sup-
plementary Fig. 8b). Together, these data indicate that FIP1 over-
expression, which elevates CPA activity in the cell, makes cells more
sensitive to JTE-607.

FIP1 overexpression sensitizes cells for CPAi
To further examine the impact of FIP1 OE on cell survival, we gen-
erated two U937 cell clones containing inducible exogenous FIP1,

Fig. 8 | FIP1 overexpression leads to global activation of CPA activity.
a Schematic of a lentiviral vector containing an inducible FIP1 (top) and Western
blot (bottom) showing induction of FIP1 in HEK293T cells by 2μg/mL Dox for one
or two days. b Scatter plot comparing 3′UTR isoform abundance difference
between HEK293T cells with FIP1 induction (Dox+, 24h) and those without (Dox−).
Each dot represents a gene with two selected 3′UTR isoforms (as shown in Fig. 5a).
c As in b, except that IPA isoforms are analyzed. See Fig. 5f for IPA and TPA isoform
definitions. d Schematic of reporter assay to examine APA regulation by FIP1
overexpression (OE) using pTRE-FIP1-IRES-BFP. e Bar graph indicating the level of
pPAS usage in HEK293T cells with the blue fluorescent signal tracking FIP1
expression level. Cells showing no, low, or high blue signals were analyzed for pPAS
usage, as indicated by log2(R/G). Error bars are standard deviation based on three
biological replicates. P values (t-test) for significance of difference between com-
paring groups are indicated. f Inhibition of pPAS usage by JTE-607 in cells with

different levels of FIP1OE. Linear regression formula andR2 values are shown for the
cell groups with no or high BFP signals. Error bars are standard deviation of three
biological replicates. P value (t-test) for significance of difference in Δlog2(R/G)
(10μM JTE-607 vs. DMSO) between cell groups are indicated. g Schematic of the
cell competition assay, inwhichHepG2 or HeLa cells with inducible FIP1 OE (named
HepG2/iFIP1 and HeLa/iFIP1, respectively) are subject to JTE-607 treatment, fol-
lowed by flow cytometry analysis to examine green or blue fluorescent signals of
surviving cells.hHistograms showing distributionoffluorescence signals of HepG2
cells after DMSO (top) or JTE-607 (bottom) treatment. i Bar graph showing ratio of
number of cells with low (bottom 1/3) to high fluorescent signals (top 1/3) in HepG2
cells treatedwith 1μMJTE-607. Error bars are standarddeviationof three biological
replicates. P (t-test) for significance of difference is indicated. j As in i, except that
HeLa/iFIP1 cell data are shown with 50μM JTE-607. Source data are provided as a
Source Data file.
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namedU937/iFIP1-A1 or -B12 cells (Fig. 9a). These two clones had a 3-
or 4-fold decrease of IC50 value for JTE-607 when FIP1 was induced
(Dox+) as compared to cells without FIP1 induction (Dox−, Fig. 9b),
indicating that, similar to HeLa/iFIP1 and HepG2/iFIP1 cells,
increased CPA activity through FIP1 OE makes U937 cells more
sensitive to JTE-607. In addition, surviving U937 cells after a high

dosage of JTE-607 treatment (10 µM, which killed most cells)
showed a much higher percentage of cells with low fluorescent
signals than DMSO-treated control cells (Fig. 9c, d and Supple-
mentary Fig. 9a–c).

We next examined the transcriptomic changes in U937/iFIP1 cells
with vs. without Dox induction (Fig. 9e). After 48 h of Dox induction,

Fig. 9 | FIP1 overexpression leads to greater cell sensitivity to JTE-607.
a Western blot showing induction of FIP1 in two U937/iFIP1 clones (A1 and B12).
b IC50 analysis of U937/iFIP1-A1 and -B12 cells treated with JTE-607. Error bars are
standard deviation (n = 3). c Histograms showing distribution of fluorescence sig-
nals of U937/iFIP1-A1 after DMSO (left) or JTE-607 (right) treatment. d Bar graph
showing percent of U937/iFIP1-A1 cells with different green fluorescence levels
after the cell competition assay with 10 μM JTE-607 (n = 2). P is based on t-test.
e Schematic showing transcriptome analysis of U937/iFIP1 cells with or without
FIP1 induction (Dox+ or Dox−, respectively) followed by JTE-607 treatment. f Gene
expression changes after FIP1 induction for 48 h. The number of genes with sig-
nificant expression changes (BH-adjusted P <0.05, Fisher’s exact test; fold change
≥1.2 or≥2) are indicated. A total of 13,056 geneswere analyzed. g 3′UTR shortening
in U937/iFIP1 cells after FIP1 induction. See Fig. 8b for description of the plot.
h Comparison of JTE-607-elicited gene expression changes in U937/iFIP1 cells in
Dox+ vs. Dox− conditions. Genes with significant expression changes in both
conditions (BH-adjusted P <0.05, Fisher’s exact test; fold change ≥1.2) are colored

with red (both upregulated) or blue (both downregulated). Genes in black are
significant in only one condition and genes in gray are not significant in either
condition. A total of 11,311 genes were analyzed. Pearson correlation coefficient (r)
is indicated. i UpSet plot showing numbers of genes with significant JTE-607-
elicited expression changes (BH-adjusted P <0.05, Fisher’s exact test; fold change
≥2) inU937/iFIP1 cells in Dox+ and/or Dox− conditions. Gray bars indicate different
directions of regulation between the two conditions. The ratio of number of
downregulated genes to thatof upregulated genes is indicated. jAs in i, except that
JTE-607-elicited 3′UTR APA events are compared between U937/iFIP1 cells in Dox+
vs. Dox− conditions. k qRT-PCR analysis showing JTE-607-elicited transcriptional
readthrough of gene HNRNPD in U937/iFIP1 cells with or without FIP1 induction.
chrRNA signal in readthrough region was normalized to that in gene body. Error
bars are standard deviation (n = 3). P values (t-test, one-tailed) for significance of
difference in readthrough are indicated. Source data are provided as a Source
Data file.
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only a small number of genes displayed expression changes (449 and
49 with fold change ≥1.2 and ≥2, respectively, Fig. 9f), indicating that
FIP1 OE has only a limited effect onmRNA expression levels. However,
consistent with the HEK293T cell data, more genes showed shortened
3′UTRs than lengthened 3′UTRs (Fig. 9g) and IPA activation (Supple-
mentary Fig. 9d), indicating increased CPA activity after FIP1 OE. As
expected, JTE-607 elicited widespread gene expression changes in
U937/iFIP1 cells (Fig. 9h). While the gene expression changes are lar-
gely correlated (r =0.7, Pearson Correlation, Fig. 9h) and more genes
were downregulated than upregulated in both Dox− and Dox+ con-
ditions (P <0.05, Fisher’s exact test, fold change ≥2, Fig. 9i), U937 cells
with FIP1 OE displayed much more regulated genes, especially in the
downregulation group (Fig. 9i). In addition, commonly regulated
genes between Dox+ and Dox− conditions showed general trends of
3′UTR lengthening (Fig. 9j) and IPA suppression (Supplementary
Fig. 9e). Based on the chrRNA analysis ofHNRNPD gene, cells with FIP1
OE had greater transcriptional readthrough after JTE-607 treatment
than cells withoutOE (Fig. 9k). Taken together, our data basedonU937
cells with FIP1 OE indicate that elevation of CPA activity leads to higher
sensitivity to JTE-607 in cell survival and greater response in tran-
scriptomic disturbance.

CPAi leads to S phase crisis and is synergistic with DNA repair
inhibitors
JTE-607 was previously reported to cause DNA damage in Ewing’s sar-
coma cells36 and cell cycle arrest in the S phase and apoptosis in U937
cells47. With the U937/iFIP1 cells, we next asked whether CPA activity
elevation through FIP1 OE could cause more DNA damage by JTE-607.
To this end, we first examined the γH2A.X level, an indicator of DNA
damage, in U937/iFIP1 cells +/− Dox induction. We found that JTE-607
treatment (1 µM, 24 h) increased the percent of γH2A.X positive cells by
4.5-fold in Dox− condition but 11.7-fold in Dox+ condition, significantly
higher than the former (P =0, Chi-squared test, Fig. 10a, b). Note that
Dox induction alone without JTE-607 treatment had no effect on
γH2A.X signals (P =0.2, Chi-squared test, Fig. 10a, b).

We next examined cell cycle phases by propidium iodide (PI)
staining 24 h post JTE-607 treatment (0.4 µM, Fig. 10c and Supple-
mentary 10a). We found that while Dox− and Dox+ cells did not differ
in their cell cycle phase profiles (Fig. 10c), JTE-607 treatmentmarkedly
enriched cells in the S phase (representative data for the two clones
shown in Fig. 10c and Supplementary Fig. 10a). The percent of cells in
the S phase in JTE-607-treated cells increased by 1.6-fold and 1.4-fold in
Dox− and Dox+ conditions, respectively, as compared to their
respective untreated cells (Fig. 10d and Supplementary 10b), indicat-
ing that JTE-607 elicits S phase crisis in these cells. This trend was also
discernable, albeit much less obvious, at 12 h post JTE-607 treatment
(Supplementary Figs. 10d and 10e).We also noticed that the fractionof
cells with fragmented DNA were much higher in Dox+ condition than
Dox− condition after JTE-607 treatment (the <2N group with low PI
signals, Fig. 10c, d and Supplementary Fig. 10a), which may contribute
to a slightly smaller fraction of S phase cells in Dox+ & JTE-607-treated
condition as compared to Dox− & JTE-607-treated condition. The
presenceof cells with fragmentedDNAmay also suggest S phase crisis-
elicited apoptosis. Also of note is that the ratio of cells in the 1st half of S
phase to those in the 2nd half in Dox+ condition wasmuch higher than
that in Dox− condition after JTE-607 treatment (P =0.01, t-test, Fig. 10e
and Supplementary 10c), indicating more severe S phase crisis in FIP1
OE cells. It is noteworthy that cells in Dox+ and Dox− conditions did
not differ significantly in their proliferation rate (Supplementary
Fig. 10f), indicating that FIP1 OE per se has no influence on the cell
cycle. Together, these results indicate that a higher CPA activity of a
cell leads to greater DNA damage and S phase crisis after JTE-607
treatment.

The DNA damage and S phase crisis data further prompted us to
examine whether JTE-607 would be synergistic with anti-cancer

compounds that function through DNA damage repair pathways. To
this end, we treated U937/iFIP1 cells with JTE-607 together with
hydroxycamptothecine (topoisomerase I inhibitor, or TOPIi), mitox-
antone (topoisomerase II inhibitor, or TOPIIi), or BAY 1895344 (ataxia
telangiectasia and Rad3 related [ATR] kinase inhibitor, or ATRi).
Interestingly, based on the Bliss independence model, we observed
pronounced synergic effects on cell death (synergy score >10)
between JTE-607 and all these compounds in U937/iFIP1 cells, except
for hydroxycamptothecine in Dox− cells (Fig. 10f, g, and Supplemen-
tary Fig. 11a). Importantly, the synergy scores were markedly higher in
Dox+ conditions than in Dox− conditions (note the 95% confidence
intervals indicated in Fig. 10f), indicating that the synergistic effects are
more potent in cells with higher CPA activities.

We next repeated the synergy analysis in U937 cells with an
additional set of TOPIi (Topotencan), TOPIIi (Teniposide), and ATRi
(AZD6738) compounds (Fig. 10h, and Supplementary Fig. 11b). Again,
we found that all TOPIi, TOPIIi, and ATRi compounds had synergy
scores > 10 (Blissmethod)with JTE-607, further confirming thatCPAi is
synergistic with inhibitors ofDNAdamage repair pathways. In linewith
these data, we also found that DNA synthesis inhibitors, cytarabine
hydrochloride and floxuridine, were synergistic with JTE-607 in caus-
ing U937 cell death (supplementary Fig. 12). Together, our data indi-
cate that JTE-607 causes Sphase crisis andDNAdamage inproliferative
cells. This effectmight bedue to the collisionbetween readthroughPol
II and replication fork, i.e., transcription-replication conflicts48. As
such, JTE-607 is synergistic with chemotherapy drugs that inhibit DNA
repair pathways and DNA synthesis, raising the possibility of using
CPAi as an adjunct treatment in suppressing cancer cells with high
proliferation rates.

Discussion
In this study, we examine in different cell contexts the mode of action
of JTE-607, the first known CPAi compound in mammalian cells. JTE-
607 treatment leads to transcriptomic disturbance, attributable to
transcriptional readthrough and APA site usage changes (Fig. 10i).
Importantly, these CPAi effects are more potent in cells with high CPA
activities, consistent with the notion that high PAS usage levels render
more inhibition by JTE-607. In addition, JTE-607 treatment leads to
DNA damage and S phase crisis, due likely to conflicts between read-
through Pol II andDNA replication. This is in linewith a previous report
showing that a proper CPA activity prevents replication stress-
associated genome instability49. Consistently, JTE-607 is synergistic
with DNA damage repair-based chemotherapeutic drugs, such as
TOPIi, TOPIIi, and ATRi. Therefore, CPA activity and proliferation rate
are two cellular determinants of JTE-607-mediated cell death (Fig. 10i),
and CPAi could be a promising adjunct treatment to other che-
motherapy drugs in suppressing certain cancers.

Our comparison of U937 and U937MP cells is particularly reveal-
ing about the relative importance of CPA activity vs. cell proliferation
for JTE-607-mediated cell death. The quiescent U937MP cells have a
higher CPA activity than proliferative U937 cells, which is in line with a
recent report showing increasedCPA factor expression inmacrophage
differentiation50. As such, U937MP cells display greater transcriptomic
distances by JTE-607 than U937 cells. However, U937MP cells have a
higher IC50 than U937 cells, indicating that proliferation rate is a more
potent determinant than CPA activity for JTE-607-mediated cell death.
On the other hand, because the IC50 of U937MP cells is still relatively
low, compared to HeLa cells for example, we conclude that tran-
scriptomic distance can also be lethal to the cell. We cannot, however,
pinpoint which genes whose disturbances are the most critical for cell
survival among the widespread transcriptomic changes.

JTE-607-meidated CPAi resembles that of PCF11KD, underscoring
commonalities among CPA factor inhibitions. Interestingly, IPA of
PCF11 is strongly inhibited by JTE-607, in line with the notion that the
IPA site of PCF11 is a biological sensor of cellular CPA activity27,43. On
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the other hand, the similarity between JTE-607 and PCF11KD raises the
possibility that PCF11 might also be a good target for suppression of
certain cancers34,36,39. In this vein, it is worth noting that PCF11 inhibi-
tion was shown to suppress neuroblastoma51 and mutations in the
noncoding region of PCF11 gene have been implicated as pan-cancer
drivers52. The question remains, however, as to whether inhibition of
other core CPA factors would lead to similar effects. It is notable that
we previously carried out systematic siRNA-based KD of core CPA
factors and did not observe strong APA regulation in C2C12 myoblast

cells with CPSF-73 KD45, suggesting that compensatory mechanisms
could be in play to mitigate KD effects over time. It is therefore
important in future studies to examine CPA factor inhibition in a short
time window to analyze effects.

The top two features associated with JTE-607-mediated gene
regulation are GC content and RNA stability score, both of which
negatively correlated with gene expression changes. While these
two features themselves are correlated, they have independent
contributions to gene expression regulation. This notion is

Fig. 10 | JTE-607 leads to DNA damage and S phase crisis. a Representative flow
cytometry data of γH2A.X expression levels in U937/iFIP1 cells in Dox− or Dox+
conditions after JTE-607 treatment for 24h. b Fold change of γH2A.X signals in
U937/iFIP1-A1 cells with or without FIP1 induction after JTE-607 or DMSO treat-
ment. P value is based on the Chi-squared test. Fold change is based on JTE-607-
treated vs. DMSO-treated samples in Dox− and Dox+ conditions, respectively.
c Cell cycle analysis using U937/iFIP1-A1 cells. Data are based on 24 h post JTE-607
treatment. d Percent of cells in different cell cycle phases as based on data in c.
eRatioof cells in the 1st half S phase to the 2ndhalf S phase after JTE-607 treatment
in U937/iFIP1 cells in Dox+ vs. Dox− conditions (n = 2). P value (t-test) for sig-
nificance of difference is indicated. f Synergy scores for JTE-607 with another
indicated compound in U937/iFIP1 cells in Dox+ or Dox− conditions. Synergy
scores were calculated by the SynergyFinder program using the Bliss method. The

‘+/− value’ indicates 95% confidence interval (two replicates). The function of each
compound is indicated, namely, TOPIi, TOPIIi, and ATRi. g Representative synergy
score plots generated by the SynergyFinder program for JTE-607 in combination
with BAY 1895344 in U937/iFIP1-A1 cells in Dox− (left) or Dox+ (right) conditions.
hAs in f, except that synergy analysis was carried out in U937 cells (two replicates).
i A model summarizing mode of action of JTE-607 (CPAi). Alternative poly-
adenylation and transcriptional readthrough lead to transcriptomic disturbance,
the extent of which correlates with the CPA activity of a cell. Transcriptional
readthrough also leads to S phase crisis, due likely to transcription-replication
conflict, and then DNA damage, which is exacerbated by a high cell proliferation
rate. CPAi causes cell death through both transcriptomic disturbance and DNA
damage. Source data are provided as a Source Data file.
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supported by the fact that removal of both features causes a sub-
stantial decrease of R2 value than does one feature alone. High GC
content was previously found to negatively correlate with tran-
scriptional elongation rate53,54. Because slower transcriptional
elongation may enhance PAS usage55,56, much like increasing the
distance between APA sites, it is possible that the CPA activity is
higher in high GC content regions, leading to greater CPAi on
genes in these regions. This effect may be further enhanced by high
gene densities, which tend to correlate with high GC contents. On
the other hand, it is conceivable that genes in high density regions
may have evolved to have high CPA activities to suppress Pol
II readthrough-elicited transcriptomic disturbances, ensuring
proper gene expression in normal conditions.

It is intriguing that genes having higher RNA stability scores are
more likely to be downregulated after JTE-607 treatment. On the one
hand, this result underscores the difference between CPAi and general
transcriptional inhibition, such as byActinomycinD, because the latter
would suppress expression of short-lived RNAs to a greater degree. On
the other, it may indicate that the transcripts with higher stability may
be associated with greater efficiency in pre-mRNA 3′ end processing.
How these two aspects of mRNA life are interconnected needs to be
further examined in the future.

Our work is based on analysis of genes that express poly(A)+ RNA.
CPSF-73 is also responsible for 3′ end processing of replication-
dependent histone pre-mRNAs, whose mature forms do not have the
poly(A) tail57. In fact, a recent study of pancreatic cancers showed
drastic downregulation of these histone proteins after JTE-607
treatment41. Therefore, JTE-607-mediated inhibition of histone tran-
scripts could further exacerbate S phase crisis, adding another layer of
its function in suppressing proliferative cells. It should be noted,
however, that the difference between FIP1 induced and noninduced
cells in this study should not be affected by regulation of these histone
genes, because FIP1 is not involved in 3′ end processing of replication-
dependent histone genes57.

Transcriptional readthrough leads to production of DoG
transcripts28,30, which has been shown in several biological conditions,
such as cellular stress29, viral infection32, and certain cancers33. In
addition, a growing number of molecular mechanisms have been
implicated in control of transcriptional readthrough, such as Histone
H3 lysine 36 methylation33, BRD4-mediated Pol II elongation58,
the termination factor XRN259 and the Integrator complex60. Our data
show that, when transcript abundance is controlled, similar levels of
transcriptional readthrough are observed for Pan-DoGs vs. other
genes, indicating that JTE-607, or perhaps CPAi in general, causes
general readthrough across genes. On this note, it is noteworthy that
JTE-607 may not be a pan-PAS inhibitor, as indicated by a recent study
by Yongsheng Shi’s group61. As such, some PASs are refractory to JTE-
607. Further optimization of the compound is needed to improve its
universality in PAS inhibition.

Methods
Plasmids
pCW2-hPGK-BSD-rtTA, used for generation of Tet-On cells, was
constructed by using pCW-Cas9-BSD as a template. The
Cas9 sequence was removed by using Cla I and BamH I, followed by
blunt end generation with DNA polymerase I (Klenow fragment) and
ligation with T4 DNA ligase. pCMV-RiG, pCMV-RiG-AD and pCMV-
RiG-AE were constructed previously22,44. An mNeonGreen sequence
from pHAGE-IRES-puro-NLS-dPspCas13b-2xmNeongreen-NLS-3xFlag
(Addgene #: 132402) was amplified by using PCR andwas cloned into
the pCMV-RiG (XhoI and BsrGI) vector to make pCMV-RiG
(1xmNeonGreen) by using the NEBuilder kit (NEB). A second
mNeonGreen sequence was inserted to pCMV-RiG (1xmNeonGreen)
to make pCMV-RiG (2xmNeonGreen) with NEBuilder. To construct
PB-TRE-RiG-AD, the RiG-AD fragment from pCMV-RiG-AD was

amplified and subcloned into a vector derived from PB-CAG-BGHpA
(Addgene #92161). pTRE-RiniG-1600-TT was previously
constructed62 and was used to generate PB-TRE-RiniG-1600-TT. The
FIP1 ORF was cloned into pCW vector by PCR using the plasmid MIP-
HA-FIP1 (a gift from Dr. Dong-Er Zhang, UCSD) as a template. PCR
primer sequences are shown in Supplementary Table 1.

Stable cell line construction
Tet-On cells were generated by transduction of pCW2-hPGK-BSD-rtTA
into the cell. PB-TRE-RiG-AD and PB-TRE-RiniG-1600-TT were inte-
grated into the genomes of HeLa and HepG2 Tet-On cells by using the
piggyBac transposase. The transposase-containing plasmid Hypo-
MDM-PB7-CMV was used for co-transfection. Cell selection started
one day post transfection and was carried out in Hygromycin B
(400μg/mL) for at least 4 days. Cells without transposasewere used as
a control for cell selection. Lentiviral vectors were used to construct
stable cell lines with inducible expression of FIP1. Briefly,
HEK293T cells grown on a 6-cm dish were transfected using lipo-
fectamine 3000 (Thermo Fisher) with the plasmids psPAX2, pMD2.G
and pTRE-3xFlag-FIP1-IRES-EGFP-BSD at the ratio of 3:1:2 and the total
amount of 6.88μg DNA. Cell culture media collected at 24 h and 48 h
post transfection were combined for concentration by ultra-
centrifugation. Target cells seeded in a 12-well plate were incubated
with concentrated virus at 250 μL per well, together with 750 μL
complete media containing polybrene (final conc. of 8μg/mL). Cell
selection was carried out with 10μg/mL Blasticidin for at least 4 days.
Selected cells were tested for reproducible, induction of FIP1 expres-
sion in each experiment.

Cell culture and treatments
HEK293T, HeLa and HepG2 cells were cultured in Dulbecco’s mod-
ified Eagle’s medium (DMEM) supplemented with 10% fetal bovine
serum (FBS) and 1% penicillin/streptomycin at 37 °C and were sup-
plied with 5% CO2. U937s were cultured in RPMI-1640 with 10% FBS
and 1% penicillin/streptomycin. Macrophage-like U937 (U937MP)
cells were differentiated from U937 cells by using 10 ng/mL PMA in
RPMI-1640 complete media for 48 h, followed by culturing in fresh
RPMI-1640 complete media and resting overnight before use. For
QuantSeq analysis, HeLa and HepG2 cells were treated with DMSO
or JTE-607 (1 μM or 10 μM) for 8 h before harvest for total RNA
extraction. U937 and U937MP cells were treated with DMSO or 1 μM
JTE-607 for 7 h before total RNA extraction. For chromatin RNA
(chrRNA) sequencing, HeLa, HepG2, U937 and U937MP cells were
treated with DMSO or 1 μM JTE-607 for 2 h before cells were col-
lected for chromatin RNA extraction. Induction of FIP1 expression
was carried out by using 2 μg/mL Dox.

Cell doubling time and viability analysis
Cells were seeded in a 12-well plate at lowdensity (10–20% confluency).
Cells were harvested and counted by using the Countess II automated
cell counter (Thermo Fisher Scientific), with the trypan blue dye to
indicate cell viability. Cell doubling time was calculated with the
GraphPad program, using multiple biological replicates.

Cell survival assay
Cells seeded into a 96-well plate were treated with JTE-607 at various
conc. Three replicates were used for each cell type. Control wells were
treated with DMSO. After three days of treatment, AlamarBlue reagent
(Thermo Fisher Scientific, Cat #: DAL1100) was added into each well at
the final conc. of 10% (v/v). Cells were incubated for 2–4 h at 37 °C.
AlamarBluefluorescence intensitywasdetectedby amicroplate reader
(Perkin Elmer, 2104 EnVision) with the excitation and emission wave-
lengths of 540 nm and 595 nm, respectively. For U937/iFIP1 single
clones, cells were first induced with 2μg/mL Dox for two days before
JTE-607 treatment.
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Cell competition assay
HeLa, HepG2, or U937 cells containing inducible FIP1 were seeded in a
12-well plate and were induced with Dox at 2μg/mL for 2 days. Cells
were then cultured with JTE-607 (1,10, or 50 μM) or with DMSO for
3 days. Cells collected in suspension were subject to flow cytometry
analysis.

APA reporter assays
Cell transfection was carried out by using Lipofectamine 3000. To
compare JTE-607 response in cells with episomal or genome-
integrated reporter plasmids, we transfected HeLa Tet-on and
HepG2 Tet-on cells in a 24-well plate with the plasmids PB-TRE-RiG-AD
or PB-TRE-RiniG-1600-TT (300ng/well). Six hours post transfection,
cells were washed with PBS and changed to fresh media containing
Dox (2μg/mL) and JTE-607 (0, 0.1, 1, or 10μM).All cellswere incubated
for 24 h post Dox induction and JTE-607 treatment. Cells were col-
lected by trypsinization for flow cytometry analysis (BD Biosciences,
LSRII). Data were analyzed by using FlowJo. Only cells with positive
green and red signalswere used. The log2(R/G) valuewas calculated for
each living cell, where R and G are red and green fluorescent signals,
respectively. The fraction of long isoform was calculated by using the
following formula: 2^[log2(R/G)test - log2(R/G)ctrl], Where, (R/G)test is for
the pRiG vector containing a pPAS and (R/G)ctrl is for the control pRiG
vector without a pPAS. The fraction of short isoform is 1- fraction of
long isoform.

Flow cytometry analysis of γH2AX
U937/iFIP1 cells were induced with Dox for 2 days, followed by 1μM
JTE-607 treatment for 24 h. Cells werefixedwith 4% paraformaldehyde
for 10min and were permeabilized with 0.5% Triton X-100 for 3min.
Cells were washed with PBS and incubated with an anti-γH2AX anti-
body (Cell Signaling, Cat #: 9718, RRID: AB_2118009) with the dilution
of 1:200 in PBST (PBS with 0.1% Tween-20) containing 1% BSA for 1 h at
room temperature. Cells were then washed 3 times with ice-cold PBST
and were incubated with an Alexa Fluor 594-labeled, goat anti-rabbit
antibody (2 drops/mL, ReadyProbes, Thermo Fisher Scientific, Cat #:
R37117) for 1 h at room temperature in the dark. After wash with PBST,
samples were analyzed by flow cytometry (BD Biosciences, LSRII) with
excitation wavelengths of 488 nm (to track FIP1 expression) and
532nm (for γH2AX expression). Data were analyzed with FlowJo.

Cell cycle phase analysis with propidium iodide (PI) DNA
staining
Cells were harvested and washed in cold PBS, and then fixed in cold
70%ethanol for at least 2 h at 4 °C. Fixed cells were transferred to room
temperature, washed with PBS, gently resuspended in 300 μL PI
staining buffer (PBS containing 50 μg/mL PI, 50 μg/mL DNase-free
RNase A and 0.1% BSA), and incubated for 30min at 37 °C in the dark.
Samples were analyzed by flow cytometry (BD Biosciences, LSRII) with
the PI channel. Data were analyzed with FlowJo and GraphPad.

Chromatin RNA (chrRNA) extraction and analysis
chrRNAextractionwas carried out aspreviously described63 with some
modifications. Briefly, cells were seeded in 15-cm dishes and were
treated with JTE-607 when cell confluency reached 75–80%. Adherent
cells were wash with 10mL of ice-cold PBS twice, scraped from the
dishes, and collected into a 10-mL tube. Suspended cells were col-
lected into a 10-mL tube, centrifuged at 420 × g at 4 °C for 5min, and
then washed with 10mL ice-cold PBS twice. After removal of PBS, cells
were re-suspended in 4mL of ice-cold HLB +N buffer, containing
10mMTris- HCl (pH 7.5), 10mMNaCl, 2.5mMMgCl2 and 0.5% (v/) NP-
40, and were left on ice for 5min. Cells were then underlaid with 1mL
of ice-cold HLB+NS buffer (10mM Tris-HCl (pH 7.5), 10mM NaCl,
2.5mM MgCl2, 0.5% (v/v) NP-40 and 10% (wt/vol) sucrose), and were
centrifuged at 420x g at 4 °C for 5min. After careful removal of the

supernatant, nuclear pellets were re-suspended in 125μl of ice-cold
NUN1 buffer, containing 20mMTris-HCl (pH 7.9), 75mMNaCl, 0.5mM
EDTA, and 50% (v/v) glycerol, followedby addition of 1.2mLof ice-cold
NUN2 buffer, containing 20mM HEPES-KOH (pH 7.6), 300mM NaCl,
0.2mM EDTA, 7.5mM MgCl2, 1% (v/v) NP-40, and 1M urea. Samples
were vortexed at the maximum speed, followed by incubation on ice
for 5min. Chromatin pellets were collected after centrifugation at
16,000 × g at 4 °C for 2min and were re-suspended with 50 μL RNase-
free water. The chromatin pellet was dispersed by using a 200 µL tip
before chromatin RNA was extracted with 1mL TRIzol. chrRNA was
subject to ribosomal removal by using the illumina Ribo-Zero Plus
rRNA depletion kit before cDNA library construction by using the
NEBNext® Ultra™ II Directional RNA Library Prep Kit for Illumina
Sequencingwerecarried out on an IlluminaHiSeqmachine at Ademera
Health (South Plainfield, NJ, USA). chrRNA was also used for RT-qPCR
analysis for individual genes.

RT-qPCR
Total RNA was extracted with Trizol reagents (Thermo Fisher, Cat #:
15596026) according to manufacturer’s protocol. Residual genomic
DNA was digested with TURBO DNase (Invitrogen). Total RNA (1μg)
was reverse transcribed with M-MLV reverse transcriptase (Promega)
and an oligo(dT) primer. chrRNAwas reverse transcribed with random
hexamers. qPCR was performed with Hot Start Taq-based Luna qPCR
master mix (NEB) on a QuantStudio 5 Real-Time PCR System (Thermo
Fisher). For readthrough analysis, primer pairs were designed to target
downstream region of the last PAS. Primer pairs targeting the last
intron and last exon were used for pre-mRNA quantification. Primers
for RT-qPCR analysis of mature RNA expression were designed to
target different exons to minimize intron contamination. PCR primer
sequences are shown in Supplementary Table 1. Two-tailed student’s
t-test was used to calculate significance of difference.

Immunoblotting
Cells were lysed with RIPA buffer (50mMTris pH 8.0, 150mMNaCl, 1%
Triton X-100, 0.5% sodium deoxycholate, 1mM EDTA, 1mM DTT and
1mMPMSF) on ice for 30min, followedby centrifugation at 16,000× g
at 4 °C for 15min. The protein concentration of cell lysate was deter-
mined by using the DC Protein Assay (Bio-Rad). Protein samples were
denatured by using the SDS loading buffer (50mMTris-HCl pH 6.8, 2%
SDS, 10% Glycerol, 0.1% Bromophenol blue and 100mM DTT) at 95 °C
for 10min. A total of 20μg of protein per sample was used for SDS-
PAGE. After protein transfer to a PVDF membrane, the membrane was
incubated with 5% non-fat milk and a primary antibody (β-actin, Santa
Cruz Cat #: sc-69879, 1:2000 dilution; anti-GFP, Santa Cruz Cat #: sc-
9996, 1:1000 dilution; anti-FlP1, Bethyl Cat #: A301-462A, 1:2000
dilution) at 4 °C overnight. Proteins were detected by using HRP-
conjugated secondary antibodies (goat anti-mouse or anti-rabbit lgG,
Jackson lmmunoResearch; Cat #:115-035-062 or Cat #: 11-035-144,
respectively, 1:5000 dilution) followed by incubation with chemilu-
minescent substrates (Bio-Rad Clarity ECL reagent).

Compound synergy analysis
Test compounds (anti-cancer library fromSelleckChemicals LLC, Cat#
L3000; details of individual compounds are shown in Supplementary
Table 2) were dissolved in DMSO and dispensed into white, 384-well
tissue culture treated assayplates (Greiner 781080) using the Echo650
acoustic liquid handling system such that the final DMSO concentra-
tion was 0.2%. After the compounds were added to the assay plate,
25μL of U937/U937/iFIP1 cells (500 cells/well) in completemedia were
added to each well using the MicroFlo bulk liquid dispenser (BioTeK).
After 72 h incubation at 37 °C + 5% CO2, 12.5μL of CellTiterGlo (Pro-
mega) was added to the plates, and the luminescence was measured
after 30min by using the ClarioStar Plate reader (BMG lab tech). For
U937/iFIP1 single clone, cells were first induced with 2μg/mL Dox for
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two days prior to drug treatment. Compound synergy was analyzed by
using the SynergyFinder 3.0 program64 or the Combination Index (CI)
method based on the Bliss independence model65.

RNA sequencing by QuantSeq
Library preparation of total RNA was carried out by using the Lexogen
3′ mRNA-Seq QuantSeq FWD or QuantSeq-Pool kit according to man-
ufacturer’s instructions. Library preparation, quality control, and
sequencing were carried out by Ademera Health (South Plainfield, NJ,
USA). cDNA libraries were sequenced on an Illumina HiSeq machine
(2 × 150 nt) at Ademera Health.

Differential gene expression analysis
QuantSeq FWD or QuantSeq-Pool data were processed according to
manufacturer’s recommendation. Briefly, For QuantSeq FWD data,
read 1 data were first trimmed by using the BBtools66 and then
mapped to the human genome (hg19) using STAR-2.7.7a67. The
number of reads mapped to each gene was counted by using
featureCounts68. For QuantSeq-Pool data, raw pooled data were first
demultiplexed by using the idemux tool, and the read 1 data were
then used. The Umi_tools package was used to remove read dupli-
cates based on the location of the alignment and the UMI infor-
mation. The number of reads mapped to each gene was calculated
by using the featureCounts tool68. Only genes with more than five
reads in a sample were used for further analysis. The read count of
each gene was normalized by the total mapped reads to the gen-
ome. PseudoCount of 1 was applied to prevent infinity values in
ratio calculation. The significance of expression difference was
assessed by Fisher’s exact test or DESeq2. All P values were adjusted
by the Benjamini–Hochberg (BH) method to control the false dis-
covery rate. BH-adjusted P value < 0.05 was considered significant.
A fold change of 1.2 or 2 was additionally applied to select
regulated genes.

APA analysis
QuantSeq FWD reads containing at least 15A’s after adapter trim-
ming were selected and mapped to the human genome (hg19) by
using bowtie269. For QuantSeq-Pool data, read 2 data were used
after removal of UMI and poly(T) sequences. Reads with a mapping
quality score (MAPQ) < 10 were discarded. The last aligned position
(LAP) of each readwas compared to annotated PASs in the polyA_DB
database70, allowing ± 24 nt flexibility. Matched reads were poly(A)
site-supporting (PASS) reads, which were used for further APA
analysis. For 3′ UTR APA analysis, the two PASs with the highest
usage levels in the 3′UTR of the last exon were compared. One was
named proximal PAS (pPAS) isoform, and the other distal PAS
(dPAS) isoform. For IPA analysis, the IPA isoform with the highest
expression level among all IPA isoforms was compared to all iso-
forms using last exon PASs (TPA isoforms) combined. Relative
Expression Difference (RED) was calculated as the difference in ratio
(log2) of isoform abundance (dPAS isoform vs. pPAS isoform)
between two comparing samples. Significant APA events were those
with RED > log2(1.2) or <−log2(1.2) and BH-adjusted P < 0.05 (Fisher’s
exact test).

Gene feature analysis
Gene features were based on RefSeq annotations. RNA stability score
in HepG2 cells was based on ratio (log2) of RNA abundance in flow-
through sample to 4sU-labeled sample, as we previously generated13.
Distance of each gene to its nearest neighbor gene (NNG) was defined
by RefSeq. A linear regression model was used to examine correlation
between gene features and gene expression changes. The importance
of each feature was assessed by its individual R2. The cumulative R2

value for a feature was based on the feature and all other features
having a higher individual R2.

Gene ontology analysis
Gene ontology analysis was carried out by using the GOstats package
in R71. Fisher’s exact test was used to calculate p values to indicate
significance of association between a gene set and a GO term. GO
terms associated with more than 1,000 genes were considered too
generic andwere discarded. Any GO term that overlapped with amore
significant term by >75% was removed to reduce redundancy.

Analysis of chrRNA-seq data
chrRNA-seq reads were first trimmed by using the Trim Galore tool
(https://github.com/FelixKrueger/TrimGalore) to remove 5′ and 3′
adapter sequences. Trimmed reads were mapped to the human
genome (hg19) using STAR-2.7.7a67. The number of readsmapped to
each gene was calculated by using the featureCounts tool68. Data
was normalized by the total number of reads mapped to the gen-
ome. For readthrough analysis, the 4 kb region downstream of the
last PAS position (annotated by the RefSeq database) of each gene
was used (readthrough analysis region). Genes whose readthrough
analysis region overlapped with another gene were excluded. The
readthrough score (RTS) for each gene was calculated as ratio (log2)
of read density in the readthrough analysis region to read density of
gene body. ΔRTS was used to measure change of readthrough
between two samples. For metagene analysis of chrRNA-seq data,
bam files from STAR alignments were processed by the compute-
Matrix function from the deepTools program72 to calculate read
coverage in the 5 kb upstream region from the TSS and 5 kb
downstream region from the PAS. Extreme values (top 5% and
bottom 5%) were removed. The mean read coverage at each posi-
tion was calculated and plotted by using R. ChrRNA-seq Over-
lapping Signal Score (CROSS) for each gene was calculated as ratio
(log2) of number of reads mapped to antisense strand to number of
reads mapped to sense strand within the last 1 kb region of each
gene using data from JTE-607-treated samples. ChrRNA-seq Inter-
vening Signal Score (CRISS) for each gene was calculated as ratio
(log2) of read density in the intervening region between two adja-
cent genes with the same transcriptional direction of JTE-607-
treated sample to that of DMSO-treated sample.

Neighboring gene pair analysis
The distance between a gene of interest (GOI) to its nearest neighbor
gene (NNG) was defined by the RefSeq database. The longest isoform
was used for each gene when there were multiple isoforms. GOI and
NNG gene expression levels were defined by using DMSO-treated
samples. To examine the influence of gene expression between
neighboring genes, gene pairs were put into a 5 × 5 table (25 bins)
based on GOI and NNG expression levels. Only the gene pairs with
short distance (bottom 40%) were used. The median log2Ratio (JTE-
607 vs. DMSO) of GOI group in each cell was represented in a heatmap.
A similar strategy was used to examine GOI expression in 25 bins
constructed using GOI to NNG distance and CROSS value.

Statistical analysis
When Student’s t-test was used to determine statistical significance
between groups, the two-tailed version was used unless specified
otherwise. Significance of APA changes and gene expression differ-
ences was assessed by using the Fisher’s exact test or DESeq273. Their P
values were adjusted by the Benjamini–Hochberg (BH) method to
control the false discovery rate. K–S (Kolmogorov–Smirnov) test (two-
sided) was used to compare data distributions of different gene set.
The Wilcoxon rank sum test was used to compare gene expression
changes between gene sets.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The data supporting the findings of this study are available from the
corresponding authors upon reasonable request. Sequencing datasets
generated in this study have been deposited into the GEO database
with the accession number GSE218557. Source data are provided with
this paper.

Code availability
Original code and any additional information required to reanalyze the
data reported in this paper are available from the corresponding
author upon request.
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