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Single-cell profiling of lncRNA expression
during Ebola virus infection in rhesus
macaques

Luisa Santus 1,2,13, Maria Sopena-Rios1,13, Raquel García-Pérez1,14,
Aaron E. Lin 3,4,5,14, Gordon C. Adams 3,4, Kayla G. Barnes 4,6,7,
Katherine J. Siddle 3,4, Shirlee Wohl3,4,8, Ferran Reverter 9, John L. Rinn 10,
Richard S. Bennett11, Lisa E. Hensley11 , Pardis C. Sabeti 3,4,5,12 &
Marta Melé 1

Long non-coding RNAs (lncRNAs) are involved in numerous biological pro-
cesses and are pivotal mediators of the immune response, yet little is known
about their properties at the single-cell level. Here, we generate a multi-tissue
bulk RNAseq dataset from Ebola virus (EBOV) infected and not-infected rhesus
macaques and identified 3979 novel lncRNAs. To profile lncRNA expression
dynamics in immune circulating single-cells during EBOV infection, we design
a metric, Upsilon, to estimate cell-type specificity. Our analysis reveals that
lncRNAs are expressed in fewer cells than protein-coding genes, but they are
not expressed at lower levels nor are they more cell-type specific when
expressed in the same number of cells. In addition, we observe that lncRNAs
exhibit similar changes in expression patterns to those of protein-coding
genes during EBOV infection, and are often co-expressed with known immune
regulators. A few lncRNAs change expression specifically upon EBOV entry in
the cell. This study sheds light on the differential features of lncRNAs and
protein-coding genes and paves the way for future single-cell lncRNA studies.

Long non-coding RNAs (lncRNAs) are transcripts longer than 200bp
that lack protein-coding potential. LncRNAs play important roles in a
myriad of processes, such as development1, evolutionary innovation2,
and disease3. LncRNAs often regulate gene expression by acting as
signaling molecules4–6, decoys7, molecular guides8, or through
scaffolding9. Importantly, many lncRNAs are important host immune

response regulators10,11. Specifically, they regulate the maturation and
development of lymphoid and myeloid cells12, mediate pathogen-
induced monocyte and macrophage activation, and the subsequent
release of inflammatory factors such as cytokines and chemokines11,13,14.

Despite lncRNAs sharing similar biogenesis with protein-coding
genes15,16, they are distinguishable by a variety of features, such as
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lower expression levels16–18, higher tissue specificity16,17,19,20, lower spli-
cing efficiency21,22, and differences in their promoter regulation23.
However, most of these observations arise from bulk tissue analyses;
therefore, whether their expression kinetics are driven by overall low
expression levels across many cells or by high expression levels in
specific cell populations remains unclear. This lack of knowledge at
single-cell resolution hampers our understanding of how lncRNAs
function andwhether their regulation and responseupon infection are
intrinsically different from that of protein-coding genes.

EBOV is one of the most lethal pathogens to humans, and it is
infamously notorious for its high infectiousness and severe case
fatality rates24,25. In the past, EBOV caused alarming outbreaks; up to
the present day, it represents amajor global health threat26. Previously,
bulk tissue transcriptomic analyses improved our understanding of
EBOV’s evoked host immune response27,28. Now, emerging single-cell
RNA-sequencing (scRNA-Seq) technologies are refining our under-
standing of the systemic immune response mounted upon viral
infections28–30 by allowing the dissection of gene expression dynamics
in multiple cell populations simultaneously. More importantly, in the
case of organisms infected with a virus, scRNA-Seq can identify and
profile infected cells separately from uninfected bystander cells and
thus, distinguish thehost cellular transcriptional response triggeredby
viral replication versus the inflammatory cytokine milieu. However,
previous studies have focused on the host protein-coding gene
response and have ignored the role that non-coding genes such as
lncRNAs may play in the host response to EBOV infection. This is
mostly due to poor lncRNA annotations in non-human primates, the
main species of EBOV research.

In this work, we generate multi-tissue bulk RNAseq data from
EBOV-infected and not-infected rhesusmacaque tissues to expand the
lncRNA annotation in this model organism. We then study circulating
immune single-cells infectedwith EBOV in vivo to address the question
of how lncRNAs differentially respond to viral infection at single-cell
resolution compared toprotein-codinggenes.Our results question the
long-assumed differences between lncRNA and protein-coding genes
and identify lncRNAs involved in the transcriptional response elicited
upon EBOV infection.

Results
De novo annotation largely expands the rhesus macaque
non-coding transcriptome
Bulk and single-cell transcriptomic studies in rhesus macaque have
reported widespread host gene expression changes upon EBOV
infection30–32. However, most lncRNAs have been systematically
neglected in such studies due to incomplete annotations, especially in
rhesusmacaque,where thenumberof annotated lncRNAs is only 28%of
that in humans (Supplementary Fig. 1A). To improve the current lncRNA
annotation, we generated short-read RNA-sequencing data from 13 tis-
sues (Fig. 1a) of not infected (16 samples) and EBOV-infected (43 sam-
ples) macaques. We further combined this data with publicly available
blood RNA-sequencing of not infected (21 samples) and EBOV infected
(39 samples)macaques33, adding up to a total of 119 samples and almost
4 billion reads (Supplementary Data 1). To identify novel lncRNAs, we
implemented a computational pipeline that performs de novo tran-
scriptome assembly, extensive quality controls, and non-coding tran-
script selection based on concordance between three different tools
(Fig. 1b, Supplementary Fig. 1B) (see “Methods”). Our approachhadhigh
accuracy (82%) and specificity (86%) when predicting Ensembl anno-
tatedmacaque lncRNAs (Supplementary Fig. 1C). In total,wediscovered
3979 novel lncRNA genes (5299 transcripts) (Fig. 1b, c), of which 3191
(80%) were intergenic and 788 (20%) were antisense. Consistent with
previous work34, we identified a human lncRNA ortholog for a relatively
low number of lncRNAs (528 lncRNAs (14%)) (Supplementary Fig. 1D).
Novel and annotated lncRNA transcripts were shorter, with longer and
fewer exons compared to protein-coding genes (Mann–Whitney U test,

all P-values < 2.2 × 10−16) (Fig. 1d, e). We also observed differences in
intron length (Supplementary Fig. 2A). All these observations hold true
when we analyze intergenic and antisense lncRNAs separately (Sup-
plementary Fig. 2B–E). In line with previous studies in bulk
samples17,19,20,35, both annotated and novel lncRNAs had lower expres-
sion levels (Mann–Whitney U test, all P-values < 2.2 × 10�16) and were
expressed in fewer tissues (two-sided Kolmogorov–Smirnov test,
P-values < 2.2 × 10−16) compared to protein-coding genes (Supplemen-
tary Fig. 3A, B).

To further assess the expression profile of lncRNAs, we calculated
Tau tissue-specificity scores36. Tau is a widely-used metric that mea-
sures the level of tissue-specific expression of a gene. It ranges from 0
for housekeeping genes to 1 for tissue-specific genes. As expected21,22,
lncRNAs were more tissue-specific than protein-coding genes
(Mann–Whitney U test, P-values < 2.2 × 10�16) (Fig. 1f). We used Tau to
classify genes into tissue-specific (Tau>0.7), intermediate
(0.3 ≤Tau ≤0.7), and ubiquitous (Tau< 0.3) (Fig. 1g). We found a total
of 5203 tissue-specific lncRNAs from which 2429 were novel and 2774
were annotated (Fig. 1g, Supplementary Fig. 3C). Then, for each
lncRNA, we identified the tissue in which it presented the highest
average expression (see “Methods”). Within such tissues, ubiquitous
novel and annotated lncRNAs had similar average expression levels,
whereas novel tissue-specific and intermediate lncRNAs were more
expressed than annotated lncRNAs (Fig. 1h).

In summary, using de novo bulk sequencing of multi-tissue not
infected and EBOV-infected samples, we identified lncRNAs that
resemble lncRNA reference annotation and double the current lncRNA
rhesus macaque gene annotation.

LncRNAs are systematically expressed in fewer cells compared
to protein-coding genes
Bulk tissue studies have established that lncRNAs are more lowly
expressed,more tissue-specific, andoftenhaveamore timeandcontext-
dependent expression compared to protein-coding genes16,17,19,20,22.
However, whether this signal arises from lncRNAs being lowly expressed
across individual cells or from their expression being restricted to only a
few cells remains elusive37. To address this, we used single-cell tran-
scriptomics data from macaque’s peripheral blood mononuclear cells
(PBMCs) fromKotliar et al.30,38. After quality control (see “Methods”), we
selected 38,067 cells and classified them into four major cell types:
monocytes, neutrophils, B cells, and T cells (Fig. 2a, Supplementary
Fig. 4A, B). Whereas lncRNAs were slightly less expressed on average
than protein-coding genes (Mann–Whitney U test, P-value =0.017)
(Fig. 2b), differences in the number of cells inwhich theywere expressed
were much larger with lncRNAs being expressed in fewer cells
(Mann–Whitney U test, P-value < 2.2 × 10�16) (Fig. 2c–e). In addition,
lncRNAs are consistently expressed in a lower proportion of cells than
protein-coding genes when we inspected the different cell types sepa-
rately (Mann–Whitney U test, all P-values <4× 10�14) (Supplementary
Fig. 4C). The proportion of cells expressing a gene and its gene
expression levels are tightly correlated (Supplementary Fig. 4D). Thus,
we tested whether lncRNA expression levels were lower than those of
protein-coding genes when expressed in a comparable number of cells.
We found no significant differences in the expression levels of lncRNAs
andprotein-coding geneswhen theywerematchedby the proportion of
cells in which they were expressed (one-side Wilcoxon signed-rank test,
P-value >0.05) (Fig. 2f). Conversely, lncRNAs were expressed in fewer
cells compared to protein-coding genes when controlling for median
expression levels (one-side Wilcoxon signed-rank test, P-value < 2.2 ×
10�16) (Fig. 2g). These results indicate that a main distinctive feature of
lncRNAs is the low number of cells they are expressed in. We wanted to
see if we could reproduce these results in humans, where lncRNA
annotation is more complete, and by using an independent platform
such as 10XGenomics which has a higher yield than Seq-Well39. We used
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publicly available single-cell RNA-sequencing data from healthy human
PBMCs generated with 10X Genomics40 and replicated our findings
(Supplementary Fig. 4E–G). Thus, our observations are consistent
regardless of single-cell technology, species, gene annotation or infec-
tion status. Overall, our results indicate that in circulating immune cells,
the lower expression levels of lncRNA previously reported in bulk stu-
dies may be driven by lncRNA being expressed in fewer cells compared

to protein-coding genes rather than having less expression across indi-
vidual cells.

Upsilon, a metric to measure cell-type specificity in single-cell
expression data
Tau is ametric routinely used tomeasure tissue specificity36. However,
to our knowledge, no metric to estimate cell-type specificity has been
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established. To address this issue, we designed ametric that estimates
cell-type specificity based on single-cell data. We named it Upsilon,
which is the next letter in the Greek alphabet after Tau. Whereas Tau
reliesmostly on differences in expression levels41, Upsilon relies on the
proportion of cells expressing a gene (see “Methods”). Similarly toTau,
Upsilon scores range from 0, for ubiquitous genes to 1, for cell-type
specific genes.

In order to evaluate the ability of both metrics to estimate cell-
type specificity, we repurposed the Tau calculation. Instead of using
the mean expression levels per tissue41, we used the mean expression
levels per cell type (see “Methods”). Both Tau and Upsilon could
accurately classify genes as ubiquitous, intermediate, or cell-type
specific in simulated scenarios although Upsilon was better at classi-
fying different degrees of intermediate cell-type specificity (Supple-
mentary Fig. 5). In addition, we selected a set of housekeeping and
marker genes (see “Methods”) and compared their Tau and Upsilon
scores.While bothmetrics assigned low values to housekeeping genes,
our metric better identified marker genes as tissue-specific (Fig. 3a).

We then computed Upsilon scores to characterize the cell-type
specificity of lncRNAs. Both novel and annotated lncRNA showed
similar values (Mann–Whitney U test, P-value > 0.05) (Supplementary
Fig. 6A). Using Upsilon, we classified lncRNAs as cell-type specific
(Upsilon > 0.7), intermediate (0.3 ≤Upsilon ≤0.7), and ubiquitous
(Upsilon < 0.3) (Fig. 3b).We identified 153 cell-type specific lncRNAs, of
which 67 (44%) were annotated and 86 (56%) were novel (Fig. 3b,
Supplementary Fig. 6B). Previously reported disease biomarkers, such
as MIAT42 and DIO3OS43, were among the set of cell-type specific
lncRNAs highlighting the utility of our novel metric in identifying
candidate genes for diseases. Also, we found that cell-type specific
lncRNAs have slightly shorter transcript lengths and slightly fewer and

shorter exons as compared to ubiquitous genes (Mann–Whitney U
test, all P-values < 3.5 × 10−3) (Supplementary Fig. 6C–E).

Tissue-specific expression of protein-coding genes mainly occurs
due to restricted expression at specific cell types44. We sought to
identify whether this held true for lncRNAs as well. We selected genes
that were expressed in both whole blood bulk RNA-seq data and
PBMCs single-cell RNA-seq data (see “Methods”) (Supplementary
Fig. 6F) and compared Tau scores computed in bulk with Upsilon
scores computed in single-cell. Tissue specificity was significantly
correlated with cell-type specificity both in lncRNAs (Spearman
ρ = 0.31, P-value < 2.2 × 10−16) (Fig. 3c) and in protein-coding genes
(Spearman ρ =0.46, P-value < 2.2 × 10−16) (Supplementary Fig. 6G)
indicating that similar to protein-coding genes, tissue-specific lncRNAs
are more likely expressed in particular cell types.

In summary, we developed a metric called Upsilon, which uses
single-cell data, to identify and characterize cell-type specific lncRNAs,
including known disease biomarkers, demonstrating its potential to
pinpoint candidate disease-associated genes.

The higher specificity of lncRNAs can be attributed to their
expression in fewer cells
LncRNAs are known to be more tissue-specific than protein-coding
genes21,22. We thus wondered whether lncRNA’s higher tissue specifi-
city was due to lncRNAs being expressed in fewer cells or to lncRNAs
being more cell-type specific. To address this, we compared cell-type
specificity values between lncRNAs and protein-coding genes and
found that lncRNAs were more cell-type specific (Mann–Whitney U
test, P-value < 2 × 10�10) (Fig. 3d) and could separate cell types in a
UMAP visualization (Supplementary Fig. 7A). However, when matched
by the number of cells in which they were expressed, protein-coding
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and lncRNA had comparable cell-type specificity scores (Wilcoxon
signed-rank test, P-value > 0.05) (Fig. 3e, f). On the contrary, when
lncRNA and protein-coding genes were matched by their cell-type
specificity, lncRNAs were expressed in fewer cells (Supplementary
Fig. 7B). To assess whether these observations were independent of
species, completeness of lncRNA annotation, infection status, or
sequencing platform, we analyzed healthy human PBMC single-cell
data. With this dataset, we also observe that lncRNAs are as cell-type
specific as protein-coding genes when expressed in the same number
of cells (Supplementary Fig. 7C, D).

Overall our observations indicate that the long-assumed higher
tissue specificity of lncRNAs derived from bulk studies might be the
result of their expression in fewer cells rather than overall higher cell-
type specificity.

LncRNAs are dynamically regulated upon EBOV infection
LncRNAs play crucial roles in the host response to viral infections45–48.
However, previous studies mostly relied on bulk tissue data, which
hinders the detection of expression differences at the cellular level. To
investigate the cell-type-specific dynamics of lncRNAs upon immune
stimulation, we use single-cell data from in vivo EBOV-infected maca-
que PBMCs30. We sought to identify lncRNAs with immune regulatory
roles during viral infections in specific cell types. We performed a

differential gene expression analysis separately in each cell type
(monocytes, T, and B cells), comparing each stage of the infection
(early, middle, late) to the baseline (see “Methods”).

We detected 186 differentially expressed (DE) lncRNAs in at least
one cell type (Benjamini–Hochberg’s correction, false discovery rate
(FDR) < 0.05, fold change >10%) (Fig. 4a–c, Supplementary Fig. 8A–D)
(Supplementary Data 2), themajority of which (124 lncRNA, 66%) were
novel, underscoring the importance of refining the annotation of
lncRNAs in model organisms such as rhesus macaque. The largest
number of DE lncRNAs were found in monocytes (142 lncRNAs)
(Fig. 4c, Supplementary Fig. 8A–D), consistent with monocytes being
the main EBOV target49,50 as well as the most abundant cell type in our
dataset. We then used our cell-type specificity metric, Upsilon, to
investigate the cell-type specificity ofDE genes.We found thatmost DE
genes were not cell-type specific (Fig. 4d). Of all DE lncRNAs, 34 had a
human ortholog, and, 28 of those have been previously reported to
change expression during immune response in humans51 (Supple-
mentaryFig. 8E).Consistentwith previous studies of immune response
upon infection, SNHG6 and LINC00861 were upregulated52–54. Inter-
estingly, the most transcriptionally repressed lncRNA was the nuclear-
enriched abundant transcript 1 (NEAT1) (Fig. 4c, e). NEAT1 is a well-
studied lncRNA known to play important anti-viral roles55,56. In most
studies, however, NEAT1 is upregulated upon viral infection57 and
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downregulation has only been described in dengue and Crimean
Congo hemorrhagic fever58,59. Our results suggest that NEAT1 deple-
tion may be specific to severe hemorrhagic fevers and in the case of
EBOV at least, downregulation occurs specifically in monocytes.

We then wanted to compare the expression dynamics of lncRNAs
to that of protein-coding genes upon immune stimulation. Most
lncRNAs (144 lncRNAs, ~78%) were DE in exclusively one cell type
(Fig. 4f) which was a significantly larger proportion than the one

observed for protein-coding genes (Fisher’s exact test, OR = 2.06,
P-value = 1.945 × 10�5) (see “Methods”). However, when matched by
the number of cells in which theywere expressed, the two gene classes
had comparable proportions of cell-type specific DE genes (Fisher’s
exact test; OR = 0.90, P-value = 0.69). Similarly, the majority of
lncRNAs (109 lncRNAs, ~60%)wereDE inonly one stageof the infection
(Fig. 4g) which is a significantly larger proportion than that of protein-
coding genes (Fisher’s exact test, OR = 1.49, P-value = 8.83 × 10�3)
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(see “Methods”). This difference disappearedwhen comparing lncRNA
and protein-coding genes matched by the number of cells in which
they were expressed (Fisher’s exact test; OR = 1.03, P-value = 0.57).
Overall, our results indicate that upon EBOV immune stimulation the
transcriptional response of lncRNAs is stage and cell-type specific
similar to that of protein-coding genes.

Functional characterization of lncRNAs differentially expressed
upon EBOV infection
Although we detected many lncRNAs that change their expression
upon EBOV infection, most of them remain functionally uncharacter-
ized. Some lncRNAs are known to exert their modulatory role in cis60.
To identify possible cis-regulatory lncRNAs, we first identified 327
lncRNA protein-coding gene pairs that were both DE in the same cell
type and in close physical proximity (<1Mbp). DE lncRNA and protein-
coding genes were not significantly co-located more often than
expected by chance (Fisher’s exact test, OR = 0.91, P-value > 0.05) (see
“Methods”). However,we found 41 gene pairs that were co-located and
co-expressed at cell-type resolution (Spearman correlation test, P-
value < 0.05, Supplementary Fig. 9).

To explore further the pathways and putative functions of our DE
lncRNAs, we built a cell-type-specific co-expression network in
monocytes using both lncRNA and protein-coding genes (see “Meth-
ods”). The network had 8modules with an average of 7 lncRNAs and 15
protein-coding genes (Fig. 5a). Three modules displayed significant
functional enrichments, primarily related to immune stimulation
(Supplementary Fig. 10A–C, Supplementary Data 3). One of these
modules contained several interferon-stimulated genes (ISGs),
including MX1, IFIT2, and ISG15, and was enriched in genes that
increased expression at early and mid stages of infection30 (Fig. 5a).
Interestingly, we identified a lncRNA, ENSMMUG00000064224,
directly connected to ISGs, that exhibited a similar expression profile
as ISG with an upregulation in all three cell types at early infection
(Supplementary Fig. 10D, E). We also found one module with a
remarkable number of enriched terms related to cell proliferation and
migration. Most of the genes in this module were downregulated with
the strongest expression changes at the late stages of infection
(Fig. 5a), suggesting a late host response to prevent EBOV
replication61,62. Although the remaining five modules did not have
significant enrichments, all of them included between 1 and 8 central
regulators or downstream effectors of the innate immune response63

(Supplementary Data 3).
Previous work based on PBMCs infected with EBOV ex vivo

showed that EBOV hijacks infected cells’ defenses by downregulating
anti-viral genes and upregulating pro-viral genes30. Using an ex vivo
experimental setup allows for higher viral exposure to EBOV and
consequently a higher number of infected cells with higher viral loads
compared with the same cell type bystander cells. We sought to
investigate if lncRNAs were up or downregulated upon viral cellular
entry and proliferation compared to bystander cells. To do this, we
identified lncRNAs whose expression significantly correlated with viral
load in EBOV-infected monocytes ex vivo (Fig. 5b, Supplementary
Fig. 11A–E). We identified 16 lncRNAs significantly correlated with viral
load (Spearman correlation test, P-value < 0.05) (Supplementary
Data 4), the majority of which (12) were positively correlated (Fig. 5c).
Importantly, ENSMMUG00000058644 and MSTRG.15458, which had
the strongest correlations, were also significantly correlated at nom-
inal P-values in the in vivo dataset (Spearman ρ =0.10, P-value = 0.03
and Spearman ρ = −0.12, P-value = 0.01, respectively), suggesting that
the in vivo dataset might not have enough infected cells, and thus
power, to identify significant correlations. In line with this, lncRNAs
correlated with viral load were expressed in significantly fewer cells
in vivo compared to ex vivo (Mann–Whitney U test, P-value < 2 ×
10�10). 10 out of the 16 identified lncRNAswerenot detected asDEwith
EBOV infection in monocytes in vivo (Fig. 4c, Supplementary Data 2

and 4), suggesting thatmost of these lncRNAs change their expression
exclusively in infected cells. This observation highlights the power of
the single-cell analysis to discern between expression changes in
bystanders and infected cells. Interestingly, the remainingfive lncRNAs
were DE upon infection in monocytes in the in vivo dataset but in
opposite directions: two lncRNAs were upregulated during EBOV
infection in the general in vivo monocyte population but were nega-
tively correlated with the viral load in ex vivo infected cells; three
lncRNAs were downregulated during EBOV infection in the general
in vivo monocyte population but increased their expression with viral
load in ex vivo infected monocytes (Fig. 5d–g, Supplementary
Fig. 12A–F).

Overall, our functional analyses revealed that lncRNAs whose
expression varies upon EBOV infection are involved in the same
pathways as DE protein-coding genes, suggesting that these lncRNAs
might be important immune regulators. In addition, our ex vivo results
indicate that EBOV entry in the cell can alter the expression of lncRNA
exclusively in infected cells and that in some cases, the expression
changes differ between infected and bystander cells. This would be
consistent with previous studies that reported that EBOV hijacks par-
ticular pathways in infected cells to promote viral entry and
replication30.

Discussion
Long non-coding RNAs play critical roles in immune regulation10,11.
However, studies that require working with non-human animal mod-
els, such as Ebola virus infection, are constrained by an incomplete
lncRNAs’ annotation. To address this issue, we generated amulti-tissue
bulk RNA sequencing dataset fromboth EBOV-infected and uninfected
samples and annotated nearly 4000 novel lncRNAs. This effort resul-
ted in nearly doubling the current annotation of lncRNA in rhesus
macaque. Importantly, we found that 66% of all lncRNAs changing
expression upon EBOV infection in single cells were novel. These
findings underscore the importance of expanding current non-coding
transcriptome annotations with datasets that sample different phy-
siological conditions, especially in model species widely used in bio-
medical research64. Future work using emerging long-read sequencing
technologies65 will further improve the discovery and annotation of
lncRNAs in model species in the context of infection.

LncRNAs are generally assumed to be more lowly expressed and
more tissue-specific than protein-coding genes16. These observations
arise from bulk studies that measure average expression levels across
cell populations. Single-cell data allows both detecting gene expres-
sion levels in individual cells anddetermininghowmany cells in a given
population express a gene. Exploiting this unique feature, we found
that, when controlling for the number of cells in which lncRNA and
protein-coding genes are expressed, lncRNAs are not less expressed,
neither are more cell-type specific. Liu et al.66 made a similar obser-
vation in brain tissue although their study was heavily constrained by
the number of cells analyzed (<250 cells). This result raises the intri-
guing question of why lncRNAs’ expression is systematically restricted
to fewer cells butwhen transcribed they reach similar expression levels
to protein-coding genes. In a recent study, Johnsson et al.67 use allele-
sensitive single-cell RNA sequencing to assess the transcriptional
dynamics of lncRNAs. Their results show that lncRNAs have lowered
transcriptional burst frequencies and longer duration between those
bursts. Consistent with this, our previous work showed that lncRNAs
harbor fewer transcription factor binding sites and higher chromatin
repressive marks in their promoter regions compared to equally
expressed protein-coding genes22. In addition, transcription factor
binding sites in lncRNAs’ promoters are less complex than those in
protein-coding genes, suggesting that fewer transcription factors can
bind to lncRNAs’promoters23. Overall, these results are consistentwith
a model in which the promoters of lncRNAs differ from those of
equally expressed protein-coding genes in the probability of engaging
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in active transcription rather than in the strength of the transcriptional
response.

LncRNAs whose expression is condition or cell-type specific are
candidate disease biomarkers and potential therapeutic targets68.
Multiple metrics have been developed to measure tissue specificity in

bulk data41, but none of those has been specially designed to measure
cell-type specificity. In this study, we introduce Upsilon, a metric that
leverages the unique feature of single-cell technologies to know the
number of cells expressing a gene to estimate cell-type specificity. We
have identified 153 cell-type specific lncRNAs in PMBCs, including
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some disease biomarkers supporting the utility of this metric to
identify disease-related genes. We anticipate that, with the growing
availability of single-cell transcriptomics data69, Upsilon will be
extensively used in advancing our understanding of cell-type specific
processes in the context of health and disease. Furthermore, our work
has consistently shown that lncRNAs have cell-type and stage-specific
regulation upon EBOV infection, to a similar extent to that of protein-
coding genes, including a differential response when comparing
infected versus bystander monocytes. Further studies with larger
sample sizes will increase our understanding of lncRNA regulation
upon viral entry and immune stimulation.

Collectively, this study elucidates the roles of lncRNAs in response
to EBOV infection and paves the way for future studies on how to
systematically analyze lncRNAs at single-cell resolution.

Methods
Animal sampling
No animal handling was involved in this study. Samples from Rhesus
macaques (Macaca Mulatta, 43 samples across 12 tissues) were
obtained from ref. 70. Animal handling was performed in accordance
with the Guide for the Care and Use of Laboratory Animals of the
National Institute of Health, the Office of Animal Welfare, and the US
Department of Agriculture. In addition, some other samples were
obtained from commercially available samples of 2 Rhesus macaques
(Macaca Mulatta, 16 samples across 10 tissues) (Zyagen, San
Diego, CA, USA).

RNA sample processing
For de novo annotation, we generated paired-end, strand-specific
bulk short-read RNA-sequencing (RNA-Seq) on high-quality,
commercially available rhesus macaque (Macaca mulatta) total
RNA (Zyagen, San Diego, CA, USA; hereafter referred to as Zya-
gen) of non-infected samples from 10 different tissues (Supple-
mentary Data 1). Briefly, we depleted ribosomal RNA and
performed random-primed cDNA synthesis71, followed by second
strand marking and DNA ligation72 with adapters containing
unique molecular identifiers (UMIs)73 (IDT, Coralville, IA, USA).
We performed the identical bulk RNA-Seq protocol but without
UMIs on rhesus macaque RNA samples from 12 different tissues
from the study by Luke et al.70. In addition, we downloaded whole
blood bulk short-read RNA-Seq data from healthy samples and
samples infected with Makona Ebola Virus from the NCBI Gene
Expression Omnibus (GEO; accession number GSE115785). For the
single-cell RNA-Seq analysis, we downloaded the PBMCs dataset
from the NCBI Gene Expression Omnibus (GEO) with accession
number GSE158390.

QC and mapping
First, wemerged EnsemblMmul_10 release 100 assembly and Ensembl
release 100 gene annotation with the Ebola virus/H. sapiens-tc/COD/
1995/Kikwit-9510621 (GenBank #KU182905.1; Filoviridae: Zaire ebola-
virus) assembly and annotation, respectively, and used them
throughout all downstream analyses. We used Hisat v2.1.074 to com-
pute assembly indexes and known splice sites and mapped each
sample’s reads to the merged assembly. We ran Hisat2 with default
parameters, except for RNA-strandness, which we set according to the
experiments’ strandness (Supplementary Data 1), previously inferred
with InferExperiment.py from RSeQCc v3.0.075. We sorted mapped
bam files with samtools sort v1.976 with default parameters. We
retained only paired and uniquely mapped reads using samtools view
with parameters -f3 -q 60. In addition, we removed duplicates from the
samples tagged with UMIs (Zyagen) (Supplementary Data 1) with
umi_tools dedup v1.0.077. We excluded all samples with less than 10M
sequenced reads, a mapping rate lower than 0.3, or a genic mapping
rate lower than 0.7. We defined the genic mapping rate as the

proportion of exonic and intronic reads, as computed by read_-
distribution.py from RSeQCc v3.0.075 (see Supplementary Data 1).

LncRNA discovery pipeline
We ran de novo transcriptome assembly separately on each
sample with Stringtie v1.3.678, with default parameters except for
strand information that was set depending on the dataset (Sup-
plementary Data 1). We used Stringtie to merge all the de novo
assemblies using the parameter “--merge”. To identify novel
transcripts absent from the reference annotation, we used
Gffcompare v0.10.6 and retained exclusively the transcripts with
class codes “u” and “x”, corresponding to intergenic and anti-
sense transcripts. We removed mono-exonic transcripts, tran-
scripts shorter than 200 bp, and kept only transcripts abundantly
expressed (log(TPM) > 0.5) in at least three samples. To assess the
coding potential of the newly assembled transcripts, we used
three sequence-based lncRNAs prediction tools: Coding Potential
Assessment Tool v3.0.0 (CPAT)79, Coding Potential Calculator
v2.0 (CPC2)80, and Coding-Non-Coding Identifying Tool v2
(CNIT)81 with default parameters. For each independent predic-
tion tool, we removed genes with at least one isoform predicted
as non-coding and one as protein-coding. We considered a gene
to be a long non-coding RNA if the three tools classified it as non-
coding. We then merged the obtained list of novel lncRNAs to the
reference annotation and used it in downstream analyses. To
benchmark our lncRNAs discovery pipeline, we predicted the
biotype of annotated genes (Ensembl v100) (coding or non-cod-
ing) and compared our predictions to their annotated biotype. To
compare lncRNA and protein-coding transcript length, number of
exons and exon length, we considered the longest transcript per
gene. To identify lncRNAs orthologs to human, we used the
synteny-based lncRNAs detection tool slncky v1.0 on human hg38
assembly and gencode hg38 v23 annotation82. For the sake of
reproducibility, the lncRNAs discovery pipeline is implemented in
Nextflow83 and combined with Singularity software containers.

Tissue-specificity estimates
We calculated gene tissue-specificity scores using Tau36 based on
average tissue TPM gene expression values. Tau ranges from 0 to 1:
genes with a score close to 1 are more specifically expressed in one
tissue,while geneswith a score closer to0 are equally expressed across
all tissues. We classified genes as tissue-specific (Tau >0.7), inter-
mediate (0.3 ≤Tau ≤0.7), or ubiquitous (Tau <0.3). For tissue-specific
genes, we determined the tissue in which they exhibited the highest
average expression (log10TPM value) and considered them to be
specific for that tissue. To compare the expression levels between
tissue-specificity groups,we selected the expression value of the tissue
with the highest average expression for each gene.

Single-cell RNA sequencing data and processing
We used two publicly available single-cell RNA-Seq datasets of Rhesus
Macaque peripheral mononuclear cells (PBMCs) infected with EBOV
in vivo and ex vivo30. The in vivo dataset comprised samples from 21
individuals, collected before and at several days post-infection (DPI)
with EBOV, and contained 38,067 cells. We performed the gene quan-
tification using the Drop-seq analysis pipeline (https://github.com/
broadinstitute/Drop-seq), with the scripts executed using Nextflow83

and Singularity containers for better reproducibility (https://github.
com/Mele-Lab/2023_SingleCellEbolaLncRNAs_NatComms). We used
Scrublet v.0.2.184 for doublet detection and applied the IntegrateData
method of Seurat v3.085 for fresh versus frozen batch effect correction.
To select suitablefiltering thresholds, we followed the best practices for
single-cell analyses86, including the selection of cells with at least 1000
and a maximum of 10,000 UMIs, at least 600 and a maximum of 2000
detected genes, and the exclusion of cells with more than 5% of
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mitochondrial reads. The counts were normalized to log(CP10K+ 1)
after removing viral transcripts to avoid library size normalization
biases.

The ex vivo dataset included PBMCs from healthy macaques,
either inoculated, irradiated, or incubated with the virus, that were
sequenced at 4 or 24 h post-infection (Supplementary Fig. 11) and it
contained 56,317 cells. We followed the same processing steps as the
in vivo dataset but increased the upper thresholds to ensurewedid not
exclude highly infected cells or cells with particularly increased
expression of host genes, keeping those with less than 15,000 UMIs
and less than 4000 detected genes per cell.

To replicate some of our observations in human data, we used
available gene counts of human healthy PBMCs from 10x Genomics40

(32,738 available cells) and human Ensembl version 100 gene annota-
tion. We applied the same QC and filtering protocols.

Single-cell clustering and cell type identification
To cluster cells, we used the Louvain algorithm as implemented in the
Seurat package85. To identify cluster-specific genes, we ran a differ-
ential expression analysis between each cluster and all the remaining
ones using the Seurat function FindAllMarkers. Based on the expres-
sion levels of knownmarker genes, we classified clusters into the four
major PBMCs cell types (T cell, B cell, Monocytes, and Natural Kill-
ers) (Fig. 2a).

LncRNA and protein-coding gene comparisons
We used Seurat’s normalization values (log(CP10K + 1)) to com-
pare expression levels between lncRNAs and protein-coding
genes. We considered a gene to be expressed in a cell when its
normalized expression value was larger than 1. This generated a
total of 2037 lncRNA and 13,718 protein-coding genes. To com-
pare the properties (i.e., expression or number of cells in which a
gene is expressed or cell-type specificity), we only used genes
expressed in more than 60 cells, leaving a total of 925 lncRNA and
11,321 protein-coding genes. Median expression values were cal-
culated exclusively across cells in which the gene was expressed.
We used the MatchIt R package v4.0.0 (https://www.
rdocumentation.org/packages/MatchIt/) to obtain the pairs of
lncRNA and protein-coding genes matched either by median
expression or by the percentage of cells in which they were
expressed.

Cell-type specificity estimates
We considered two distinct cell-type specificity measurements. First,
we leveraged Tau41, a metric originally designed to assess tissue-
specificity. Instead of calculating the mean expression per tissue for
each gene, we calculated the mean expression per cell type, including
zeros. Tau was calculated as follows:

τ =
P

ið1� x̂iÞ
n� 1

, i= 1,2 . . .n; x̂i =
xi

maxi = 1...n xi
� � ð1Þ

where xi is themeanexpression of a gene in cell type i and n is the total
number of cell types. In addition, we designed a score (Upsilon, υ) that
relies purelyon theproportionof cells inwhich eachgene is expressed,
which was calculated as follows:

υ=maxj = 1...n
Oi,j � Ej

1� Ej
ð2Þ

where:
– Oi,j is the observed proportion of cells in which gene i is found

expressed in cell type j. To calculate the proportions of cells in which
each gene is expressed per cell type, we considered only the cells in

which we detected the gene as expressed, so that, per gene, the pro-
portions assigned to the different cell types sum up to one.

– Ei,j is the expected proportion of cells in which gene i would be
expressed in cell-type j if it was not cell-type specific. The expected
proportion of cells for cell type j is equal for all the genes and corre-
sponds to the proportion of cells of cell type j in the dataset.

Then, we divided the difference between the observed and
expected proportions by the maximum value this difference could
reach. Themaximumvalue is reachedwhen the gene is expressed in all
cells of one cell type, which is the difference between 1 and the
expected proportion. The value, therefore, ranges from0 to 1.We then
calculated the specificity of each gene to each of the cell types and
reported the maximum of these values as the gene’s global
specificity score.

Cell-type specificity simulations
To explore the performance of cell-type specificity metrics, we
designed different hypothetical scenarios with genes presenting three
degrees of cell-type specificity (highly, intermediate, or lowly cell-type
specific genes) in a cell population of three cell types. To do this, we
kept a fixed expression value for expressed genes (TPM= 2) and zero
for non-expressed and modified the proportion of cells of a particular
cell typewhere the genewas expressed (50%, 30%, and 20%of the total
number of cells) (Supplementary Fig. 5).

Marker and housekeeping genes selection
We obtained the list of PBMCmarker genes with the Seurat85 function
FindAllMarkers. As housekeeping genes, we selected RRN18S, RPLP0,
GAPDH, ACTB, PGK1, RPL13A, ARBP, B2M, YWHAZ, SDHA, TFRC, GUSB,
HMBS, HPRT1, and TBP87–89. We used the cell-type specificity score of
the collected marker and housekeeping genes to compare the ability
of Upsilon and the repurposed Tau to distinguish established cell-type
specific and ubiquitous genes.

Correlation tissue and cell-type specificity
To determine the correlation between tissue specificity and cell-
type specificity, we selected genes expressed in both whole blood
samples from the bulk RNA-seq dataset (average TPM > 0.1) and in
the single cell in vivo PBMC dataset (log(CP10K + 1) > 1 in at least 10
cells). A total of 1532 lncRNAs and 11,501 protein-coding genes were
obtained (Supplementary Fig. 6F). We then conducted a Fisher
exact test to confirm that the overlap was significant. The variables
tested included genes expressed in both datasets, genes expressed
only in whole blood, genes expressed in PBMCs, and macaque-
annotated genes not expressed. Using the resulting set of expressed
genes in both datasets, we calculated the Spearman correlation
coefficient separately for lncRNAs and protein-coding genes, to
determine the correlation between tissue specificity Tau and cell-
type specificity Upsilon.

Differential expression analysis
We grouped samples of the in vivo dataset based on their day post-
infection: baseline (0 DPI) (13 individuals), early (3 DPI) (3 individuals),
middle (4–5 DPI) (4 individuals), and late stages (6–8 DPI) (8 indivi-
duals). We ran differential expression analysis using MAST v1.12.090 in
each cell type separately. We excluded neutrophils as they were
detected exclusively at later stages of infection. As input, we used the
log-normalized and scaled expression counts (logCP10K + 1) from
those genes expressed in at least 10% of the cells within each cell type.
We performed pairwise comparisons between each stage of infection
(early,middle, late) andbaselinewithin each cell type separately.Wefit
a hurdle model that included as covariates the number of genes
detected per cell and a binary variable corresponding to the proces-
sing of the sample, whether it was fresh or frozen. The resultingmodel
was the following:
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Expression (logCP10K+ 1) ~ InfectionStage +NumDetectedGenes +
SampleProcessing

Differential expression P-values were corrected with Benjamin
and Hochberg multiple testing91. Genes were considered to be DE if
they had a logFC >0.1 and adjusted P-value < 0.05.

Expression dynamics differences between lncRNA and protein-
coding genes
We used Fisher’s exact test to investigate whether lncRNAs have dif-
ferential expression patterns more cell-type-specific or stage-specific
than protein-coding genes. The two tested variables are gene biotype
and whether the gene is DE in one or more cell types or the stage.

Gene colocation analysis
We used the GenomicRanges package v1.38.0 (https://bioconductor.
org/packages/release/bioc/html/GenomicRanges.html) to calculate
the genomic distance between genes in the macaque Ensembl v100
annotation. We considered a pair to be co-located if they are less than
1Mbp. To test whether DE lncRNAs were closer to DE protein-coding
genes more often than not DE lncRNAs, we set up Fishers’ exact test.
The two tested variables werewhether the lncRNA is DE andwhether it
is in cis to a DE protein-coding gene.

Co-expression network
We built a co-expression network using all differentially expressed
genes in monocytes with GrnBoost292. To focus on the co-regulatory
network involving lncRNAs, we only retained edges connected to at
least one lncRNA. Also, we retained the top 0.5% edges when sorted by
weight. We identified communities with the Louvain algorithm93 and
reported those with at least 7 edges. For the functional enrichment of
the modules, we used the R package clusterProfiler v4.2.094.

Correlation with viral load
To determine the correlation between viral transcript changes and
gene expression in infected cells, we focused solely onmonocytes at a
late stage of infection (24 h post-infection ex vivo and 6–8 days post-
infection in vivo).We obtained the viral load by dividing the number of
viral counts by the total number of counts and then computed the
Spearman correlation coefficient between the viral load (log10) and
the normalized expression of each gene (log(CP10K + 1)). The resulting
P-values were corrected for multiple testing using the Benjamin and
Hochberg method91.

Ethics
The study was performed in accordance with the Guide for the Care
and Use of Laboratory Animals of the National Institute of Health, the
Office of Animal Welfare, and the US Department of Agriculture38.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sequencing data generated in this study have been deposited in
the NCBI Gene Expression Omnibus (GEO) database under accession
code GSE192447. The publicly available whole blood bulk short-read
RNA-Seqdata fromhealthy samples and samples infectedwithMakona
Ebola Virus data used in this study are available in the NCBI Gene
Expression Omnibus (GEO) database under accession code GSE115785.
The single-cell RNA-Seqdata used in this study are available in theNCBI
Gene Expression Omnibus (GEO) database under accession code
GSE158390. Raw Seurat Objects for both single-cell datasets used in
this study are available at Zenodo. The full co-expressionnetworkfile is
also provided (https://doi.org/10.5281/zenodo.7997135). The refer-
ence genome of EBOV used in this study is available in the GenBank

database under accession code KU182905.1. The assembly and refer-
ence genome of Macaca Mulatta used in this study are available in the
Ensembl database (Mmul_10) (https://ftp.ensembl.org/pub/release-100/
fasta/macaca_mulatta/dna/Macaca_mulatta.Mmul_10.dna.toplevel.fa.gz,
https://ftp.ensembl.org/pub/release-100/gtf/macaca_mulatta/Macaca_
mulatta.Mmul_10.100.gtf.gz). The assembly and reference genome of
human used in this study are available in the Gencode database
(release_23) (https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_
human/release_23/gencode.v23.annotation.gtf.gz, https://ftp.ebi.ac.uk/
pub/databases/gencode/Gencode_human/release_23/GRCh38.primary_
assembly.genome.fa.gz). Source data are provided with this paper.

Code availability
The code used for this study is available at: https://github.com/Mele-
Lab/2023_SingleCellEbolaLncRNAs_NatComms.
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