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Single cell Hi-C identifies plastic
chromosome conformations underlying
the gastrulation enhancer landscape

Nimrod Rappoport1,2,6, Elad Chomsky1,6, Takashi Nagano3,4, Charlie Seibert5,
Yaniv Lubling 1, Yael Baran1, Aviezer Lifshitz 1, Wing Leung3,4,
Zohar Mukamel 1, Ron Shamir2, Peter Fraser 4,5 & Amos Tanay 1

Embryonic development involves massive proliferation and differentiation of
cell lineages. This must be supported by chromosome replication and epige-
netic reprogramming, but how proliferation and cell fate acquisition are
balanced in this process is not well understood. Here we use single cell Hi-C to
map chromosomal conformations in post-gastrulation mouse embryo cells
and study their distributions and correlations with matching embryonic
transcriptional atlases. We find that embryonic chromosomes show a
remarkably strong cell cycle signature. Despite that, replication timing, chro-
mosome compartment structure, topological associated domains (TADs) and
promoter-enhancer contacts are shown to be variable between distinct epi-
genetic states. About 10% of the nuclei are identified as primitive erythrocytes,
showing exceptionally compact and organized compartment structure. The
remaining cells are broadly associated with ectoderm and mesoderm iden-
tities, showing only mild differentiation of TADs and compartment structures,
but more specific localized contacts in hundreds of ectoderm and mesoderm
promoter-enhancer pairs. The data suggest that while fully committed
embryonic lineages can rapidly acquire specific chromosomal conformations,
most embryonic cells are showing plastic signatures driven by complex and
intermixed enhancer landscapes.

The organization of mammalian chromosomes1 must accommodate
physical nuclear packaging constraints alongside three major sources
of dynamics– transcription2, replication3 and differentiation4–6. Recent
advances in microscopy7, and different conformation capture
technologies8 have provided improved understanding of the way
chromosomes fold in general, leading to models for organization at
multiple scales; from chromosomal territories and interchromosomal
spaces9, through active and inactive (also known as A and B) intra-
chromosomal compartments, and cohesin/CTCF mediated loop

structures10. These models explain observations on the distribution of
chromosomal contacts and domain insulation that give rise to topo-
logical associated domains (TADs)11–14. Moreover, parallel advances in
mapping the dynamics of genome replication show a high degree of
linkage between chromosomal compartments, TADs, and genome
replication time control15,16, highlighting genome replication as a key
driver of the linkage between chromosomal structures and cellular
proliferation. Quantification of the mitosis and replication cycle in
chromosomes using synchronized cells17,18 and single cell Hi-C19,20 was
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used to combine the effects of mitotic compaction and genome
replication into one model describing the effect of cellular prolifera-
tion on chromosomal structure. Overall, current data indicate that
chromosomes are continuously being remodeled in all phases of the
cell cycle - during exit from the mitotic state (M-G1 phase), while
replicating (S-phase), and when re-entering the mitotic state (G2-
M phase).

A cycling dynamics of chromosome structure is therefore una-
voidable for proliferating cell populations. This dynamics can be
challenging if cells should combine proliferationwith the acquisition of
stable transcriptional and epigenetic identities. A classical model for a
process that must balance remarkable proliferation with rapid differ-
entiation is embryonic development. Recent advances in single cell
RNA-seq have provided unbiased and detailed maps of the earliest
stages of transcriptional sorting during embryo gastrulation21. These
data confirmed and refined the classical observations on the emer-
genceof anepiblast cell population and its rapiddiversification into the
three germ-layers by embryonic day 7.5. It also showed that diversifi-
cation within the germ-layer is rapid and almost immediate, including
early expansion of embryonic blood and several distinct mesodermal
lineages, the differentiation of basic ectodermal neuronal progenitors,
and the emergence of endodermal precursors from primitive pre-
cursors and convergent extra-embryonic endoderm lineages22. Since
these dramatic transcriptional events are occurring while cells are
dividing at maximal rates (at least every 8 h on average), the chromo-
somal structure underlying them must simultaneously support repli-
cation and cell-fate acquisition. But it is currently not understood if and
when chromosome conformation/structure in embryonic lineages
differentiates and stabilizes. It is unclear if cell-type specific chromo-
somal structures thatwere observed in-vitro23,24 or inmature tissues25,26

emerge before cells establish transcriptional identities, during (and in
direct correlation with) transcriptional sorting, or only several cell
cycles after cells commit to their fate transcriptionally.

Here we use single cell Hi-C to explore the chromosomal organi-
zation of post-gastrulation embryonic cells. We developed algorithms
that combine analysis of replication time traces with contact distribu-
tions to enable de-novo clustering of single cells in the embryo while
minimizing bias by cell cycle signatures. This leads to two main obser-
vations on the timing and structure of the initial cell type specific
chromosomal structures in the embryo. First, we discover that a highly
distinct chromosomal conformation is characterizing primitive ery-
throcytes, showing that in principle, conformation can be specified and
stabilized rapidly in differentiated cell types in the embryo. In contrast
to this effect, most of the embryo nuclei show much milder con-
formational heterogeneity that is associated primarily with broad clus-
tering into mesoderm and ectoderm architectures. We show that the
overall conformations of single cell Hi-C clusters representing the
mesoderm and ectoderm layers are remarkably similar at the level of
compartments and TADs. Nevertheless, we show that promoter-
enhancer contacts that link ecto- or mesoderm specific promoter
activity with specific enhancer markup are enriched for differential
long-range contacts. Further analysis suggests that enhancers that are
specific to diverse gastrulation lineages are interleaved within one
group of TADs, while enhancers that are more accessible in the plur-
ipotent epiblast state are demarcated from these genomic domains in a
secondgroupof TADs. Together the data suggest thatwhile committed
embryonic lineages may acquire specific chromosomal conformations
rapidly, the majority of the embryonic lineages in gastrulation share a
common and possibly more plastic chromosomal structure.

Results
Cell cycle signatures dominate embryonic chromosome
conformations
Weapplied single-cell Hi-C to assay chromosomal conformation in three
E9.5 C57BL/6 Jmouse embryos.Weprocessed 3456 embryonic cells, out

of which 87.15% passed quality control (QC) (Supplementary Fig. 1A–J).
We sequenced at a depth that allowed recovery of a median of 91 K
contacts per nucleus, with an overall low rate of trans-chromosomal
contacts (median 7.85%), demonstrating high library quality (Fig. 1A).
Across all cells,wecaptured310Mcontacts,with8% trans-chromosomal
contacts. We initially phased nuclei along the cell cycle using our pre-
viously reported strategy19, observing high degree of similarity between
the parameters of the cell cycle model originally inferred for mouse
embryonic stem cells (mESCs) and the embryonic cells. For example, we
observed that 6.2%of thenuclei are enriched (20%ormore) for contacts
in genomic distances ranging between 2–12Mb (Fig. 1B), defining a
canonical mitotic cycle as previously observed for mESCs. Ordering
embryo nuclei based on their distribution of contact distances as in
Nagano et al.19 (Supplementary Fig. 1K) recapitulated the cell cycle
dynamics involving transition between a G1 conformation landscape
defined by long range (>12Mb) contacts and the S-phase regime invol-
ving gradual increase in short range (<2Mb) contacts. To allow robust
comparisonof the replication time trendsbetweenESCandEmbryoswe
identified genomic regions that are constitutively replicating early or
late in S-phase according to both datasets (defined as “strict early” and
“strict late”, Methods, Supplementary Fig. 2A, B). Analysis of the ratio
between Hi-C coverage in these genomic regions in embryo cells
showed partial consistency with the trend observed in ESC, where we
observed an increase in the ratio through mid-S phase and a decrease
toward G2 (Fig. 1C). Interestingly, in the embryo this trend was per-
turbed by a population of nuclei with high early/late coverage ratios and
an atypically low fraction of short-range contacts in cells that were
initially annotated as G1. These data reinforced our earlier observations
on the dominance of cell cycle signatures in scHi-C, but also suggested
the canonical signature may be shadowing additional conformational
heterogeneity within the embryonic nuclei pool.

Clustering scHi-C profiles using S-phase cluster seeding andRNA
atlas projection
To enable de-novo clustering of scHi-C profiles with reduced cell-cycle
bias, we developed a two-stage approach (denoted S-phase cluster
seeding). We seeded scHi-C clusters using analysis of replication time
trends inmid-S phase cells and expanded these seeds to clusters using
A-compartment association scores (A-scores, Methods). We applied
this approach to a combined data set of ESC and embryo cells (Sup-
plementary Fig. 2C–H), deriving a model defined by three main clus-
ters, one involving a distinct group of embryo nuclei with non-
canonical cell cycle phasing (C3, Supplementary Fig. 2I), and the other
two representing clustering of the remaining embryo (C2) and ES (C1)
nuclei. As expected, M-phase nuclei were poorly separated into clus-
ters, but otherwise G1-S cell cycle variation was captured as intra-
cluster structure (Fig. 1D).

To annotate nuclei clusters and explore their underlying gene
regulatory programs,we acquired and sequenced single cell RNA from
two E9.0 embryos and from ESCs using MARS-seq and created a map
of transcriptional states using Metacell27 (Supplementary Fig. 3A, B).
We identified differentially expressed genes and genomic bins
encompassing them for each expression metacell and projected scHi-
C clusters on the transcriptional maps by calculating relative A-scores
on these genomic bins. Remarkably, this strategy associated unam-
biguously C3 conformations with primitive erythrocyte (pEry)
expression (Supplementary Fig. 3C), but showed that the remaining
transcriptional landscape in the embryo could not be matched by
strong conformation clusters within C2. This was further confirmed by
re-analysis of a reference gastrulation scRNA-seq atlas (E6.5–8.25,
Supplementary Fig. 3D, E). Overall, despite the rich transcriptional
embryonic space, C2 nuclei were reflecting variation that was
approximately similar in extent to the transcriptionally homogeneous
ESC states represented in the C1 cluster and only primitive ery-
throcytes stood out as a distinct conformation cluster.
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Fig. 1 | Single cell Hi-C in mouse embryo cells. A Distribution of the number of
unique contacts per cell (left) and fraction of trans-chromosomal contacts per cell
(right) in the Embryo scHi-C dataset.B For each single cell shown are the fraction of
contacts in the 2Mb-12Mb (“mitotic”) distance band vs. the fraction of contacts
between elements less than 2Mb apart (“short-range”). Color coding is based on
classification into cell cycle phases as in Nagano et al. 2017. C Comparing normal-
ized ratio of scHi-C coverage on early and late replicating loci (X axis) to fraction of
short-range contacts.DVisualizing clusters of single ES and embryo cells using PCA
projection of A-scores from 11 genomic clusters. Cells are color coded according to
cluster (left) or the initial annotation of cell cycle phase (right). E Plotting gene
expression of 40kb bins in ESCs compared to embryo cells (mean across E9
metacells, excluding pEry). Upper and lower dashed lines indicate the threshold for
defining transcriptional changes between embryo and ESC. F Comparison of
A-scores for 40kbgenomic bins.G 40 kb genomic bins were stratified according to

embryonic expression level (units are log2 of the expression frequency). The dis-
tributions of A-scores in embryos (blue) and ESCs (green) are depicted using
boxplots. The (−19, −18] box contains at least n = 48K genomic bins, (−11, −10] and
(−10,−9] at leastn = 20, and the rest at leastn = 200.Box limits are thefirst and third
quartile, center line is the median, whiskers are 1.5 times the interquartile range,
and points are outliers.H Distributions of differential A-score (ESC minus Embryo)
in genomic bins with TSSs showing differential gene expression in embryos com-
pared to ESCs (n = 1289 ESC induced bins: green, n = 806 Embryo induced bins:
blue). Box limits are as in (G). I–K Similar to (F–H) but showing data on the early-
scores of genomic bins instead of A-scores. L Examples of conformation repro-
gramming atpluripotency loci. For each locuswe showShamanenrichment plots in
Embryos (top) and ESC (middle), and the respective A-score trends (bottom; blue –
embryo, green – ESCs). Dashed circles represent focal points for differential
conformation.
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Differential contacts in pluripotent and embryonic nuclei
Many genomic bins showed average transcriptional changes in non-
pEry embryo cells compared to ESCs (806 and 1289 bins with over
4-fold decrease and increase respectively, Fig. 1E). Global comparison
of A-scores in the ESC (C1) and embryo (C2) clusters (Fig. 1F) showed
however conservation of the A/B compartment structure, with 85% of
the genomic bins showing less than 0.1 change in A-score, and only
0.2% showing over 0.3 change. Analysis of A-score in loci stratified
according to expression levels (Fig. 1G, excluding bins with differential
expression) suggested a clear distinction between A-linked expressed
and B-linked non-expressed loci. Further analysis also indicated that
bins containing genes over expressed in the ESC or embryo will have a
higher A-score in that sample (Fig. 1H, KS D =0.4, p << 0.01). This
association was observed based on relatively small changes in A-score
and despite the lack of loci showingmajor A–B compartment switches.
We next compared embryo and ESC estimated replication time per
genomic bin (defined as the early-score, Methods). This suggested a
similar trend of expression linkage (Fig. 1I–K, KS =0.36, p <<0.01).
Together these data show that despite the mild magnitude of com-
partment and replication-time remodeling in embryos compared to
ESCs, it still reflects transcriptional regulation in these cells.

We next searched for localized differential chromatin contacts in
ESCs and embryo cells by pooling contacts from single-cell clusters
and performing Shaman28,29 normalization and enrichment analysis.
Using a threshold of differential enrichment score of 50, we identified
3267pairs of loci losing contacts and 1914 pairs of loci gaining contacts
in embryos compared to ESCs, suggesting many cases of local con-
formation remodeling. We observed that genomic bins with higher
A-score in ESCs are involved in significantly more differential contacts
than loci with constitutively high A-score or loci gaining A-score in the
embryo (Supplementary Fig. 4A, two-sided Kolmogorov–Smirnov
test). A screen for differential contacts at ESC-regulated TSSs high-
lighted cases of conformation changes with potential regulatory
impact (Supplementary Data 1). For example, we observed specific
contacts and insulation structure isolating the pluripotency genes
Rex1/Zfp42, Tet2 and Dppa2/4 from surrounding B-compartment
associated regions in ESC nuclei (Fig. 1L, see Supplementary Fig. 4B
for conformation changes in loci conserving their A-association).
These data suggested that specific contacts, with possible linkage to
gene regulation and in particular to the repression of the pluripotency
program, are observed in embryonic nuclei. This is occurring even
when global structural features such as compartment, replication and
insulation (Supplementary Fig. 4C) are changing only mildly.

Primitive Erythrocyte chromosomes show compact and highly
organized folding
In contrast to the weak separation of scHi-C clusters C1 and C2, the
pEry cluster C3 was defined by a well separated group of 264 single
cells (reclassified using total A-scores per cell, Supplementary Fig. 4D).
This separationwas supported by a large number of genomic binswith
modifiedA-score in pEry compared to other embryo cells (Fig. 2A, 4.8%
with A-score delta > 0.3). We estimated mean expression in pEry and
non-pEry E9 embryo metacells (Fig. 2B) and noted that in pEry,
genomic bins bearing expressed genes at any level show remarkable
alignment to the A-compartment (Fig. 2C). Estimation of single cell
early/late coverage ratios (Fig. 2D), showed that cells classified as pEry
are enriched in S-phase, but are also represented in other phases.
Genome replication landscapes (quantified by early-scores) weremore
conserved than A-scores (Fig. 2E), but genomic bins containing
expressed genes showed earlier replication, in concordance with their
increased A-score (Fig. 2F). Beyond its unique compartment structure,
the pEry single cell cluster was also characterized by uniformly high
fractions (30–60%) of contacts over >2Mb (Fig. 2G). The data also
showed high variance for pEry long range contact distances, with no
distance bin representing over 6% of the contacts (Fig. 2H). This

property distinguishes the long-range contacts in pEry maps from
those observed in embryonic or ESC G1 cells during exit frommitosis.
Despite the higher rate of long range intra-chromosomal contacts,
pEry nuclei show low rates of trans-chromosomal contacts (Fig. 2I).
Together these observations indicate pEry chromosomes form com-
pact and highly organized territory structures,with A/B compartments
that are strongly demarcated and reflective of transcriptional activity
patterns.

pEry funnel-like A-compartment structures are anchored at
TSSs and cryptic loci
To understand further the sharp increase in pEry A-compartment
association specificity, we identified 357 loci with the highest increase
in pEry specific A-scores. Clustering of A-scores profiles over 400 kb
around such pEry A-specific loci showed that about 50% of the sites
(Fig. 2J, clusters A1-A3) involved sharp A-linked pEry hotspots that
reside in the B compartment in non-pEry embryo cells. The remaining
sites typically represented increase in A-score for a larger domain
bounded by the identified pEry A-linked peak (clusters A4-A8). Pro-
jectionof differentialTSS expressionon the clusteredgenomic interval
confirmed that the majority (92%) of pEry A-peaks were associated
with an expressed TSS (Fig. 2K). Interestingly it also suggested many
hotspots of A-association could not be explained by any known loca-
lized transcriptional driver. We then computed the mean pEry and
non-pEry contact enrichment patterns for the loci clusters (Fig. 2L). In
pErys, this revealed an unexpected trend involving a funnel-like
structure representing aligned contacts around the focal
A-compartment contact hotspot. Contact enrichment maps around
the same loci in non-pEry nuclei showed these sites are located within
embryo insulators andbetween two loop structures (Fig. 2L - right).We
visualized individual loci showing major funnel-like conformational
remodeling around key genes (Fig. 2M) and multi-peak loci (Supple-
mentary Fig. 4E), but also in hotspots that represented uncharacter-
ized regulatory effects (Fig. 2M, bottom). This suggested that strong
A-compartment alignment in pErys is not driven solely by transcrip-
tion, and must therefore also involve some other trans-acting factors
(e.g., we observed enrichment for erythrocyte TF binding, Supple-
mentary Fig. 4F, G). For control, we clustered profiles of 272 loci with
top non-pEry A-score increase, indicating lack of similar funnel-like
effects in the embryo conformation cluster (Supplementary Fig. 4H).
To validate that the highly specific conformations in C3 nuclei are
indeed representing primitive erythrocytes in a non-biased fashion, we
sorteddirectly 118 primitive erythrocytes cells fromE10.5 embryos and
generated new single-cell Hi-C profiles from them (Supplementary
Fig. 5A–D). The data confirmed that sorted pEry cells represent the
same sharp A/B compartment structure as the one characterized in
non-sorted cells and reconfirmed the presence of remarkable funnel-
like structures in these cells (Supplementary Fig. 5E, F). Of note, Guo et
al. recently reported a similar funnel structure in thymocytes and B
cells, which they termed “chromatin jets”, suggesting its prevalence in
hematopoietic cells30.

Refined embryo clustering by model-based analysis of replica-
tion dynamics
Since embryo transcriptional states are highly heterogeneous at E9, we
made several attempts to enhance resolution within cluster C2,
searching for conformation variation that can be linked with differ-
entiating cell types on the background of massive proliferation sig-
natures. Direct clustering of single cell coverage profiles in S-phase
cells and UMAP visualization of these cells (Fig. 3A) suggested cell-to-
cell variation may be present in the data, but showed that it is super-
imposed over strong cell-cycle gradients, even when restricting ana-
lysis to replicating cells alone. We therefore developed a sensitive
algorithm that considers both the replication cycle and the potential
cell-type structure explicitly and quantitatively (Supplementary
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Fig. 6A, B). The algorithm infers a probabilisticmixturemodel in which
each cell is associated with a cluster and a latent replication timing
variable defined as the s-score. Each cluster specifies the replication
timing of each genomic bin, such that once a cell’s s-score is inferred,
the algorithm can compare its observed bins read coverage to the
values predicted by a linear replication process that is timed in a bin-

specific way (Methods). The algorithm tries to fit the observed data by
clustering cells de-novo while simultaneously inferring their s-scores
and the cluster-specific replication timing parameters. We used cross-
validation to tune model parameters and verify the algorithm robust-
ness (Supplementary Fig. 6C–I). This resulted in good matching of
observed andmodeled replication regimes (Supplementary Fig. 6J) for
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a model including 3 clusters denoted C2.1, C2.2 and C2.3. Importantly,
the model’s inferred s-scores facilitate normalization of the coverage
statistics for each cell. UMAP projection of such normalized profiles
showaclear, cell-cycle independent cluster structure (Fig. 3B). Analysis
of the observed cluster structure suggested C2.1 and C2.3 are dis-
tributed homogeneously along the replication cycle (Fig. 3C). Cluster
C2.2 showed skewed distribution enriched for late-S profiles and
additional analysis indicated cells within the cluster are of lower cov-
erage and potentially lower quality (Supplementary Fig. 7A). We note
that we could not derive robust results using alternative methods for
clustering scHi-C data, which are based on differential compartment
structure and are lacking explicit cell cycle modelling31,32 (Supple-
mentary Fig. 7B, C).

Ectoderm and mesoderm/endoderm scHi-C clusters
We estimated replication time per genomic bin (early-score) in the
C2.1-3 clusters to facilitate their further annotation. These estimations
were consistent for C2.1 and C2.3 (Fig. 3D), but showed C2.2 cells are
skewed to high and low coverage values (as expected by their bias to
mid to late-S phase, Fig. 3E).We identified groups of genomic binswith
C2.1 or C2.3-specific early replication, showing that pooling coverage
on these groups provided replication-time dependent separation of
the clusters (Fig. 3F). Moreover, mean A-score over the same genomic
bin groups showed matching separation of single cells (i.e. early
replicating loci in C2.1 were also more A-associated in C2.1 and con-
versely for C2.3, Fig. 3G). This allowed expansion of our clustering to
additional S-phase cells (Fig. 3H). A similar approach was not applic-
able to G1 cells (Supplementary Fig. 7D). Overall this strategy yielded a
total of 431 C2.1 cells and 504 C2.3 cells for further analysis. We sear-
ched for cluster-specific replication time in groups of loci representing
correlated gene modules inferred from scRNA-seq data (Fig. 3I–K,
Supplementary Fig. 7E–G). This unambiguously associated cells in
cluster C2.1 with ectodermgene expression programs and cells in C2.3
with mesoderm or endoderm programs. Cells in C2.2 were not asso-
ciated with any gene expression program. The annotation of clusters
C2.1 and C2.3 was supported by comparing their compartments to
data from Neural Progenitor Cells (NPCs) and Hematopoietic
Stem Cells (HSCs) from E14.5 embryos (Supplementary Fig. 7H–J)24,33.

Lineage-specific scHi-C conformation differences are weak
To test the potential for detecting additional cell-type structure given
the limited breadth and depth of our scHI-C sample, we performed
simulations with downsampled data. These experiments show that the
data and algorithms are sufficiently sensitive to allow detection of
clusters similar to C2.1 and C2.3 even when these involved as little as
50–75 cells (~5–10% of the modeled cells, Supplementary Fig. 8A, B).

This suggests that other possible chromosomal differences between
cell types areweaker, or are present in scarcer cell populations. Further
analysis suggested that even for themesodermand ectodermclusters,
contact landscapes could be remarkably similar, even around loci that
support dramatic transcriptional regulation (e.g., Igf2 or Crabp2,
Fig. 3L). Quantitatively, only 1% of the genome (divided into 40 kbbins)
show A-score different of 0.2 ormore between the clusters, compared
to 3.6% in a comparison of the E14.5 NPC and HSC maps (Supple-
mentary Fig. 8C).

Consistent with their overall similarity in conformation land-
scapes, further dissection of themesodermor ectoderm into cell types
using our mixture model approach (Supplementary Fig. 8D, E) was
deriving only cell-cycle dependent refinements of the C2.1 and C2.3
clusters. To improve on this, we used inferred replication time para-
meters to normalize coverage profiles per cell in each cluster (Sup-
plementary Fig. 9A, B). Hierarchical clustering of the resulted data did
identify an intra-mesoderm lineage structure, including a small cluster
strongly matching the endothelial transcriptional state (Supplemen-
tary Fig. 9C, D). It can therefore be hypothesized that replication time
and compartment structure of refined embryonic lineages may be
detected using sensitive algorithms and deeper single cell sampling.
But the data strongly suggest that the magnitude of conformational
changes between such refined lineages will remain small, in particular
compared to the highly distinct pEry state we described above.

Three-way identification of regulated long-range interactions
Pooling contacts in ectoderm andmesoderm scHi-C clusters provided
us with a strategy for identifying germ-layer specific chromatin inter-
actions. We first identified 256 and 236 loci with higher ectoderm or
mesoderm/endoderm A-score respectively. Annotation of these sites
(Supplementary Data 2) revealed several important regulatory genes,
for example the mesoderm TF Twist1, and the epiblast/ectoderm TF
Sox2 (Fig. 4A, B). Comparative analysis of contact maps in these loci
showed again a very high degree of consistency between the global
conformation of the two clusters. Nevertheless, we could identify
refined alteration in contact distributions of the promoter of Twist1
with a putative regulatory element (shown by virtual 4C, Fig. 4B). To
generalize this observation, we used published histone modification
maps from ectoderm (hind-, mid- and forebrain) and mesoderm
(heart, limb) tissues, and identified cell type specific putative enhan-
cers (Methods, Supplementary Fig. 10A, B). We also screened for
identified genes with germ-layer specific expression, and combined
them with the epigenomic maps by mapping each enhancer to its
closest promoter. Proximal pairs of enhancers and promoters with
matching ecto- or mesoendo- specific activity could then be defined
(Fig. 4C). To complete a three-way integrative screen on putatively

Fig. 2 | Distinct, compact conformation for primitive erythrocytes.
A Comparison of 40kb bins A-score in pEry cells vs. non-pEry embryo cells. Upper
and lower dashed lines show differences of at least 0.3 in A-score.B Comparison of
log2 mean expression (fraction of molecules per gene) for 40 kb genomic bins.
C Distribution of genomic bins’ A-score as a function of expression levels. A-score
and transcription were calculated for 40kb genomic bins. Plots show A-scores
stratified by expression, for loci classified with conserved expression (left), Ery
induced expression (middle) and Ery-repressed expression (right). In the left panel,
the (−19, −18] box contains at least n = 48K genomic bins, (−11, −10] and (−10, −9] at
least n = 20, and the rest at least n = 200. In the middle panel, all boxes contain at
least n = 15 genomic bins, except for the (−11, −10] and (−10, −9] which contain at
least n = 5. In the right panel, all boxes contain at least n = 90 genomic bins, except
for (−12, −11], (−11, 10] and (−10, −9] which contain at least n = 35, 10, and 2
respectively. Box limits are the first and third quartile, center line is the median,
whiskers are 1.5 times the interquartile range, andpoints are outliers.DDistribution
of single cell early/late coverage ratio for pEry (red) and non-pEry (black) cells.
E Comparing early-scores for 40kb genomic bins in pEry and non-pEry embryo
cells. F Similar to (C), but showing distributions of 40kb genomic bins early-score

instead of A-score. G Showing the distribution of contacts with distance >2Mb vs
mitotic contacts (2–12Mb) inpEry (red) andnon-pEry cells (black).Note the general
high degree of long range contacts in p-Erys.H Showing the fraction of contacts in
the most frequent distance bin (defined as “Far tightness” in Nagano et al 2017)
compared to the rate of long-range contacts. I Distributions of inter-chromosomal
contact rates for pEry and non-pEry cell. J Shown are color coded A-scores com-
puted for the pEry (left) and non-pEry (right) clusters around loci with pEry specific
high A-score (400 kb upstream and downstream). Loci are grouped into 8 clusters
using K-means clustering. K For each of the loci clustered in J we color coded bins
with any level of transcription according to the relative expression in pEry and non-
pEry cells (blue – higher in non-pEry, red - higher in pEry). L Lociwithin each cluster
in J were pooled, and their average Shaman score is color coded for pEry and non-
pErycells. ThepooledA-scoreprofile is shownat thebottom for every loci cluster in
pEry and non-pEry. M Examples of loci showing distinct pEry conformation. For
every locus, depicted are contact enrichment in non-pEry cells (top), pEry cells
(middle) and profile of A-score in the two clusters (bottom). For Cpox and Hbb we
mark contacts with the TSS locus by black diagonal lines.
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interactingpairs,wenext computed the contact enrichment in theC2.1
and C2.3 contact maps for each of the matching promoter-enhancer
pairs. We observed significant contact enrichment in the ectoderm
scHi-C cluster for ectoderm specific promoter-enhancer pairs, and
mesoderm contact enrichment in the mesoderm pairs (Fig. 4D). We
also implemented a direct statistical test for contact frequency around

putative ectoderm and mesoderm hotspots (Supplementary Fig. 10C,
D), which supported a similar observation. We note that the two
methods differ in their normalization strategy and power, and their
identified hits are only partly overlapping. When using Shaman com-
parison, we detected 173 and 338 promoter-enhancer pairing with
3-way support for ecto- andmesoderm regulatory activity respectively
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(Supplementary Data 3), including many examples linked with key
regulators of cell type specific transcriptional programs (See examples
in Fig. 4E). These putative interactions should be interpreted carefully.
First, while we believe comparisons using Shaman scores are more
sensitive, these cannot be fully controlled statistically. Second,wenote
that only 1.5% of the highest intensity (Shaman score difference > 40)
differential ectoderm-mesoderm contacts were annotated within one
of our enhancer-promoter pairs, illustrating that the complex con-
formational landscape in these clusters involvesmanyuncharacterized
contacts despite showing only weak compartment and TAD
differences.

Polycombmarkup and ectoderm specific long-range contacts in
the Tbx3-5 locus
Our 3-way analysis of regulated promoter-enhancer pairs suggested
contact enrichment is positively linked with lineage-specific gene
activation in most cases. It is however possible that contact enrich-
ment will be associated with gene repression, as postulated previously
for Polycomb domains34–36. We therefore screened for ectoderm/
mesoderm differential H3K27me3 loci (using hind-, mid- and fore-
brain/heart and limb) with proximal anti-correlated promoter
expression pattern (Supplementary Fig. 10E–G). This screen yielded
several candidate locus pairs showing high H3K27me3 occupancy in
correlation with proximal gene repression and low contact intensity
(Supplementary Data 4), where most of these cases were of lower
specificity than the positive interactions observed for activated genes.
A reciprocal effect was detected in the Tbx3-Tbx5 locus, where Poly-
comb marks and gene repression were associated with increased
rather than decreased contact intensity. This locus codes for two
transcription factors with sophisticated transcriptional control, where
Tbx3 is expressed in the epiblast and most mesodermal tissues, and
Tbx5 is specific to pharyngeal mesoderm and cardiomyocytes (Sup-
plementary Fig. 10H). In the mesoderm cluster, consistently with pre-
vious reports37, we observed two TAD structures (contacts over L1 and
L2, Fig. 4F, Supplementary Fig. 10I) physically separating the two TFs.
In the ectoderm, however, the near-complete repression of both genes
is correlated with the emergence of a new Tbx3-Tbx5 contact (L3), and
severe attenuation of the L1 contact. The internal structure at Tbx5
(L2.1) is unperturbed. While we have not observed other repressive
chromatin structures of similar intensity, this example suggests that
de-novo establishment of chromatin interactions may be facilitated in
the context of either the Polycomb or some other uncharacterized
repressive machinery.

Gastrulation cell-type specific accessibility hotspots are inter-
twined within TADs
We reasoned that the linkage between extensive transcriptional
diversification in gastrulation and the rather rudimentary observed
chromosomal conformation diversity must involve the chromosomal
and genomic distribution of active regulatory elements and pro-
moters. Using single-cell ATAC/RNA-seqmultiomics data38, we derived

clusters of cell type specific chromosome accessibility peaks with
specific distributions over the key gastrulating cell types (Fig. 5A,
Supplementary Fig. 10J). We then tested the A-score distribution of the
loci in each cluster of peaks. Comparing ESC and embryo A-scores
(Fig. 5B) we discovered stronger A-linkage in ESC for cluster 27, 37 and
38, which are enriched for accessibility in extraembryonic tissues and
early gastrulation state (e.g. Epiblast). Comparing embryo and pEry
A-scores (Fig. 5C) showed strong pEry A-linkage in clusters 8, 9 and 5,
which represent erythrocyte or combined hematoendothelial peak
specificity. Importantly, the extent of A-association differential for
pEry clusters was significantly higher than that observed between ESCs
and embryo cells. Comparison of mesoderm and ectoderm A-scores
(Fig. 5D) showed several clusters with compatible A-score and acces-
sibility preferences including clusters 69, 75 and 76 for the ectoderm,
and clusters 95, 98, 99 and 117 for the mesoderm. This analysis also
highlightedmore complex combinatorics such as the oneobserved for
cluster 73 (accessible in both ectoderm and endoderm).

The compartment association analysis of the ATAC peak clusters
confirmed that we can observe strikingly cell-type specific accessibility
hotspots in loci with very mild compartment association differences.
Since chromosomal organization is observed at scales of at least 10 s of
kilobases and TADs are typically organizing hundreds of kilobases into
looped units, we reasoned that this effect could be explained if
accessible hotspots with differential cell type activity were intertwined
within large chromosomal units rather than demarcated into cell type
specific domains. To test this idea, we computed log enrichment ratios
for genomic proximity between clustered ATAC peaks. These values
are positive if ATAC peaks from one cluster are more likely than
expected by chance to be localized within 200 kb of peaks from
another cluster in the same TAD. Negative values represent under-
representation of pairs from the same cluster at <200 kb distance and
within the same TAD. As shown in Fig. 5E, this analysis showed that
peak clusters with activity in embryonic cell types but not extra-
embryonic types (P2), or peak clusters with strong embryonic cell type
specific accessibility (P3) are overall demarcated from constitutively
accessible sites (P1) or loci that are active specifically in the extra
embryonic or early embryonic states (P4). While there are additional
proximity relationships within the embryonic peak clusters, the pri-
mary organizational principle seems to package the thousands of
regulatory elements driving gastrulation in relative proximity, while
isolating them from pluripotency or constitutive regulatory elements.

Discussion
In order to characterize how chromosome conformations are reorga-
nized immediately following gastrulation, we generated single cell Hi-
C maps from more than 3000 mouse E9.5 embryo cells. We modeled
the derived maps along two major axes: first, we aimed to account for
the conformation changes occurring during the replication and
mitotic cycle; second, we searched for clusters of conformations that
canbe associatedwith the rich transcriptional landscape in the embryo
at this stage. Separating these two simultaneous dynamics in the

Fig. 3 | Ectoderm and mesoderm/endoderm scHi-C clusters in the embryo.
A S-phase cells from the non-pEry cluster were identified and projectedon2Dusing
UMAP analysis of their coverage in 1103 loci. Cells are color-coded by their s-score
as inferred by our probabilistic model. B UMAP projection of the same cells as in
(A), using features normalized given inferred s-score for each cell.CDistribution of
inferred s-scores for the three non-pEry embryo clusters. D Average normalized
coverage (early-score) for genomic bins in clusters C2.1 and C2.3. E Similar to (D),
but comparing average C2.1 and C2.3 behavior to C2.2 behavior. F Genomic bins
thatwere inferred to be early replicating (Methods) inC2.1 (left) orC2.3 (right)were
pooled, and for each cell we plotted total coverage as a function of the inferred
s-score. Cells are colored by their cluster (C2.1 – green, C2.3 – orange).
GDistribution of the differencebetweenC2.1 cells andC2.3 cells in early-score (left)
and A-score (right) for genomic bins classified as specific to C2.1 (green) or C2.3

(orange). Grey – all bins. H Average normalized A-score for the group of genomic
bins specific to C2.1 (X) and C2.3 (Y) are depicted for color-coded cells in the three
clusters C2.1- 3 (left). A Similar plot is shown for 898 cells that were not included in
the set of 699 mid S-phase cells used for clustering (right). Gray lines mark the
thresholds used for classification of the expanded C2.1 and C2.3 clusters.
I Correlation heatmaps for 2353 gene expression profiles over the E9.0 metacell
model. Gene module numbers and representative genes are shown on the right. S.
ecto Surface ectoderm, CM cardiomyocyte, Endot Endothelium, E Meso extra-
embryonic mesoderm. J The color-coded matrix represents the difference in
average early-score per single cell cluster (columns) for the TSS loci in each gene
module from I (rows).K Similar to (J), but showing difference in average A-score in
each cluster. L Depicting the contact structure (color-coded Shaman map) in C2.1
(top) and C2.3 (bottom) cells around the Crabp2 and Igf2 TSSs.
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embryo (or other tissues) remains a major analytical challenge. Iden-
tification of cell types in cells approaching mitosis or exiting it is not
realistic at this stage. But algorithms we introduce here can use robust
changes in genome replication time to cluster mid S-phase cells and
then derive contact matrix-based (in particular differential
A-compartment association) signatures from S-phase clusters. Based

on these signatures, cells from nearly all parts of the cell cycle can be
classified into balancedmodels of cell types.Once a cluster structure is
inferred, we can pool contacts from single cells into conformation
maps and explore cluster-specific differential compartments, long-
range contacts and putative promoter-enhancer interactions at high
resolution.
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Our analysis of Hi-C maps in mouse post-gastrulation highlights
several aspects of the relationship between chromosome conforma-
tion and embryonic differentiation. First, while the genome organiza-
tion of ES cells compared to the embryo reflects changes in regulation
of key pluripotency genes, the organization within the embryo is lar-
gely homogeneous. This suggests that differences in chromosomal
conformation between ES cells and E9.5 cells are greater than those
between different cell types immediately after gastrulation and at the
onset of organogenesis. The exceptions to this homogeneitywithin the
embryo are the distinctively folded primitive erythrocytes. Ery-
throcytes are unexpected positive controls for the ability to precisely
detect a cell type specific conformation when it exists. The unique,
compact and highly organized structure of pEry chromosomes cannot
be explained by gene expression alone. In contrast to other differ-
entiating embryonic tissues that continuously respond to signals from
neighboring cells and tissue contexts, erythrocytes are fully com-
mitted to their functional fate, which may explain their highly distinct
(and potentially less plastic) conformation. It is unclear if the ery-
throcyte chromosome condensation and enucleation program39 is
related to the conformation we observe at E9.5, since definitive ery-
throcytes only appear several days after. Similar effect could be
expected in other terminally differentiated cell types, such as cardio-
myocytes or endothelium. But our analysis could not detect a cardi-
omyocyte conformation cluster, and the small cluster that we linked
with endothelial programs could not be associated with a highly dis-
tinctive conformation, but was clustered as part of the mesoderm
state. It is possible that the reason for this is that these cell states are
differentiating much later than pEry cells.

Within the embryo-proper we detected two clusters that match
broad ectoderm and mesoderm/endoderm genome regulatory pro-
grams. The considerable transcriptional diversity within the meso-
derm (and to a lesser extent the ectodermand endodermat E9) at this
stage was correlated very weakly with conformation sub-clusters
within these two clusters. Our current scHi-C data is limited in its
depth and number of cells, in particular compared to scRNA-seq or
scATAC modern datasets and our analysis suggests that sampling
more embryonic cells may lead to characterization of additional sta-
tistically significant conformation clusters. But subsampling and in-
depth analysis show that such potential additional conformation
clusters are unlikely to represent high intensity differential con-
formation features (as those we detected for pEry cells). The differ-
ences between the clusters in terms of replication time regime and
compartment structure were small and we had to use sensitive algo-
rithms to deconvolve them from the more apparent cell-cycle sig-
nature. Interestingly, on the background of such a homogeneous
conformation landscape we detected hundreds of lineage specific
promoter-enhancer contacts that showed matching expression and
epigenetic markup in the respective tissues. This argues for an
important role for localized embryonic contacts within an initially
homogeneous TAD and compartment structure in the embryo.
However, the epigenetic stability of such local contacts and the
existence of factors regulating them (in addition to the known TFs
binding the relevant enhancers) are still unclear. Furthermore, only a
small fractionof differential contacts couldbe explained byenhancer-
promoter interactions. It also remains to be seen how specific loca-
lized contacts and their higher order structures29,40,41 contribute to

later emergence of broader contact structures, as previously
observed in the brain and other tissues. Conversely, since we showed
in the case of erythrocytes that chromosomes can in principle be
reprogrammed quickly, it will be interesting to understand how
conformation in the embryo remains relatively homogeneous despite
the activity of specific gene regulatory program, which epigenetic
factors may facilitate the maintenance of such a flexible conforma-
tion, and whether this is linked with the retained developmental
plasticity of most embryonic cells at this stage.

Methods
Experimental methods
Cell extraction, fixation and permeabilization. Pregnant C57BL/6
mice were sacrificed at day 9.5 post-coitum and three embryos were
dissected under a microscope, in accordance with the Babraham
Institute Animal Welfare and Ethical Review Body. The yolk sack was
mechanically removed from each embryo, leaving the embryo proper
only, and the embryos’ morphology was validated to match that of a
wildtype E9.5 embryo. To create single-cells suspension, each embryo
was moved to a 1.5ml tube containing 200 µl of trypsin-EDTA (0.05%
trypsin, 0.02% EDTA) and incubated at 37 °C for 5min. 800 µl of cold
MEF medium was then added to each tube to inactivate the trypsin.

To fix the cells, the cell suspensions of all three embryos were
combined andMEFmedium at room temperature was added to a final
volume of 21ml. 3ml of 16% formaldehyde were added (2% for-
maldehyde final concentration) and the mixture was incubated for
10min at room temperature, followed by quenching with 127mM
glycine for 5min on ice and washing with cold PBS + 0.001% BSA. Cells
were then permeabilized in 10mM Tris-Cl pH 8, 10mM NaCl, 0.2%
IGEPAL CA-630 and cOmplete EDTA-free protease inhibitor cocktail
(Roche) for 30min on ice with intermittent agitation, and spun to
collect a nuclei pellet.

Single-cell Hi-C library preparation. scHi-C libraries were prepared in
a fashion similar to the one previously described19. Briefly, the nuclei
were washed with 1.24x NEBuffer 3 (New England Biolabs) and sus-
pended in 400 µl of that buffer. 6 µl of 20% SDS and then 40 µl of 20%
Triton X-100 were added to the suspension, with an incubation of
60min at 37 °C with constant agitation following the addition of each
of these detergents. Next 50 µl of 25 U/µl MboI (New England Biolabs)
was added and the suspension incubated at 37 °C overnight with
constant agitation.

To label the digested DNA ends, dCTP, dGTP, dTTP and biotin-14-
dATP (Thermo fisher) were added to the suspension (final concentra-
tion of 28.36 µM per nucleoside triphosphate) along with DNA poly-
merase I, large (Klenow) fragment (New England Biolabs, final
concentration 0.095U/µl) and the sample incubated at 37 °C for
60minutes with occasionalmixing. The sample was then spun and the
supernatant partially removed, leaving a volume of 50 µl, followed by
the addition of 100 µl 10x T4 DNA ligase reaction buffer (New England
Biolabs), 10 µl 100x BSA (New England Biolabs), 10 µl of 1 U/µl T4 DNA
ligase (Thermo Fisher) and water to a final volume of 1ml, and incu-
bated at 16 °C overnight. Finally, the nuclei were filtered through a
30 µmcell strainer and single nuclei were sorted into individual empty
wells in 384 well plates using an BD Influx cell sorter. The plates were
sealed and stored at −80 °C until further processing.

Fig. 4 | Three-way support for specific regulatory contacts. A, B Comparing
A-score (top), contact maps, virtual-4C using Shaman scores, and H3K4me1 ChIP-
seq (bottom) around the Sox2 and Twist1 loci. The genes, and for Twist1 also a
nearby enhancer, are marked by vertical grey lines. C Shown are distributions of
genomic distances between a TSS and the nearest putative enhancer classified
according to the ectoderm/mesoderm lineage specificity of the two loci as deter-
mined by gene expression (for the promoter) and ENCODE ChIP-seq (for the
putative enhancer).DThedistributionof differentialC2.1 andC2.3 Shamanscore (X

axis) on TSS-enhancers pairs with coordinated mesoderm or ectoderm specific
activity. Shaman differences is computed only for contacts with positive scores in
both C2.1 and C2.3. E Examples of virtual 4 C plots (top) and H3K4me1 ChIP-seq
(bottom, C2.1 followed by C2.3) around 4 ectoderm and 4 mesoderm genes. Gray
vertical lines mark the TSS and putative enhancer. Gene-free regions around
regulatedgenes are highlightedbyhorizontal gray bars.FContact structure around
the Tbx3-Tbx5 locus in the C2.1 and C2.3 clusters. Contacts discussed in the text are
marked by dashed circles.
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To prepare single-cell Hi-C libraries from single nuclei in plate
wells, 2.5 µl of PBS was added to eachwell and the plate was sealed and
incubated at 65 °C overnight. DNA was then tagmented using the
Nextera XT kit (Illumina) by adding 5 µl of TDand 2.5 µl of ATMperwell
and incubating at 55 °C for 5minutes, followed by cooling to 10 °C and
adding of 2.5 µl of NT per well. Hi-C ligation junctions were then

captured by Dynabeads M-280 streptavidin beads (Thermo Fisher;
10 µl of original suspension per well). Beads were prepared by washing
with 1x BW buffer (5mM Tris-Cl pH 7.5, 0.5mM EDTA, 1M NaCl),
resuspended in 4x BW buffer (20mM Tris-Cl pH 7.5, 2mM EDTA, 4M
NaCl; 4 µl per sample), and then mixed with the 12.5 µl per-well sample
and incubated at room temperature overnight with gentle agitation.
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The beads were then washed four times with 40 µl of 1x BW buffer,
washed twice with 40 µl of 10mM Tris-Cl pH 7.5 and resuspended in
12.5 µl of 10mMTris-Cl pH 7.5. Single-cell Hi-C libraries were amplified
from the beads by adding 7.5 µl of Nextera PCR Master Mix, 2.5 µl of
Index 1 primer and 2.5 µl of Index 2 primer (a different combination of
index 1 and index 2 perwell) followedby 12 PCR cycles. The beadswere
then magnetically removed and the supernatant from all 384 wells
combined. The combined supernatant was purified using AMPure XP
beads (Beckman Coulter; 0.6 times volume of the supernatant)
according to the manufacturer’s instructions and resuspended in
100 µl of 10mM Tris-Cl pH 7.5. Finally, the sample was purified again
using AMPure XP beads (1.0 times volume of supernatant) and resus-
pended in 11 µl of 10mM Tris-Cl pH 7.5.

Embryo dissection and collection of primitive erythrocytes. Preg-
nant females were anesthetized with isoflurane using the open-drop
system, followed by decapitation in accordance with a protocol
approved by the Florida State University Animal Care and Use Com-
mittee (ACUC). Uterine horns were removed, rinsed in room tem-
perature PBS and embryos were isolated and transferred to a droplet
of DMEM-high glucose, 10% FBS, 2mM L-glutamine, 1X MEM-Eagle
non-essential amino acids and 12 ug/mL heparin (Sigma #H31493).
Placenta and extraembryonic tissues were removed, embryos were
decapitated and circulating peripheral blood was allowed to flow into
the droplet of the room temperature media from the severed vitelline
and umbilical veins. Media was collected, pooled, and brought to a
volumeof 21.875mLwith room temperaturemedia. Cells werefixedby
adding a final concentration of 2% paraformaldehyde for ten minutes.
Fixation was quenched by bringing the solution to a final concentra-
tion of 0.127M glycine, then incubating on ice for 5min. Cells were
pelleted, washed with PBS and pelleted. Cells were flash-frozen and
kept at −80C. Cells were thawed and stained for CD71 and TER119.
Cells were first blocked with 1mL of PBS-FT (5% FBS, 0.1% Tween-20)
for 1 h, then stained with 1:200 anti-CD71-PE (Invitrogen, 12-0711-82)
and 1:200 anti-TER119-APC (Invitrogen, 17-5921-82) for 2 h at room
temperature. Cells were washed and resuspended in 500 uL PBS-F (2%
FBS) and Hoechst (15 ug/mL) and subjected to FACS by Aria (BD
Biosciences). Primitive erythrocytes (CD71+, TER119+) were collected
and pooled into a 50mL falcon for scHi-C processing following the
established protocol (Nagano et al., 2017).

MARS-seq. MARS-seq on E9.0 embryos was performed as previously
described42 sorting 15 plates from 2 129S4/SvJae embryos and
sequencing a total of 5760 cells, out of which we retained for analysis
4781 cells with at least 1000 unique molecular identifiers (UMIs) each
(median coverage 4574 UMIs). The experiment was performed in
accordancewith the institutional animal care and use guidelines of the
Weizmann Institute of Science.

Sequencing and basic computational analysis
scHi-C sequence processing, quality control and cell cycle phas-
ing. We processed the scHi-C data as described previously19. Briefly,
paired-end reads were demultiplexed to single cells using cell specific
barcodes. Reads were broken to segments using matches to MboI
recognition site (GATC), and segments were mapped to the genome
using Bowtie2. Duplicate contacts were discarded.

We next performed quality control (QC) on each single cell. Cells
were filtered based on their coverage (total number of reads), fraction
of non-digested contacts, maximal chromosomal coverage aberration,
and the contact distance bin with highest number of contacts.

To partition cells into different phases of the cell cycle, and
order the cells within the phases, we calculated for each cell the
fraction of “near” reads (with distance <2Mb), the fraction of mitotic
reads (with distance 2–12Mb),mean contact distance for distances at
least 4.5Mb, and the fraction of contacts from a predefined set of
early replicating regions. These statistics were used to phase cells
into post-mitotic, G1, early to mid-S, mid-S to G2 and pre-mitotic
phases, and to order cells within each phase. We note that this
approach to phasing was only used as a preliminary stage for the
algorithms described below.

Metacell analysis. We applied the Metacell algorithm27 to organize
E9 single cell profiles in 77 metacells (excluding 69 outlier cells), that
we summarized into quantitative expression profiles and visualized as
previously described27. We also downloaded published single cell
profiles from the mouse gastrulation atlas21 and generated 1306 atlas
metacells on 110,291 QC-positive cells. Atlas metacells were annotated
bymajority voting on the published annotations of their cells, defining
for each metacell m, the function atlas.type (m). Each atlas metacell i
defined a gene expression distribution eatlasgi over the set of the 2237
feature genes g used while constructing the metacell graph.
For annotation of the E9 map, we identified for each E9 single
cell profile the atlas metacell with maximal correlations
ann= atlas:typeðargmaxi½corðlogðug + 1Þ, logðϵ+ eatlasgi Þ�Þ, where ug is
the UMI vector for the E9 cell and ϵ= 10�5 is a regularization factor.We
then annotated each E9 metacell with the atlas annotation atlas.type
that was linked with most of its cells.

Definitions and derivation of the strict early and strict late genomic
subsets. We partitioned the genome into bins of size 200 kb (or 40 kb,
depending on application) and counted scHi-C coverage per bin and
cell in a matrix. We performed down-sampling of the scHi-C data such
that each cell has 75k contacts and defined:

DSN=dsni
j

as the number of contacts that map to genomic bin j in cell i after
downsampling.

We next identified strict-early and strict-late genomics bins. This
was done by clustering the genomic bins j using the vectors dsni

j into 4
groups using hierarchical clustering. The two clusters showing the
highest and lowest coverage were shown to represent the previously
observed19 A andBcompartment structures respectively. These clusters
behaved consistently (e.g. showenrichment (for A) and anti-enrichment
(for B) in S-phase cells) between the pool of embryo and ESC cells. We
will denote that derived genomic bins subsets earlystrict and latestrict.

We defined the early/late ratio of a cell as:

eli = log2

P
j2earlystrict dsn

i
jP

j2latestrict dsn
i
j

0
@

1
A

Fig. 5 | Gastrulation accessibility hotspots are chromosomally intertwined.
A Bottom panel shows the accessibility of peaks (rows) over metacells (columns)
(log2 the number of normalized ATAC-seq reads). Shown are loci from select
clusters highlighted in the text. Top panel depicts gene expression of correlated
TFs over the same metacells, provided in order to link accessibility clusters with
specific cell types. B For each cluster of ATAC peaks we computed the fraction of
loci with A-compartment score difference larger than 0.1 when comparing ESC and

Embryo pooled Hi-C. Clusters with over 0.08 of the loci showing A-score enrich-
ment in ESCs are colored black. C Similar to (B), but comparing embryo and pEry
pooled Hi-C maps. D Similar to (B), but comparing the embryonic clusters C2.1
(ectoderm) and C2.3 (mesoderm). E Left panel is showing mean normalized
accessibility for ATAC peak clusters (row) and metacells (column). Right panel is
showing for each pair of peak clusters the enrichment of intra-TAD proximity
(number of pairs of peaks in the same TAD and within 200 kb of each other).
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and classified mid S-phase cells as:

KS = fi s:t: eli > 1:8g:

Knon�S was defined as all other cells.

A-score and early-score for genomic bins. For each genomic bin j
and each cell i, we count the number of long range intra-chromosomal
contacts (>1Mb) observed between fragment ends in the bins and
fragment ends in the earlystrict and latestrict genome compartments,
defining count vectors cAi

j and cBi
j .

The A-score of a genomic bin is determined given a set C of scHi-C
profiles (possibly all) as:

scoreAC
j =

X
i2Cf g

cAi
j=

X
i2Cf g

cAi
j +

X
i2Cf g

cBi
j

" #
:

The early-replication score (shortened early-score) of a bin is
computed given a groupCof cells (typically all or part of cells classified
as S-phase) by comparing the relative coverage of the bin in C to its
relative coverage in G1 cells:

scoreECj = log ð∣G1∣=∣C∣Þ
X
i2Cf g

dsni
j=

X
i2G1f g

dsni
j

0
@

1
A

Mapping gene expression to genomic bins and scHi-C clusters. We
used UCSC gene annotation to determine for each gene (as defined by
the MARS-seq or 10X pipeline) a transcription start site (TSS) coordi-
nate. Gene expression profiles were generated as the fraction of UMI
per gene observed in scRNA-seq metacells or group of metacells27.
Given anexpressionprofile eg wedefined aprofile over genomicbins ej
by taking the maximal expression of all genes mapping to TSSs on the
bin j.

Tomatch expressionprofiles and scHi-C clusters, we used clusters
of TSSs showing coordinated or enriched expression to compute
meanðscoreAC

fj2TSSbinsgÞ or meanðscoreECfj2TSSbinsgÞ for each scHi-C clus-
ter C. TSSbins sets were generated in two ways. First, given a metacell
model, we normalized expression (log transforming and subtracting
the mean over all metacell profiles), and selected the top 50 enriched
TSSs that had enrichment value larger than 0.5. These TSS sets were
used to compute the matching between A and early scores and the
erythrocyte scHi-C cluster in Fig. 1. Second, we clustered genes based
on their metacell log2 UMI enrichment profiles (Fig. 3I), generating
clusters that were curated manually and derived TSSbins sets from
them for analysis of A-score and early score differences (Fig. 3J, K).

Hi-C contact matrices analysis
Shamananalysis. To calculate enrichment of genome contacts in aHi-
C contact matrix, and to visualize chromosomal conformations, we
used the Shaman algorithm24,28. We pooled all cells in each cell cluster,
and down-sampled the contacts to the same number in each cell
cluster pool. We then applied Shaman to the down-sampled contact
pools. Briefly, Shaman shuffles contacts while maintaining the mar-
ginal coverage distribution and the contact distance distribution,
creating a random shuffled contact matrix. The enrichment of a con-
tact is then scored using a KS statistic on the k-nearest neighbors of
that contact in the original down-sampled contactmatrix and shuffled
contact matrix. The Shaman results we report here were derived using
an improved MCMC sampler that provide better convergence (in
particular onmatrices with a smaller number of contacts). In short, the
algorithm uses efficient data structures to compute precisely the
MCMC update rule. This approach is replacing the previously used
strategy of adaptive calibration of a correction term for the function
assigning probability for contacting at any genomic distance.

Insulation. We calculated insulation as described previously24,29. For a
genomic locus, we counted the number of contacts where one contact
is up to 200 kb upstream of the coordinate and the other up to 200 kb
downstream. We next counted the number of contacts where both
contacts are in distance up to 200 kb from the coordinate. The log
ratio between these two numbers is the insulation score. We per-
formed this calculation genome wide in 40 kb jumps.

Virtual 4C. To calculate the 4C trace at a specific genome coordinate
x, we looked at all contacts which satisfy either of the next conditions:

a. One of the fragment ends is at distance <3e3 from x, and the
distance between the fragment ends is <1e5.

b. One of the fragment ends is at distance <1e4 from x, and the
distance between the fragment ends is between 1e5 and 5e5.

c. One of the fragment ends is at distance <3e4 from x, and the
distance between the fragment ends is between 5e5 and 1e6.

To screen for conformation differences for two scHi-C clusters in
a set of target loci, we calculated the difference between their virtual
4 Cs. We partitioned the 4C trace to bins based on contact distance
(2.5e4, 5e4, 1e5, 2e5, 3e5, 5e5, 7.5e5, 1e6, onboth 3’ and 5’).Weaveraged
the Shaman scores within every bin, and defined the distance of the
conformations for two clusters as the maximum difference (in abso-
lute value) over all bins.

Parameters and specific figure panel analysis
ClusteringESC, Embryos anderythrocytes (Fig. 1).Weprocessed the
scHi-C data, and performed QC and cell cycle phasing as described
above. For generating clusters in Fig. 1, we used S-phase seeding
(Supplementary Methods), with the following inputs: KS,K

non�S
, DSN,

and the matrices cAi
j and cBi

j .
To identify primitive erythrocytes, we identified a bin cluster (of

the 11 A-score-based bin clusters, see Supplementary Methods) that
had high C3-specific A-score, and similarly a bin cluster with low C3-
specific A-score.We calculated the pooledA-score of eachof these two
bin clusters in each single cell (denoted cell Ai

m in the Supplementary
Methods), and used a linear separator to classify cells based on these
two scores as either C3 or non-C3 (Supplementary Fig. 4D). Embryo
cells that were not classified as C3 were assigned to C2, and ESC
cells to C1.

We generated the genomic bin expression value, A-score and
early-score in ESC and non-pEry embryo as described above, in 40 kb
resolution. We defined genomic bins with at least 4-fold change in
expression as ESC- and embryo-induced. Similarly, we defined embryo
A-specific bins and ESC A-specific bins as having at least 0.2 difference
in A-score.

We screened for genes with different Shaman score in ESC and
embryo using comparisons of virtual 4Cs as described above. We
similarly calculated differences in Shaman scores for embryo and ESC
A-specific bins (Supplementary Fig. 4A), but looking at the 4C profile
of each bin only up to 500 kb upstream and downstream.

Erythrocyte analysis (Fig. 2). As before, we generated the genomicbin
expression value, A-score and early-score in pEry and non-pEry in
40 kb resolution. We defined genomic bins with at least 4-fold change
in expression as pEry- and non-pEry-induced. We also identified bins
that were not expressed in either of the clusters.

To create Fig. 2J we identified 40 kb genomic bins with A-score
that is at least 0.35 higher in Erys compared to embryo. We merged
adjacent bins meeting this criterion, and for every set of merged bins
found the bin with highest difference in A-score between Erys and
embryo. For every such bin, we looked at the average A-score of its 3’
and 5’bins up to 400 kb.We reversedA-score traces (mirroring 3’/5’) to
create a matrix in which for all rows, the upstream 5’ A-score is higher.
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We concatenated the A-score trace in pErys and non-pErys, and clus-
tered the concatenated traces using kmeans into 8 clusters. We per-
formed a similar analysis when taking genomicbinswith A-score that is
at least 0.35 higher in embryo compared to Erys (Supplemen-
tary Fig. 4H).

To create Fig. 2L, we partitioned the contact matrix into 20 kb ×
20 kbbins, and created for eachof the loci in Fig. 2J amatrix of average
Shaman scores in the 1Mb around it (on both sides).We then averaged
the scores in such matrices for the loci in each of the Fig. 2J clusters.

Gata1 and Tal1 ChIP-seq. We scored and normalized 20bp bins for
theirGata1 and Tal1ChIP-seq score using data from ENCODE.We used
ChIP-seq scores as previously described, computing ChIP coverage
percentiles p for each bin, and defined the score as −log2(1 − p). We
defined Gata1 and Tal1 binding sites as those having score > 8. For
40 kb genomic bins we computed a binding score as the maximum
ChIP-seq score of all binding sites contained in it.

Clustering the embryo proper (Fig. 3). We applied the replication
trend mixture model (Supplementary Methods) on embryo scHi-C
profiles classified as non-pEry, non-G1 and non-M as described above.
We further selected cells with sufficient coverage (at least 8 contacts
per 200 kbbinon average), andmid-Sphaseclassification as inNagano
et al. 201719.

We set nij as the number of contacts in cell i that map to genomic
bin j and excluded the X chromosome, or any bin with mean coverage
<8. To set pj, we calculated the fraction of contacts that mapped to
each genomic bin across all G1 cells that are not erythrocytes.

To initialize the model we clustered cells hierarchically using
distances based on correlations between rows in a normalized nij

matrix. Normalization provided initial heuristic correction to the cell
cycle effect by ordering cells according to their scHi-C fraction of short
range contacts and subtracting for each locus the runningmean (using
a window of 20 cells).

Given this clustering solution, we initialized E zik
� �

such that each
cell belongs to its cluster with probability 0.5, and to all other clusters
with equal probability. In case k =2, each cell belongs to its cluster with
probability 2

3. To initialize si we ordered the cells by the fraction of
short-range contacts theymake, and assigned them values between 1.2
and 1.8 according to their order, assuming that all parts of the repli-
cation program are equally represented in the data.

We performed cross validation on the hyperparameters, as
described in the Supplementary Methods, and selected L= 12,
R= 11, λ=40.

To generate UMAP projections of mid-S phase cells, we normal-
ized nij coverage by G1 mean coverage, selected bins with high var-
iance to mean ratio, and calculated a cell-cell correlation matrix using
these values. We then used the R package umap with default para-
meters (and random seed = 42). We repeated this analysis using data
normalized based on inferred s-score (see Supplementary Methods).

Plotting replication trends for early replicating bins. To plot Fig. 3F,
we identifiedbins that are in replication regime 2 (out of 12) in C2.1 (left
plot; C2.3 for the right plot), and are in replication regime ≥4 in all
other clusters, and for every cell calculated the total fraction of con-
tacts from these bins.

Executing other scHi-C clustering algorithms. We executed
schicluster and scHi-C topic modeling. We ran schicluster and topic
modeling with resolutions 1Mbp and 0.5Mbp respectively, as per-
formed in the publications of these methods.

Cluster annotation. To annotate the C2.1, C2.2 and C2.3 clusters, we
used 15 TSS bin sets G1,::G15 derived from the E9 metacell model data
as described above. To account for possible differences in the s-score
distribution in eachcell cluster,we orderedgenomic bins j 2 S

m Gm by

theirmean early score across clusters, computed for each bin scoreECk
j

and subtracted from it the running mean using a window of 200 bins,
defining scoreE0j

Ck . We then computed meanðscoreE0 j2Gmf g
Ck Þ, and

normalized rows to create the matrix shown in Fig. 3J. A similar nor-
malization strategy was used with A-scores to derive the matrix in 3 K.
We repeated the same analysis for the gastrulation atlas metacell
model, using 20 gene modules. We note that in order to test possible
functional association of the C2.2 cluster, in this analysis we only used
42%of its cells showing a stronger correlation structure. Similar results
were obtained using the entire C2.2 cluster.

To compareC2.1 andC2.3 to E14.5 data24,33, we computedA-scores
for genomic bins of length 40Kbp in four samples: C2.1 cells, C2.3 cells,
E14.5 HSCs and E14.5 NPCs. To compute these scores, we used the
strict-early and strict-late genomic bins that we used to calculate
A-scores previously. Because of the large difference in depth between
our data and the E14.5 data, we downsampled the contacts of each
genomic bin such that the total number of strict-early and strict-late
contacts a genomicbinmakes is the same in the four different samples.
The downsampled contacts were used to calculate the A-scores.

To estimate our assay’s sensitivity, we sampled 100, 75, 50 and 25
cells from cluster C2.1, and applied the replication mixture model to a
dataset including this subset with all cells from C2.2 and C2.3. We
performed a similar analysis for C2.3.

To search for additional sub-structure in cluster C2.1 and C2.3
(Supplementary Fig. 9) we applied hierarchical clustering to cell-cell
correlations derived using s-score normalized copy number profiles.
We partitioned C2.1 into 3 subclusters, and C2.3 into 9 subclusters. To
annotate the C2.1 subclusters, we correlated their A-score and cover-
age fold changes with differential gene expression of ectodermal cell
types. To calculate the gene expression profile of a cell type, we cal-
culated the average log2 expression of each gene across all the cell
type’s metacells in the E9 scRNA-cell data. We then subtracted from
each gene its mean expression across ectodermal cell types. This gave
each gene its differential expression across all ectodermal cell types.
To calculate a genomic bin’s A-score fold change in a subcluster, we
calculated the A-score by pooling all contacts from the subcluster’s
cells, and the A-score by pooling all contacts from the other sub-
clusters’ cells. The bin’s A-score fold change is then the log2of the ratio
between these A-scores. To calculate the coverage fold change, we
calculated the relative coverage in the pool of the subcluster’s cells as
described above, and the relative coverage in the pool of other sub-
clusters’ cells, and took the log2 of their ratio. We then only selected
genes with at least 2-fold change in gene expression in some cell type,
and correlated their relative expression with the A-score and coverage
fold changes of the bins containing these genes. Both the A-score and
coverage were calculated for genomic bins of size 200 kb. To annotate
the C2.3 subclusters we did a similar analysis, but used only genes with
at least 4-fold change in gene expression in some cell type.

Screening for differential ecto/meso contacts (Fig. 4). We identified
enhancers using Chip-seq ENCODE data from ectoderm (forebrain,
midbrain, hindbrain) and mesoderm (heart and limb) tissues43. We
calculated the ChIP-seq scores (log2(1-percentile)) in 20 bp resolution
for each of the 5 tissues. We called enhancers as contiguous genomic
intervals (or peaks) showing H3k4me1 scores > 7 (that is, the top 1/128
bins). We scored each peak H3k4me1 occupancy in mesoderm (max-
imumbetween the values of the two tissues) and ectoderm (maximum
among the values of the three tissues). To define mesoderm and
ectoderm specific peaks we required a score of at least 9 in one set of
tissues and a difference of at least 3 between the scores of the two
tissue sets. Overall this approached generated 24059 and 9506 meso
and ecto- specific enhancers respectively.

To identify meso- and ecto- specifically expressed genes (and
TSSs), we identified three metacells representing the mesoderm tran-
scriptional state and three others representing the ectoderm state. We
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computed the maximum expression per gene in each set. 826 genes
were showing at least two-fold differencebetween the twoprofiles, and
their TSSs were considered for enhancer associations below.

To create a set of potential promoter-enhancer interactions, we
linked each enhancer peak with its closest TSSs. We searched for such
TSSs 50k-500k upstream and downstream of the enhancer locus (so
up to two genes were linked with each peak). We did not use pairings
spanning less than 50kb since scHi-C resolution at such distances is
limited. We also note that our pairing heuristic is by no means
exhaustive, and is meant only to generate a shortlist of putative pairs.

Finally, we identified mesoderm and ectoderm specific enhancer-
promoter candidate pairs as those involving a differential enhancer
and a specifically expressed gene according to the definitions above.
We defined the Shaman score of a putative enhancer-promoter inter-
action as the score of the contact between coordinates closest to the
enhancer and promoter (using Euclidean distances)), and computed it
for both meso and ecto. We selected pairs with Shaman score at least
15 higher in the expected cell cluster, or with an absolute shaman score
at least 15 if the other score is negative, as having three way support.

To derive a p-value for the number of contacts between an
enhancer and a promoter, we counted the number of contacts in the
pooled ectodermandmesodermcells in a 50 kbwindow (25 kb to each
direction) around the enhancer-promoter in the contact matrix.
Denote these numbers for an enhancer-promoter pair ep by ectoep and
mesoep. We similarly counted the number of contacts for all other
enhancers and their associated TSSs. To test whether an enhancer-
promoter pair had a high number of contacts in ectoderm, we calcu-
lated ectoep � mesoep, and compared it to the empirical distribution
of ectoe’p’ � mesoe’p’ for all background enhancer promoter pairs e’p’
that had the sameectoe’p’ + mesoe’p’ value as ep. To increasepower, for
Supplementary Fig. 10C, D we only looked at enhancer-promoter pairs
for which ectoep + mesoep ≥80. For the background distribution to be
accurate, we only considered ectoep + mesoep values with more than
100 other enhancer-promoter pairs with similar ectoe’p’ + mesoe’p’
value. We performed a similar analysis for mesoderm.

We performed a similar analysis to identify H3k27me3-gene pairs.
Genes were selected similarly. H3k27me3 regions were selected as
those with ChIP-seq score > 7. We designated ecto- or mesoderm
specific regions as those having ChIP-seq score > 3 higher than the
other tissue. The selected pairs are those where the gene is lowly
expressed and the H3k27me3 signal is higher.

To find all hotspots with support for different chromosomal
conformation between ectoderm and mesoderm, we looked only at
contacts in distance 1e4 to 1e6. We compared the Shaman score of
every meso contact to the Shaman score of its nearest ecto contact.
We detected regions with high Shaman difference iteratively. In
each iteration we identified the contact with the maximal Shaman
difference between meso and ecto, and removed all contacts where
both their ends are in distance <5e4 from the maximal-difference
contact. We continued with this process until no contact with Sha-
man difference >40 remained. This resulted in 5200 hits that we
used in order to estimate the fraction of differential contacts
explicable by known three-way supported promoter-enhancer
pairing in the text.

Analysis of multiome-data and integration with pooled Hi-C clus-
ters. We used scRNA-seq and scATAC-seq profiles from a recent paper
by the Reik group38 to generate the analysis in Fig. 5, applying the
following steps:

1. Using metacell-244 with default parameters and target metacell
size of 320K UMIs to organize scRNA-seq profiles into 1404
metacells.

2. Using the RNA-based grouping of cells to collect single-cell ATAC
reads and create a genomic track for each metacell.

3. Finding all genomic intervals with ATAC-coverage (total over all
metacells) larger than 300 and identifying the maximal coverage
300bp within each such interval as a peak. Overall this provided
us with 94,600 peaks.

4. Grouping RNA metacells into 300 clusters using hierarchical
clustering of the RNA signatures. RNA clusters were associated
with cell type by comparison to gastrulation manifolds and TF
expression profiles.

5. We then pooled ATAC reads over the clusters and extracted the
reads within identified peaks into an accessibility count matrix.
We removed cell clusters supported by fewer than 82 K ATAC
reads, retaining for analysis 285 clusters.

6. Normalizing peak ATAC coverage in each cluster by normalizing
(dividing by total reads for the cluster) and transforming the
frequencies p to log2(1e-5+p).

7. Running kmeans++ with a large number of clusters (K = 120) over
the normalized accessibility profiles. Deriving mean peak cluster
profile by averaging the log normalized ATAC values.

8. Filtering peak clusters with less than 100 peaks (only 1 case).
Annotating peak clusters as variable whenever at least four
metacell clusters showed mean ATAC value smaller than −16 and
the difference between minimum and maximum value over the
cluster was larger than 0.7. All other clusters were considered
constitutive.

9. Computing the A-score of each peak in ESC, Embryo, pEry, C2.1
and C2.3. Analysis of the A-score distributions in each cluster is
used to generate Fig. 5B–D.

10. Identifying all pairs of peaks within less than 200 kb genomic
distance. Summarizing the number of such pairs between ele-
ments of each pair of clusters into a matrix of observed “proxi-
mities”. Multiplying each element in thematrix by the total matrix
counts divided by the product of its row and column total counts.
Log transforming the resulted enrichment ratio, followed by
hierarchical clustering of the submatrices defined by the con-
stitutive and variable peak clusters (separately) in order to gen-
erate the heat map of Fig. 5E.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
authors upon reasonable request. The scHi-C and scRNA-seq data
generated in this study have been deposited in the GEO database
under accession code GSE148793. The ESC scHi-C data used in this
study are available in the GEO database under accession code
GSE94489. The previously published embryo gastrulation scRNA-seq
data used in this study are available in theArrayExpressdatabaseunder
accession code E-MTAB-6967. The scRNA/scATACmultiomedata used
in this study are available in the GEO database under accession code
GSE205117. The neural progenitor cells’Hi-Cdata used in this study are
available in the GEO database under accession code GSE96107. The
hematopoietic Hi-C data used in this study are available in the GEO
database under accession code GSE119201.

Code availability
All code supporting the analysis of this work is available in Github:
https://github.com/tanaylab/scHiC_embryo.
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