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Plant community stability is associated with
a decoupling of prokaryote and fungal soil
networks

Dina in ‘t Zandt 1 , Zuzana Kolaříková1, Tomáš Cajthaml2,3 &
Zuzana Münzbergová 1,4

Soil microbial networks play a crucial role in plant community stability.
However, we lack knowledge on the network topologies associated with sta-
bility and the pathways shaping these networks. In a 13-year mesocosm
experiment, we determined links between plant community stability and soil
microbial networks.We found that plant communities on soil abandoned from
agricultural practices 60 years prior to the experiment promoted destabilising
properties and were associated with coupled prokaryote and fungal soil net-
works. This coupling was mediated by strong interactions of plants and
microbiota with soil resource cycling. Conversely, plant communities on nat-
ural grassland soil exhibited a high stability, which was associated with
decoupled prokaryote and fungal soil networks. This decoupling was medi-
ated by a large variety of past plant community pathways shaping especially
fungal networks. We conclude that plant community stability is associated
with a decoupling of prokaryote and fungal soil networks and mediated by
plant-soil interactions.

Plants associate with complex interactive networks of soil microbial
communities. These networks are increasingly found to act as a
structuring force in plant community stability processes1–5. Plant
community stability describes the ability of communities to resist and
recover from biotic and abiotic perturbations, and has become an
increasingly pressing issue with the ongoing change in climate and
human interventions in natural ecosystems6,7. However, under-
standing the driving forces of community stability is amajor challenge
due to the complexity of the underlying plant-soil-microbiota inter-
actions. At the same time, the complexity of ecological interactions
itself has long been considered to be a key component of community
stability8,9. To predict, protect and restore plant communities, we need
to understand the role of plant-soil-microbiota interactions in com-
munity stability processes.

Ecological interaction networks have a coherent structure with
well-defined patterns in relation to network stability8,9. Network

stability results from species connectiveness, negative interactions,
few strong and many weak interactions and the clustering of species
into subgroups7,10–12. Clustering involves many connections within
subgroups of species and fewer connections between them, effectively
decoupling the subgroups within the community13. In essence, these
network properties minimise the risk of change when a perturbation
occurs by creating dependencies between species, promoting species
asymmetry and buffering against the propagation of perturbation
effects among subsections of the network10,12–16.

Ecological network theory is derived from ecological food web
theory and network science, but has been shown to be applicable to
microbial networks7,10,14. However, in comparison to food webs and
many other networks, microbial networks lack a strong directional
structure and are based on co-occurrences of taxa alone10. Yet, we know
that plants play a critical role in shaping the environmental nichesof soil
microbial communities via the input of a large variety of chemical
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compounds into the soil environment by, for example, the input of
dead organic material and root exudates as well as the uptake of soil
nutrients17,18. The plant community may therefore play an essential role
in shaping soilmicrobial network stability.We currently lack knowledge
on the role of associations between the plant community and soil
microbial networks in enhancing whole community stability.

Generally, interactions between plants and soil microbiota are
increasingly found to act as a stabilising force in plant community
processes2–5. Plant species identity and thus plant community compo-
sition is expected to determine the potential for stabilisingmechanisms
via reciprocal specialisation of plants and soil microbiota. This reci-
procal specialisation creates complex networks and, in particular,
negative feedback loops that avoid plant species dominance, species
loss and communities tipping into alternative states2–5. Direct interac-
tions between plant community composition and microbial networks
are therefore likely critical pathways in community stabilising
mechanisms. Conversely, inherently more generic interactions of
indirect plant community pathways mediated by soil chemical changes
may result in microbiota responding in tandem. If such more generic
effects are strong or not compensated for, these in tandem responses
may lead to plant community instability. To understand the drivers of
plant community stability, we need to define the importance of both
overall (i.e., plant diversity and productivity) and compositional (where
plant identityplays adistinctive role) plant community interactionswith
soil microbial networks and test whether these plant community com-
ponents associate directly or indirectly via soil chemical changes.

Here, we test to what extent and via which pathways overall and
compositional plant community components associate with soil
microbial biomass and networks. We compare these pathways
between dry grassland communities established on natural grassland
soil and soil abandoned fromagricultural practices 60 years before the
start of the experiment. The two soils mainly differed in soil nutrient
availability with the natural grassland soil being significantly lower in
total N, organic C and plant available P and K than the abandoned
arable soil19. Plant communities on natural grassland soils are typically
stable communities, while communities on abandoned arable soil are
more strongly impacted by invading plant species destabilising plant
community networks20,21. We created diverse plant communities by
sowing a seedmixture of 44 perennial drygrassland species in outdoor
mesocosms filled with natural grassland soil and abandoned arable
soil19. Plant communities were left to establish for 5 years, after which
natural invasion by both native and exotic species from outside the
sown species pool was allowed and occurred substantially the fol-
lowing 8 years. Long-term plant community development resulted in
communities with natural variation in, amongst others, plant invasion
impact and plant community composition. We combined four data-
sets: plant community aboveground measurements over the 13 years
and soil chemistry, total microbial biomass (PLFA/NLFA analysis) and
soil microbial community composition (16S and ITS amplicon
sequencing) after the 13th growing season.

First, we test whether plant communities on abandoned arable
soil show a decreased long-term stability aboveground and whether
this translates to soil microbial communities with destabilising prop-
erties in their prokaryote and fungal co-occurrence networks. Second,
using structural equation modelling (SEM), we test whether the rela-
tive contribution of direct and indirect pathways of the overall plant
community (aboveground productivity and plant diversity) and plant
composition onto soil microbial networks is affected by soil origin. We
distinguish past plant community factors (initial plant invasion impact
anddevelopmental trajectories) from factors in the yearof sampling as
well as direct plant-microbial pathways from indirect pathways
occurring via soil chemical changes. Third, we determine the most
important plant-soil-microbiota pathways that are consistently chan-
gedbetween stable and instable plant communities, andwhether these
changes relate to particular putative functions and metabolic

characteristicsof themicrobial communities involved. Taken together,
these analyses unfold the pathways via which plant communities
associated with soil microbial networks and the role of plant-soil-
microbial interactions in plant community stability.

Results
Natural grassland communities had a lower plant invasion and
higher temporal stability
Plant community diversity gradually declined in time, but was drasti-
cally increased after the start of plant invasion on both natural grass-
land and abandoned arable soil (Fig. 1a). Despite this variation in
diversity, aboveground productivity of the communities remained
relatively constant over time. In addition, aboveground productivity
was, on average, not affected by the start of invasion and showed little
difference between the two soil origins (Fig. 1b). The proportion of
invaded species biomass, on the other hand, increased with the onset
of invasion and was consistently higher in abandoned arable soil
communities than in communities established on natural grassland
soil (Fig. 1c). For each community, we calculated stability over time and
found that plant communities on natural grassland soil had a sig-
nificantly higher temporal stability than plant communities on aban-
doned arable soil (Fig. 1d).

Plant community composition in time was analysed using
detrended correspondence analysis (DCA). This analysis described
variation in community composition by three axes: variation relating
to the gain and loss of species over time (temporal turnover separating
early from late residency species; DCA 1), variation relating to Ellen-
berg indicator values of the plant species’ soil resource optima
(separating species with high and low soil resource optima; DCA 2),
and variation relating to legume cover (separating communities with
high and low legume cover; DCA 3) (Fig. 1e–g, Supplementary Fig. 1).
DCA 1 showed a relative similar turnover in plant community compo-
sition over time between the two soil origins. In addition, on both soils
a sharp drop in early residency species occurred with the start of plant
invasion in 2012 (Fig. 1e, Supplementary Fig. 1a). For DCA 2, the start of
plant invasion marked a strong increase in plant species with high soil
resource optima as most invading species were characterised by hav-
ing a high ecological soil resource optimum (Fig. 1f, Supplementary
Fig. 1a). This increase was strongest for communities on abandoned
arable soil and persisted in the following years (Fig. 1f, Supplementary
Fig. 1a). Finally, DCA 3 separated plant community composition
between the two soil origins before the start of invasion: communities
on natural grassland soil harboured a higher cover of legumes than
communities on abandoned arable soil in the years before 2012. With
the start of invasion, plant community composition on natural grass-
land soil dropped to, on average, similar legume cover as for the
abandoned arable communities (Fig. 1g, Supplementary Fig. 1b).

Soil origin affected soil chemistry and microbial soil
communities
After the 13th growing season, natural grassland and abandoned arable
soils differed significantly in chemistry, microbial biomass and
microbial community composition (Fig. 2a, b, Supplementary Fig. 2).
Abandoned arable soil was significantly higher in total N, plant avail-
able NO3

−, NO2
−, and NH4

+, total and organic C and plant available P
(Supplementary Fig. 2). In addition, prokaryote and fungal richness as
well as bacterial biomass were significantly higher in abandoned arable
than natural grassland soil (Supplementary Fig. 2). Conversely, soil pH,
fungal and AMF biomass were higher in natural grassland soil (Sup-
plementary Fig. 2). Both prokaryote and fungal community composi-
tion were significantly different between natural grassland and
abandoned arable soil (Fig. 2a, b). These differences largely resulted
from differences in prokaryote and fungal OTU abundances given the
large overlap in the OTUs that were present in both soils (Supple-
mentary Fig. 3a, b).
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Temporal stability was associated with a decoupling of prokar-
yote and fungal networks
For each soil origin, we createdmicrobial co-occurrence networks. The
networks indicated highly connected prokaryote and fungal commu-
nities in both natural and abandoned soil with few dominating OTUs
and little difference in network properties commonly associated with
network stability (Supplementary Fig. 4; Supplementary Table 1). To
understand the microbial network topologies in more detail, we clus-
tered similarly responding OTUs across the 30 plant communities of
each soil origin (Supplementary Fig. 4). Similarly responding

prokaryote OTUs were captured in 9 and 10 clusters for natural
grassland and abandoned arable soil, respectively. For fungi, 21 and 18
clusters were needed for natural grassland and abandoned arable soil
communities, respectively (Fig. 3a, b). In all microbial networks,
taxonomic families largely clustered together, indicating similar
responses of closely related taxa (Supplementary Figs. 5–6; Supple-
mentary Tables 2–5). Importantly, all microbial networks showed a
significantly denser clustering of OTUs than would be expected based
on null-models (randomly rewired networks; Supplementary Fig. 7),
indicating a distinct organisational pattern of each network.
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Fig. 1 | Plant community development and temporal stability. Plant community
(a) diversity, (b) aboveground productivity, (c) biomass proportion of invaded
plant species, (d) temporal stability based on aboveground productivity, and
community compositional DCA scores related to plant species (e) temporal turn-
over, (f) ecological soil resource optimum and (g) legume cover of communities
grown on natural grassland (green) and abandoned arable soil (yellow). In (e–g)
arrows with text indicate the interpretation of the DCA scores. Grey shading indi-
cates the time period in which communities established and no natural species
invasion took place. From 2012 onwards, natural invasion of species from outside
the sown species pool occurred. Thick lines indicate averages with the shading

showing the 95% confidence intervals. Thin lines show each replicate (n = 30).
Temporal stability was calculated as the inverse coefficient of variation of above-
ground productivity over time. Boxplots indicate median (middle line), 25th, 75th
percentile (box) and 5th and95thpercentile (whiskers)with singlepoints indicating
each replicate. Results of linear mixed effect models including sowing density as a
random effect and type III Wald chi-square tests are presented. Significance codes:
***p <0.001; **p <0.01; ns = not significant, p >0.05. For figures on species dis-
tribution on theDCAaxes, see Supplementary Fig. 1. For exact statistical values, see
Supplementary Data 1. Source data are provided as a Source Data file.
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NOVA) based on Euclidean distances. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-39464-8

Nature Communications |         (2023) 14:3736 3



We summed the relative abundance of the OTUs in each cluster.
On average, threedominant prokaryote clusters occurred that held, on
average, 86% and 91% of the 16S rRNA reads recovered in natural
grassland and abandoned arable soil, respectively (Fig. 3a, b, Supple-
mentary Fig. 5a, b). In abandoned arable soil, these patterns were
similar for the fungal networks showing three large clusters holding,
on average, 75% of the ITS rRNA reads. On natural grassland soil,
however, fungal networks showed five larger clusters holding, on
average, 62% of the ITS rRNA reads (Fig. 3a, b, Supplementary
Fig. 5c, d).

We tested for significant correlations between all clusters in each
soil origin. Most strikingly, we observed that in natural grassland soil,
only one significant correlation between the dominant prokaryote and
fungal clusters was present, specifically between prokaryote cluster 3
and fungal cluster 6 (Fig. 3a). Conversely, in abandoned arable soil,
several strong positive and negative correlations occurred between
the dominant prokaryote and fungal clusters, specifically between
prokaryote clusters 1–3 and fungal clusters 1–3 (Fig. 3b).These findings
suggest that responses of dominant prokaryote and fungal clusters in
natural grassland soil were decoupled, while in abandoned arable soil,
these clusters responded in tandem. Importantly, these patterns were
not random and occurred significantly more often than expected by
chance in both soil origins, highlighting the distinct organisational
structure of the prokaryotes and fungi in the microbial networks
(Supplementary Fig. 8).

For each plant community, we then calculated the strength of
coupling between prokaryote and fungal network clusters. We found
that the coupling of prokaryote and fungal clusters was significantly
related to aboveground temporal stability: temporal stability was
associated with a decoupling of prokaryote and fungal network clus-
ters (Wald test, χ2 = 8.817, p =0.003; Fig. 4).

Microbial communities in abandoned arable soil were pre-
dominantly associated with the plant community in the year of
sampling
We hypothesised that the plant community plays an important role in
shaping soil microbial networks and biomass, and may underlie the
coupling/decoupling of prokaryote and fungal networks. We tested

this hypothesis using structural equation modelling (SEM). For each
soil origin, we determined how plant community parameters from the
year of sampling and from the past (initial plant invasion impact in
2012 and plant community developmental trajectories) associated
with microbial biomass and network clusters at the end of the 13th
growing season (Fig. 5a). We tested whether these associations resul-
ted from overall plant community factors (aboveground productivity
and plant diversity) or plant community composition (DCA scores),
and determined whether these pathways occurred via direct or indir-
ectly pathways via soil chemical changes (Fig. 5a). The obtained SEM
models explained, on average, 47% of the variation in microbial bio-
mass. For microbial clusters, the explained variation varied strongly
between the network clusters in both soil origins and lay between 0
and 64% (Supplementary Table 6).

We calculated the relative contribution of each group of plant
community parameters in shaping soil microbial properties using the
effect sizes of the SEM pathways. Most strikingly, we found that plant
community parameters in the year of sampling played a much larger
role in shaping both microbial biomass and networks in abandoned
arable than natural grassland soil (Fig. 5b).

Furthermore, the main players in the year of sampling in aban-
doned arable soil were direct associations with the overall plant
community and indirect associations of plant composition. In contrast,
in natural grassland soil, associations in the year of sampling most
consistently occurred via direct plant compositional pathways. In
addition, a few indirect plant compositional pathways occurred for
prokaryote and fungal network clusters, but not formicrobial biomass.
Direct associations with the overall plant community occurred solely
for fungal clusters (Fig. 5b).

A variety of past plant community parameters were important in
shaping microbial communities in natural grassland soil. Microbial
biomass was largely shaped by direct and indirect pathways of past
overall plant community factors. Prokaryote and fungal clusters were
largely shaped by indirect pathways of the past overall plant commu-
nity as well as past direct compositional pathways (Fig. 5b). In aban-
doned arable soil, most of these past pathways were absent with
exception of direct compositional effects on prokaryote network
clusters (Fig. 5b).
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Fig. 3 | Correlations between prokaryote and fungal network clusters. Prokar-
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each. Note that thismeans that cluster sizes can be comparedbetween the two soils
within the prokaryotes and fungal groups, but that prokaryote and fungal clusters
are not scaled to each other and are therefore not directly comparable (but see
Supplementary Fig. 2 for bacterial and fungal biomass comparison). For taxonomic
and putative soil functions of each microbial network cluster see Supplementary
Figs. 5–6 and Supplementary Tables 2–5. For exact statistical values, see Supple-
mentary Data 1. Source data are provided as a Source Data file.
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Prokaryote and fungal networks were associated with unique
past pathways in natural grassland soil
To understand the mechanisms that underlie the association
between stability and the coupling/decoupling of prokaryote
and fungal soil networks, we compared the specific processes
associated with prokaryote and fungal network clusters in natural
grassland and abandoned arable soil. For this we extracted all direct
and indirect plant community pathways with a relative contribution
> 5% and determined whether these pathways occurred for both
prokaryotes and fungal clusters or were unique to either group
(Fig. 6a, b).

In natural grassland soil, both prokaryote and fungal clusterswere
for an important part shaped by unique pathways. These resulted
especially frompast plant community parameters (Fig. 6a). For natural
grassland prokaryote clusters, unique pathways resulted from plant
compositional trajectories in time and, to a lesser extent, the initial
effect size of plant invasion in 2012. Similarly, unique pathways for
natural grassland fungal clusters resulted from plant compositional
trajectories in time and the effect size of plant invasion, but different
sets of plant compositional axes were involved. In addition, for fungal
clusters, changes in soil pH and organic C played an important role in
past pathways (Fig. 6a).

In abandoned arable soil, less differentiation in past pathways
between prokaryote and fungal networks occurred (Fig. 6b). Some
similarities to the natural grassland soil occurred, such as unique
pathways for prokaryote and fungal clusters resulting from the initial
effect size of invasion in 2012 (Fig. 6b). However, on abandoned arable
soil, overlapping pathways associating with plant diversity and com-
position in the year of samplingweremorenumerous thanunique past
pathways (Fig. 5b).

In the year of sampling, plant composition decreased fungal
community specialisation in abandoned arable soil
As a final step, we searched for generalities in the prokaryote and
fungal characteristics that were associated with plant community
pathways by testing which pathways significantly associated with
overall microbial community patterns: alpha-diversity (Shannon’s
index) and the relative habitat specialisation index (SI). In addition, we
sought to understand the functional traits of each microbial network
cluster by analysing their taxonomic composition and comparing it to
existing literature and databases, and calculating the taxa’s relative
habitat specialisation and enrichment in natural grassland or aban-
doned arable soil (Supplementary Figs. 9–10; Supplementary
Tables 2–5).

In the year of sampling, we found that plant composition did not
affect any of the soil nutrients in natural grassland soil, only below-
ground productivity was affected (Fig. 6a; Supplementary Table 7). As
a result, most plant compositional pathways in the year of sampling
occurred via direct interactions. A high legume cover in the year of
samplingwas associatedwith a low fungal and AMFbiomass, and plant
communities with a high cover of high resource optima plant species
were associated with a low fungal diversity and bacterial biomass. In
the latter case, belowground productivity was low and therewith
increased prokaryote diversity (Supplementary Table 7). Furthermore,
in contrast to abandoned arable soil, plant diversity did not have
detrimental effects on the fungal community and rather increased
fungal diversity innatural grassland soil (Supplementary Table 7).Most
of thepathways in natural grassland soil involvedmetabolically diverse
groups of bacteria, putative soil and litter saprotrophs as well as plant
pathogens (Supplementary Table 7).

In abandoned arable soil, we found that plant diversity and
composition in the year of sampling associated with a large number of
prokaryote and fungal network clusters. In contrast to natural grass-
land soil, the plant compositional pathways occurred via changes in
soil pH, total N and NO3

- in abandoned arable soil (Fig. 6b). Most of
these pathways involved dominant prokaryote and fungal clusters,
putative soil saprotrophs, plant pathogens, ammonia oxidising
archaea (AOA) and metabolically diverse bacteria (Supplementary
Table 8). Interestingly, a high cover of high resource optima plant
species and a low cover of legumes resulted in a low fungal community
specialisation, which was mediated through an increase in soil pH
(Supplementary Table 8). In addition, a high legume cover and high
plant diversity decreased fungal biomass (Supplementary Table 8;
Supplementary Figs. 11b–12b).

Past plant community pathways were especially associated with
putative saprotrophs and pathogens
In natural grassland soil, past plant community pathways were
numerous and diverse, but for an important part related to the initial
impact that plant species invasion had on the plant communities
(Supplementary Table 7; Supplementary Fig. 11). A large increase in
aboveground productivity with the start of plant invasion in 2012 was
associatedwith an increased soil N anddecreased soil pH after the 13th
growing season (2019). Subsequently, fungal and bacterial biomass as
well as prokaryote community specialisation were increased. Similarly,
a large increase in plant diversity with invasion in 2012 was associated
with a decreased soil organic C (Supplementary Table 7; Supplemen-
tary Fig. 12a). These past plant community pathways involved a large
diversity of microbiota, but especially diverse groups of chemoheter-
otrophic bacteria, putative soil saprotrophs and plant pathogens
(Supplementary Table 7).

Importantly, in natural grassland soil, large changes in plant com-
position with the start of plant invasion affected many fungal, but not
prokaryote clusters. Prokaryote clusters were instead associated with
plant compositional trajectories over time (Fig. 6a; Supplementary
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Table 7). The various fungal clusters affected by plant invasion impact
especially consisted of putative soil saprotroph and plant pathogens
(Supplementary Table 7). For this latter group, plant communities
where few early plant species were lost with the onset of plant invasion
were increased in a specific set of putative soil pathogens. In addition,
communities with a large increase in plant species with high soil

resourceoptimawere increased in a set of generalist soil pathogens, but
decreased in another set of putative pathogens (Supplementary
Table 7).

In abandoned arable soil, past plant community pathways also
occurred for an important part via the initial impact of plant species
invasion in 2012. These pathways, however, consistently affected both
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Fig. 5 | Structural equation modelling (SEM). a Plant community factors imple-
mented in the SEM approach from the year of sampling (2019) and the past
(2012–2019), the considered soil chemical factors asmediators in indirect pathways
and the soil microbial properties that were associated either via direct or indirect
pathways (n = 30). b Combined, relative contribution of each group of plant com-
munity factors in shaping soil microbial properties in natural grassland and aban-
doned arable soil. The relative contribution is based on the effect sizes of the SEM
pathways weighted by the size of the involved microbial parameters (biomass or
the average relative size of the network cluster). Values were corrected for the

number of potential pathways in the SEM to allow for direct comparison of the
variousmicrobial properties. Colours between a and bmatch the fourmain groups
of plant factors considered. In (b), dark colours indicate direct pathways and faded
colours indirect pathways. Note that the strict directionality of the indirect pathway
is a mathematical necessity to test whether soil chemistry is a significant mediator,
but should be interpreted as an interactions as both plants and microbiota influ-
ence soil chemistry. For information on the explicit pathways, see Supplementary
Figs. 11–12. Source data are provided as a Source Data file.
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prokaryote and fungal clusters and generally affected especially
diverse groups of prokaryotes as well as putative soil saprotrophs and
plant pathogens (Fig. 6b; Supplementary Table 8). Interestingly,
almost all affected plant pathogens occurred in a single, dominant
cluster, which was mediated by changes in soil organic C (Supple-
mentary Table 8).

Discussion
Plant community stability is associated with a decoupling in
prokaryote and fungal responses
We tested how plant community stability associated with soil micro-
bial networks. We found that above ground stability was associated to
a decoupling of prokaryote and fungal responses below ground. Soil
abandoned from agricultural practices 60 years before the start of the
13-year long mesocosm experiment had destabilising effects on dry
grassland community plant-soil-microbial networks, compared to
natural grassland soil. This instability was demonstrated by a lower
aboveground temporal stability and a higher success of invading
plants in communities grown on abandoned arable soil, which is in line
with previous studies20,21. Furthermore, in abandoned arable soil,
the dominant fungal and prokaryote network clusters had strong
positive and negative co-occurrences, indicating a joint response to
environmental factors. This responsewas tied to the plant community,
as both the prokaryote and fungal clusters were associated with rela-
tively similar pathways related to plant-soil interactions. These pat-
terns are characteristic for instable networks, as perturbation effects
can easily spread throughout the network, affecting large proportions
of a network rather than just a small section (Fig. 7)11,22. This highlights
the sensitivity of the abandoned arable microbial networks to dis-
turbances and the potential for major restructuring.

In contrast, we found that prokaryote and fungal responses in
natural grassland soil were largely decoupled. The prokaryote and
fungal networks clusters were, for an important part, associated to
separated pathways related to the plant community. This division

likely created separate soil niches for each group22,23, leading to
enhanced resilienceagainst disturbances in the system.Thedecoupled
structure of microbial networks is associated with the ability to buffer
against the spreadof disturbances: a disturbanceaffectingoneor a few
of the microbial clusters will not cascade into affecting unconnected
clusters (Fig. 7; compartmentalization11,22). We conclude that plant
community stability is associated with a decoupling of prokaryote and
fungal responses, which is likely shaped by interactions with the plant
community.

Plant-mediated soil legacies play a key role in decoupling
microbial networks
We show that the soil microbial networks in natural grassland soil were
more strongly associated with past plant community pathways than
the networks in abandoned arable soil. These past plant community
pathways may have separated the responses of prokaryote and fungal
network clusters in natural grassland soil. This suggests that plant-
mediated soil legacies play a crucial role in decoupling fungal and
prokaryote responses, resulting in a more stable soil microbial com-
munity (Fig. 7).

Plant-mediated soil legacies are well-known phenomena and play
a driving role in plant community coexistence, diversity and
succession2–4. We found that plant-mediated soil legacies resulted, for
an important part, from the initial impact of plant species invasion in
2012. In natural grassland soil, drastic increases in plant diversity,
aboveground productivity and changes in plant composition resulted
in numerous changes in putative fungal saprotrophs after the 13th
growing season. Together with the lasting impact of the initial plant
invasion on soil organic C, pH, and total N, our findings suggest that
past invasion pathways were largely due to changes in decomposition
processes. This is consistent with the observed association of these
pathways with fungal networks only, as fungi are well-known for their
crucial role in decomposing plant litter23,24. Furthermore, plant species
litter attracts specific fungal decomposers23,24, which could explain
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Fig. 6 | Summary of the most important SEM pathways. Plant community and
soil chemical factors shaping prokaryote and fungal soil network clusters in (a)
natural grassland soil and (b) abandoned arable soil. Grey arrows indicate pathways
occurring for both prokaryote and fungal clusters, blue arrows pathways unique to
prokaryote clusters and red arrows pathways unique to fungal clusters. Arrow
width indicates the relative contribution of the pathway. Pathways related to plant
community parameters in the year of sampling (2019; top part of figure) and from

the past (2012–2019; bottom part of figures) were considered. Themost important
pathways were defined based on the relative contribution of plant community
parameters (>5% contribution): the effect size of the pathway weighted by the
relative cluster size (Fig. 3). Pathways are grouped and therefore multiple arrows
canoccur if, for example, different compositional axes are involved forprokaryotes
and fungi. For exact statistical values, see Supplementary Data 1.
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why fungal networks were particularly linked to past compositional
pathways in which plant identity plays a key role. In addition, studies
demonstrating a successional transformation of fungal communities
from early to late decomposers suggests that changes in litter input
may result in long-lasting effects23,24. We conclude that litter input and
decomposition processes likely create long-lasting soil legacies critical
for the decoupling of prokaryote and fungal networks, which ensure
network stability (Fig. 7).

We further found that putative plant pathogens were consistently
associatedwithpast plant community pathways in natural grassland soil.
Soil-bornepathogens are increasingly found tobekey toplant stabilising
processes by preventing dominant plant species from outcompeting
less successful plants2–4. In line, we found specific network clusters of
putative pathogens to be increasedwhen early plant speciesmaintained
abundant after the start of plant invasion in 2012. Studies support the
idea that negative soil legacy effects increase in strength with plant
species time since establishment in a new range25,26 and similar temporal
processes have been suggested to occur within plant communities
itself27. In addition, we found generalist pathogens to be increasedwhen
plant species with a high soil resource optima became more abundant
with the start of invasion. This relation aligns with the well-established
trade-off between plant species growth and defence, where species with
high soil resource needs prioritise growth over defence28. Importantly,
the specialisation of putative plant pathogens towards various past
pathways was absent in abandoned arable soil. Instead, almost all
putative plant pathogens were found in a single cluster and associated
with a single past pathway. We therefore conclude that plant-mediated
soil legacyeffects via soil-bornpathogenaccumulation is likely toplay an
essential role in ensuring plant community stability.

Soil chemistry is a critical mediator in coupling microbial
networks
We show that soil chemistry is a key mediator in plant-microbiota
interactions. Interestingly, the position of soil chemistry in mediat-
ing plant community pathways differed between abandoned arable
and natural grassland soil. In abandoned arable soil, soil chemical
changes largely associated with plant community pathways in the
year of sampling, while in natural grassland soil, past plant com-
munity pathways largely mediated soil chemical changes. This dif-
ference likely resulted from the varying extent of soil resource

depletion in the two soils. Natural grassland soil was more depleted
in N and organic C than abandoned arable soil, both at the start of
the experiment and after 13 growing seasons19. This N depletion
leads to a shift towards using more recalcitrant C by soil microbes,
causing soil C depletion and a substantial increase in microbial
network complexity29. Consequently, plants in the year of sampling
could have little impact on overall soil chemistry and past litter
inputs created strong legacies in natural grassland soil. This is in line
with the findings that plant composition in the year of sampling
associatedwithmicrobial communities either through belowground
productivity or direct pathways, which both likely resulted from
interactions with plant rhizodeposits such as root exudates30. We
suggest that soil resource depletion plays amajor role in decoupling
fungal from prokaryote responses by enhancing soil legacy effects.

Contrary to natural grassland soil, plant composition in the yearof
sampling had a significant impact on soil chemistry in abandoned
arable soil. These changes in soil chemistry associated with both pro-
karyote and fungalnetworks, likely coupling their responses.We found
that soil N cycling was increased with a high cover of legumes and a
high cover of high resource optima species (mainly invaded plant
species). Legumes are well-known to enrich N levels in soil through N-
fixation, but increased soil N is also commonly observed when ruderal
plant species invade communities21,31. In the latter case, observed
associations with ammonia oxidising archaea implies a crucial role for
plant-controlled processes such as rhizosphere priming—the accel-
eration of organic matter turnover via root exudation—in enhancing
soil N cycling and coupling prokaryote and fungal networks32,33.
Notably, these same plant compositional pathways were correlated
with a reduction in fungal specialisation and biomass, implying direct
detrimental effects on fungal community complexity. We conclude
that soil chemistry and the ability of plants to influence soil resource
cycling are crucial mediators in the coupling/decoupling of microbial
networks.

Plant diversity decouples soil microbial networks in natural
grassland soil
We show that plant diversity in the year of sampling was a key factor in
shapingprokaryotes and fungal communities in abandoned arable soil.
In addition to reducing bacterial, fungal and AMF biomass, plant
diversity was associated with the dominant prokaryote and fungal

Stability Instability

perturbation

perturbation

ba

Fig. 7 | Conceptual framework reconciling the decoupling of prokaryote and
fungal responses in buffering the propagation of local perturbation effects.
a In stable settings, prokaryotes (circles, black border) and fungi (pentagons, white
border) occur in separate clusters. This separation results from different factors
shaping prokaryote and fungal niches. For example, fungal clusters are for an
important part directly associated with different plant species (colours of fungal
pentagonsmatch colour of the plant species). The resultingmicrobial networks are
likely to buffer local disturbance effects as effects on a subset of the occurring

clusters are not likely to spread to unconnected clusters (red arrows showing the
spread among connected taxa). b In unstable settings, prokaryotes and fungi
respond in tandemand create three dominant clusters. This coupling results froma
few dominant factors shaping both prokaryote and fungal soil network clusters.
The resulting microbial networks are likely to spread disturbance effects
throughout large parts of the network given the high connectiveness of dominant
clusters (red arrows).
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network clusters, thus likely coupling their responses. In contrast, in
natural grassland soil, plant diversity increased fungal diversity and
directly associatedwith fungal clusters only. Given thatwe took six soil
cores from each mesocosm and pooled these, it is likely that plant
diversity pathways related to the extent of spatial heterogeneity of the
communities. Diverse plant communities are inherentlymore spatially
heterogenous above- and belowground, and this is likely to result in
higher fungal diversity, as different plant species have unique asso-
ciated fungi24,34. In other words, a higher fungal diversity would be
observed when sampling at multiple spaces in a diverse plant com-
munity compared to a lowdiverse community. Importantly, spatial soil
heterogeneity has been suggested to be critical in ensuring diversity
and stability in plant communities2,27,35. We suggest that plant diversity
is critical to stability by creating spatial soil heterogeneity and
decoupling prokaryote and fungal networks (Fig. 7).

Our findings in abandoned arable soil suggest that plant diversity
did not lead to the same level of spatial heterogeneity as observed in
natural grassland soil. To understand this, it is important to realise that
plant diversity differences in our communities resulted from local
plant species loss and invasionprocesses over time. As theseprocesses
are non-random, a low plant diversity likely represented a situation in
which certain successful plant strategies dominated, resulting in low
plant functional diversity and low soil multifunctionality36,37. Hence,
plant species in low diverse assemblies on abandoned arable soil likely
affected microbial communities in relative similar ways, resulting in a
coupling of prokaryote and fungal responses, and instable net-
works (Fig. 7).

Conclusion
We found remarkably different topologies in soil microbial networks
in plant communities established on natural grassland soil and plant
communities established on soil abandoned from extensive agri-
cultural practices 60 years before the start of the experiment.
Microbial networks in stable natural grassland soil were largely
decoupled in prokaryote and fungal responses, while prokaryote
and fungal networks in instable abandoned arable soil largely
responded in tandem. We suggest that interactions of microbiota
with plants and soil resource cycling underlie the decoupling of
prokaryote and fungal networks. Plant community and soil chemical
parameters therefore likely provide important, easy to measure
predictors of belowgroundmicrobial network stability of grasslands
globally5. Similarly, plant community and soil chemical factors are
promising aspects to consider in designing plant communities with
decoupling effects on soil microbial networks to increase stability of
agricultural systems38,39. Future challenges lie in connecting plant
and microbial community stability to its driving forces across a
multitude of ecosystems, soil resource conditions, land manage-
ment and perturbation types5,40.

Methods
Experimental design
Experimental plant communities consisting of 44 perennial dry
grassland species were sown in May 2007 (Supplementary Table 9)19.
Plant species were sown in equal proportions with three sowing den-
sities on two soil origins: a dry natural grassland soil (excavated near
Encovany, Czech Republic; 50°31′44.6″N, 14°15′12.6″E) and a soil on
which dry natural grassland was turned into agricultural land, exten-
sively managed and abandoned 60 years before soil was collected
(excavated near Institute of Botany, Czech Academy of Sciences;
50°0′7.11″N, 14°33′20.66″E) (n = 10, 60 plant communities in total;
Supplementary Fig. 13a). The three sowing densities represent 25%,
100% and 400% of the seed density per m-2 as estimated at the natural
dry grassland location19. Despite significant effects of sowingdensity in
the first three years of the experiment19, sowing density did not sig-
nificantly affect above- and belowground plant, microbial and

chemical properties in the current study (data not shown). Sowing
density was therefore incorporated as a random effect rather than a
fixed factor in all analyses.

Plant communities were grown in 90 L mesocosms (diameter
65 cm, height 36 cm) in the experimental garden of the Institute of
Botany, Czech Academy of Sciences19. This location provided similar
environmental conditions to the natural grassland location. Plant
communities did not receive any watering or fertiliser. Only in rare
periods of extreme drought when plants showed signs of wilting,
communities were watered with rain water.

Importantly, mesocosms were regularly inspected and all species
from outside the sown species pool were weeded until September
2011. After this, plant species from the experimental surroundings of
the mesocosms were allowed to invade into the established plant
communities (Supplementary Fig. 13b; Supplementary Table 9).

Seed collection and sowing
Seeds of most of the plant species were collected from the natural
grassland field site and a further 5% were obtained from nearby seed
production fields (Planta Naturalis, Markvartice, Czech Republic).
Seeds of all plant species were sown simultaneously. For this, seeds
were placedon the soil surfaceandgently pressed into the soil to avoid
seeds from blowing away19.

Plant species aboveground proportions
Plant community aboveground biomass was harvested every July and
September from 2007 until 2011. From 2012 onward, aboveground
biomass was harvested only once a year in July. These time points are
similar to management practises at the natural grassland site. Above-
ground biomass was cut off 3 cm above the soil and from 2007 until
2011, biomass was sorted per plant species, dried at 60 °C for at least
48 h, after which dryweight was determined. From 2012 onward, plant
species biomass was estimated by determining the percentile abun-
dance of each plant species per mesocosm andmultiplying this by the
total aboveground biomass cut at 3 cmheight and dried at 60 °C for at
least 48 h. In 2014 and 2015, aboveground biomass was cut, but no
species proportions were determined.

Soil sampling
After the growing season in December 2019, soil cores of 6 cm in
diameter and 36 cm length were taken at six random positions in each
plant community (Supplementary Fig. 13b). Aboveground plant parts
were removed and soil of the six cores was thoroughly mixed by
passing it through a 2mmmesh. Roots that did not pass themeshwere
collected, dried at 60 °C for at least 48 h after which dry weight was
determined. Subsamples from the mixed soils were taken for soil
chemical determination of total nitrogen (N), total andorganic C, plant
available NO3

−, NH4
+ and NO2

−, K, P and pH. Furthermore, subsamples
for analyses of total bacterial, fungal and arbuscular mycorrhizal fungi
(AMF) biomass using PLFA and NLFA analyses were taken as well as for
microbiome community composition analyses using 16S and ITS
amplicon sequencing.

Soil chemical analyses
All soil was sieved on a 2mm mesh an thoroughly mixed. Plant avail-
able nitrogen (N) (mg kg−1 dry soil) was determined by adding 50mLof
0.5MK2SO4 to 5 g of fresh soil, shaking for 30min and filtering the soil
out. NO3

−, NH4
+ and NO2

- concentrations in the filtrate were deter-
mined by Flow Injection Analysis (QuickChem 8000 FIA; Lachat
Instruments, Loveland, CO, USA). Plant available P was determined
following Olsen et al.41. In brief, 5 g air dried soil was extracted with
50mL of 1M NaHCO3 adjusted to pH 8.5 with addition of activated
carbon to eliminate discoloration resulting from humic acid release.
The solution was shaken for 2 h and soil was filtered out. Available P in
the filtrate was determined by the Olsen photometric method (ATI
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Unicam UV 400/VIS Spectrophotometer at 630 nm)41. K was deter-
mined in 5 g air dried soil by shaking with 50mL Mehlich II soil
extraction solution (Hach Lange GmbH, Düsseldorf, Germany) for
30min. Soil was filtered out and and Mg, Ca, and K were measured in
the filtrate using atomic absorption spectrometry (ContrAA 700 with
C2H2-air flame forMgandK, andC2H2-N2O for Ca; Analytik JenaGmbH,
Jena, Germany). Exchangeable pH was measured in a solution of 5mL
in 25mL 0.1M KCl shaken for 30min (WTW Multilab 540; Xylem
Analytics, Weilheim, Germany). Total N, C and organic C were deter-
mined in dried soil ground to <0.1mm particle size using combustion
analyses (FLASH 2000 CHNS/O Analyzer; Thermo Fisher Scientific,
Waltham, MA, USA).

Soil bacterial and fungal biomass
Soil bacterial and fungal biomass was determined using PLFA and
NLFA analysis followingGarcía-Sánchez et al.42. In short, 1 g of fresh soil
taken from the mixed soil cores was freeze-dried in a chloroform-
methanol-phosphate buffer (1:2:0.8, v/v/v)43. Lipids were fractioned
into polar lipids (PLFAs), glycolipids and neutral lipids (NLFAs), using
an extraction cartridge (LiChrolut Si-60; Merck KGaA, Darmstadt,
Germany) and subjected to alkaline methanolysis44. Following Sam-
pedro et al.45, free methyl esters of PFLAs and NLFAs were analysed by
gas chromatography-mass spectrometry (450-GCwith 240-MS ITMass
Spectrometer; Varian Medical Systems Inc., Palo Alto, CA, USA). Total
microbial biomass was estimated by the sum of all PLFA contents.
Bacterial biomasswasbasedon the summedPLFA contents i14:0, i15:0,
a15:0, 16:1ω5, 16:1ω7; 16:1ω9, 10Me-16:0, i16:0, i17:0, a17:0, cy17:0, 17:0,
10Me-17:0, 18:1ω7, 10Me-18:0 and cy19:0, and actinobacterial biomass
based on the summed contents 10Me-16:0, 10Me-17:0 and 10-Me18:0.
Gram-positive and gram-negative bacterial were quantified based on
i14:0, i15:0, a15:0, i16:0, i17:0, a17:0 and 16:1ω7, 16:1ω9, 18:1ω7, cy17:0,
cy19:0, respectively. Fungal biomass was quantified based on PLFA
content 18:2ω6,944 and NLFA 16:1ω5 was used as a marker for AM
fungi46.

16S and ITS amplicon sequencing
All frozen soil samples (250mg each, in duplicates for each sample)
were homogenized and lysed in PowerBead Pro Tubes (Qiagen, Ger-
many) on aVortex adapter. Subsequently, DNAwasextractedusing the
DNeasy PowerSoil Kit (Qiagen, Germany) according to the manu-
facturer’s instructions and eluted in 50 µl of elution buffer. The fungal
internal transcribed spacer of the rDNA (ITS2 rDNA) was amplified
using primers gITS7ngs47 and ITS448. The bacterial 16S rRNA gene (V4
region) was amplified from the same DNA extracts using primers 515f
and 806r49 (see Supplementary Data 2 for primer sequences). All pri-
mers were tagged with sample-specific barcodes of 10–12 bases. PCR
mix was performed in the total volume of 15 µl and contained 0.07 U
Thermo Scientific™ Taq DNA Polymerase, 10x PCR Buffer, 2.5mM
MgCl2, 20 µg BSA (all Thermo Fisher Scientific, Waltham, Massachu-
setts, USA), 0.3mM each dNTP, 0.3 µM of each primer and 1 µl of the
DNA extract. Thermocycling conditionswere 94 °C for 4min, 25 cycles
of 94 °C for 45 s, 52 °C for 60 s and 72 °C for 35 s, followed by 10min at
72 °C. Each DNA extract was amplified in duplicate. PCR products were
visualized on a 1% agarose gel. The pooled duplicates were purified
through columns with the QIAquick PCR Purification Kit (Qiagen, Hil-
den, Germany) according to the manufacturer’s protocol and eluted
into 20 µl of ddH2O. DNA concentrations of the amplicon pools were
quantified using a Qubit 2.0 Fluorometer (Thermo Fisher Scientific)
with High Sensitivity Assay Kit. The purified amplicons were pooled in
equimolar ratios. Both negative PCR controls (with ddH2O instead of a
template) were processed in the same way as the experimental sam-
ples and included into the sequencing library, together with sixty
fungal and sixty bacterial amplicons. The library was sequenced on an
Illumina MiSeq instrument (2 × 250 bp) (SEQme, Dobříš, Czech
Republic).

Plant community diversity and composition
All analyses were performed in R version 3.6.150. Plant community
diversity was calculated based on the Shannon index using the func-
tion diversity of the vegan package51. Plant community temporal sta-
bility was calculated based on the inverse coefficient of variation of
total aboveground productivity over time using the package codyn52.
The first year of data was removed for this calculation as the com-
munities were still establishing, which resulted in a disproportionally
large fluctuation in aboveground productivity (Fig. 1b).

Plant community compositional changes were assessed using
detrended correspondence analysis (DCA). For this, aboveground
biomass of specieswith in total >10observations over all replicates and
all years was analysed using decorana from the vegan package51. To
understand to which general processes the compositional changes
associated, we created a passive overlay of plant species ecological
optima (Czech Ellenberg indicator values for soil nitrogen, moisture
and reaction53) and plant species average residence period (average
year of presence between 2012 and 2019) for DCA scores 1 and 2 using
envfit of the vegan package51 (Supplementary Fig. 1a). Permutations
(999 permutations) were used to test for significance. DCA score 3was
not significantly related to any plant traits (data not shown), but to a
change in legume cover (Supplementary Fig. 1b).

Past plant community parameters
To describe variation in plant community development over time, we
calculated two types of past plant community parameters: the initial
impact of the start of plant species invasion on the plant community
and developmental trajectories after the start of invasion. These two
types of past parameters were calculated for plant community
aboveground productivity, plant diversity (Shannon index) and the
DCA scores 1–3. For the initial impact of plant invasion, we calculated
the difference between parameters values in 2011 (last year without
invasion) and 2012 (first yearwith invasion). This waswith exception of
plant diversity for which drastic changes due to the start of invasion
occurred over a period of two years and the one-year difference did
not relate significantly to any soil or microbial measurements in 2019
(data not shown). Initial invasion impact for plant diversity was
therefore calculated between 2011 and 2013. Developmental trajec-
torieswere calculated as overall increase/decrease trends of eachplant
community parameter from 2012 until 2019. For this, we fitted a linear
model using lm and extracted the beta slope using lm.beta50.

16S and ITS bioinformatics
In total, Illumina paired end sequencing of 120 samples (60 16S and 60
ITS amplicons) and two negative controls yielded 4,261,236 raw
sequences. The data were processed using the pipeline SEED2 ver.
2.1.1b54. First, low-quality sequences were discarded (mean quality
score<30). The readsweredemultiplexed (nomismatch allowed in the
tag sequences) and tag switches (i.e. reads with non-matching tags)
were discarded.

The ITS2 region was extracted from the fungal amplicons using
ITSx ver. 1.0.1155 and sequences shorter than 20bpwere excluded. This
yielded 982 036 sequences which were clustered to OTUs using
UPARSE implementation inUSEARCHver. 8.1.186156 with 97% similarity
threshold (45 480 chimeric sequenceswere excludedduring this step).
The most abundant sequences were selected for each of the resulting
10,685 OTUs. These sequences were checked for their identity via
BLASTn algorithm against the UNITE database ver. 8.357 and non-fun-
gal, no-hit sequences as well as global singletons, doubletons and tri-
pletons were excluded from further analyses leaving 2638 OTUs
represented by 840,206 reads. Six reads detected in the negative
control were subtracted from the corresponding two OTUs across the
dataset. The ecological guilds of the fungal OTUs were parsed using
the database FungalTraits58 at genus and sequence levels. All abundant
OTUs were assigned with high probability.
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Primers were cut from prokaryote reads (1,319,594 reads after
demultiplexing) and sequences shorter than 20bpwere excluded. The
reads were clustered to OTUs using UPARSE implementation in
USEARCH ver. 8.1.186156 with 97% similarity threshold (442,826 chi-
meric sequenceswere excluded during this step).OTUswithn < 5were
discarded. Themost abundant sequenceswere selected for eachof the
resulting 6532 OTUs. These sequences were checked for their identity
via BLASTn algorithm against the RDP trainset 1659. 179 reads detected
in the negative control were subtracted from the corresponding OTUs
across the dataset. OTUs with non-target and no BLASTn hits were
excluded from further analyses leaving 6369 OTUs represented by
841,512 reads.

Microbial community analyses
Significant separation between soil origins was tested with PERMA-
NOVA using adonis from the vegan package51 based on centered log
ratio (clr) transformed read counts and visualised using PCA with the
phyloseq package60. Alpha-diversity (Shannon diversity) was calcu-
lated based on multiple rarefaction (1000 iterations) using the
metagMisc package61. The overlap in OTUs between natural grassland
and abandoned arable soil for prokaryotes and fungi was calculated
using ps_venn62.

For each OTU, we calculated a specialisation index (SI)63. SI of the
ith OTU was calculated as the coefficient of variation minus a correc-
tion for under-sampling of rare OTUs:

SIi =
σi

μi

� �
�

ffiffiffiffiffi
K
Ni

s
ð1Þ

with σi being the standard deviation of the reads of the ith OTU across
all samples, μi being the mean of the reads of the ith OTU across all
samples, K the number of habitat classes (2 soils) and N the total
number of reads of the ith OTU across all samples. Calculations were
based on rarefied read abundances (rarefied to the smallest sample
size: 4517 and 1618 for 16S and ITS, respectively). Average SI of each
samplewas calculated as the community weightedmean of the SI of all
OTUs present in the sample.

Microbial network analysis
We constructed co-occurrence networks across the 30 plant commu-
nities on each soil origin for both prokaryote (bacteria and archaea)
and fungal communities. We first filtered each dataset to exclude rare
OTUs with total <100 reads and OTUs that were present in <5 samples
per soil origin. Co-occurrence networks were then calculated using the
SpiecEasi package64. In brief, networks were inferred based on clr
transformed read counts, neighbourhood selection (MB method) and
we selected optimal stability parameters using the StARS selection
approach (threshold 0.05, nlambda 20 with 999 replications)65. We
clustered similarly responding OTUs in each network using the Spin-
glass algorithm of the igraph package66–69. This approach clusters
OTUs based on both positive and negative edges as well as their
weight. Present and absent edges as well as positive and negative
edges were given a similar importance, and unlimited spins (clusters)
were provided. Relative read counts were summed per cluster per
sample and used in further correlation and structural equation
models (SEM).

We tested whether networks were (i) significantly more or less
densely clustered, and (ii) significantly more or less coupled in pro-
karyote and fungal clusters than based on chance using a null-model
approach. For this, we rewired the original networks edges with pre-
serving the original networks degree distribution using the robin
package70. We (i) calculated the clustering coefficient (modularity),
and (ii) the number of significant correlations occurring between
prokaryote and fungal clusters of 1000 rewired networks. P-values
were calculated as the proportion of randomised (i) clustering

coefficients and (ii) number of significant correlations smaller than in
the original networks3,71.

The coupling/decoupling of prokaryotes and fungi within each
plant community was described by the beta slope of a generalised
linear model (glm) between the summed relative read counts in the
most prevalent prokaryote 1–9 and fungal clusters 1–9. This correla-
tion is valid as cluster assignment within the microbial networks is
based on the order of prevalence of the ASVs in each cluster, hence the
similarity in patterns of cluster sizes that occurred across different
networks (Fig. 3a, b). Summed relative read counts per cluster were ln-
or sqrt-transformed when model residuals did not follow a normal
distribution. The beta slope was extracted using lm.beta50. A positive
value indicates that prokaryote and fungal reads were distributed
similarly over the most prevalent network clusters, and thus, that
prokaryote and fungal responses were coupled. A value of zero indi-
cates that prokaryote and fungal read distribution over the network
clusters was unrelated and thus decoupled. A few weak, negative
correlations occurred and indicate that prokaryote and fungal read
distribution over the network clusters were nearing an opposite pat-
tern. These indicated cases of a strong decoupling of prokaryote and
fungal responses.

Microbial network cluster characteristics
We inferred putative dominant metabolic and functional character-
istics of each microbial network cluster. This was done based on
similarities, if present, in knowledge of the prokaryote or fungal taxa
co-occurring in eachnetworkcluster: putative functionswereobtained
from literature and the FungalTraits database58, relative habitat
specialisation, and enrichment in natural grassland or abandoned
arable soil (Supplementary Figs. 9–10; Supplementary Tables 2–5).
Relative habitat specialisation of network clusters was calculated by
taking the community weighted mean of the SI of each sample in each
cluster (see Microbial community analysis). Relative habitat generalist
clusters were defined as clusters below the community-wide mean SI
without overlap of the maximum distribution (75th percentile + 1.5 *
interquartile range). Relative habitat specialists were defined as clus-
ters above the community-wide mean SI without overlap of the mini-
mum distribution (25th percentile − 1.5 * interquartile range)
(Supplementary Fig. 9)63.

Cluster enrichment in either of the soils was calculated by taking
the ln-response ratio of read counts (rarefied) in natural grassland soil
divided by read counts in abandoned arable soil for each OTU. Net-
work clusters with response ratios above zero and without overlap of
the minimum distribution were defined as enriched in natural grass-
land soil. Network clusters with response ratios below zero and with-
out overlap of the maximum distribution were defined as enriched in
abandoned arable soil (Supplementary Fig. 10).

Overall statistics
Analysis of variances were performed using linear mixed-effects
models in R version 3.6.150. All models in which time (continuous,
scaled) and soil origin were included as an explanatory variable,
included mesocosm and sowing density as random effects to take
repeated measures and initial sowing densities into account. Models
were fitted using lmer of the lme4package72.Mesocosmposition in the
garden had negligible effects, in many cases resulted in overfitting of
the models and was therefore dropped as a random effect.

Correlations between plant, soil chemistry and microbial para-
meters including network clusters were performed using lme of the
nlme package73 and included sowing density as a random factor. For
these multiple correlations, p-values were corrected for multiple
testing using the Bonferroni correction74. In all models, data was ln- or
sqrt-transformed when model residuals did not follow a normal dis-
tribution. In case of heterogeneity of variances, data weighting per soil
origin using varIdent from the nlme package was incorporated75.
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Structural equation modelling
We hypothesised that plant community parameters in the year of
sampling and developmental trajectories in time affected microbial
communities with soil chemical changes as a potentially important
mediator.We used structural equationmodels (SEM)which allowed us
to separate direct pathways between plant communities and soil
microbiota from indirect pathways via soil chemical changes (Fig. 5a).
We note that the directionality of soil chemistry onto microbial com-
munities is amathematical necessity to testwhether soil chemistrywas
a significant mediator. Such pathways should however be interpreted
as an interaction as both soil microbiota and plant communities
influence soil chemistry.

All SEMs were fit using piecewiseSEM76 and lme of the nlme
package73 with initial sowing density as a random effect (n = 30).
Overall model fit was assessed using direction separation tests (d-sep)
based on Fisher’s C statistics with models being accepted if p > 0.1. We
simplified our models using a backward stepwise elimination proce-
dure for which we consecutively removed pathways with the highest
p-value77. Endogenous variables were allowed to drop from the model
in case effects were not significant (p >0.05). The model with the
lowest Akaike information criterion (corrected for small sample sizes;
AICc) was then selected as the best fit base model.

To keep the number of potential pathways relative low and avoid
spurious effects occurring due to correlating exogeneous variables,we
first calculated three base models for each soil origin78. These three
base models captured effects of the plant community onto soil che-
mical changes after the 13th growing season of (a) the plant commu-
nity in the year of sampling (aboveground productivity, plant diversity
and plant compositional DCA axes 1–3), (b) overall effects of the plant
community from the past (initial invasion effect on plant diversity,
abovegroundproductivity and plant diversity trajectories in time), and
(c) plant compositional effects from the past (invasion effect size on
plant compositional DCA axes 1–3, plant compositional DCA axes 1–3
trajectories in time). All base models included the same soil chemical
parameters: total soil N, organic C and pH, and plant available P, NO3

−,
NH4

+, NO2
− and belowground productivity. The three base models

were then combined. Eachmicrobial network cluster (summed relative
reads per 16S or ITS cluster from the calculated co-occurrence net-
works per soil origin), bacterial, fungal and microbial biomass (PLFA/
NLFA analyses) as well as alpha-diversity indices and average SI of the
microbial communities were ran through the SEM model as the final
parameter to be estimated. Per run, one microbial parameter was
considered, which could be affected either directly by the plant com-
munity parameters or indirectly via soil chemical changes. Each run, a
backward stepwise elimination procedure to consecutively remove
non-significant pathways was followed in the same way as performed
for the base models77. All microbial variables not following a normal
distribution were ln- or sqrt-transformed.

Relative contribution calculation
We created 64 unique SEM models (3 microbial biomass pools nat-
ural grassland soil + 3 microbial biomass pools abandoned arable
soil + 9 16S clusters natural grassland soil + 10 16S clusters aban-
doned arable soil + 21 ITS clusters natural grassland soil + 18 ITS
clusters abandoned arable soil). We extracted the direction and
effect size of each significant pathway of each model (p < 0.05) and
calculated the contribution of each plant parameter to changes in
microbial biomass and microbial co-occurrence clusters. For each
significant, direct plant-microbial pathway, we multiplied the path
effect size with the relative size of themicrobial pool or cluster it was
affecting. This multiplication sized the pathway effect to its relative
importance to the microbial community as a whole. For indirect
pathways, we multiplied the effect size of the plant parameter onto
the soil chemical variable with the effect size of the soil chemical
variable onto the microbial variable. The obtained effect sizes were

scaled to the relative size of the microbial variable they were
affecting using community weighted means.

To create an overview of all effects, the relative contribution of
each plant parameter per microbial variable was summed per group:
all combinations of plant parameters in the year of sampling versus
past parameters, overall versus compositional parameters, and direct
versus indirect pathways (Fig. 5a). These grouped effect sizes were
scaled to the number of potential pathwayswithin each group to allow
a direct comparison of the relative contribution of each plant para-
meter group (Fig. 5b).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All raw data generated in this study have been deposited in the Zenodo
digital data repository (https://doi.org/10.5281/zenodo.6695065)79. The
raw microbial sequencing data generated in this study have been
deposited in the NCBI SRA database under BioProject ID PRJNA931221.
Fungal trait data is publicly available via the FungalTrait database58. Czech
Ellenberg values for flora are publicly available via Chytrý et al. 53. Source
data are provided with this paper.

Code availability
All R scripts are publicly available via Github (https://doi.org/10.5281/
zenodo.8032393)80.
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