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Cell-attribute aware community detection
improves differential abundance testing
from single-cell RNA-Seq data

Alok K. Maity1 & Andrew E. Teschendorff 1,2

Variations of cell-type proportions within tissues could be informative of
biological aging and disease risk. Single-cell RNA-sequencing offers the
opportunity to detect such differential abundance patterns, yet this task can
be statistically challenging due to the noise in single-cell data, inter-sample
variability and because such patterns are often of small effect size. Here we
present a differential abundance testing paradigm called ELVAR that uses cell
attribute aware clustering when inferring differentially enriched communities
within the single-cell manifold. Using simulated and real single-cell and single-
nucleus RNA-Seq datasets, we benchmark ELVAR against an analogous algo-
rithm that uses Louvain for clustering, as well as local neighborhood-based
methods, demonstrating that ELVAR improves the sensitivity to detect cell-
type composition shifts in relation to aging, precancerous states and Covid-19
phenotypes. In effect, leveraging cell attribute information when inferring cell
communities can denoise single-cell data, avoid the need for batch correction
and help retrieve more robust cell states for subsequent differential abun-
dance testing. ELVAR is available as an open-source R-package.

Detecting shifts of cell-type proportions in relation to aging, exposures
or disease risk factors is an important task to improve our under-
standing of disease predisposition and disease onset1. Single-cell
technologies, and single-cell RNA sequencing (scRNA-Seq)2 in parti-
cular, offer the opportunity to detect suchdifferential abundance (DA)
patterns, but this task can be statistically challenging3. One key chal-
lenge is that, almost inevitably, any assessment of DA across biological
conditions entails a comparison of cell-type numbers from assays
performed in different subjects. Thus, biological inter-subject varia-
bility, aswell as technical batch effects, can potentially confound naïve
DA-analyses4. Technical batch effects can be addressed by performing
scRNA-Seq assays in a number of different subjects representing the
same biological condition, called sample replicates. Using such bio-
logical replicates also helps gauge the biological inter-sample varia-
bility, which can be substantial. For instance, it is now well recognized
that different individuals may age at different rates5, and that such

variations in biological agemay be associated with underlying shifts in
T-cell proportions6. Thus, taking inter-sample variability into account
is critically important when testing for DA. Another major challenge is
that DA-patterns of interest are often sought across biological condi-
tions (e.g. aging or exposure to other disease risk factors) that only
induce relatively small shifts in the proportions of very similar cell
subtypes. While scRNA-Seq technology and standard clustering
approaches allow relatively easy discrimination of major cell-types
(e.g. fibroblasts, epithelial cells, T-cells), the discrimination of cell
subtypes such as naïve vsmemoryT-cells, or the discrimination of cells
according to a biological condition such as age or disease risk, is more
challenging due to the small effect sizes involved and the noisy nature
of single-cell data. Thus, it is critically important to devise methods
that can robustly identify relevant cell-states in the backgroundof such
noisydata, to ensure that the subsequent quantification ofDA-patterns
is reliable.
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In response to these challenges, various statistical DA-testing
algorithms have been proposed7–12, with some of the more recent
methods (e.g. refs. 10–12) taking sample replication into account. DA-
testing algorithms also differ in terms of whether they use the full
single-cell state manifold13,14 when inferring DA or not. At one extreme
we have DA-testingmethods that only rely on the discrete cell clusters
and cell-type annotation derived from the scRNA-Seq data1,3,11,12,15,
whilst at the other extreme we have methods that make full use of the
manifold structure7,10. These latter studies have advocated the need to
estimate DA from fuzzier representations of cell clusters, known as
cellular neighborhoods, in recognition of the fact that cells generally
only cluster by broad cell-types and not by underlying biological
conditions or cell subtypes7,8,10. Indeed, although clustering-based
approaches have been successful in identifying cell subtypes or rare
cell-types3, the defining characteristic of these subtypes is their low
proportion and moderate effect sizes, whilst DA-testing is often nee-
ded in the context of more abundant cell subtypes defined by much
smaller effect sizes. We reasoned that if cell clustering algorithms
could be generalized to take cell attribute information into account,
for instance, a cell’s biological condition such as age or disease stage,
that this would improve the signal-to-noise ratio, and, in so doing,
allow retrieval of more biologically relevant clusters and robust cell-
states. In support of our hypothesis, we note that clustering graph
nodes by taking node-attributes into account has been a fruitful
approach in network science generally16. Hence, this node-attribute-
aware clustering paradigm ought to be beneficial for tackling the
uncertainties and noise associated with single-cell omic data. More-
over, cell attributes themselves often encode information that is part
of the intrinsic process that generates cell communities, so not using
such information in noisy data may lead to incomplete or imprecise
clusters. A final reason to consider cell-attribute aware clustering is
that it can help discern cell communities that are shared across sample
replicates, and which are therefore more likely to be biologically
relevant.

To test our hypothesis, we here adapt a node-attribute aware
community detection algorithm called EVA17, which is a generalization
of the very popular Louvain clustering method18. Of note, despite
Louvain’s great popularity in the single-cell analysis field3, the Louvain
algorithm only takes the topology of the cell-cell similarity graph into
account when inferring cell communities. EVA can be viewed as a
direct extension of the Louvain algorithm allowing multiple cell attri-
butes to be incorporated when inferring communities. This novel
concept allows clustering of cells, not only by similarity in the high-
dimensional state-space, but also by how similar their attributes (e.g.
age, disease stage) are. Here we develop a novel R-implementation of
EVA and incorporate it into a complete algorithmic pipeline for DA-
testing called ELVAR.We subsequently validate ELVAR very extensively
on both simulated as well as real datasets, demonstrating improved
sensitivity over competing methods.

Results
Rationale of ELVAR algorithm
Detecting shifts in cell-subtype proportions across different biological
conditions fromscRNA-Seqdata canbe challengingwhen these factors
drive only a small fraction of the overall data variance. Indeed, with
scRNA-Seq data, cells generally cluster by the main cell-types present
in a tissue, for instance, epithelial, immune and fibroblast types.
However, more refined clusterings that clearly discriminate cells
according to subtypes (e.g. different CD4+ T-cell subtypes) or biolo-
gical conditions that only cause a relatively small change in the tran-
scriptome of cells (e.g. age of a cell) are less forthcoming. In effect, this
challenge arises whenever relevant components of biological variation
carry similar or less variance compared to technical factors, thus pre-
venting the segregation of cells by biological condition or subtype.We
hypothesized that DA-testing would benefit from a procedure that can

more reliably identify relevant cellular states and that this could be
achieved if clustering analyses were to include cell-attributes into
account when inferring cellular communities. Specifically, following
standard dimensional reduction and inference of a cell-cell nearest
neighbor graph (Fig. 1a)19, we posited that more relevant cell com-
munities could be identified if the inference of clusters in this graph
were to use cell-attribute information, since thiswould favor clustering
solutions where cells within communities are predominantly of one
biological condition or subtype. To test our hypothesis, we adapt an
extension of the popular Louvain algorithm, called EVA17, which unlike
Louvain, aims tomaximize an objective function that includes a purity
index besides modularity. This purity index measures how homo-
geneous inferred communities are in relation to some particular cell-
attribute (e.g. age or disease stage). Henceforth, we shall refer to the
cell-attribute used in the purity calculation as the “clustering attri-
bute”. The EVA algorithm also includes a purity parameter “a” that
controls the relative importance of purity over modularity when
inferring communities (Fig. 1b). For a given cell-attribute value, com-
munities enriched for cells taking on that value can subsequently be
identified (Fig. 1c). Of note, whilst these communitiesmay contain cells
from multiple sample replicates, we do not impose this, safeguarding
flexibility and power. If cells have an additional attribute, called
the attribute of interest (e.g. differentiation-state or cell-subtype),
negative binomial regressions (NBRs) can then be used to assess if
the proportions of this attribute of interest changes across the clus-
tering attribute representing distinct biological conditions (i.e. age or
disease stage)10 (Fig. 1d). We implement the whole DA-testing pipeline
(including the cell-attribute-aware clustering and NBR steps) in the
programming language R, calling the resulting algorithm ELVAR
(Extended LouVain Algorithm for DA-testing in R)20.

Validation of EVA and ELVAR on simulated data
In order to test our R-implementation of EVA, we devised a simulation
model based on scRNA-Seq data from the Tabula Muris Senis (TMS)21,
consisting of 200 scRNA-Seqprofiles representing classicalmonocytes
from one particular mouse, with 100 cells defining a perturbed state
(P) and the remaining 100 representing an unperturbed normal (N)
condition (Methods). We simulated differences in gene expression
between the two conditions to be subtle, only involving 0.2% of all
genes. Dimensional reduction and visualization with t-stochastic
neighborhood embedding (t-SNE) did not reveal any clustering struc-
ture except for the distinctively non-random distribution of
perturbation-state within the main cluster (Supplementary Fig. S1a).
Louvain clustering over the cell-cell nearest neighbor graph in the
higher dimensional statemanifold revealed amore complex clustering
structure with nine clusters that globally correlated with perturbation
state (Supplementary Fig. S1a). Applying EVA for a range of different
purity parameter values (Supplementary Fig. S1b) revealed stronger
correlations with perturbation state, as evaluated using the adjusted
Rand Index (ARI) (Supplementary Fig. S1c) or with Chi-Square statistic
P-values (Supplementary Fig. S1a), albeit only for larger purity para-
meter values. Restricting to EVA solutions with the same number of
inferred communities as Louvain (n = 9), also displayed improved ARI
andmore significant chi-square statistic P-values compared to Louvain
(Supplementary Fig. S1d). We verified that the improvement of EVA
over Louvain was independent of the resolution parameter, which, in
addition to the purity parameter, also controls the number and size of
inferred communities (Methods, Supplementary Fig. S2).

To validate ELVAR, we generalized the above simulationmodel to
include cells from different age groups andmultiple mouse replicates,
and by increasing the frequency of the perturbation state between
young and old groups in order to simulate age-related differential
abundance (Fig. 2a). Using a well-defined set of criteria that balances
purity, modularity and cluster number (Methods), we identified a
purity parameter value a = 0.8 as the optimal choice for EVA in this
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dataset (Fig. 2b). EVA inferred enriched age-related communities
from the nearest neighbor cell-cell graph (Fig. 2c), and using
negative binomial regressions to account for inter-mouse replicate
variation, we correctly inferred the expected increase of the pertur-
bation state fraction with age (Fig. 2d, e). Importantly, statistical sig-
nificance attained by ELVAR was stronger compared to analogous
algorithms that use either the sequential (deterministic) or non-
sequential (stochastic) Louvain algorithm instead of EVA (Fig. 2e,
Methods). Of note, whilst this improvement comes at the expense of a
higher computational complexity, EVA/ELVAR runtimes are feasible
for reasonably sized cell-cell networks (Supplementary Fig. S3). For
instance, for a network with approximately n = 30,000 cells, EVA/
ELVAR runtime (1 run) on a typical professional workstation takes
around 15–20min.

ELVAR improves sensitivity to detect DA-shifts in real scRNA-
Seq datasets
Having demonstrated ELVAR’s improved sensitivity for DA-testing on
simulated scRNA-Seq data, we next aimed to validate ELVAR on real
data, and to test if similar improvements over the Louvain-benchmark
are also seen in real data.We first considered the case of aging in Cd4+
T-cells. As described by several studies, the naïve subset of Cd4+
T-cells in blood decreases with age, contributing to the well-known
phenomenon of immuno-senescence6,22. Hence, ELVAR should be able
to predict an analogous age-related shift from naïve Cd4+ T-cells to
the more mature subtype in tissues with significant amount of

immune-cell infiltration, such as lung23. To this end, we considered the
lung-tissue 10X scRNA-Seq dataset from the Tabula Muris Senis21,
due to ample profiling of Cd4+ T-cells in this tissue across at least 5 age
groups, ranging from one-month (1m) to 30 month-old mice (30m).
After QC, a total of 537 Cd4+ T-cells from 11 mice remained, their ages
being distributed as 143 (1m), 122 (3m), 67 (18m), 107 (21m) and
98 (30m). Cells from any given age-group were derived from at least
twomice (SupplementaryData 1), allowingus to take sample variability
into account. Of the 537 Cd4+ T-cells, 186 were identified as being in
the naïve state due to expression of Lef1, a well-knownmarker for naïve
Cd4+ T-cells22. We used Seurat to perform feature selection, dimen-
sional reduction and visualization (Methods), resulting in two broad
clusters that correlated with age and Cd4+ T-cell subtype (Fig. 3a).
Thus, this represents an “easy” scenariowhere ELVAR should be able to
predict the expected shift to amoremature Cd4+ T-cell phenotype. As
before, we ran ELVAR 100 times for each of 9 choices of the purity
parameter value (range: a =0.1 to a = 0.9), and using the same selec-
tion criteria as with our simulation model (Methods), we identified an
optimal value of a = 0.8. We note that at this value, the number of
inferred communities increased appreciably relative to Louvain, that
purity was relatively close to the maximum, and that modularity
remained relatively high (Fig. 3b). For each age group and for each of
the 100 runs at this optimal a =0.8 value, ELVAR communities enri-
ched for cells from that age-groupwere identified (Methods, Fig. 3c, d).
Ignoring sampling variability revealed a significant skew towards lower
naïve cell-fractions in oldermice (Fig. 3e). Takingmouse replicates into
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Fig. 1 | Flowchart of ELVAR algorithm. aGiven a scRNA-Seq datamatrix with cells
derived from various conditions (e.g. age-groups), one first derives a cell-cell
similarity graph using standard pipelines like Seurat. Cells may also differ in terms
of an attribute of interest (e.g. cell state or cell subtype) and the sample replicate it
is derived from. b To infer communities from this cell-cell graph, we use an
extended Louvain algorithm (EVA) which, unlike the standard Louvain algorithm,
takes cell attribute information into accountwhenderiving the communities. In this
case, the cell-attribute used in the clustering (the clustering attribute) could be the
biological condition it is derived from, in which case the inferred communities will
be more enriched for cells of the same condition, as shown. Compared to the
standard Louvain algorithm, which aims to maximize the overall modularity Q of

the communities, EVA aims tomaximize a weighted sumofQ and the overall purity
P (ameasure of how pure the communities are in relation to the conditions). The a
parameter controls the relative importance of Q and P when maximizing the
objective function Z. c EVA communities that are significantly enriched for cells
from a particular condition are selected for further downstream analysis, thus
removing noisy cellular neighborhoods. d For a given condition, cells from all
communities enriched for that condition are merged and the distribution of
underlying cell-states from each sample replicate are computed. Finally, negative
binomial regressions are used to infer if given cell-state fractions (the attribute of
interest) vary significantly with condition, whilst taking sampling variability into
account.
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account revealed the same skew independently of mouse-ID (Fig. 3f).
To confirm this, we ran negative binomial regressions, which revealed
highly significant and robust negative and positive associations for
naïve and mature Cd4t cells, respectively (Fig. 3g). Hence, this con-
firms that the age-associated shift from naïve to mature Cd4t-cells is
also present in lung tissue. Importantly, the associations of T-cell
subfractions with age as obtained with ELVAR were significantly
stronger than those obtained with the benchmark, i.e. with the ana-
logous algorithm that uses the non-sequential Louvain algorithm in
place of EVA (Fig. 3g, Methods).

Using the same lung-tissue data from the TMS21, we also tested for
age-associated differential abundance of alveolar macrophage M1/M2
polarization subtypes (Methods, Supplementary Data 2). A lowerM1 to
M2 ratio has beenproposed tobea signatureof lung cancer risk24–26. By
applying ELVAR with age as the clustering attribute and macrophage
polarization as the attribute of interest, we were able to detect a lower
M1/M2 ratiowith increased age (Supplementary Fig. S4), whichwas not
evident when using the Louvain algorithm in place of EVA (Supple-
mentary Fig. S4).

To demonstrate that ELVAR can detect disease relevant DA-shifts
in other cell-types and biological conditions, we next considered two
Covid-19 scRNA-Seq datasets27,28. Chua et al. profiled single cells in
nasopharyngeal swabs from moderate and critically ill COVID-19
patients27 (Methods). After QC, we retained ~13,500 immune cells
encompassing 9 cell-types derived from 7 moderately and 11 critically
ill patients (Methods, Supplementary Data 3). We applied ELVAR (100
runs) with disease severity as the clustering attribute to each of the 9
cell-types to determine if their abundance changes betweenmoderate
and severeCovid-19 cases. This confirmed an increased neutrophil and
decreased monocyte-derived dendritic cell (moDC) counts in severe

cases (SupplementaryFig. S5). Using Louvain insteadof EVA resulted in
similar levels of statistical significance for neutrophils but less sig-
nificant levels for moDCs (Supplementary Fig. S5). Finlay et al. profiled
single-cells in the olfactory epithelium (OE) of Covid-19 patients who
experienced long-term smell-loss (hyposmic) and those who did not
(normosmic)28. After QC, we retained 11,173 relevant cells encom-
passing 5 cell-types (olfactory sensory neurons, sustentacular, Bow-
man glandular cells, microvillar and horizontal basal cells (HBCs)),
derived from 5 hyposmic and 5 normosmic Covid-19 cases (Methods,
Supplementary Data 4). We applied ELVAR (100 runs) to detect cell-
types displaying DA in relation to the smell-loss phenotype, which was
thus used as the clustering attribute. This revealed significantly
decreased olfactory sensory neuron and increased microvillar counts
in hyposmic cases (Supplementary Fig. S6a–c). However, in this data-
set the degree of statistical significance attained by ELVAR was similar
to the Louvain-benchmark (Supplementary Fig. S6c).

In summary, the analyses performed on these 4 scRNA-Seq data-
sets demonstrate (i) the ability of ELVAR to detect differential abun-
dance patterns in relation to age and Covid-19 phenotypes, (ii) that in
general ELVAR displays improved sensitivity over an analogous algo-
rithm that uses Louvain in place of EVA, and thus (iii) that this
improvement is solely due to the incorporation of cell-attribute
information when inferring cellular communities.

ELVAR predicts an increased stem-cell fraction in polyps from
snRNA-seq data
We next applied ELVAR to a single-nucleus RNA-Seq (snRNA-Seq)
dataset of colon cancer progression, encompassing normal samples
from healthy individuals (N), normal samples from unaffected familial
adenomatous polyposis (FAP) cases (A), polyps from predominantly
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replicates per age-group. In the right panel, cells are annotated by perturbation
state, where the frequency of cells being in the perturbed (P) state increases from
0.25 in young mice (1 & 3m) to 0.5 in old mice (21 & 30m). b Left: Boxplots
displaying the ratio of the number of clusters inferred with EVA to the corre-
sponding number inferred with Louvain (nC[EVA]/nC[LV], y-axis) for a range of
different purity parameter values (x-axis). A total of n = 100 EVA runs weremade at
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annotated by age-group. Right panel: confusion matrix between the communities
inferred with EVA (same run) and age-groups, with the number of cells and one-
tailed Binomial test P-value of enrichment shown. Significance is assessed using
Bonferroni adjustment at 0.05 level. d Barplot (top panel) displays the number of
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from EVA communities enriched for specific age-groups (same run as in c). Barplot
in lower panel displays the ratio N/P for each mouse replicate and age-group.
e Violin plot compares the statistical significance (y-axis, -log10P) of P-values from a
negative binomial regression of perturbed cell number against age-group as
derived from ELVAR (100 runs) against the corresponding statistical significance
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values from LVnonseq. Source data are provided as a Source Data file.
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FAP cases (P) and colorectal cancer adenomas (A), encompassing over
200,000 cells29.We asked if ELVAR coulddetect cancer-associatedDA-
shifts in the stem-cell and T-regulatory cell populations, because in the
original study by Becker et al.29 an increase in the epithelial stem-cell
and regulatory T-cell fractions was only observed when analyzing
scATAC-Seq data, and not when analyzing the snRNA-Seq data itself
which displayed very high (97–99%) sparsity. We reasoned that
ELVAR’s improved sensitivity would allow detecting these shifts from
the snRNA-Seq data itself. To ensure robustness, we performed the
analysis in two independent ways (Methods). In the first approach, we
restricted to a subset of samples for which the QC processing and cell-
type annotation was already provided in the original study29 (Supple-
mentary Data 5-6). Applying ELVAR (100 runs) to the cell-cell similarity
graphs with disease stage as the clustering attribute, derived sepa-
rately for enterocytes and lymphocytes, revealed statistically

significant progressive increases in the stem-cell and regulatory T-cell
fractions, despite the relatively small numbers of samples (Fig. 4). Of
note, the statistical significance levels of these DA-shifts were much
stronger for ELVAR compared to the analogous method that uses
Louvain instead of EVA (Fig. 4f). In fact, when using Louvain instead of
EVA we did not observe a clear increase of regulatory T-cells, further
attesting to the improved sensitivity of a cell-attribute aware clustering
method.

In the second approach, and with the aim to increase sample size,
we re-analyzed the full snRNA-Seq dataset, performing QC and rean-
notating cells into broad enterocyte, goblet, immune-cell, stromal and
endothelial cell categories (Methods). Briefly, to annotate, we identi-
fied broad cell-types using only normal samples and well-known cell-
type specific markers, to subsequently build an mRNA expression
reference matrix, which was then used in a robust partial correlation
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displaying the purity of the clusterings. Lower panel: As top-panel but now with
y-axis displaying the modularity of the clusterings. Boxplot elements indicate
median, interquartile range (IQR) and whiskers extend to 1.5 times the IQR. c Left
panel: Cell-cell nearest neighbor graph inferred using Seurat, with cell colors
indicating the inferred EVA communities from one typical run. Right panel: as left-
panel, but with cells now colored by age-group.dMatrix entries give the number of
cells per EVA-cluster and age-group,with color indicating the P-value of enrichment

from a one-tailed Binomial test, for one particular run. For a given age-group, only
cells from enriched clusters are taken forward using a Bonferroni-adjusted
threshold (typically around 0.001). e Barplot displaying the number of mature and
naïveCd4t cells per age-grouponlyusing enriched clusters fromd. P-value is froma
two-tailed Fisher-test. f Barplots display for each mouse-replicate the ratio of naïve
to mature Cd4t cells. g Violin plots displaying the z-statistics (n = 100 runs, i.e each
violin contains 100 datapoints) derived from the negative binomial regression for
the case of naïve and mature cell-type fractions. The gray dashed lines indicate the
level of statistical significance (P =0.05). The violin plots and displayed P-values
compare the z-statistics of ELVAR to the corresponding z-statistics derived from
using the non-sequential Louvain algorithm (LVnonseq) in place of EVA. P-values
derive from a one-tailed Wilcoxon rank sum test. Source data are provided as a
Source Data file.
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framework30,31 to annotate all cells from all disease stages (Methods).
Only cells that were confidently annotated into one of the broad
categories were taken forward for further analysis (Methods). Whilst
the high sparsity of the snRNA-Seq data precluded reliable annotation
of T-regulatory cells, in the case of stem-like cells, weapplied a recently
validated single-cell transcription-factor (TF) regulon-based method
called CancerStemID32, that first estimates differentiation activity of
colon-specific transcription factors (TFs)33 across all cells, subse-
quently identifying stem-like cells as those displaying the lowest
average differentiation activity (Methods). We observed that the
average differentiation activity of the colon-specific TFs decreased
during cancer progression (Supplementary Fig. S7a). In total, we
identified 38,667 stem-like and 65,432 non-stem cells, with the stem-
like cells displaying much lower levels of differentiation activity
(Supplementary Fig. S7a). Next, we applied ELVAR (100 runs) with
disease stage as the clustering attribute (Supplementary Fig. S7b).
Alluvial plots indicated that inferred communities enriched for disease
stages were also predominantly associated with either stem or non-
stem cells (Supplementary Fig. S7c). ELVAR confirmed an increase in
the stem-cell fraction, whichwas particularly pronounced at the polyp-
stage (Supplementary Fig. S7d), and which was further validated using
NBRs to account for inter-subject variability (Supplementary Fig. S7e).

In summary, these results demonstrate that ELVAR is able to detect
shifts in relevant cell-states from snRNA-Seq data, thus extending and
confirming earlier findings derived from scATAC-Seq data29.

ELVAR compares favorably to non-clustering based DA-testing
methods
Havingdemonstrated that ELVARcan successfully detectDAof various
cell-types in different biological contexts and that the cell-attribute
aware clustering step improves the sensitivity of the procedure, we
next compared ELVAR to two competing non-clustering based meth-
ods called DA-seq7 andMilo10. Of note, althoughDA-seq andMilo allow
DA to be assessed in relation to one main cell-attribute, they do not
explicitly allow assessment of DA of additional cell-attributes (e.g. cell-
types) relative to the main one. Thus, in order to compare ELVAR to
DA-seq andMilo in their ability to detect DA of cell-types in relation to
a biological condition such as age or disease stage, we adapted the
DA-seq and Milo algorithms to this particular DA-task (Methods). We
applied these two methods in the context of all previously analyzed
datasets including the lung-tissue Cd4t-cell and alveolar macrophage
TMS scRNA-Seq data, the two Covid-19 related scRNA-Seq sets and the
colon enterocyte snRNA-Seqdataset. ELVAR attained stronger levels of
statistical significance compared to DA-seq or Milo (Fig. 5a, c, e, g, i).

A

N

P

U

1
2
3

4
1011

12

131415

16

5

6

7

8

9

Stem

Nonstem

0

2000

4000

6000

Stage ELVAR-clusters Cell State

C
ou

nt

A
N

P

U

1
2

3
4

10

11

12

13
14

5

6
7
8

9

Tregs

NonTregs

0

2000

4000

6000

Stage ELVAR-clusters Cell State

C
ou

nt

Stage

fS
te

m
C

el
l

N U P A
0.0

0.2

0.4

0.6

0.8 P= 1e-3

Stage

fT
re

gs
C

el
l

N U P A

0.0

0.1

0.2

0 .3
P= 6e-3

ELVAR-cluster ELVAR-cluster d)

e)

b)

f)

0

5

10

 Stem  Tregs

z[C
ell

Ty
pe

 ~
 S

ta
ge

]

ELVAR

LVnonseq

P= 2e-15

P= 7e-12

a)

Stage

Cell State

c)

Stage

Cell State

(n=100) (n=100)
(n=2) (n=4) (n=8) (n=2) (n=2) (n=4) (n=6) (n=2)

Fig. 4 | ELVAR predicts increased stem-cell and T-regulatory cell fractions in
polyps. a Top panel: The cell-cell similarity graph inferred using Seurat on scRNA-
Seq data with epithelial enterocyte lineage cells annotated by community mem-
bership, as inferred using ELVAR. Middle and lower panels depict the same graph
but with cells annotated by disease stage (N= normal, U = unaffected, P = polyp,
A = adenoma) and cell-state. Data is shown for one representative ELVAR run.
b Alluvial plot displaying composition of ELVAR communities according to disease
stage and cell-state. c As a but for lymphocyte-cells in colon tissue. d As b but for
the lymphocyte cells in colon-tissue. e Boxplots displaying the stem-cell (left panel)
and T-regulatory cell (right panel) fraction as a function of disease stage,

considering only cells that are part of significantly enriched ELVAR-clusters. P-value
derives from a two-sided linear regression. Boxplot elements indicate median,
interquartile range (IQR) and whiskers extend to 1.5 times the IQR. f Violin plots
comparing ELVAR to the analogous DA-testing algorithm that uses non-sequential
Louvain in place of EVA (“LVnonseq”). The y-axis labels the corresponding
z-statistics from negative binomial regressions (100 runs each) of stem-cell or
T-regulatory cell counts against disease stage. Gray dashed line indicates the
P =0.05 significance level. P-values shown derive from a one-tailed Wilcoxon rank
sum test comparing the ELVAR z-statistic distribution to the one derived using
“LVnonseq”. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-39017-z

Nature Communications |         (2023) 14:3244 6



For instance, whilst all 3 methods correctly predicted an age-related
decrease of naive Cd4t cells, DA-seq and Milo only attained marginal
levels of significance, in contrast to the much stronger levels of sta-
tistical significance obtained with ELVAR (Fig. 5a). More strikingly, the
increased stem-cell and T-regulatory fractions with colon cancer pro-
gression was not evident at all when usingMilo and only marginally so
when using DA-seq (Fig. 5e). Likewise, in the Covid-19 datasets, the
associations were much stronger for ELVAR, marginally significant for
Milo, whilst DA-seq did not achieve significance (Fig. 5g–i).

We reasoned that the improved sensitivity of ELVAR may be
related to its ability to capture larger communities specifically enri-
ched for cells representing the various biological conditions. To test
this, we computed the fraction of captured cells for each biological
condition, defined as cells of a given condition that belong to com-
munities (ELVAR) or cellular neighborhoods/regions (Milo/DA-seq)
significantly enriched for that condition (Methods). Supporting
our hypothesis, we observed that ELVAR captured significantly more
cells from each biological condition compared to Milo or DA-seq
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(Fig. 5b, d, f, h, j). It is noteworthy for instance, that in the case of Cd4t-
cells, ELVAR’s improvement over Milo and DA-seq was specially pro-
nounced for the oldest age-groups (30m), whilst there was no
improvement for the intermediate group (18m). This supports the
view that Milo and DA-seq struggle to capture larger communities of
old cells, probably due to these cells displaying higher heterogeneity
and therefore less prone to cluster together in local neighborhoods. In
contrast, by incorporating age as a cell-attribute when inferring com-
munities, ELVAR is able to extend its’ influence beyond the local
neighborhoods to capture larger clusters of old cells, thus improving
power and facilitating the detection of age-related shifts in underlying
cell-states. We note once again that although this improvement in
power over DAseq and Milo comes at the expense of increased run-
times when compared to Milo, that ELVAR runtimes remain very fea-
sible (Supplementary Fig. S3).

ELVAR is robust to batch effects and false positives in cell-type
annotation
Finally, we assessed ELVAR’s performance in relation to batch effects
and false positives in cell-type annotation. We reasoned that in the
context of DA-testing, sample batch correction may not always
improve the signal-to-noise ratio (SNR) because sample is correlated
with the biological condition of interest. We further reasoned that
ELVAR, by virtue of using the biological condition as the clustering
attribute, can help circumvent batch effects by drawing-in together
cells from different samples/batches but same biological condition.
Using the previously analyzed datasets, we thus compared ELVAR’s
DA-test z-statistics for three different scenarios: (i) no batch correc-
tion, (ii) prior batch-correction with Harmony34 and (iii) prior batch
correction with Seurat19. In general, we observed that ELVAR’s per-
formance was relatively robust to whether prior batch correction is
performed (Fig. 6a–d). Importantly, the degree of statistical sig-
nificance was generally speaking higher without prior batch correc-
tion, although this was study-specific (Fig. 6a–d). In fact, for those
datasets and cell-types (e.g. sensory neurons in Fig. 6c) where prior
batch correction improved significance levels, the improvement itself
did in general not alter the sensitivity to detect significant changes (Fig.
6a–d). This is because in these scenarios the DA-shifts were substantial
in terms of effect size. Hence, these results confirm the view that in
cases where DA-shifts are of smaller effect size, batch correction may
further reduce the SNR, and hence that using ELVAR without prior
batch correction may improve power.

Since cell-type annotation is an error-prone procedure, we also
assessed ELVAR’s robustness to an increased false positive rate (FPR)
when annotating cells to specific cell-types. We thus simulated an
increased FPR in each of the previous four datasets (Methods),
recording the sensitivity to detect a significantDA-shift for the relevant
cell-types across a total of 100 distinct Monte-Carlo runs. We note that
errors in cell-type annotation only affect the NBR-step of ELVAR since
cell-type annotation itself is not used when inferring cellular commu-
nities. Consequently, the sensitivity to detect the DA-shifts remained
consistently high in each study until the FPR reached a study-specific
threshold, at which point sensitivity dropped markedly (Fig. 6e). In
general, these thresholds on the FPR in cell-type annotationwere quite
high indicating that under reasonable FPRs ELVAR’s performance is
robust.

In principle, false positives can also arisedue to errors in diagnosis
or staging of a disease, which would introduce errors in the clustering
attribute and thus affect ELVAR’s performance. Although unlikely,
such errors in diagnosis could be present in the Covid-19 and colon-
polyp datasets analyzed here. By definition, such errors in diagnosis or
staging affects all cells of a sample. Hence to simulate such errors we
randomly flipped a small percentage (~20%) of sample phenotype
labels, subsequently rerunning ELVAR to test its robustness to detect
the same cell-type shifts as in the unperturbed scenario (Methods). We

observed that ELVAR’s sensitivity to detect DA-shifts typically dropped
by about 20%, although for some cell-types the drop was significantly
less, for instance, sensitivity dropped by only 5% when detecting an
increase of the enterocyte stem-cell fraction with colon-cancer pro-
gression. On the other hand, the sensitivity to detect a decrease of
sensory neurons in theOE of Covid-19 patients experiencing long-term
smell-loss, dropped by as much as 30%, to remain at just over 60%
(Supplementary Fig. S8). Thus, even at a relatively high FPR of ~20%,
sensitivities to detect DA-shifts for all cell-types remained at over
60%. This indicates that ELVAR is relatively robust to such errors,
although achieving high sensitivity clearly hinges on the FPR in the
clustering attribute being reasonably low.

Discussion
Recent studies have advocated DA-testingmethods (e.g. Milo, DA-seq)
that infer cellular states and associated DA-patterns from enriched
cellular neighborhoods or regions within the high-dimensional single-
cell state manifold7,10. These studies have argued that since DA-
patterns are often sought for cell-states that do not cluster well in the
manifold, that hard clustering algorithms such as Louvain are inap-
propriate tools for inferring the cellular states and their underlyingDA-
patterns. Instead, fuzzier representations of communities, known as
local neighborhoods/regions, are better suited for the DA-task. Here
we have shown that an alternative solution is to use cell-attribute
information when clustering cells. By using cell-attribute information
in the community inference procedure, one can more readily discern
cellular communities defined by the biological condition (i.e. the
clustering attribute) itself, thus helping to circumvent the noise and
orthogonal sources of variation which would otherwise preclude
identification of such states. Furthermore, in the applications to aging,
Covid-19 and colon cancer progression considered here, ELVAR dis-
played higher sensitivity than Milo and DA-seq to detect biologically
important and plausible DA-shifts, such as the age-related shift from
naïve to mature Cd4+ T-cells in lung tissue, thus mirroring the corre-
sponding known shift in blood22,24, or the increased epithelial stem-cell
and T-regulatory fraction in polyps. We also contributed a theoretical
understanding underpinning this improved sensitivity, as demon-
strated by ELVAR’s ability to detect cellular communities enrichedwith
larger numbers of cells belonging to specific biological conditions. For
instance, ELVAR enabled the identification of communities repre-
senting immune-cell states in old cells, which competing methods like
Milo or DA-seq couldnot resolve due to increased heterogeneity of the
older cells. Indeed, we stress that due to the cell-attribute-aware
clustering, ELVAR was able to capture more cells of a given biological
condition within a community of cells enriched for that biological
condition, compared to neighborhood approaches like Milo/DA-seq,
thus increasing power to detect subtle DA-shifts. In this regard, it
would be interesting to explore if the improved sensitivity would also
be seen relative to miloDE35, a recently proposed extension of Milo,
which uses a 2nd order k-nearest neighbor graph approach to generate
a state manifold that displays more homogenous neighborhoods.
Indeed, miloDE has been shown to significantly increase power in
downstream differential expression tasks.

ELVAR’s improved sensitivity to detect DA-shifts was also seen
when benchmarked against an analogous clustering-basedDA-method
that uses Louvain in place of EVA. This benchmarking is important as it
disentangles the effect of using a cell-attribute when clustering from
one that does not, thus highlighting the specific importance of using
cell-attribute aware clustering. Of note, the improvement of ELVAR
over its Louvain-analog was more pronounced in studies displaying
weaker clustering structure (e.g. the immune-cell subsets changing
with age in lung tissue, or the stem-cell state increasing in polyps),
whilst the improvementwasmuch less noticeable in those studieswith
stronger clustering (e.g. neutrophils changing with Covid-19 disease
severity). This supports the view that cell-attribute aware clustering
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can improve the identification of relevant cellular states, which
otherwise can’t be discerned due to the noise in scRNA-Seq data.

We have also seen how ELVAR can circumvent the need for batch
correction, asperformingbatch-correctionprior to ELVAR rarely led to
an improvement in sensitivity. Of note, whilst ELVAR also displayed
significant robustness to FPs in cell-type annotation, it was more sen-
sitive to putative FPs in the clustering attribute representing the
sample/phenotype label. This is not unexpected, since although
the rate of FPs in cell-type annotation could be relatively high, the cell-
type annotation itself is not used in the clustering inference step. On
the other hand, FPs in the clustering attribute can affect the quality of
the inferred communities. It is worth pointing out though that in
practice FPRs in sample annotation are generally much lower than the
highly conservative 20% error-rate considered here.

The improved inference of DA with cell-attribute aware commu-
nity detection inevitably comes at the expense of increased
computational complexity and runtimes compared to Milo or the

Louvain-analog. However, runtimes remain very feasible and hence
the increased computational complexity does not present a practical
limitation. Indeed, a typical scRNA-Seq study may profile on the
order of 200k cells, encompassing on the order of 10 cell-types, hence
on the order of 20k cells per cell-type. Since ELVAR is aimed at
detecting subtle shifts of underlying cell-stateswithin oneof these cell-
types (e.g. mature vs naïve Cd4+ T-cell states), the typical cell-cell
graphs on which we would apply ELVAR would have on the order of
20k cells. On such a network, one ELVAR run is completed in
~10–15min. On cell-cell networks encompassing ~100k cells, one
ELVAR run would complete in the order of 80–120min. Multiple runs
can be easily parallelized, for instance, to identify an optimal a para-
meter value may require a total of 100 runs for each of nine a para-
meter values, so a total of 900 runs, which on a 100-node server would
require 9 instances. Thus, for a typical 20k cells per cell-type, the total
runtime to complete the whole ELVAR-task on a 100-node server
would be ~90–135min.
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Fig. 6 | ELVAR is robust to batch correction and false positives in cell-
annotation. aViolinplots of negativebinomial regression z-statisticsof association
of cell-type counts with age for mature and naïve lung-tissue Cd4t cells and for 3
different scenarios: None = ELVAR was run with no batch (sample) correction,
Harmony = ELVAR was run data batch-corrected with Harmony, Seurat: ELVAR was
run on data batch-corrected with Seurat. Each violin plot contains the values for
100 distinct ELVAR runs. The P-values are derived from two-tailed Wilcoxon rank
sum tests comparing “None” to either “Harmony” or “Seurat”. Horizontal dashed
lines indicate the P =0.05 significance level. b As a but for nasopharyngeal neu-
trophils and monocyte-derived dendritic cells (moDC) cell counts changing with
Covid-19 disease severity (mild vs critical). c As a but for microvillar and sensory
olfactory neurons in the olfactory epithelium (OE) in relation to their counts
changing with long-term smell loss in Covid-19 patients. d As a but for colon

enterocyte stem-cell and differentiated cell counts changing with cancer stage
progression. e Left panel: Sensitivity to detect a significant (NBR P-value <0.05)
change in the abundance of naïve andmatureCd4T-cells with age in the lung tissue
of mice under different rates of false positives (FPR, x-axis). Sensitivity was esti-
mated over 100 distinct runs. Middle left panel: As left panel, but for detecting a
significant change in the abundance of neutrophils and monocyte-derived den-
dritic cells (moDC) with Covid-19 disease severity. Middle right panel: As other
panels, but for detecting a significant change in the abundanceof olfactory sensory
neurons and microvillar cells with Covid-19 smell-loss phenotype. Right panel: as
other panels, but for detecting a significant change in the abundance of enterocyte
stem and differentiated cells with colorectal adenoma progression. Source data are
provided as a Source Data file.
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A nice feature of the ELVAR algorithm is that the resolution (i.e.
average cluster size) of the inferred communities is dependent on the
same parameter that controls the purity of the communities. As shown
here, the optimal purity parameter value is generally in the range
0.7–0.9. Whilst this appears to be close to the value 1, i.e. the value at
which modularity ceases to enter the objective function, it is worth
noting that purity and modularity are relatively stable for all a para-
meter values less than 0.7 and that deviations from the Louvain-
benchmark are only seen when a is at least 0.7. Thus, from a practical
perspective, purity does not dominate the clustering until it is very
close to 1. This can be understood by the fact that purity plays no role
in the construction of the cell-cell nearest neighbor graph, the latter
being solely determined by the scRNA-Seq profiles. In other words, the
topological structure of the cell-cell graph, which is determined purely
by the scRNA-Seq profiles, limits the way purity can influence clus-
tering solutions, even when purity values are close to 1.

It is also important to re-emphasize the need to infer cellular
states within the context of the high-dimensional single-cell state
manifold. Given two cellular attributes that are defined to a large
extent independently of this high-dimensional manifold, one can in
principle always perform DA-testing between these two attributes
usingNBRs or another statistical framework,without the need to apply
an algorithm to the state-manifold11. For instance, in the caseof age and
a cell-state defined by the binary expression of a single marker gene,
DA-testing with multiple replicates could be done using NBRs on cell-
counts within this two-dimensional attribute space (age, cell-state).
However, in the context of scRNA-Seqdata, such an approach hasbeen
shown to be suboptimal10, because it assumes, unreasonably so, that
all cells sharing common attributes define the same cellular states.
Thus, a cell-attribute aware clustering and DA-testing pipeline such as
ELVAR strikes an optimal balance, allowing more biologically relevant
and robust cell-states to be inferred, whilst simultaneously also
removing the many noisy and rogue cells that are not part of these
states.

Finally, we stress the importance of developing sensitivemethods
for DA-testing. As shown here, by applying ELVAR to snRNA-Seq data
we were able to predict increased stem-cell and T-regulatory fractions
in polyps preceding colorectal adenoma, when such DA-patterns were
previously only observed using scATAC-Seq data29. Thus, this finding
has important repercussions for the biomedical field in demonstrating
that snRNA-Seq data is perfectly adequate to detect DA-changes that
are likely to be informative of disease risk.

In summary, ELVAR, and the cell-attribute aware clustering algo-
rithm on which it is based, is a useful addition to the arsenal of sta-
tistical methods for DA-testing in scRNA-Seq and snRNA-Seq data.
Given the richness and complexity of single-cell omic data, including
multi-omic data, general network science approaches will continue to
find successful applications in this area.

Methods
Single-cell RNA-Seq datasets
We here analyzed the following scRNA-Seq datasets:

Tabula Muris Senis (TMS). This mouse scRNA-Seq dataset21 encom-
passesmanydifferent tissue-typeswith samples collected at 6different
ages: 1, 3, 18, 21, 24 and 30months. Data object files were downloaded
from figshare https://doi.org/10.6084/m9.figshare.8273102.v2.

We used the normalized data as provided in the h5ad files. We
focused on the lung-tissue 10Xdataset, because it contained oneof the
largest numbers of immune-cell subtypes with good representation
across age-groups including multiple mouse replicates.

Colon cancer development. This is a human snRNA-Seq dataset29

encompassing colon samples collected from healthy individuals, nor-
mal samples from unaffected individuals with FAP, polyps from FAP

and non-FAP cases, and colorectal adenomas. We analyzed both the
processed snRNA-seq data available from GitHub (https://github.com/
winstonbecker/scCRC_continuum), as well as the full unprocessed
data available from GEO (GSE201348). Processed data were stored as
Seurat objects that included donor, disease stage and cell-type anno-
tation information.

The EVA algorithm
Here we describe the recently published algorithm (EVA: Extended
LouVain Algorithm) to identify homogeneous communities in a net-
work with node attributes17. Let G= ðV ,E,AÞ denote a graph where V ,
E and A are the set of vertices, edges and node (cell) attributes,
respectively. Node/cell attributes can be categorical or numerical such
that AðvÞ, with v 2 V , identifies the set of cell attribute values asso-
ciated with cell v. In our applications, we will mostly consider one cell
attribute (typically the cell’s age or perturbation state) but below we
formulate the model for any number of node attributes. With EVA, the
goal is to identify a network partition, i.e. a mutually exclusive set of
communities/clusters, that maximizes a topological clustering criter-
ion as well as node label homogeneity within each community.
Thus, the measure we wish to maximize consists of two components:
the modularity Q that measures the extent to which the partitioning
captures clusters of high-edge density, and a purity index P that
measures the homogeneity of the communities in relation to node
attributes.

In more detail, the modularityQ of a partition quantifies the edge
density within communities relative to that expected under an
appropriate null distribution36, and is defined by

Q=
1
2m

X

vw

Avw � γ
kvkw

2m

� �
δ cv,cw
� �

ð1Þ

where m is the number of edges, Avw represents the edge weight
between nodes v and w, kv =

P
w
Avw and kw =

P
v
Avw are the sum of

weights of the edges linked to nodes v and w, respectively. The Kro-
necker δ cv,cw

� �
function is 1 when nodes v and w are in the same

community (c) and 0 otherwise. The resolution parameter γ, which
typically takes values in the range0<γ ≤ 1, controls thenumber and size
of inferred communities with higher resolution values leading to a
greater number of smaller communities. For γ = 1, Q can take values
between 0 and 0.517.

The purity index is defined by the average node label homo-
geneity (i.e. purity) over all inferred communities:17

P =
1
∣c∣

X

c2C
Pc ð2Þ

where Pc represents the purity of community c. The purity of a given
community (c) is defined as the product of frequencies of the most
frequent node attribute values within the community c

Pc =
Y

A

maxað
P

v2ca vð ÞÞ
∣c∣ ð3Þ

where A is the set of node attributes, and a vð Þ is an indicator function
for node v taking value 1 if a=AðvÞ, 0 otherwise. Pc attains maximum
purity 1 when all nodes in the community (c) have same attribute value
sequence. In the case of just one cell attribute, this corresponds to the
case where all cells in the community have the same attribute value. Of
note, P takes values in the range 0 to 1.

Finally, the EVA algorithm is defined by the optimization of a
generalized modularity function Z

Z =αP + 1� αð ÞQ ð4Þ
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where α is the purity index parameter taking values also in the range 0
to 1. Of note, for α =0, Z =Q and we recover the Louvain algorithm if
γ = 118 (or a modified Louvain algorithm if γ < 1). At the other extreme
(α = 1), Z = P, and the clustering algorithmonly cares aboutmaximizing
purity subject to network connectivity constraints. For a given α and γ,
weoptimize Z following the algorithmic implementation ofCitraro and
Rossetti17.

The ELVAR algorithm
Building on EVA, we developed an algorithm and R-package called
ELVAR for differential abundance (DA) testing in scRNA-Seq data.
Specifically, the biological question being addressed by ELVAR is
whether the proportion of a given cell-state or cell subtype (the attri-
bute of interest) changes in relation to some other factor or cell
attribute such as age or disease stage (the clustering attribute). Given
the potentially high technical and biological variability, such DA-
testing should ideally be carried out in scenarios where multiple
replicates are available10. ELVAR is designed for complex scenarios
where (i) the source of variation associated with the biological condi-
tions, cellular states or subtypes is relatively small and (ii) where
sample replicates are available. The ELVAR algorithm consists of 4
main steps that we now describe:
(i) Construction of the k nearest-neighbor (knn) cell-cell graph: As

input, the EVA algorithm requires a connected nearest neighbor
cell-cell graph, as generated for instance using Seurat’s Find-
Neighbors function. The number of nearest neighbors k should be
chosen sensibly in relation to the total number of cells ntot. For
instance, we aim for a ratio ntot /k ~ 50, so that for a 1000 cell
graph, the number of neighbors is 20. To run EVA, the input graph
must also have at least one vertex/node (i.e. cell) attribute, which
will be used when inferring communities in the graph. In our
applications this clustering attribute will be age or disease status.
In general, cells also have other attributes besides the one being
used in the community-inference process. For instance, these
additional attributes could be the sample replicate (individual/
mouse) from which the cell derives, or a particular cell-state or
subtype. To reiterate and avoid confusion we call the attribute
used in the clustering or community inference as the “clustering
attribute”, whilst the attribute being interrogated in DA-testing as
the “attribute of interest”.

(ii) Selection of purity index parameter a: Another important input to
the EVA algorithm is the value of the purity index parameter a
(called α in previous section), which controls the relative impor-
tance of purity P over modularity Qwhen optimizing Z. Typically,
we recommend running the EVA algorithm 100 times for different
a parameter values ranging from 0.1 to 0.9 (the extremes a =0
and a = 1 are not interesting), in order to assess how P, Q and Z
vary as a functionof a. It is also important to record the number of
inferred communities, as this also depends on the value of a.
Following the recommendation of Citraro et al.17, we choose a
such that when compared to Louvain (a =0) there is a clear
increase in thenumber of inferred communities.However,we also
modify their criterion by taking the purity P andmodularityQ into
consideration. Specifically, we seek an a-value which not only
leads to a significant increase in the number of inferred clusters,
but which also achieves a relatively high purity without much
degradation in the modularity Q, all measured relative to the
Louvain solution. More quantitatively, as far as the relative num-
ber of inferred clusters is concerned, we choose all a-values for
which the 95% quantile of cluster number ratios (ratio taken
relative to Louvain and quantile is taken over the 100 runs) is
greater or equal than 1.5. As far as the purity is concerned, we
select all a-values for which the mean purity taken over the 100
runs is at least 75% of the maximum purity value measured at
a =0.9. Finally, as far as themodularity is concerned,we choose all

a-values for which themeanmodularity taken over the 100 runs is
at least 75% of the maximum modularity measured at a =0.1. To
arrive at afinaloptimala-valuewe then take the intersectionof the
three sets of permissive a-values, which generally leads to a
unique a parameter value satisfying all three criteria above. The
reason why these criteria generally lead to a unique a-value is that
thepurity and cluster number criteria generally select the largera-
values down to a minimum, whereas the modularity criterion
generally selects the smaller a-values up to amaximum. In there is
no overlap, the three thresholds (95% quantile, ratio 1.5, 75% of
maximum purity and modularity) can be altered to ensure a
common a-value. Of note, although for a fixed a EVA works by
optimizing Z, we do not choose the a value which maximizes Z,
because for most real-world networks, Z will increase with a and
will be maximal when a = 1. For typical knn cell-cell networks, the
optimal a value is generally in the range 0.7 to 0.9. As far as the
other resolution parameter is concerned, we generally consider
γ = 1, as this allows direct benchmarking to the original Louvain
algorithm which is also defined for γ = 1.

(iii) Inference of enriched communities with EVA: Having inferred the
optimal parameter a value, we now rerun EVA with this input
parameter a value, to infer communities. The next step is to then
identify those communities that are enriched for specific clus-
tering attribute values. This is done for each clustering attribute
value in turn, using a Binomial test with a stringent Bonferroni-
adjusted P-value < 0.05/(number of communities * number of
clustering attribute values) threshold.Only communities enriched
for specific clustering attribute values are taken forward for
further analysis. Thus, the purpose of this important step is to
remove cells that don’t clearly define cell-states associated with
the clustering attribute value. Having found all enriched commu-
nities for a given clustering attribute value, we then group
together all cells from these enriched communities to define a
cell-group per clustering attribute value. The cells within a cell-
group may derive from distinct sample replicates.

(iv) DA testing for an attribute of interest: For each cell group asso-
ciated with a clustering attribute value v, we next count the
number of cells with any given attribute-of-interest value
contributed by each replicate r, whilst also recording the total
number of cells contributed by that sample replicate. For each
attribute-of-interest value, we then run a negative binomial
regression (NBR) of the cell count against the clustering attribute
value (here assumed ordinal e.g. age-group or disease stage) with
the sample replicate’s total cell count being the normalization
factor.Mathematically, wemodel the cell countnst of an attribute-
of-interest value t and sample s, as a negative binomial (NB)

nst ∼NB μst ,φt

� � ð5Þ

where μst is the mean number and φt is the dispersion parameter. We
further assume that μst =μvrt = f vtnvr , where f vt is the fraction of cells
of type t when they have clustering attribute value v, and where nvr is
the total number of cells derived from sample s (which has clustering
attribute value v and r is the replication index). We next assume that
the log of f vt is a linear function of v, so that the final regression is of
the form

logμvrt =αt +βt log½nvr �+ γtvvr ð6Þ

logμst =αt + βt log½ns�+ γtvs ð7Þ

Thus, given the cell counts nst we simply run a negative binomial
regression (NBR) against the two covariates vs and log½ns�, to findout if
the cell counts vary significantly with the clustering attribute value v.
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The covariate log½ns� plays the role of a normalization factor,
accounting for the total number of cells contributed by sample s. Wald
z-statistics and P-values of association are obtained from this NBR.

Benchmarking against Louvain is done by direct comparison of
these statistics. Because the original Louvain algorithm is determinis-
tic, whilst ELVAR is not (in ELVAR optimization is performed in a non-
sequential random manner), for benchmarking we perform 100 dis-
tinct ELVAR runs, comparing the distribution of Wald-test statistics to
the Louvain-derived one with a one-sided Wilcoxon rank sum test. Of
note, further below we also describe how we benchmark ELVAR to a
non-sequential randomized version of Louvain, where the Louvain
output may also differ between runs.

ELVAR pseudocode
Below is an outline of pseudocode for running ELVAR. We assume the
scRNA-Seqdata is encoded in a Seurat object seu.owith all the required
meta-information, including a clustering cell attribute to be used in
the clustering (clustering attribute “CA”), and a cell attribute of interest
for DA-testing that we call “SA” (secondary attribute). The first step
is to normalize the data and to build the k-nearest neighbor cell-
cell graph:

Step-1 (Normalization and construction of cell-cell graph):
• seu.o <- FindVariableFeatures(seu.o,selection.method=”vst”);
• seu.o <- ScaleData(seu.o,features=rownames(seu.o));
• seu.o <- RunPCA(seu.o);
• Elbowplot(seu.o); ### to determine number of significant

PCs: topPC

The choice of k in specifying the number of nearest neighbors
should be chosen sensibly. Typically the ratio of number of cells/k
should be around 50, so assuming 1000 cells, k should be around 20:

• seu.o <- FindNeighbors(seu.o,dims=1:topPC,k.param=20);
• adj.m <- as.matrix(seu.o@graphs$RNA_nn); diag(adj.m) <− 0;
• gr.o <- graph.adjacency(adj.m,mode=”undirected”);
• vertexN.v <- names(V(gr.o));
• vertex_attr(gr.o,name=”CA”) <- seu.o@meta.data$CA;
• is.connected(gr.o); ### check graph is connected (if not, incre-

mentally increase k).

Step-2 (Estimate optimal purity parameter a):
• aOPT <- SelOptAlpha(gr.o, nRuns=100);

Step-3 (Inference of enriched communities with EVA):
• eva.o <- Eva_partitions(gr.o,alpha=aOPT,Vattr.name=”CA”);
• comm.o <- ProcessEVA(eva.o,seu.o);

Step-4 (Do DA-testing of attribute-of-interest with negative bino-
mial regressions):

• nbr.o <- DoDA(eva.o,seu.o,comm.o,DAattr=”SA”);

The object nbr.o is typically the output of the glm.nb function
from theMASS R-package, and statistics of association between the SA
(e.g. Cd4t activation status) and CA (e.g. age) attributes can be
extracted using summary(nbr.o)$coeff. Of note, to run ELVAR, the fol-
lowing R-packages need to be installed: Seurat_4.1.1, SeuratObject_4.1.0,
igraph_1.3.3, MASS_7.3-58.2, dplyr_1.0.9, Matrix_1.5-1.

Benchmarking ELVAR against Louvain
Because EVA is a direct extension of Louvain, it is natural to benchmark
ELVAR against an analogous algorithm that uses the Louvain algorithm
in place of EVA. The ordinary Louvain algorithm, as originally imple-
mented by Blondel et al.18 gives a deterministic network partition
output, i.e. every run of the Louvain algorithm results in the same
partition. This arises because during an optimization run, nodes are
visited and assessed for local moving sequentially. This deterministic

“sequential” version of Louvain (“LVdet”) was implemented in the
versions of the igraph R package older than 1.3.3. On the other hand,
EVA builds upon algorithmic details implemented in the Leiden
algorithm37, which results in potentially different partitions every time
EVA is run. Specifically, similar to the Leiden algorithm, during an
optimization run in EVA, we consider random (non-sequential) selec-
tion of nodes, which can therefore result in a different partition every
time EVA is run. Thus, when benchmarking ELVAR against the Louvain-
analog, it is important to account for these implementation differ-
ences.We do this by benchmarking against a non-sequential versionof
Louvain (as implemented in the current 1.3.3 version of igraph), where
during an optimization run, nodes are visited randomly, which may
also result in different partitions for different runs. In this work, we
denote the algorithm analogous to ELVAR that uses the non-sequential
Louvain in place of EVA, “LVnonseq”.

Simulation model benchmarking EVA against Louvain
First, we benchmarked EVA against Louvain with a simulationmodel in
order to validate our novel R-implementation of EVA. We selected 200
classical monocyte cells from the TMS lung tissue scRNA-Seq 10X
dataset, ensuring all cells derive from the same mouse (mouseID=19)
and thus from the same age. For 100 of these cells, we then modified
their scRNA-Seq profiles, simulating a “perturbed” cell-state, as fol-
lows.We randomly selected 50genes among all genes not expressed in
any of the 200 cells. For each perturbed cell, we then randomly sub-
selected 20 genes from these 50, whose valueswere then altered in the
cell, by randomly drawing 20 non-zero expression values from the
distribution of non-zero expression values of the whole data matrix.
Thus, this procedure generates a weak but significant co-expression
structure among the 100 perturbed cells. Seurat was then applied to
the 20138 gene ×200 cell scRNA-Seq data matrix, with VST feature
selection followed by PCA. Top-8 PCs were selected to build the
k-nearest neighbor cell-cell graph using k = 6. Louvain clustering
algorithm as implemented in igraph was used to infer communities.
EVAwas runon the same cell-cell graphusing a cell’s perturbation state
as the clustering attribute. Since the EVA result depends on initializa-
tion,weperformeda total of 100 runs for eachofnine choices of purity
index parameter a (a =0.1, 0.2, …, 0.8, 0.9). The final value of a was
chosen heuristically as the value at which purity increased compared
to the Louvain solution (a = 0) without compromising modularity too
much. The quality of the EVA and Louvain clustering was assessed
using the Adjusted Rand Index against the cell’s perturbation state, as
well as using Chi-Square statistics.

Simulationmodel benchmarking ELVAR against Louvain-analog
In order to benchmarkELVARagainst ananalogous algorithm thatuses
Louvain inplaceof EVA,wegeneralized theprevious simulationmodel.
We selected all classical monocytes frommice with mouse-IDs 0 and 1
representing 1 month old mice (201 & 284 cells), mouse IDs 2 and 3
representing 3 month old mice (51 & 60 cells), mouse IDs 13 and 14
representing 21month oldmice (104 & 138 cells) andmouse IDs 21 and
22 representing 30 month old mice (94 & 61 cells). For young mice (1
and 3 month old mice), 25% of cells were perturbed using the same
procedure described previously. For old mice (21 and 30 months), the
frequency of perturbed cells was increased to 50%. Thus, this model
simulates an age-related increased in a perturbed state. The cell-cell
graph was derived as before, this time using the top 10 PCs and k = 20,
i.e k was increased in line with the larger number of cells (n = 993).
ELVAR and the analogous Louvain-based algorithms were run on this
cell-cell graph, in this case using age as the clustering attribute infor-
mation. As before, EVA was initially run a 100 times for each of nine
choices of aparameter, in order to select anoptimal a based on overall
purity and modularity values. Using the optimal a value, ELVAR was
then compared to the Louvain-analog (using both deterministic and
non-sequential versions of Louvain) in its ability to predict the
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increased frequency of the perturbed cell-state (here, the attribute of
interest) in the older mice.

Application of ELVAR to detecting shifts in lung tissue Cd4+
T-cell subtypes
As part of the 10X lung-tissue TMS set, a total of 551 Cd4+ T-cells were
profiled to allow testing of a shift in naïve tomature subtypes with age.
We removed cells from 4 mice each contributing less than 10 cells,
leaving a total of 537 cells from 11 mice representing five age-groups:
143 (1m), 122 (3m), 67 (18m), 107 (21m) and 98 (30m). Cells expres-
sing Lef1, a well-knownmarker of naïve Cd4+ T-cells22, were defined as
naïve (n = 186), the rest as mature (n = 351). ELVAR was then applied to
determine if the naïve/mature proportions change with age. Cell-cell
graph was constructed using Seurat with VST and 8 top PCs and k = 10.
EVA was run a total of 100 times with a =0.8 (the optimal value in this
dataset).

Application of ELVAR to M1/M2 polarization analysis in lung
alveolar macrophages
Aspart of the 10X lung-tissueTMS set, lung alveolarmacrophageswere
abundantly profiled (n = 1261) to allow testing of a shift in M1/M2
macrophage polarization with age. We removed cells from mice dis-
playing batch effects, leaving a total of 1124 cells from 15 mice repre-
senting five age-groups: 517 (1m), 184 (3m), 193 (18m), 91 (21m) and
139 (30m). In order to annotate these 1124 lung alveolar macrophages
into M1/M2 subtypes, we first identified 5 robust murine M1 (Cd80,
Cd86, Fpr2, Tlr2, Cd40) and 5 robust M2 markers (Egr2, Myc, Arg1,
Mrc1, Cd163) from the literature38. In an initial annotation, we declared
cells as M1 if they co-expressed at least 2 of the 5 M1 markers, and
similarly for M2. Cells annotated to both M1 and M2 subtypes were re-
assigned an undetermined (UD) category alongside all other cells not
annotated to eitherM1 andM2, resulting in 308M1, 195M2and621UD-
cells. We reasoned that UD-cells clustering predominantly with either
M1 orM2cells could be re-assigned toM1/M2 subtypes. To this end, we
developed an iterative algorithm that reassigns the status of UD-cells
to either M1 and M2, depending on their relative proportions among
the neighbors of a given UD-cell. In more detail, we used the cell-cell
graph as inferred using Seurat, and a multinomial test with P <0.05
threshold to identify the UD-cells whose polarization status could be
reassigned to either M1 or M2 status. We also required the absolute
difference between the proportion of M1 and M2 neighbors of a given
UD-cell to be larger than0.2. This procedurewas iterated 20 times, but
numbers already converged after 7 iterations, resulting in 464 M1, 214
M2 and 446 UD-cells. ELVAR was then applied to determine if the M1/
M2proportions changewith age. Cell-cell graphwas constructed using
Seurat with VST and 9 top PCs and k = 20. EVA was run a total of 100
times with a =0.7 (the optimal value in this dataset).

Application of ELVAR to detect DA-shifts in the nasopharynx of
COVID-19 patients
We analyzed the scRNA-Seq dataset of Chua et al.27, which profiled
nasopharyngeal swabs from moderate and critically ill COVID-19
patients. We applied ELVAR to investigate if fractions of immune cells
change frommoderate to critical COVID-19 cases. We downloaded the
Seurat data object from FigShare (https://doi.org/10.6084/m9.
figshare.12436517) which contains QC-processed data in addition to
the countmatrix andmetadata tables associatedwith cell type, patient
identification and disease severity. The data matrix encompassed
80,109 immune cells derived from8moderate and 11 critical COVID-19
patients. In our analysis, we discarded onemoderate sample (BIH-Cov-
18) having only 23 immune cells and the immune cell-states MC, MoD-
Ma, NK, and pDC each containing only fewer than 1000 cells. We
randomly picked 1500 cells per cell-type for each of the remaining 9
cell-types (B cell, CTL - Cytotoxic T cell, moDC – monocyte-derived
dendritic cell, Neu – Neutrophil, NKT - NKT cell, NKT-p - Proliferating

NKT cell, nrMa - Non-resident macrophage, rMa - Resident macro-
phage, Treg - Regulatory T cell), resulting in a total of 13,500 cells, of
which 9005 cells derived from the 7 moderate patients and 4495 cells
from the 11 critical patients. ELVAR was applied to each of the 9 cell-
types to see if their abundance changes betweenmoderate and severe
Covid-19 cases. The cell-cell graph used as input to ELVAR was con-
structed using Seurat with variance stabilization for feature selection,
and selecting the top 30 PCs with k = 50. ELVAR was run a total of 100
times with a =0.8 and COVID-19 severity (moderate and critical) in the
patients as the clustering cell attribute for community detection.

Application of ELVAR to detect DA associated with smell loss
post COVID-19 infection
We applied ELVAR to investigate changes in cellular composition
within the olfactory epithelium that are associated with post-acute
sequelae of COVID-19 infection (PASC), specifically by comparison of
normosmic controls to hyposmic patients (long-term smell loss). The
scRNA-Seq count matrices were downloaded from GEO under acces-
sion numbers GSE201620, GSE184117 and GSE13952228,39,40. In our
analysis, we included 5 control samples with smell identification values
(SIT) > 26, characterizing them as normosmic, and 5 hyposmic PASC
patients. Seurat was used to normalize and batch-correct the data with
the following variables (percentage of mitochondrial gens, patient
condition andpatient ID), following theprocedureof Finlay et al.28, and
to perform cluster analysis, defining 35 cell clusters. To identify
cluster specific marker genes, we applied the Seurat function FindAll-
Markers(only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.5) and
annotated the clusters associate with the olfactory epithelium (sus-
tentacular cells, olfactory sensory neurons cells, olfactory horizontal
basal cells (HBCs), Bowman’s gland cells, microvillar cells) using the
cell-state specific marker genes from Durante et al.40. From the Seurat
clusters, we extracted only olfactory epithelium cells (11,173 cells),
encompassing 8918 normal control cells and 2255 PASC cells for
downstream ELVAR analysis. The distribution of cell-states was
1863 sustentacular-cells, 1428 sensory neurons-cells, 1901 HBCs-cells,
4561 Bowman’s gland-cells and 1420 microvillar-cells. A cell-cell graph
was constructed using Seurat with variance stabilization for feature
selection, and selecting the top 40 PCs with k = 40. ELVAR was run a
total of 100 times with a = 0.7 and using the smell loss phenotype
(normal control and PASC) as the clustering cell-attribute for com-
munity detection.

Application of ELVAR to colon cancer progression
WeappliedELVAR toexplore if the fractions of epithelial stem-cells and
T-regulatory cells changes with disease progression. The analysis was
performed in two ways. In the first approach, we downloaded Seurat
objects from https://github.com/winstonbecker/scCRC_continuum
which contain QC-processed data and cell-type annotations for a
subset of samples. In the case of epithelial cells, the analysis was per-
formed on a subset of the data consisting of stem-cells, TA2 & TA1
transit amplifying progenitors, enterocyte progenitors, immature
enterocytes and differentiated enterocytes cell states. We randomly
picked 1000 cells from each cell state (thus a total of 6000 cells) in
order to reduce the computational runtime because two cell states
contained ≥30k cells. Next, we removed cells from 2 donors each
contributing less than 10 cells and cells from 1 donor displaying a batch
effect, leaving a total of 5810 cells from 11 donors representing four
disease stages: 1153 (Normal), 1672 (Unaffected), 2911 (Polyp) and 74
(Adenocarcinoma). The distribution of cell-states was 843 stem-cells,
971 TA2, 1000 TA1, 999 enterocyte progenitors, 998 immature enter-
ocytes and 999 enterocytes number of cells. A cell-cell graph was
constructed using Seurat with variance stabilization for feature selec-
tion, and selecting the 15 top PCs with k = 20. ELVAR was run a total of
100 times with a =0.8 and disease stage as the main cell-attribute for
community detection. For the analysis of T-regulatory (Tregs) cells we
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focused on the subset of data consisting of Tregs, NK, Naïve T, CD4+
andCD8+ cells.We removed cells from3donors each contributing less
than 10 cells and cells from 1 donor displaying a batch effect, resulting
in a total of 6171 cells from 8 donors representing four disease stage
groups: 381 (Normal), 3721 (Unaffected), 1900 (Polyp) and 169 (Ade-
nocarcinoma). The distribution of cells across cell-types was: 472
Tregs, 245 NK, 1042 Naïve T, 3063 CD4+ and 1349 CD8+ number of
cells. The cell-cell similarity graph was constructed using Seurat with
variance stabilization for feature selection, selecting the 15 top PCs and
number of nearest neighbors k = 20. ELVARwas run a total of 100 times
with a =0.8 with disease stage as the clustering attribute.

In the second approach, we downloaded the raw count snRNA-
Seq matrices from GEO (GSE201348). Data was normalized using
Seurat with variance stabilization for feature selection, leaving a total
of 380,527 cells. Because the cell-type annotation for the full dataset
was not provided, we applied dimensional reduction, clustering,
UMAP visualization and well-known marker genes from Becker et al.29

to the cells from the normal samples only, to annotate well separated
cell clusters into enterocyte, goblet, immune-cell, stromal and endo-
thelial cell categories. We then used Wilcoxon tests and marker-
specificity scores30,31 to build anmRNA expression referencematrix for
these 5 broad cell categories. With this mRNA expression reference
matrix in place, we then used our robust partial correlation
framework31 to estimate cell-type probabilities for all cells from all
disease stages. Using a probability threshold of >0.7, wewere thus able
to confidently annotate 1866 endothelial cells, 104,009 enterocyte
cells, 78,421 goblet cells, 24,973 immune-cells and 7941 stromal cells.
Because of the very high sparsity of the snRNA-Seq data, in order to
confidently identify stem-like cells among the 104,009 enterocytes,we
appliedour validatedCancerStemIDalgorithm32,33 whichapproximates
stemness of single-cells from the estimated differentiation activities of
tissue-specific transcription factors. In this instance,we used a set of 56
colon-specific TFs and their associated regulons, already validated by
us previously33. The regulons were applied to the snRNA-Seq data, to
estimate transcription factor differentiation activity (TFA) for each of
the 56 TFs in each of the 104,009 enterocyte cells. We then declared
stem-cell like cells as those displaying average TFA levels over the 56
TFs less than a threshold given by the 5% quantile of the average TFA
distribution defined over the normal cells only. For ELVAR analysis, we
only retained samples contributing at least 50 cells. For all other
samples, all cells up to amaximumof 500 randomly selected cellswere
chosen, resulting in a total of 31,385 cells, drawn from 69 samples (8
normal, 16unaffected FAPs, 41 polyps and4CRCs), encompassing 3761
normal, 7443 unaffected, 18,558 polyp and 1623 CRC cells. The cell-cell
k = 50 nearest neighbor graph was constructed using Seurat, and
ELVAR run a 100 times with a =0.8, using disease stage as the clus-
tering attribute.

Comparison of ELVAR to DA-seq and Milo
We wish to compare the three algorithms in their ability to detect
differential abundance of an attribute of interest relative to the clus-
tering attribute. In our context the clustering attribute is the biological
condition such as age or disease-status. The attribute of interest will
refer to e.g. Cd4t activation status, cell-type or differentiation stage.
We note that Milo10 and DA-seq7 are primarily designed to detect dif-
ferential enrichment of one particular cell attribute in regions of the
single-cell manifold, and hence need to be extended to allow for DA-
testing of one cell attribute relative to another. What the three algo-
rithms have in common is the inference of groups of cells that
display differential enrichment relative to one particular cell attribute
(the clustering attribute or biological condition). The methods differ
in how these groups of cells are inferred. In ELVAR, we use the clus-
tering attribute information when inferring cellular communities from
the nearest neighbor cell-cell graph, subsequently identifying those
that display enrichment for any specific clustering attribute value

(e.g. age-group). In contrast, DA-seq and Milo infer local regions, or
potentially overlapping cellular neighborhoods, displaying significant
enrichment of the biological condition (e.g. age-group). Thus, one way
to compare all three algorithms for downstream DA-testing of an
attribute of interest relative to the biological condition, is by first
selecting the cells that appear in these significant communities/
regions/neighborhoods, and subsequently running negative binomial
regressions of cell counts vs biological condition, taking biological
replicates into account and normalizing for the total number of cells
that each replicate sample contributes, as described earlier for ELVAR.
In effect, once you have selected the cells within an enriched cluster
(ELVAR) or an enriched local neighborhood (DA-seq, Milo), the sub-
sequent strategy of running NBRs is unchanged and exactly the same
for all three methods.

To understand the difference in performance between methods,
we developed the following metric. Methods may display different
sensitivity to detect DA of an attribute of interest relative to the clus-
tering attribute because the significantly associated cell groups
derived fromeachmethod (i.e. age-groupenriched communities in the
case of ELVAR, age-associated neighborhoods/regions in the case of
Milo/DA-seq) may capture different numbers of cells. To make this
clear, consider a scenario where one of the methods (call it “X”) can’t
detect a cell group with sufficient numbers of old cells, say it detects a
cell-group with at most 10 old cells, with 6 of these belonging to one
cell-state “A”, with the remaining 4 belonging to another cell-state “B”.
In contrast, another method “Y” does infer a large enough cell-group
consisting of old-cells, say 30 cells with 15 belong to state “A” and 15
belonging to state “B”. As far as young cells are concerned, all methods
are able to infer a cell-group with a considerable number of cells, say
50 young cells, with 40belonging to state “A” and 10belonging to state
“B”. Because method “X” was not able to identify a cell-group with
sufficient numbers of old-cells, it lacks power to detect the relative
decrease of state “A” with age (two-tailed Fisher-test P =0.22), whilst
method “Y” has the power to detect it (two-tailed Fisher-test,
P =0.006). Whilst this hypothetical example ignores the variation due
to sample replicates or variations due to replicate cell numbers, it
clearly illustrates that the fraction of captured cells (fCaptCells) per
clustering attribute value will strongly influence a method’s power to
detect DA of an underlying cell-state (the attribute of interest) with
respect to this clustering cell attribute. Mathematically, we define the
fraction of captured cells per clustering attribute value a and from
method m by:

f CaptCellsma =
∣ #Cells with attribute value=að Þ \ ð#Cells in groups f rommethodmÞ∣

ð#Cells with attribute value=aÞ
ð8Þ

Specifically, a method that attains higher fCaptCellsma across the
whole range of clustering attribute values a, including the extremes if
the attribute is ordinal, will display higher power.

Evaluation of ELVAR’s robustness to batch effects and false
positives
Robustness to batch effects and false positives in cell-type annotation
was assessed in the four main datasets and in relation to the following
cell-types that displayed significant DA: (i) in the TMS lung-tissue
dataset we considered the robustness of the decreased naïve and and
increased mature Cd4t cell fractions with age, (ii) in the Chua et al.
Covid-19 nasopharynx dataset we considered the robustness of the
increased neutrophil and decreasedmoDC cell fractions with Covid-19
disease severity (mild vs severe), (iii) in the Finlay et al. olfactory epi-
thelium Covid-19 dataset we considered the robustness of the
increasedmicrovillar anddecreased sensory-neuron cell-fractionswith
long-term smell loss, (iv) in the colon polyp and cancer snRNA-Seq
dataset, we considered the increased enterocyte stem-cell and

Article https://doi.org/10.1038/s41467-023-39017-z

Nature Communications |         (2023) 14:3244 14



decreased different enterocyte fractions with disease progression. In
the case of batch effects, we compared ELVAR’s performance in each
of the four datasets in three different scenarios: (a) no batch/sample
correction, (b) batch/sample correction with Harmony34 and (c) batch/
sample correction with Seurat19. We note that in all cases batch refers
to the sample (i.e. mouse or individual). In the case of Harmony and
Seurat, we thus used the sample-ID to perform the batch correction
over, inferring in each case a new and different cell-cell graph. In each
scenario we ran ELVAR a total of 100 times recording for each run the
Wald z-statistics from the NBRs and corresponding cell-types. We also
recorded in each case the likelihood ratio test P-values and sign of the
regression coefficient, from which an alternative z-statistic was then
derived using normal quantiles. For cell-types and studies where
the Wald z-statistic breaks down (e.g. when for a given cell-type there
are zero counts for all samples of a given biological condition) we used
the likelihood ratio test P-values and derived z-statistics.

To assess robustness under an increased false positive rate (FPR)
in cell-type annotation, we simulated false positives in each study by
randomly re-annotating cells of the given cell type of interest with the
label of another cell-type. Since the clustering step in ELVAR does not
depend on the cell-type annotation, robustness was assessed at the
NBR-step, by performing 100 Monte-Carlo re-annotations and subse-
quently computing the sensitivity to detect theDA-shift of the cell-type
of interest over these 100 runs. This sensitivity was computed for
increased values of the FPR (0.05, 0.1, 0.2, 0.3, 0.4 and 0.5).

To assess robustness under false positives in the clustering attri-
bute (i.e. in the sample phenotype annotation), we simulated a small
realistic ~20% fraction of misdiagnosed cases. We restricted this ana-
lysis to the two Covid-19 and colon-polyp datasets because errors in
disease diagnosis are possible, and because the number of samples in
each phenotype was sufficiently large to adequately model an ~20%
misdiagnosis rate. Specifically, in the Covid-19 disease severity dataset,
we randomly flipped 2 severewith 2moderate cases, i.e. a total of 4 FPs
among the 18 samples. In the Covid-19 smell-loss dataset, we randomly
flipped 1 case and control, amounting to a total of 2 FPs among the
10 samples. In the former case, we performed 50 distinct randomiza-
tions, whilst in the latter there were at most only 25 (5 cases and 5
controls) distinct combinations of FPs. For the colon-polyp set, we
randomly permuted 3 sample labels, performing 50 distinct permu-
tation. For each label randomization/permutation, we ran ELVAR a
total of 100 times, recording in each run the negative binomial
regression Wald z-statistics of association between cell-type fractions
and the phenotype. We estimated sensitivity as the fraction of
runs where a significant change (P < 0.05) in the cell-type fraction was
detected (preserving the same directionality of change as in the
unperturbed scenario).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The snRNA-Seq dataset of colon cancer progression is publicly avail-
able from GEO (www.ncbi.nlm.nih.gov/geo/) under accession number
GSE201348. The TMS scRNA-Seq data is available from https://doi.org/
10.6084/m9.figshare.8273102.v2. The scRNA-Seq dataset from Chua
et al. was downloaded from figshare (https://doi.org/10.6084/m9.
figshare.12436517). The scRNA-Seq data from Finlay et al. is available
from GEO under accession numbers GSE201620, GSE184117 and
GSE139522. Source data are provided with this paper.

Code availability
ELVAR is freely available as an R-package from https://github.com/
aet21/ELVAR and published on figshare https://doi.org/10.6084/m9.
figshare.22787498.
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