nature communications

Article

https://doi.org/10.1038/s41467-023-38716-x

Linear time complexity de novo long read
genome assembly with GoldRush

Received: 10 November 2022

Accepted: 11 May 2023

Published online: 22 May 2023

M Check for updates

Johnathan Wong ® "2/, Lauren Coombe ® 2, Vladimir Nikoli¢ ®, Emily Zhang',
Ka Ming Nip®", Puneet Sidhu', René L. Warren ® '3 & Inang Birol®*

Current state-of-the-art de novo long read genome assemblers follow the
Overlap-Layout-Consensus paradigm. While read-to-read overlap - its most
costly step — was improved in modern long read genome assemblers, these
tools still often require excessive RAM when assembling a typical human
dataset. Our work departs from this paradigm, foregoing all-vs-all sequence
alignments in favor of a dynamic data structure implemented in GoldRush, a
de novo long read genome assembly algorithm with linear time complexity.
We tested GoldRush on Oxford Nanopore Technologies long sequencing read
datasets with different base error profiles sourced from three human cell lines,
rice, and tomato. Here, we show that GoldRush achieves assembly scaffold
NGAS5O lengths of 18.3-22.2, 0.3 and 2.6 Mbp, for the genomes of human, rice,
and tomato, respectively, and assembles each genome within a day, using at
most 54.5 GB of random-access memory, demonstrating the scalability of our

genome assembly paradigm and its implementation.

Short-read genome assembly methods typically struggle to resolve
sequence repeats and often fail to generate assemblies that reach
chromosome-scale'. Both prokaryotic and eukaryotic genomes can
contain a large proportion of repeats’, with the human genome esti-
mated to be 66-69% repetitive’. Thus, it is imperative that these
repetitive regions be sufficiently resolved for a successful de novo
genome assembly. Innovations in bioinformatics have emerged to
address this challenge, leveraging long-range evidence afforded by
various data types, including linked reads**, Hi-C°, and long sequen-
cing reads’®.

Long-read sequencing technology has become increasingly pre-
valent in recent years. Sequencing throughput, affordability, and the
long-read lengths are some of the key reasons’. The long-read lengths,
ranging from kilobases to megabases, enable better resolution of
structural variants'® and long repeats”. Long reads also enable correct
and accurate identification of tandem repeat expansions'.

Oxford Nanopore Technologies (ONT), Plc. (Oxford, UK) and
Pacific Biosciences (PacBio), Inc. (Menlo Park, USA) are currently the
two preeminent providers of commercial long-read sequencing tech-
nology. PacBio generally produces long reads with lower base errors
(8-13% and <1% for Continuous Long Reads (CLR) and HiFi,

respectively), but with shorter read lengths (typically averaging
30-60 kbp and 10-25 kbp for CLR and HiFi, respectively)""* compared
to that of ONT (typically 10-100+ kbp)®. Yet, high error rates (1-13%) in
ONT reads remain a challenging obstacle to de novo genome
assembly™. Unlike the de novo genome assembly strategies designed
for short reads, both long-read sequencing technologies— and espe-
cially ONT, require algorithms and data structures that can accom-
modate mismatches and indels in the sequencing data.

Most long-read genome assemblers follow the Overlap-Layout-
Consensus paradigm (OLC), a quadratic run time algorithm in its naive
implementation. OLC consists of three steps. The first step, overlap,
typically generates an overlap graph by computing the pairwise
alignment of all reads. As datasets often contain tens of millions of
reads, finding and storing the detected overlaps is the most compu-
tationally- and memory-intensive step in the OLC paradigm, and has
been the target of recent innovative algorithms'®°, In the second step,
layout, the generated read overlap graph is traversed to produce
contigs, or contiguous sequences, that reconstruct the underlying
genome. The last step, consensus, uses read alignments to infer the
most likely nucleotide bases across contigs, and corrects the sequen-
ces accordingly”*,

TCanada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 456, Canada. 2These authors contributed equally: Johnathan Wong,

Lauren Coombe. 3These authors jointly supervised this work: René L Warren, Inang Birol.

e-mail: jowong@bcgsc.ca; ibirol@bcgsc.ca

Nature Communications | (2023)14:2906

http://orcid.org/0000-0002-1687-8972
http://orcid.org/0000-0002-1687-8972
http://orcid.org/0000-0002-1687-8972
http://orcid.org/0000-0002-1687-8972
http://orcid.org/0000-0002-1687-8972
http://orcid.org/0000-0002-7518-2326
http://orcid.org/0000-0002-7518-2326
http://orcid.org/0000-0002-7518-2326
http://orcid.org/0000-0002-7518-2326
http://orcid.org/0000-0002-7518-2326
http://orcid.org/0000-0002-2992-9935
http://orcid.org/0000-0002-2992-9935
http://orcid.org/0000-0002-2992-9935
http://orcid.org/0000-0002-2992-9935
http://orcid.org/0000-0002-2992-9935
http://orcid.org/0000-0002-1574-3363
http://orcid.org/0000-0002-1574-3363
http://orcid.org/0000-0002-1574-3363
http://orcid.org/0000-0002-1574-3363
http://orcid.org/0000-0002-1574-3363
http://orcid.org/0000-0002-9890-2293
http://orcid.org/0000-0002-9890-2293
http://orcid.org/0000-0002-9890-2293
http://orcid.org/0000-0002-9890-2293
http://orcid.org/0000-0002-9890-2293
http://orcid.org/0000-0003-0950-7839
http://orcid.org/0000-0003-0950-7839
http://orcid.org/0000-0003-0950-7839
http://orcid.org/0000-0003-0950-7839
http://orcid.org/0000-0003-0950-7839
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38716-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38716-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38716-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38716-x&domain=pdf
mailto:jowong@bcgsc.ca
mailto:ibirol@bcgsc.ca

Article

https://doi.org/10.1038/s41467-023-38716-x

In recent years, a number of OLC-based de novo long-read gen-
ome assemblers have been developed that leverage the long-range
evidence provided by the technology. These tools include Flye',
Redbean', and Shasta. Each tool brings a different innovation to the
table, with implementations of the OLC paradigm aiming to reduce the
computational cost and address the high error rates of long reads. For
instance, Flye clusters the long reads that are likely to originate from
the same genomic locus in a preprocessing step to reduce the number
of pairwise comparisons'®. Redbean segments each read into 256 bp
tiling subsequences, reducing the dynamic programming matrix to a
size of 65536 (=256 x 256), thus speeding up the pairwise alignment
process'”. On the other hand, to address the high error rate of long
reads, Shasta compresses all homopolymers in the reads using run-
length encoding, thereby removing all homopolymer expansion
errors, one of the more common error types in the ONT data, and
improving the accuracy of alignments in the overlap step of OLC*.
While these optimizations have reduced the time it takes to assemble
the long sequencing reads and ultimately improve upon the quality of
the generated genome assemblies, these tools still have a large mem-
ory footprint, requiring upwards of several hundred gigabytes of RAM
for assembling a typical 50X human genome dataset.

Long sequencing reads have also enabled the haplotype phasing
of haploid genome assemblies to better understand and characterize
the genomic diversity of diploid and polyploid organisms?. Existing
OLC long-read genome assemblers, such as Shasta*, and haplotype-
aware genome assemblers, such as phasebook® and Verkko®, have
been extended or developed to leverage long reads to produce diploid
assemblies.

In this work, we present GoldRush, a memory-efficient long-read
haploid de novo genome assembler that employs a novel long-read
assembly algorithm, which runs in linear time in the number of reads.
GoldRush is implemented as a modular pipeline with four main steps:
GoldPath, GoldPolish, Tigmint-long””, and GoldChain’*%. GoldPath
first iterates through the long reads and generates a “golden path”,
selected sequences with a - 1X representation of the genome of inter-
est. Because the output of GoldPath is a set of raw sequences (termed
“goldtigs”), base errors in the golden path are resolved using Gold-
Polish, a long-read adaptation of the ntEdit+Sealer polishing
protocol”. Next, misassemblies (due to chimeric reads) are corrected
using Tigmint-long”%. Finally, the corrected golden path is scaffolded
using GoldChain to produce the output genome assembly’*® (Fig. 1a
and Supplementary Fig. 1). The golden path serves as the base
assembly for the subsequent steps in GoldRush. Briefly, GoldPath
iterates through the reads, querying each read against a dynamic and
probabilistic multi-index Bloom filter’>*! (miBf) data structure in turn,
and inserts selected sequence or skips over the read depending on the
results of the query to generate multiple “silver paths”, which are <1X
representations of the target genome (Fig. 1b). The silver paths are
then used as input for GoldPath to generate the golden path. Iteration
over the long sequencing reads, as opposed to an all-vs-all alignment of
reads, allows GoldRush to achieve a linear time complexity in the
number of reads. We show that GoldRush produces contiguous and
correct genome assemblies with a low memory footprint, and does so
without read-to-read alignments, marking an important paradigm shift
in the genome assembly of long sequencing reads.

Results

We assembled the genomes of three different human cell lines
(NA24385, HG01243, and HGO02055), Oryza sativa (rice), and
Solanum lycopersicum (tomato) using GoldRush, Flye, Redbean,
and Shasta, and compared the resulting genome assemblies using
a variety of length contiguity metrics, genome assembly accuracy
markers, including those reported by QUAST?*’, BUSCO?®, the
asmgene utility in minimap2**, and Merqury®, and their resource
usage (see Methods).

Assembly performance

For the genome assemblies of all three human cell lines, GoldRush
achieved NG5O0 lengths between 25.3 and 32.6 Mbp, comparable to
both Shasta (29.7-39.6 Mbp) and Flye (26.6-38.8 Mbp), and typically
three times more contiguous than the Redbean genome assemblies
(8.0-10.9 Mbp) (Supplementary Tables 1-3). Two of the three human
GoldRush genome assemblies (NA24385 and HG01243) also had the
fewest extensive misassemblies (940 and 1057) among the tools tes-
ted; -2-3 times fewer than Shasta (1682 and 3240), and ~5-7 times
fewer than Redbean (4918 and 7052). Despite the relatively low num-
ber of structural misassemblies, the NGA50 length for each human
GoldRush assembly is around 20 Mbp, indicating that some mis-
assemblies are found in the larger scaffolds and breaking the align-
ment blocks (Fig. 2a and Supplementary Tables 1-3). In addition to
assembling highly contiguous human genomes, GoldRush is also
robust in assembling plant genomes, reaching 0.3 and 2.6 Mbp NGA50
lengths for O. sativa and S. lycopersicum, respectively (Fig. 2c and
Supplementary Tables 4, 5). The O. sativa Shasta genome assembly, on
the other hand, had scaffold NG50 and NGASO lengths of 124,700 bp
and 104,593 bp, respectively, only -4.2 and -3.6 times longer than the
raw reads used as input (N50=29,349 bp) for genome assembly,
respectively (Supplementary Tables 4, 6).

GoldRush and Shasta assembled each of the three human
genomes in less than a day, executing in 16.6-20.8h and
4.1-5.0 h, respectively (Fig. 2b and Supplementary Tables 7-9).
Both Flye and Redbean required at least 33.7 h to assemble each
of the three human genomes, with Redbean assembling two of
the datasets (HG01243 and HGO02055) in -68 h, for each (Fig. 2b
and Supplementary Tables 7-9). GoldRush is also competitive in
assembling the smaller plant genomes, requiring 1.6 and 7.4 h to
assemble O. sativa and S. lycopersicum, respectively (Fig. 2d and
Supplementary Tables 10, 11). GoldRush used, at most, 54.5 GB of
RAM to assemble the three human genomes (Fig. 2b and Sup-
plementary Tables 7-9). In comparison, using the same data, Flye
and Redbean used between 329.3-502.4 GB (six- to eight-fold
more than GoldRush), and Shasta utilized 884.8-1009.2 GB (up to
20-fold more than GoldRush). Similarly, GoldRush required the
least amount of RAM to assemble the O. sativa and S. lycopersi-
cum datasets, using at most 45.3 GB (Fig. 2d and Supplementary
Tables 10, 11).

GoldPolish base error correction

GoldPolish decreased the number of mismatches or indels per 100 kbp
of the NA24385 golden path by ~6.5-fold (1463.7 to 228.5 and 1327.2 to
197.2, respectively) (Supplementary Table 12). This improvement in
mismatches and indels translated into a recovery of 12,272 (89.1%)
complete BUSCOs, fewer than the 12,920 (93.8%) and 12,988 (94.3%)
complete BUSCOs in the Shasta and Flye NA24385 genome assemblies,
respectively, but more than the 12,193 (88.5%) complete BUSCOs
reconstructed in the Redbean NA24385 genome assembly (Supple-
mentary Table 13). Of the 2461 duplicated genes observed in T2T-
CHM13*%, a complete telomere-to-telomere reference-grade human
genome assembly, 845 were found in the GoldRush assembly in mul-
tiple copies, fewer than the 1717 and 1725 found in the Shasta and Flye
genome assemblies, respectively, but greater than the 680 found in
the Redbean genome assembly (Supplementary Fig. 2 and Supple-
mentary Table 14).

When polishing the genome assemblies of the more erro-
neous human long-read datasets, HG01243 (estimated 9% error
rate) and HG02055 (estimated 11% error rate), GoldPolish reduced
the number of mismatches and indels per 100 kbp by 60.8 and
67.4% (to 1372.3 and 980.1) for the former, and by 53.6 and 60.5%
(to 1981.7 and 1354.8) for the latter, respectively (Supplementary
Tables 6, 15, 16). In comparison, the Flye, Redbean, and Shasta
assemblies reported 148.7 and 110.6, 324.7 and 354.5, and 195.6

Nature Communications | (2023)14:2906

Article

https://doi.org/10.1038/s41467-023-38716-x

GoldRush

begins

Reads

GoldPath:
Generating base assembly

GoldPath
begins

Initialize miBf update
miBf
Loop over
sequences
Is sequence
insert

Y

GoldPolish:
Polishing assembly

Skip sequence

Silver/

golden path

Tigmint-long:
Correcting assembly

GoldChain:
Scaffolding assembly

Final assembly

GoldRush
ends

Fig. 1| Flowchart of GoldRush and GoldPath. a Raw long reads are first processed
by GoldPath to generate the golden path, a -1X representation of the genome. The
golden path is then polished by GoldPolish and corrected for structural errors with
Tigmint-long. Finally, GoldChain scaffolds the polished and corrected golden path
to generate the final genome assembly. b GoldPath uses the input long sequencing
reads or silver path sequences to initialize a miBf data structure. GoldPath then
loops over the sequences, and queries each sequence against the miBf. If the
sequence is found in the miBf, GoldPath skips it and resumes its iterations. Con-
versely, if the sequence is not found in the miBf, it is inserted into the miBf and
added to the silver/golden path. When GoldPath is constructing a silver path, and if

Sequence

silver path

Terminate
silver path?

Make new
silver path?

Initialize new
silver path

Sequences
exhausted?

Next

GoldPath
ends

A

the silver path has not reached the threshold number of bases, GoldPath will
continue recruiting bases from the input reads. If the threshold number of bases is
reached, GoldPath will check if more silver paths need to be generated. If more
silver paths are needed, GoldPath will create them using the same algorithm and
parameters, otherwise, it will terminate. Five (by default) silver paths, each repre-
senting ~0.9X (by default) coverage of the target genome, are combined to gen-
erate a low-coverage subsample input for GoldPath to build the golden path. When
creating the golden path, GoldPath will continue iterating over the sequences from
the silver paths until all sequences are exhausted.

Nature Communications | (2023)14:2906

Article

https://doi.org/10.1038/s41467-023-38716-x

a _ b .

Q304 = A m 9001 A

7 o, S

= o > 600

£207 & S ®

e 5 Lo a

(0] i I 4 O

= 10 P = < 300

o) X

< o4 3 04 (@

o T T T T T n— 1 1 1 T T

=z 0 2000 4000 6000 8000 0 20 40 60 80
Misassemblies Time (h)
Human Individual A HG01243 [0 HG02055 O NA24385

C 251 d 300

—_ o | A —~ A A

2 201 o -

= S 200

< 15 g A

= S

D 104 A

S % 1001 @ e

S 54 = (@} N

19 O S o =

< o4 @ O A [0} 04

(D T T T T T T D_ T T T T

=z 0 1000 2000 3000 4000 5000 0 10 20 30
Misassemblies Time (h)

Plant Species O O. sativa /\ S. lycopersicum

Assembler O GoldRush ©

Fig. 2 | Contiguity, correctness, and resource usage of GoldRush assemblies
compared to Flye, Redbean, and Shasta genome assemblies for three human
individuals (NA24385, HG01243, and HG02055), O. sativa, and S. lycopersicum.
Human individuals NA24385, HG01243, and HG02055 are represented as circles,
triangles, and squares, respectively, in a and b. O. sativa and S. lycopersicum are
represented as circles and triangles, respectively, in ¢ and d. GoldRush, Flye, Red-
bean, and Shasta are colored yellow, purple, red, and blue, respectively. The

Flye © Redbean @ Shasta

genome assemblies were assessed using QUAST for their contiguity and correct-
ness. Extensive misassemblies and NGAS50 length, as determined by QUAST, are
shown on the horizontal and vertical axes, respectively, in a and c. Wall clock run
time (h) and peak memory (GB) usage of the genome assembly processes were
recorded using the unix time command and shown on the horizontal and vertical
axes, respectively, in b and d.

and 100.7 number of mismatches and indels per 100 kbp for
HGO01243, respectively, and 155.5 and 126.0, 346.1 and 379.1, and
210.2 and 103.9 number of mismatches and indels per 100 kbp for
HGO02055, respectively (Supplementary Tables 2, 3). The results of
running BUSCO on the HG01243 and HG02055 genome assem-
blies can be found in Supplementary Tables 17, 18.

When substituting GoldPolish with Racon® for polishing the same
golden path, the polishing step of the GoldRush pipeline incurred a
greater computational cost, requiring over an order of magnitude
more memory (602.3 vs 11.0 GB RAM) and taking 19.3% longer (9.9 vs
8.3h) to complete, but resulted in a more base-accurate genome
assembly (157.0 mismatches per 100 kbp and 106.4 indels per 100 kbp)
(Fig. 3 and Supplementary Tables 19-21). The improvements in the
base accuracy of the resulting NA24385 genome assembly also trans-
lated into a higher recovery of complete BUSCOs (12,752, 92.5% com-
plete) (Supplementary Table 22). Polishing the NA24385 golden path
with GoldPolish and Racon yielded QV (base quality value) statistics of
28.7 and 31.1, respectively, as assessed with Merqury (Supplementary
Table 23).

To characterize the polishing performance of GoldPolish and
Racon in repetitive genomic regions, we compared the resulting QV
statistics of the polished assemblies, specifically looking at the statis-
tics in non-repetitive and repetitive regions. GoldPolish polishing
yielded QV statistics of 27.7 and 30.0 for non-repetitive and repetitive
regions, respectively (Supplementary Table 24). Racon polishing led to

QVs of 30.3 and 32.1 for non-repetitive and repetitive regions,
respectively (Supplementary Table 25).

Discussion

The GoldRush algorithm is straightforward: collect unique fragments
representing the genome to generate a golden path, polish the frag-
ments, correct them for structural misassemblies, and join the
polished and corrected fragments together. As GoldRush is built upon
this fundamental concept of the golden path, it represents a paradigm
shift in the genome assembly of erroneous long reads, no longer
requiring the time- and memory-intensive process of all-vs-all
sequence alignments. Instead, the golden path, or a~1X read frag-
ment representation of the underlying genome, is constructed by
iterating over the read set, and querying a progressive miBf database
representing the golden path. We have shown that our genome
assembly paradigm yields human genome assemblies that are com-
parable in contiguity to what can be obtained using different imple-
mentations of the OLC algorithm, yet with an order of magnitude
smaller memory footprint.

The GoldRush algorithm was designed with no single long-read
sequencing technology in mind, making it versatile and platform
agnostic. The algorithm is robust to base errors, capable of assembling
long-read datasets with estimated error rates ranging from 4 to 20%,
and achieving NG50 and NGASO lengths up to 32.6 and 22.2 Mbp,
respectively, for the human data tested (Supplementary Tables 1-6).

Nature Communications | (2023)14:2906

Article

https://doi.org/10.1038/s41467-023-38716-x

o]

GoldPath g
GoldPolish %
Racon

Tigmint-Long

0 —e0

GoldChain

s

0 200 400 600
Peak Memory (GB)

Fig. 3 | Memory usage of the GoldRush stages when assembling human genome
datasets (individuals NA24385, HG01243, and HG02055). The average peak
memory (GB) for each stage of the assembly of the three human genomes is shown,
with the data points (open circles) indicating the peak memory of each assembly
and the error bars indicating the standard deviation. Racon can optionally be used
for long-read base polishing within GoldRush, if the onboard memory of the
computer system is not limited.

GoldRush accomplishes this by mitigating the impact of base errors at
various stages. For instance, GoldPath uses spaced seeds® to enable
more sensitive detection of erroneous sequences originating from the
same genomic locus. In addition, GoldPath only selects sequences with
an average Phred**° quality >15 (by default) for the silver and golden
paths. The requirement ensures that the baseline assembly is com-
posed of the higher-quality reads from the set, but may also prevent
GoldPath from recruiting sequences derived from genomic loci with
reads of insufficient quality. These regions, however, could be rescued
downstream if GoldChain scaffolds over the region, as the gap-filling
feature can recover the missing sequence. The average Phred quality
threshold parameter could also be set to a lower value for more
erroneous read datasets. For polishing the golden path sequences,
GoldPolish accommodates the higher error rate of long reads by uti-
lizing targeted Bloom filters*® populated with localized k-mers origi-
nating exclusively from mapped reads. This approach of using a
targeted Bloom filter per goldtig enables the use of smaller k-mer sizes
than those used for the original short-read focused ntEdit+Sealer
protocol, thus increasing the polishing sensitivity and mitigating
errors that would otherwise arise from the use of off-target k-mers.
Further, the GoldRush algorithm can reconstruct duplicated genomic
regions in the resulting genome assembly. In our tests, we observed
that GoldRush reconstructed 34.3% of duplicated human genes in
multiple copies, though this figure was higher in Flye and Shasta
assemblies (Supplementary Fig. 2 and Supplementary Table 14). This is
also recapitulated in the Merqury spectra-cn plots;* the Flye and
Shasta spectrum histograms more closely resemble those of the
reference-grade quality NA24385 maternal and paternal genome
assemblies* in comparison to the GoldRush and Redbean spectrum
histograms (Supplementary Fig. 3). Since GoldRush uses a completely
different paradigm to assemble genomes, it also has different
strengths when compared to OLC-based genome assemblers. For
instance, in the O. sativa dataset, the N50 length of the reads is
29,349 bp, and a Shasta genome assembly of the data results in an
assembly NGAS50 length of 104,593 bp—roughly 3.6 times longer. In
contrast, the NGASO length of the GoldRush genome assembly is
tenfold greater (307.9 kbp) than the read N50 length (Fig. 2¢ and
Supplementary Tables 4, 6). However, when considering which tool
performs best on all datasets, none consistently outperforms the other
in all the metrics we measured (i.e., run time, memory usage, genome
contiguity, genome completeness, and genome correctness).

Yet, GoldRush is consistently more memory-efficient in compar-
ison to other tools in all the datasets tested. This provides the
opportunity to assemble long-read data from human-sized or larger
genomes to those who do not have access to server-class systems,
especially as retail computers with 64 GB RAM or more become more
accessible. The memory efficiency of GoldRush is mainly due to the use
of the miBf data structure in the GoldPath stage. However, the pub-
lished version of the miBf data structure® was intended to serve as a
static database, where the user first inserted all the items of interest,
and subsequently used the database solely for query operations. For
the purpose of GoldPath, we needed a memory-efficient data structure
that could also be dynamic, with interleaved insert and query opera-
tions. To adjust the miBf for GoldPath, we disabled its ability to rescue
information lost to hash collisions, a step that requires all the elements
to be inserted, and renders the miBf static afterward. We compensated
for this loss of information by using longer tile lengths, ¢. With longer
tiles, there are more queries per given tile, and the increased number
of queries would offset the loss of expected hits due to hash collisions.

GoldRush also assembles all the human datasets within a day and,
together with Shasta, is faster than all other OLC genome assemblers
tested herein. Shasta accomplishes this with heuristics based on Min-
Hash markers to quickly identify potential read-to-read overlaps®. On
the other hand, GoldRush achieves this speed with the use of a genome
assembly algorithm that has linear time complexity in the number of
reads (Supplementary Note 1). Breaking down the time GoldRush
spends for completing each stage, we observe that GoldRush devotes
more time polishing the golden path with GoldPolish (Supplementary
Tables 20, 26, 27), which is already heavily optimized. GoldPolish runs
a background Bloom filter building process which continually pro-
duces Bloom filters from the mapped reads for the launched pipelines,
minimizing waiting time between ending and starting a new polishing
run (Supplementary Fig. 4). The GoldPath and GoldChain stages were
also optimized to reduce the overall run time of GoldRush. GoldPath
utilizes multiple independent silver paths to effectively generate a low-
coverage subsample of the original dataset, such that the subset still
covers the entire target genome. With enough silver paths, any sec-
tions of the genome that are missing in a given silver path should be
recovered in the others. This enables GoldPath to generate a golden
path without having to process the entire dataset, speeding up the
golden path generation considerably.

Further, we observed that running additional rounds of ntLink in
the GoldChain stage led to substantial improvements in the contiguity
of the final assembly. However, re-mapping the long reads for each
round was costly. To remedy this, we implemented a mapping liftover
step, allowing ntLink to run multiple rounds of scaffolding without re-
mapping the long reads, thus reducing the run time in each sub-
sequent round (Supplementary Table 28). We also implemented two
additional features, overlap detection, and gap-filling, in ntLink. While
these were introduced specifically for the GoldChain stage of Gold-
Rush, they are also applicable to the general use of ntLink. In earlier
versions of ntLink, overlapping sequences were still concatenated end-
to-end, which could result in local insertion misassemblies at the
contig joints. With the overlap detection and overlap resolution fea-
ture, gap estimates from the earlier stages of ntLink are used to
identify putative overlaps between adjacent goldtigs (indicated by
negative gap estimates), and guide trimming of the overlapping sec-
tions. Overlapping goldtigs are expected in the golden path, as reads
are evaluated on a tile-by-tile basis in GoldPath.

Polishing the resulting human assemblies with GoldPolish reduces
the base error rates by 53.6-85.1%. GoldPolish is built on ntEdit
+Sealer”, a k-mer-based base correction algorithm, and requires 2k-1
consecutive high-quality k-mers to correct base mismatches and
indels. This requirement is geometrically harder to meet for datasets
with higher error rates. In comparison, each of the genome assemblies
generated by the Flye and Shasta algorithms has higher base-pair

Nature Communications | (2023)14:2906

Article

https://doi.org/10.1038/s41467-023-38716-x

accuracy (Supplementary Tables 1-3, 6). In the Merqury spectra-cn
plots, we observe that GoldRush has a greater number of unique k-
mers not found in the high-quality short reads compared to competing
tools, which is at least partially attributed to gap-filling with uncor-
rected read sequences (Supplementary Fig. 3).

With the recent release of the ONT Q20+ chemistry and its
reported base accuracy of 99%, as well as the continual improvements
in basecallers*> and k-mer-based genome analysis solutions*, we
expect GoldRush to capitalize on the improvements in these frontiers,
and reduce the time spent correcting base errors. Indeed, for the
human GoldRush tests, GoldPolish achieved its highest base quality
with the fastest run time for the NA24385 dataset, which is estimated to
be the least erroneous in our tests (4%) (Supplementary Tables 6, 12, 15,
16, 20, 26, 27). For this dataset, GoldPolish displayed a polishing per-
formance similar to that of Racon® (Supplementary Tables 12, 21, 23).
Racon is computationally more expensive to run, due in part to the
input reads and alignments being loaded into memory. In our tests,
both GoldPolish and Racon correct repetitive regions better than non-
repetitive regions (Supplementary Tables 24, 25).

Lastly, GoldRush is modular. Each step within GoldRush can be
substituted for another tool that performs the equivalent function,
such as substituting GoldPolish for Racon, allowing GoldRush to easily
benefit from any future advances in the field. GoldRush also makes no
assumptions about the quality of the input long reads, standing only to
gain from future computing and sequencing improvements in the
long-read sequencing domain.

We have demonstrated that our memory-efficient and modular
long-read genome assembly pipeline, GoldRush, assembles long ONT
reads into draft genomes with high contiguity, notably chromosome
18 telomere-to-telomere (HG02055) and several other chromosome
arms (Supplementary Fig. 5). We also show that the genome assembly
contiguities are comparable to what is achieved with current state-of-
the-art tools, but GoldRush uses a fraction of the RAM, lowering the
barrier to entry to human long-read genome assembly. With its mod-
ular design, memory efficiency, and robust performance in assembling
large and complex genomes, we expect our assembly paradigm, and its
first implementation, GoldRush, to both be beneficial to the scientific
community and expand the reach of long sequencing reads.

Methods

GoldPath

To create the golden path, GoldPath first builds silver paths. A silver
path is similar to the golden path, except it is an -rX (default 0.9X)
representation of the genome. The silver paths are combined to gen-
erate a low-coverage subsample of the reads. This subsample is then
used as input to GoldPath to generate the golden path.

GoldPath builds the silver paths by using a modified miBf*, a
resource-efficient probabilistic data structure, to associate spaced
seed (a pattern with care and don’t care positions) derived k-mers with
the locus of the genome they are derived from. The miBf is composed
of three data structures: a Bloom filter®, a rank array, and an ID array.
The Bloom filter is first initialized with h (default 3) sets of spaced
seed’® derived k-mers from the input read set using ntHash****. Only
reads that are at least m bp (default 20,000 bp) long and have an
average Phred**° quality score higher than P (default 15, representing
97% base accuracy or more, on average) are inserted into the Bloom
filter. A rank array is then created to associate each set bit in the Bloom
filter with a position in the empty ID array, sized based on the number
of set bits in the Bloom filter.

The read set is then iteratively queried against the miBf data
structure to determine if a read should be inserted into the miBf and,
thus, the silver path. Once a read is processed and determined to
contribute new base coverage to the silver path, the read is inserted
into the miBf. The read is first split into tiles of length ¢ bp (default
1000), and b (default 10) consecutive tiles are binned into one block.

The spaced seed-derived k-mers from one block are hashed and a
unique ID associated with the block, synonymous with a genomic
locus, is inserted into the position of the miBf ID array that corre-
sponds to the spaced seed-derived k-mer (Supplementary Fig. 6). By
binning tiles into blocks, GoldPath clusters together the spaced seed-
derived k-mers from a genomic region of length b x ¢. Each read that is
inserted into the miBf is also saved to the silver path.

Like insertion, the querying process first splits the read into tiles
of length ¢. The k-mers in these tiles are hashed using the same spaced
seed patterns and queried against the miBf, then the associated ID hits
within each tile are tallied in an ID-to-counts table. From these hits, a
preliminary best ID hit is associated with each tile. The tiles are con-
sidered assigned (found) if the ID with the most hits exceeds a
threshold x (default 10), or unassigned (not found) otherwise (Sup-
plementary Fig. 7). Next, we improve the accuracy of the tile’s pre-
liminary best hits by using information from the best hits of
neighboring tiles along with the target tile’s own ID-to-counts table
(Supplementary Fig. 8 and Supplementary Method 1).

Once GoldPath determines the final assignment of all the tiles in
the read, it evaluates the read with three possible outcomes: skip,
insert, or trim and insert. If all the tiles in the read are already assigned,
the read is skipped since it does not contribute any new base infor-
mation to the silver path. If all the tiles in the read are unassigned, the
read is inserted into the miBf data structure and the silver path in its
entirety. Finally, if the read has a mixture of assigned and unassigned
tiles, the read is trimmed such that only one assigned tile on either side
of the longest stretch of unassigned tiles is retained (Supplementary
Fig. 9), and the trimmed read is inserted into both the miBf and
silver path.

When the silver path contains or exceeds the threshold number of
bases (default genome size x r), the current silver path is finalized, and a
new silver path is initialized. The silver path creation continues until
the input reads are exhausted or the number of completed silver paths
reaches M (default 5). The golden path is then generated using the
same algorithm and parameters used for the silver paths, except that
the input is now the concatenated sequence files from the silver paths
and the golden path is only complete when GoldPath has finished
iterating through all of the silver path sequences. Sequences in the
golden path construe the contigs of the initial genome assembly to be
refined in the later steps of the pipeline, and are henceforth termed
“goldtigs”.

GoldPolish

After the golden path is built, the goldtigs are polished to correct
mismatches and indels. The polishing protocol, GoldPolish, closely
follows the ntEdit+Sealer protocol”, which has been shown to perform
well using short sequencing reads. Unlike the currently published
paradigm, which stores all the short-read k-mers in a single Bloom
filter*® used for correction, GoldPolish uses a targeted approach where
each goldtig has a dedicated Bloom filter, each containing a hash
representation of k-mers derived from long-read subsets.

To accomplish this, GoldPolish maps the long reads to goldtigs
using, by default, minimap2*. GoldPolish is also capable of using
mappings from other tools, such as ntLink’. For each goldtig, the set of
mapped reads are k-merized using a range of different k-mer lengths in
order to benefit from a trade-off between specificity (longer k-mers)
and sensitivity (shorter k-mers). These k-mers are then inserted into an
array of Bloom filters, one Bloom filter for each k-mer size per goldtig.
From this, we have a set of k-mers targeted to individual goldtigs that
we can use with ntEdit*® and Sealer’” for polishing (Supplemen-
tary Fig. 10).

GoldPolish then polishes the goldtigs using the full ntEdit+Sealer
pipeline on each individual goldtig using their dedicated Bloom filters.
GoldPolish launches multiple ntEdit+Sealer pipelines in parallel to
amortize the overhead introduced with each polishing run.

Nature Communications | (2023)14:2906

Article

https://doi.org/10.1038/s41467-023-38716-x

GoldChain

After polishing and correcting the goldtigs, an updated version of the
long-read genome scaffolder ntLink’ is used to assemble the goldtigs.
To utilize the long-read evidence in building longer sequences, the full
long-read set is mapped to the goldtigs using a lightweight minimizer-
based approach. Briefly, minimizer sketches are generated for the
goldtigs as well as each read for a given k-mer size k and window size
w’. The goldtig minimizer sketches are indexed, and for each mini-
mizer in the sketch of a given long-read, this index is queried to find
hits between the long read and the goldtigs. Long-read mappings that
span multiple goldtigs provide scaffolding evidence. This long-read
evidence is stored as a scaffold graph, where the nodes are goldtigs,
and the directed edges between the nodes represent evidence that the
goldtigs should be joined. This scaffold graph is traversed using abyss-
scaffold*®, a heuristic-based scaffold layout algorithm, to output the
final, contiguated genome assembly.

Three important features have been added to ntLink (v1.3.0+) to
adapt the functionality for the de novo long-read genome assembly
problem in GoldRush: overlap detection, gap-filling, and scaffolding
rounds based on the liftover of sequence mappings.

For the sequence pairs with putative overlaps, minimizer sketches
are generated with a lower k and w than the initial ntLink pairing stage
to increase the sensitivity of overlap detection (parameters small k,
small w, defaults 15 and 10, respectively). These sketches are filtered to
retain minimizers that fall in the estimated overlapping region with a
multiplicity of one in each sequence, ensuring that only non-repetitive
minimizers in the sequences are retained. These minimizers are then
used to create an undirected minimizer graph, similar to methods
employed by the reference-guided scaffolder ntjoin*. In this graph,
the minimizers are nodes, and edges between the minimizers indicate
that the minimizers are adjacent in at least one of the ordered
sequence minimizer sketches, with the edge weights indicating the
number of sequences that have that minimizer adjacency. This mini-
mizer graph is filtered to retain edges with a weight of 2, which
removes branches and results in a graph consisting of linear path
components. Each linear path is a minimizer-based mapping between
the putatively overlapping sequence ends. The middle minimizer from
the longest mapping is chosen to anchor the sequences to one
another, and the coordinates of this minimizer guide the trimming of
the detected overlapping regions on the incident sequences. Finally,
after this trimming, the sequences are concatenated (Supplemen-
tary Fig. 11).

The second major feature added to ntLink uses the mapped long
reads to fill gaps between the scaffolded goldtigs. The verbose option
in the initial ntLink pairing stage was updated to output the complete
long-read mapping information, including the mapped goldtigs and
the minimizers (including position and strand on the goldtig and read).
For each sequence join induced by ntLink, the verbose mapping
information is parsed to identify each read that supports that join, and
the associated mapped minimizers (“pass 1 minimizers”). The read with
the highest average number of mapped pass 1 minimizers is chosen
and subsequently used to fill the scaffold gap. As finding anchoring
minimizers as close to the sequence ends as possible is preferred, each
chosen read is re-mapped to the flanking sequences using a lower k
and w for increased sensitivity (“pass 2 minimizers”). If the mapping is
unambiguous, the anchoring pass 2 minimizers closest to the
sequence ends are used as cut points for the flanking sequences and
the read sequence filling the gap. Otherwise, the pass 1 minimizers are
used to determine the gap-filling coordinates (Supplementary Fig. 12).
Gap-filling is turned on in GoldRush by default and is run when the
target “gap fill” is specified to the ntLink command.

Finally, liftover-based rounds were integrated into the ntLink code
base. We added a step to liftover the mapped minimizer coordinates in
the verbose mapping file (described above) from the initial goldtigs to
the sequences post-scaffolding. This new mapping file is then input to

the ntLink pairing stage in the subsequent ntLink round, which uses
the input mapping coordinates instead of re-mapping the reads to
infer the scaffold graph. The remaining steps in the ntLink pipeline
then proceed as previously described. To invoke these liftover-based
rounds, we provided a Makefile “ntLink_rounds”, which runs a specified
number of rounds of ntLink (parameter rounds, default 5), lifting over
the mapping coordinates between each iteration.

Implementation

The GoldRush pipeline is driven by a Makefile. GoldPath and Gold-
Polish are coded in C++, and GoldChain is coded in Python. All com-
ponents of GoldRush utilize the btllib common code library*™. The tool
can be installed from GitHub or using the conda package manager.
Instructions on how to run the GoldRush pipeline are provided on the
GitHub page (https://github.com/bcgsc/goldrush). Many of the Gold-
Rush parameters are supplied with default values and can be config-
ured. Only the genome size of the target species and the long reads ina
single, uncompressed, multi-FASTQ file are required as input.

Evaluation

To evaluate the performance of GoldRush (v1.0.0), we assembled five
genomes from ONT long-read data for three human cell lines
(NA24385, HG01243, and HG02055), O. sativa, and S. lycopersicum
(Supplementary Table 6). We optimized the parameters of GoldRush
for each dataset (Supplementary Figs. 13-17 and Supplementary
Table 29). In a separate trial, we also polished the golden paths with
Racon® (v1.5.0) instead of GoldPolish. To assess the polishing perfor-
mance of GoldPolish and Racon in repetitive and non-repetitive
regions of the genome, we first masked the repeats in the assemblies
using RepeatMasker® (v4.1.2) (-e ncbi -species human). Then, to gen-
erate an assembly where the non-repetitive regions are masked, we
used the complement of the masked repetitive regions. These masked
assemblies were then used to compare the polishing performance of
GoldPolish and Racon in the repetitive and non-repetitive genomic
regions. To compare the performance of GoldRush to current state-of-
the-art long-read genome assemblers, we assembled all five datasets
with Flye, Redbean, and Shasta. We ran both Flye (v2.9) and Redbean
(v2.5) using their default parameters, and Shasta (v0.10.0) using the
Nanopore-Plants-Apr2021.conf configuration file for O. sativa and
Nanopore-May2022.conf for the other datasets.

All assemblies were analysed using QUAST* (v5.0.2) (--fast
--large --scaffold-gap-max-size 100000 --min-identity 80 --split-scaf-
fold), and the corresponding reference genome (Supplementary
Table 30). To assess the contiguity and correctness of the assemblies,
we report the NG50 and NGASO length metrics, and the number of
extensive misassemblies (as defined by QUAST). The NG50 length
statistic describes that 50% of the genome size is in sequences of NG50
length or longer. The NGAS5O0 length statistic is similar to the NG50
length, but uses alignment blocks instead of sequence lengths for the
calculation. To assess the base qualities of the various assemblies, we
report the number of mismatches or indels per 100 kbp from QUAST,
spectra-cn plots, and QV from Merqury* (v1.3.0) — the latter a proxy
for the log-scaled probability of error for the consensus base
calls — using short reads and reference-grade genome assemblies as a
comparison (Supplementary Table 31). We also ran BUSCO* (v5.3.2)
using the primates_odblO lineage to assess the completeness of the
human assembilies in the gene space. Finally, to measure the presence
of duplicated genes found in the assemblies, we used the asmgene
utility in minimap2** (v2.24) (min coverage = 0.99 and min identity =
[0.90, 0.99]) using all cDNA sequences annotated in the GRCh38
human reference from Ensembl** (release 87) and the T2T-CHM13*
(vL.1) genome assembly as the “ground truth” for which genes are
considered duplicated. All benchmarking tests were performed on a
server-class system with 144 Intel(R) Xeon(R) Gold 6254 CPU @ 3.1 GHz
with 2.9 TB RAM.

Nature Communications | (2023)14:2906

https://github.com/bcgsc/goldrush

Article

https://doi.org/10.1038/s41467-023-38716-x

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The GoldRush, Flye, Redbean, and Shasta genome assemblies gener-
ated in this study have been deposited in Zenodo at https://doi.org/10.
5281/zenodo.7884681%. The GoldRush genome assemblies generated
for the parameter sweep experiments in Supplementary Figs. 13-17 are
available upon request. The accession codes or location of sequencing
data used for assembling the draft genomes are listed in Supplemen-
tary Table 6. The accession codes of the reference genomes and the
short-read dataset used to benchmark GoldRush and comparators’
genome assemblies are provided in Supplementary Tables 30-33.

Code availability

GoldRush (v1.0.0) has been deposited in Zenodo at https://doi.org/10.
5281/zenodo.7884291°*. GoldRush is available at https://github.com/
begsc/goldrush and released under the GPL-3 license.

References

1. Treangen, T.J. & Salzberg, S. L. Repetitive DNA and next-generation
sequencing: computational challenges and solutions. Nat. Rev.
Genet. 13, 36-46 (2012).

2. Haubold, B. & Wiehe, T. How repetitive are genomes? BMC Bioin-
form. 7, 541 (2006).

3. deKoning, A.P.J.,Gu, W., Castoe, T. A., Batzer, M. A. & Pollock, D. D.
Repetitive elements may comprise over two-thirds of the human
genome. PLoS Genet. 7, €1002384 (2011).

4. Afshinfard, A. et al. Physlr: next-generation physical maps. DNA 2,
116-130 (2022).

5. Coombe, L. et al. ARKS: chromosome-scale scaffolding of human
genome drafts with linked read kmers. BMC Bioinform. 19, 234
(2018).

6. Putnam, N. H. et al. Chromosome-scale shotgun assembly using an
in vitro method for long-range linkage. Genome Res. 26,

342-350 (2016).

7. Coombe, L. et al. LongStitch: high-quality genome assembly cor-
rection and scaffolding using long reads. BMC Bioinform. 22,

534 (2021).

8. Qin, M. et al. LRScaf: improving draft genomes using long noisy
reads. BMC Genomics 20, 955 (2019).

9. Adewale, B. Will long-read sequencing technologies replace short-
read sequencing technologies in the next 10 years? Afr. J. Lab Med.
9, 1340 (2020).

10. Sakamoto, Y., Zaha, S., Suzuki, Y., Seki, M. & Suzuki, A. Application
of long-read sequencing to the detection of structural variants in
human cancer genomes. Comput. Struct. Biotechnol. J. 19,
4207-4216 (2021).

11. Bongartz, P. Resolving repeat families with long reads. BMC Bioin-
form. 20, 232 (2019).

12. Chiu, R., Rajan-Babu, I.-S., Friedman, J. M. & Birol, I. Straglr: dis-
covering and genotyping tandem repeat expansions using whole
genome long-read sequences. Genome Biol. 22, 224 (2021).

13. Liy, Y. et al. Comparison of structural variants detected by PacBio-
CLR and ONT sequencing in pear. BMC Genomics 23, 830 (2022).

14. Hon, T. etal. Highly accurate long-read HiFi sequencing data for five
complex genomes. Sci. Data 7, 399 (2020).

15. Dohm, J. C., Peters, P., Stralis-Pavese, N. & Himmelbauer, H.
Benchmarking of long-read correction methods. NAR Genom.
Bioinform. 2, lgaa037 (2020).

16. Liu, L., Yang, Y., Deng, Y. & Zhang, T. Nanopore long-read-only
metagenomics enables complete and high-quality genome
reconstruction from mock and complex metagenomes. Micro-
biome 10, 209 (2022).

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Luo, J. et al. Systematic benchmarking of nanopore Q20+ kit in
SARS-CoV-2 whole genome sequencing. Front. Microbiol. 13,
973367 (2022).

Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long,
error-prone reads using repeat graphs. Nat. Biotechnol. 37,
540-546 (2019).

Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg?2.
Nat. Methods 17, 155-158 (2020).

Shafin, K. et al. Nanopore sequencing and the Shasta toolkit enable
efficient de novo assembly of eleven human genomes. Nat. Bio-
technol. 38, 1044-1053 (2020).

Wajid, B. & Serpedin, E. Review of general algorithmic features for
genome assemblers for next generation sequencers. Genom. Pro-
teom. Bioinform. 10, 58-73 (2012).

Li, Z. et al. Comparison of the two major classes of assembly
algorithms: overlap-layout-consensus and de-bruijn-graph. Brief.
Funct. Genomics 1, 25-37 (2012).

Schrinner, S. D. et al. Haplotype threading: accurate polyploid
phasing from long reads. Genome Biol. 21, 252 (2020).
Lorig-Roach, R. et al. Phased nanopore assembly with Shasta and
modaular graph phasing with GFAse. Preprint at bioRxiv https://doi.
0rg/10.1101/2023.02.21.529152 (2023)

Luo, X., Kang, X. & Schoénhuth, A. phasebook: haplotype-aware de
novo assembly of diploid genomes from long reads. Genome Biol.
22, 299 (2021).

Rautiainen, M. et al. Telomere-to-telomere assembly of diploid
chromosomes with Verkko. Nat. Biotechnol. https://doi.org/10.
1038/s41587-023-01662-6 (2023)

Jackman, S. D. et al. Tigmint: correcting assembly errors using
linked reads from large molecules. BMC Bioinforma. 19, 393 (2018).
Coombe, L., Warren, R. L., Wong, J., Nikolic, V. & Birol, I. ntLink: A
toolkit for de novo genome assembly scaffolding and mapping
using long reads. Curr. Protoc. 3, €733 (2023).

Li, J. X., Coombe, L., Wong, J., Birol, |. & Warren, R. L. ntEdit+Sealer:
efficient targeted error resolution and automated finishing of long-
read genome assemblies. Curr. Protoc. 2, e442 (2022).

Bloom, B. H. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM 13, 422-426 (1970).

Chu, J. et al. Mismatch-tolerant, alignment-free sequence classifi-
cation using multiple spaced seeds and multiindex Bloom filters.
Proc. Natl Acad. Sci. USA 117, 16961-16968 (2020).

Mikheenko, A., Prjibelski, A., Saveliev, V., Antipov, D. & Gurevich, A.
Versatile genome assembly evaluation with QUAST-LG. Bioinfor-
matics 34, i142-i150 (2018).

Simao, F. A., Waterhouse, R. M., loannidis, P., Kriventseva, E. V. &
Zdobnov, E. M. BUSCO: assessing genome assembly and annota-
tion completeness with single-copy orthologs. Bioinformatics 31,
3210-3212 (2015).

Li, H. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics 34, 3094-3100 (2018).

Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury:
reference-free quality, completeness, and phasing assessment for
genome assemblies. Genome Biol. 21, 245 (2020).

Nurk, S. et al. The complete sequence of a human genome. Science
376, 44-53 (2022).

Vaser, R., Sovié, |., Nagarajan, N. & Sikié, M. Fast and accurate de
novo genome assembly from long uncorrected reads. Genome Res.
27, 737-746 (2017).

Ma, B., Tromp, J. & Li, M. PatternHunter: faster and more sensitive
homology search. Bioinformatics 18, 440-445 (2002).

Ewing, B. & Green, P. Base-calling of automated sequencer traces
using phred. Il. Error probabilities. Genome Res. 8, 186-194 (1998).
Ewing, B., Hillier, L., Wendl, M. C. & Green, P. Base-calling of auto-
mated sequencer traces using phred. I. Accuracy assessment.
Genome Res. 8, 175-185 (1998).

Nature Communications | (2023)14:2906

https://doi.org/10.5281/zenodo.7884681
https://doi.org/10.5281/zenodo.7884681
https://doi.org/10.5281/zenodo.7884291
https://doi.org/10.5281/zenodo.7884291
https://github.com/bcgsc/goldrush
https://github.com/bcgsc/goldrush
https://doi.org/10.1101/2023.02.21.529152
https://doi.org/10.1101/2023.02.21.529152
https://doi.org/10.1038/s41587-023-01662-6
https://doi.org/10.1038/s41587-023-01662-6

Article

https://doi.org/10.1038/s41467-023-38716-x

41. Jarvis, E. D. et al. Semi-automated assembly of high-quality diploid
human reference genomes. Nature 611, 519-531 (2022).

42. Wick, R. R., Judd, L. M. & Holt, K. E. Performance of neural network
basecalling tools for Oxford Nanopore sequencing. Genome Biol.
20, 129 (2019).

43. Sahlin, K. Effective sequence similarity detection with strobemers.
Genome Res. 31, 2080-2094 (2021).

44. Mohamadi, H., Chu, J., Vandervalk, B. P. & Birol, . ntHash: recursive
nucleotide hashing. Bioinformatics 32, 3492-3494 (2016).

45, Kazemi, P. et al. ntHash2: recursive spaced seed hashing for
nucleotide sequences. Bioinformatics https://doi.org/10.1093/
bioinformatics/btac564 (2022).

46. Warren, R. L. et al. ntEdit: scalable genome sequence polishing.
Bioinformatics 35, 4430-4432 (2019).

47. Paulino, D. et al. Sealer: a scalable gap-closing application for fin-
ishing draft genomes. BMC Bioinform. 16, 230 (2015).

48. Jackman, S.D. etal. ABySS 2.0: resource-efficient assembly of large
genomes using a Bloom filter. Genome Res. 27, 768-777 (2017).

49. Coombe, L., Nikoli¢, V., Chu, J., Birol, I. & Warren, R. L. ntJoin: fast
and lightweight assembly-guided scaffolding using minimizer
graphs. Bioinformatics 36, 3885-3887 (2020).

50. Nikoli¢, V. et al. btllib: a C++ library with Python interface for effi-
cient genomic sequence processing. J. Open Source Softw. 7,
4720 (2022).

51. Smit, A.F. A., Hubley, R. & Green, P. RepeatMasker open-4.0. http://
www.repeatmasker.org (2013-2015).

52. Cunningham, F. et al. Ensembl 2022. Nucleic Acids Res. 50,
D988-D995 (2022).

53. Wong, J. et al. Linear time complexity de novo long read genome
assembly with GoldRush. Zenodo https://doi.org/10.5281/
ZENODO.7884681 (2023).

54. Wong, J. et al. Linear time complexity de novo long read genome
assembly with GoldRush. Zenodo https://doi.org/10.5281/
ZENODO.7884291 (2022).

Acknowledgements

This study is supported by the Canadian Institutes of Health Research
(CIHR) [PJT-183608, I.B.]; and the National Institutes of Health
[2ROTHGO007182-04A1, 1.B.]. The content of this article is solely the
responsibility of the authors and does not necessarily represent the
official views of the National Institutes of Health or other funding orga-
nizations. The funding organizations did not have a role in the design of
the study, the collection, analysis and interpretation of the data, or in
writing the manuscript.

Author contributions

I.B. and R.L.W. conceived the study. J.W., L.C., and V.N. implemented the
algorithms. J.W., L.C., E.Z., and P.S. analysed the data. K.M.N. provided
input on the design of the algorithm. J.W., L.C., and V.N. created figures
and tables with input from co-authors. J.W., L.C., R.L.W., and I.B. wrote
the manuscript. R.L.W. and |.B. supervised the research. All authors
commented on the manuscript.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-38716-x.

Correspondence and requests for materials should be addressed to
Johnathan Wong or Inang. Birol.

Peer review information Nature Communications thanks Benjamin
Istace and the other, anonymous, reviewer(s) for their contribution to the
peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Nature Communications | (2023)14:2906

https://doi.org/10.1093/bioinformatics/btac564
https://doi.org/10.1093/bioinformatics/btac564
http://www.repeatmasker.org
http://www.repeatmasker.org
https://doi.org/10.5281/ZENODO.7884681
https://doi.org/10.5281/ZENODO.7884681
https://doi.org/10.5281/ZENODO.7884291
https://doi.org/10.5281/ZENODO.7884291
https://doi.org/10.1038/s41467-023-38716-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Linear time complexity de novo long read genome assembly with GoldRush
	Results
	Assembly performance
	GoldPolish base error correction

	Discussion
	Methods
	GoldPath
	GoldPolish
	GoldChain
	Implementation
	Evaluation
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

