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Brain proteomic analysis implicates actin
filament processes and injury response in
resilience to Alzheimer’s disease

Zhi Huang1,2, Gennifer E. Merrihew 3, Eric B. Larson4, Jea Park 3,
Deanna Plubell 3, Edward J. Fox2, Kathleen S. Montine2, Caitlin S. Latimer5,
C. Dirk Keene 5, James Y. Zou 1,6 , Michael J. MacCoss 3,6 &
Thomas J. Montine 2,6

Resilience toAlzheimer’s disease is an uncommon combination of highdisease
burden without dementia that offers valuable insights into limiting clinical
impact. Here we assessed 43 research participants meeting stringent criteria,
11 healthy controls, 12 resilience to Alzheimer’s disease and 20 Alzheimer’s
disease with dementia and analyzed matched isocortical regions, hippo-
campus, and caudate nucleus by mass spectrometry-based proteomics. Of
7115 differentially expressed soluble proteins, lower isocortical and hippo-
campal soluble Aβ levels is a significant feature of resiliencewhen compared to
healthy control and Alzheimer’s disease dementia groups. Protein co-
expression analysis reveals 181 densely-interacting proteins significantly
associated with resilience that were enriched for actin filament-based pro-
cesses, cellular detoxification, and wound healing in isocortex and hippo-
campus, further supported by four validation cohorts. Our results suggest that
lowering soluble Aβ concentrationmay suppress severe cognitive impairment
along the Alzheimer’s disease continuum. The molecular basis of resilience
likely holds important therapeutic insights.

Dementia in older individuals is a major medical challenge that looms
as a public health disaster unless effective interventions arediscovered
and deployed1. Dementia in older individuals is a syndrome that
derives from five different, prevalent diseases. While each of these
diseases on its own can cause dementia, in the majority of affected
individuals these diseases variably combine in a now widely validated
idiosyncratic conspiracy of Alzheimer’s disease (AD), vascular brain
injury (VBI), Lewy body disease (LBD), hippocampal sclerosis (HS), and
limbic-associated TDP-43 encephalopathy (LATE)2. The resulting indi-
vidually varying comorbidity confounds clinical research because of
limited tools to detect eachof thesefivediseases during life; hence, the

major focus on developing biomarkers and the continued reliance on
brain autopsy to evaluate comprehensively the burden of comorbid-
ities in an individual.

Each of the five commonly comorbid diseases that can contribute
to dementia in older individuals has a latent phase. The majority of
people harbor a low burden of latent disease that is insufficient to
cause dementia, referred to as preclinical2. In contrast, a minority
harbor a high burden of latent disease(s) sufficient to cause dementia
in others; this intriguing group is called resilient, meaning resilient to
the clinical expression of dementia despite a sufficiently high burden
of disease(s) (https://reserveandresilience.com/framework). Previous
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proteomic studies have focused on asymptomatic AD (AsymAD),
which is a mixture of both preclinical and resilient cases3–6. Here, we
present our proteomic study focusing on resilience to AD (RAD).

Latent disease confounds accurate assignment to the control group
because without comprehensive neuropathologic assessment the con-
trol group will harbor unknown levels of comorbid disease(s)2. Comor-
bidity confounds accurate assignment as RAD; indeed, we have shown
in multiple, large population- and community-based cohorts that the
major driver of apparent RAD is not related to AD but rather undetected
comorbidities that are infrequent in the cognitively resilient group but
that are significantlymore prevalent in dementia group7,8. Here, we have
used comprehensive neuropathologic evaluation combinedwith clinical
assessment proximate to death to resolve these confounders and allow
accurate clinico-pathologic assignment of both controls free of clinically
significant brain diseases and individuals with actual RAD7,8.

Most proteomic studies have evaluated only one or two iso-
cortical regions that undergo neurodegeneration in AD without
including a brain region that does not degenerate to control for
coincident events that accompany dementia, like reduced activity
and weight loss, that impact the brain but that are thought to be
consequences rather than causes of neurodegeneration. Here, we
have used data independent acquisition (DIA) MS/MS proteomics
of soluble protein extracts from multiple brain regions donated by
comprehensively evaluated research participants who were heal-
thy controls (HC) free of clinically significant brain diseases, had
actual RAD, or had AD dementia (ADD) without significant
comorbidities9. Our differential expression analysis performed for
each brain region identified 33 RAD-associated differentially
expressed proteins (DEPs). Protein co-expression analysis revealed
a group of 181 densely-interacting proteins that were significantly
associatedwith RAD and enriched for actin filament-based process,
cellular detoxification, and wound healing in isocortex and hip-
pocampus. We further supported our findings using data from 689

human isocortical samples from four independent external
cohorts that were the closest approximations of our clinico-
pathologic groups. The molecular basis of RAD, a widely replicated
state in older adults for which there is no experimental model,
likely holds important insights into therapeutic interven-
tions for AD.

Results
Our workflow included four different brain regions (caudate nucleus
or CAUD, N = 38; hippocampus or HIPP, N = 41; inferior parietal lobule
or IPL, N = 38; and superior and middle temporal gyrus or SMTG,
N = 38) that were derived from 43 donors, out of 737 brain donations,
who met rigorous eligibility criteria for three clinico-pathologic
groups: HC (N = 11), RAD (N = 12), and ADD (N = 20) (Fig. 1a, Table S1,
and Fig. S1). It is important to note that clinically significant co-
morbidities were excluded from all groups, HC did not meet con-
sensus criteria for AD, and RAD and ADDwerematched for level of AD
neuropathologic change (ADNC, P =0.19). Sample preparation and
DIA-based proteomics wereperformed exactly as described9,10. Briefly,
in contrast to the more commonly used data-dependent acquisition
method that semi-randomly selects and analyzes precursor ions for
tandem mass spectrometry in real-time, DIA isolates and fragments a
m/z range in a systematic and reproducible manner. Protein level
results were analyzed by differential expression analysis and co-
expression network analysis. Throughout, we compared our results
with four independent proteomic datasets whose samples were the
closest approximation of our focused study of RAD, including ROS/
MAP11, Banner12, UPP13, and BLSA14 datasets (detailed cohort informa-
tion is in theMethods section). A total of 7115 proteins were quantified
among the 155 samples (Fig. 1b). Corrected Student’s t-test identified
85 significantly differentially expressed proteins (DEPs) among the
three clinico-pathologic groups in at least one of the four brain
regions, including 33 unique RAD-associated DEPs (RAD DEPs).

Fig. 1 | Workflow of this study. a Samples (N = 155) from up to four matched brain
regions were donated by 43 research participants who were assigned to three
clinico-pathologic groups: HC (healthy control), RAD (cognitive resilience to Alz-
heimer’s disease), or AD dementia (ADD). Samples were quantified by data inde-
pendent tandem mass spectrometry and data analyzed by differential expression

and co-expression network analyses. Results were compared to four independent
data sets that most closely approximated our study design. b Illustration of dif-
ferential expression analysis and summary of the final number of RAD-associated
differentially expressedproteins (RADDEPs).DLPFCdorsolateral prefrontal cortex,
PC precuneus. Source data are provided as a Source Data file.
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Differential expression analysis
7115 total proteins were quantified across the four brain regions
(Fig. 2a), ofwhich 5772were detected in two ormore regions andmost
proteins (N = 3964) were detected in all four regions (Fig. 2b). Total
proteins first were analyzed by corrected (Benjamini–Hochberg
method, FDR cutoff = 0.05) two-sided t-tests, yielding 85 significant
protein comparisons between at least onepair of the three groups in at
least one brain region (Fig. 2c). After excluding those DEPs that were

not detected in all four regions, we identified 33 unique RADDEPs (see
Methods) (Fig. 2d, e), of whichAβ and IF5weredifferentially expressed
in both RAD versus HC and RAD versus ADD (overlapping region
in Fig. 2e).

We further constructed a linear model considering age, sex
(female =0,male = 1), A score (0–3), B score (0–3), andC score (0–3) as
control variables. For the 29 DEPs differentially expressed in RAD vs.
ADD, 22 were validated by linear model analysis (Fig. S23). Due to

Fig. 2 | The process of deriving differentially expressed proteins (DEPs). a Venn
diagram showsoverlap inproteins quantified across four brain regions.b Summary
of detected proteins in multiple brain regions. c 85 proteins were differentially
expressed (FDR cut-off = 0.05) among the three clinico-pathologic groups across
the four brain regions. d Of the 85 DEPs, 43 were significantly different between
ADD versus HC, and 42 were RAD-associated, meaning significantly different
between RAD and either HC or ADD in one or more regions. e 9 proteins were
differentially expressed in RAD versus HC, and 33 proteins were differentially

expressed in RADversus ADD. Aβ and IF5 weredifferentially expressed in both RAD
versus HC and RAD versus ADD (overlapping region in figure). We excluded RAD
DEPs that were not detected in all regions, yielding 33 unique RAD DEPs measured
in all four regions. CAUD caudate, HIPP hippocampus, IPL inferior parietal lobule,
SMTG superior and middle temporal gyrus, HC healthy control, RAD resilience to
AD, ADD Alzheimer’s disease and dementia. Source data are provided as a Source
Data file.
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strong correlations between several DEPs and A, B, or C scores (for
example, Aβ in Fig. 3d), several DEPs may be concealed in the linear
model analysis.

Regional analysis and validation of RAD DEPs
RAD DEPs were unevenly distributed across brain regions with the
most in IPL, then HIPP, and then SMTG (Fig. 3a). Notably, RAD DEPs

were largely non-overlapping across regions with only two RAD DEPs
significantly different in more than one region: soluble Aβ in HIPP and
SMTG, and CAPG in IPL and SMTG. All RAD DEPs were compared
against four independent datasets for validation (Fig. 3b): Banner Sun
Health Research Institute (Banner)12, Religious Orders Study and Rush
Memory and Aging Project (ROS/MAP)11, UPenn Proteomics study
(UPP)13, and Baltimore Longitudinal Study of Aging (BLSA)14. We
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followed the less stringent case assignment criteria used by others
because of limited availability of pathologic data for the external stu-
dies and to align with previous publications; the Control (Ctrl),
Asymptomatic AD (AsymAD), and ADD groups defined by others were
the closest approximation of our more stringently defined groups
(Table S2), and therefore should provide some level of validation3,4.
Banner, ROS/MAP, and UPP collected proteomics data in dorsolateral
prefrontal cortex (DLPFC), while BLSA collected proteomic data from
both DLPFC and precuneus (PC). There was broad agreement among
Banner, ROS/MAP, andUPP data; however, BLSA data did not compare
well with the other three validation sets, perhaps due to the relatively
limited number of samples. Despite these differences in clinico-
pathologic criteria and variability in external dataset quality, 70% (23/
33) of RAD DEPs in the study set were validated as AsymAD DEPs in at
least one external dataset. When limiting the comparison to only iso-
cortical regions in the study set (external dataset exclusively used
isocortical regions), 71% of the 24 isocortical RAD DEPs were validated
as AsymADDEPs in one and 58%were validated in twoor three external
datasets.

Regional expression levels were correlated between each RAD
DEP and each of four proteins thought to be central to either the
etiology or pathogenesis of AD: Aβ, APOE, and TAU aswell as the TAU-
195 peptide (SGYSSPGSPGTPGSR) that is depleted as TAU is increas-
ingly phosphorylated15 (Fig. 3c). Excluding Aβ itself, expression of 12
RAD DEPs was significantly correlated with soluble Aβ concentration;
the strongest of these were PA1B3 (P <0.001, for simplicity all P stand
for adjusted P-value) in IPL as well as TICN3 (P <0.01), ICAM1
(P < 0.001), and IRGQ (P < 0.01) in SMTG; all were positively correlated
with Aβ except IRGQ levels in SMTG that were negatively correlated
with Aβ levels. Expression of three proteins (Aβ in HIPP, AL1L1 in IPL,
and AL1L2 in IPL) were weakly positively correlated with TAU levels in
the corresponding region (P < 0.05 for each). Aβ (P <0.001) and ICAM1
(P < 0.01) levels werenegatively correlatedwith TAU-195 peptide levels
in SMTG, indicating that their tissue concentrations increased with
increasing tau hyperphosphorylation in this region. IRGQ levels in
SMTG were positively correlated (P <0.05) with TAU-195 peptide,
suggesting that of all of the RAD DEPs only IRGQ levels in SMTG
decreased as both Aβ and hyperphosphorylated tau increased. Only
CLUS, also known as apolipoprotein J, in IPL had a significant corre-
lation with APOE protein levels (P <0.001).

Tissue levels of the RAD DEPs were then correlated with
individual-level data from each of the 43 donors, and so likely limited
to very strong associations. No RAD DEP’s expression correlated sig-
nificantly with age, sex, or presence of APOE ε4 allele (Fig. 3d). Histo-
pathologic rankings of neurofibrillary degeneration (B score)16 and
neuritic plaque density (C score)17 werepositively correlatedwithmost
RAD DEPs that expressed higher in ADD than HC group (Fig. S7). Aβ
levels in HIPP and SMTG were strongly positively correlated with both

rankings of neurofibrillary degeneration and neuritic plaque density
(P < 0.001), aligning well with the Spearman correlations above and
confirming our pathological assessments. AL1L1 and PA1B3, both in
IPL, were positively correlated with ranking of neurofibrillary degen-
eration (P < 0.05). TICN3 (P <0.05) and ICAM1 (P <0.01) levels in SMTG
were positively correlated with ranking of neuritic plaque density.
Together, expression levels of five RAD DEPs were significantly cor-
related with both AD-related protein expression and histopathologic
rankings (Aβ in SMTG andHIPP, ICAM1 in SMTG, AL1L1 in IPL, TICN3 in
SMTG, and PA1B3 in IPL; Fig. 3d), while expression of IRGQ in SMTG
correlated only with pathologic protein expression.

Finally, we performed principal component analysis (PCA) to
inspect higher-level proteomic characteristics by summarizing protein
expression levels of the 33RADDEPs for all 4 regions into a single value
for each individual’s brain (Fig. 3e). There was broad overlap between
HC and RAD groups despite one being free of clinically significant
disease and the other having extensive AD neuropathologic change.
Furthermore, there was near complete separation of RAD from ADD
groups despite both having an equivalent high burden of AD neuro-
pathologic change but only one succumbing to dementia. The top
three contributors to PC1 (24.5% of variance) were ICAM1 (SMTG), Aβ
(SMTG), and PBIP1 (IPL) (Figs. 3g and S3), while the top three con-
tributors to PC2 (9.0% of variance) were CMBL (HIPP), SERC (CAUD),
GFAP (HIPP) (Figs. 3h and S3).

Protein co-expression network analysis
To nominate related proteins that robustly can distinguish RAD, we
expanded the analysis from individual proteins to protein modules
using the established WGCNA algorithm18 to perform a consensus
weighted protein co-expression network analysis on the 3964 proteins
detected in all four regions (Fig. 4a). The resulting 9 co-expression
modules were then used to estimate eigenproteins, which can be
considered as the summary of a module’s overall protein expression19.
As expected, the two isocortical regions had similar eigenprotein
expression compared to the other two regions. The regions that
undergo neurodegeneration in AD, HIPP, IPL, and SMTG, but not
CAUD, showed significant positive correlations between clinico-
pathologic groups and module (M) 5, while M1 in HIPP was nega-
tively correlatedwith clinico-pathologicgroups (Fig. 4a). Thederived 9
co-expression modules displayed consistent patterns across external
validation datasets (Fig. S17). Among individual-level data including
age, sex, A score, B score, C score, and APOE ε4 allele, only age was
positively correlated with M1 in both IPL and SMTG (Fig. S5). The 33
RAD DEPs were distributed across M0, M1, and M5 (Fig. 4b). Specifi-
cally, M0 contained Aβ, AL1L1, AL1L2, ANM5, EGFR, IF5, JMJD7, KHDR2,
MK01, TICN3, and KS6A2; M1 contained BRI3B, AL1A1, FRIL, PDK2,
SERC, PLCD3,WIPF2, and PBIP1; andM5containedC04A, C04B, CAPG,
HSPB1, K2C7, K2C8, CLUS, GFAP, FAAA, PRDX1, PA1B3, CMBL, ICAM1,

Fig. 3 | RAD DEPs among four brain regions and four external validation
datasets. Results of corrected multiple comparisons among four brain regions in
the study set (a), and the four external validation sets of which only BLSA examined
two brain isocortical regions (b). Each column for the study set consists of three
comparisons: RAD vs. HC, ADD vs. RAD, and ADDvs. HC. Two-sided Student’s t-test
was used with the Benjamin–Hochberg procedure (FDR =0.05) to adjust the
P-values. For external datasets, each column consists of three comparisons: Asy-
mADvs. Ctrl, ADD vs. AsymAD, andADD vs. Ctrl (non-significant comparisons were
colored in gray; insufficient data are white and annotated with NA; fold change
(FC) < 1 was colored in blue, FC > 1 was colored in red; and colors are the same for
-log10(Adjusted P-value) ≥ 3). Annotations: * Adjusted P-value <0.05; ** Adjusted P-
value < 0.01, *** Adjusted P-value < 0.001. Correlation of expression of each RAD
DEP with hallmark AD protein expression in the same brain region (c) and with
clinical, genetic, or pathologic features of the individual (d). Spearman correlation
test with two-sided P-values was used with the Benjamin-Hochberg procedure
(FDR=0.05) to adjust the P-values. Note: AβwasaRADDEP in bothHIPPandSMTG,

and CAPG was a RAD DEP in both HIPP and IPL. e Boxplots of selected RAD DEP
expression. Two-sided Student’s t-test was used to derive P-values, followed with
the Benjamin–Hochberg procedure (FDR =0.05). Number of samples within each
region and group are displayed under x-axes. For the boxplots, the interior hor-
izontal line represents the median value, the upper and lower box edges represent
the 75th and 25th percentile, and the upper and lower bars represent the 90th and
10th percentiles, respectively. f Principal component analysis (PCA) for 33 RAD
DEPs in all 4 regions of each brain (original dimension: 33 × 4 = 132) colored by
clinico-pathologic groups, visualized in principal dimensions 1 and 2. Variable
contributions to the principal dimension 1 (g) and principal dimension 2 (h) with
dashed lines in red showing variable contributions and their expected average.
CAUD caudate, HIPP hippocampus, IPL inferior parietal lobule, SMTG superior and
middle temporal gyrus, HC healthy control, RAD resilience to AD, ADD Alzheimer’s
disease and dementia, DLPFC dorsolateral prefrontal cortex, PC precuneus. Source
data of exact P-values are provided as a Source Data file.
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Fig. 4 | Consensus protein co-expression analysis and enrichment analysis
results. a Consensus protein co-expression analysis identified 9 modules across
four brain regions. Pearson correlation with two-sided P-values was used to eval-
uate the relationships between clinico-pathologic groups and eigenprotein
expression. Exact P-values are provided in the Source Data file. b Three co-
expression modules contained the 33 RAD DEPs. c The number of expected and
observed RAD DEPs in each module, and enrichment analysis via two-sided
hypergeometric test. d Module 1 and 5 eigenprotein expressions in HC, RAD, and
ADD for the study set and inCtrl, AsymAD, andADD for external validation sets. The
number of samples in the study cohort: HC= 11, RES = 12, ADD= 20. The number of
samples in the external validation cohorts: Banner (Ctrl = 42, AsymAD = 45,
ADD= 92), ROS/MAP (Ctrl = 78, AsymAD = 89, ADD= 162), UPP (Ctrl = 26, AsymAD=

20, ADD= 49), and BLSA (DLPFC: Ctrl = 11, AsymAD = 13, ADD= 17; PC: Ctrl = 13,
AsymAD = 13, ADD= 19). For the boxplots, the interior horizontal line represents
the median value, the upper and lower box edges represent the 75th and 25th
percentile, and the upper and lower bars represent the 90th and 10th percentiles,
respectively. e Top 3 enriched GO biological process categories in M5 and their
enrichment analysis results. f Patterns of the change in M5 z-scores. Font sizes of
clinico-pathologic groups reflect average z-score changeswithin theGOcategories.
Abbreviations: CAUD caudate, HIPP hippocampus, IPL inferior parietal lobule,
SMTG superior and middle temporal gyrus, HC healthy control, RAD resilience to
AD, ADD Alzheimer’s disease and dementia, DLPFC dorsolateral prefrontal cortex,
PC precuneus, GO gene ontology. Source data are provided as a Source Data file.
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and IRGQ.WeperformedSpearmancorrelation analysis for the 33RAD
DEPs within each region and summed the number of significantly
correlated (Adjusted P-value < 0.05) proteins across all regions
(Fig. S6). Of the 13 least correlated proteins, 11 of them were assigned
to M0, including Aβ. Note that M0 represents a group of unassigned
proteins.

A hypergeometric test evaluated the expression of the RAD DEPs
among the consensus AD network modules (Fig. 4c). M5 was strongly
enriched for expression of RAD DEPs (14 of 33 RAD DEPs; P-value =
3.99e−11), while M0 and M1 were not significantly enriched in RAD
DEPs (M0 P-value = 0.75, M1 P-value = 0.98). Indeed, M5 was over-
enriched in RAD DEPs by almost 10-fold compared to chance. M5
eigenprotein expression was then compared among the study set and
external datasets (Fig. 4d). We found the same dementia-associated
pattern (HC ≈RAD<ADD) across all regions and all datasets, robustly
validating that M5 eigenprotein expression was significantly greater in
ADD compared to RAD or HC groups or compared to AsymAD or Ctrl
groups (see also Figs. S11a and S17). Furthermore, a protein-protein
interaction (PPI) network forM5was constructed based on the STRING
database v11.520. Among the 181 proteins inM5, 177 primary geneswere
identified in the PPI network with 468 edges in total (average node
degree = 5.29), indicating that PPI in M5 has significantly more inter-
actions than expected by chance (P < 1.0e−16). Figure S8 shows the PPI
network of M5 with experimentally determined interactions high-
lighted. Together, these results underscore that M5 is a robustly vali-
dated and densely co-expressed module of 181 proteins that
distinguishes ADD from RAD despite their equivalent histopathologic
burden of disease (Figs. S13–22).

Enrichment analysis of M5 reveals RAD-associated processes
We performed gene ontology (GO) analysis using each M5 protein’s
primary gene21 and identified the three top GO categories based on the
branches in the ancestor chart: (i) Wounding Related (GO:0009611,
GO:0042060), (ii) Cellular Process (GO:0030029, GO:0030036,
GO:0097435), and (iii) Detoxification (GO:1990748 GO:0097237
GO:0098754). These top three GO categories contained the eight
strongest GO terms according to enrichment P-values (Fig. 4e) and
overlapped with sixty-nine of M5 proteins’ primary genes (Fig. S9b).
Among these GO terms, Actin Filament-based Process (GO:0030029,
Q-value = 2.791e−10) ranked highest with its descendant Actin Cytos-
keleton Organization (GO:0030036, Q-value = 2.196e−09) ranked
fourth. These two plus Supramolecular Fiber Organization
(GO:0097435, Q-value = 1.324e−07) were grouped into the Cellular
Process GO category (light purple) and shared two RAD DEPs: ICAM1
and CAPG. The Wounding Related GO category (dark purple), includ-
ing Response to Wounding (GO:0009611, Q-value = 1.01e−09) and its
subcategory Wound Healing (GO:0042060, Q-value = 1.438e−09),
shared the RAD DEP HSPB1. The Detoxification GO category (light
blue), including Cellular Response to Toxic Substance (GO:0097237,
Q-value = 2.718e−08), Detoxification (GO:0098754, Q-value = 1.09e
−07) and its descendant Cellular Detoxification (GO:1990748, Q-
value = 1.03e−08) contained theRADDEP PRDX1 (Fig. 4e). Thirteen out
of 14 RAD DEPs detected in M5 were expressed higher in ADD than in
RAD (Fig. S11b). Among these 13 RADDEPs, 5 were included inM5’s top
enriched GO terms and all were positively correlated with M5 eigen-
protein. Spearman correlation for these 5 DEPs (CAPG, HSPB1, GFAP,
PRDX1, ICAM1) showed mostly positive correlation with proteins pre-
sent in both the GO terms and M5 (Fig. S11c).

Finally, a few regional and group patterns emerged when we cal-
culated z-scores to assess whether the items in the different GO terms
were up- or downregulated (Figs. 4e and S10). Wounding Related and
Cellular Process are grouped because they always changed together
with a consistent patternof RAD several fold less than ADD inHIPP and
isocortical regions and less pronounced group differences in CAUD.
Detoxification repeated this general expression pattern with strong

increase in ADD compared to RAD in HIPP and isocortical regions with
less pronounced differences among groups in CAUD. In all GO cate-
gories for all regions, RAD more closely approximated HC than
ADD (Fig. 4f).

Enrichment analysis of M1 reveals AD-related processes
Although RAD DEPs were not significantly enriched in M1, we also
performed gene ontology (GO) analysis using each of M1 proteins’
primary gene21 and identified four groups among the top 10 GO terms:
(i) Synapse (GO:0099003, GO:0099536, GO:0099537, GO:0098916,
GO:0007268); (ii) Energy (GO:0006091); (iii) Transport (GO:1902600,
GO:0006812), and (iv) Cellular process (GO:0045333, GO:0007005)
(Fig. S12). Of the 8 RAD DEPs in M1, two were included in these top 10
GO terms; AL1A1was contained in generationof precursormetabolites
and energy (GO:0006091,Q-value = 4.97e−75) and FRIL was contained
in cation transport (GO:0006812, Q-value = 5.45e−71).

Discussion
Our study focused on actual resilience to the clinical expression of
dementia from AD, and because of this it had important design dif-
ferences from previous proteomic studies of AD3,22,23,4. The most
important difference is that we comprehensively evaluated brains to
minimize confounding from latency in HC and from comorbidities in
all groups. Exclusion of latent and comorbid diseases had the inevi-
table consequence of reducing the number of cases eligible for study;
indeed only 43 of 737 eligible brain donations met our stringent cri-
teria. In part to offset the impact of a relatively small number of high
quality cases and controls, we expanded our study to include multiple
brain regions involved or uninvolved by neurodegeneration. We only
included intermediate or high ADNC in the matched RAD and ADD
groups (P =0.19), all with sufficient burden of AD to cause dementia
(see Table S3) [1,40]. In contrast to the approach used by others, our
focus on RAD excluded the large number of preclinical AD cases from
our cohort; others instead have analyzed AsymAD, which is a mix of
preclinical AD and RAD3,4. As far as we are aware, our focus on RAD is a
unique study design.

Two-sided Student’s t-test with multiple testing adjustments
revealed 33RADDEPs fromcomparisons across 21,160 unique protein-
region pairs. The number of RAD DEPs after stringent selection and
controlling for multiple testing gave a reliable and robust RAD protein
signature. The strongest and most consistent RAD signal from our
multiregional analysis was soluble Aβ expression, which tended to be
in between HC and ADD in all regions, and uniquely Aβ expression in
SMTG was significantly less in HC than RAD which in turn was sig-
nificantly less than ADD. Indeed, soluble Aβ expression in SMTG was a
major contributing variable to near complete separation of HC/RAD
from ADD using PCA. These results suggest that although RAD and
ADD groups were matched by the admittedly coarse tools for histo-
pathologic scoring of ADNC, which includes ordinal ranking of inso-
luble Aβ plaques, lower tissue concentration of soluble Aβ might be a
significant molecular feature of RAD. However, we recognize that our
histopathologic matching is imperfect, and it is possible that the
decreased soluble Aβ in RAD compared to ADD might be related in
part to statistically insignificant variation in overall Aβ levels between
these two groups. The soluble, lower molecularmass assemblies of Aβ
are typically extracted with SDS (as done here) or urea, while extrac-
tion of higher molecular weight, insoluble aggregates of Aβ requires
stronger chaotropics, like 70% formic acid24. Banner and ROS/MAP
proteomic data for AsymAD, which contains both preclinical and RAD
cases, validated our major finding that aligns readily with abundant
experimental data showing that low molecular weight soluble aggre-
gates of Aβ, forms not detected by histopathologic and PET methods
that visualize insoluble Aβ fibrils, are concentration-dependent direct
neuronal stressors and indirect neuronal stressors via glial cell
activation25,26. Together, these cross-validating results support that
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lower tissue concentration of soluble Aβ in isocortex may be a mole-
cular feature of RAD, plausibly resulting in reducedneuronal stress and
injury. Most therapeutic antibodies that reduce brain Aβ target larger,
less soluble forms of Aβ; so far these have largely failed in clinical
trials27. In contrast, emerging agents like mAb158, also called BAN2401
or Lecanemab, binds to soluble Aβ species and has shown promising
outcomes in initial clinical trials28. Our quantitative results frompeople
resilient to ADD could provide a rough estimate of the extent to which
soluble Aβ may need to be lowered in isocortical regions to suppress
the clinical expression of severe cognitive impairment along the con-
tinuum of AD29.

Across all clinico-pathologic groups, we found that three RAD
DEPs (Aβ, ICAM1, and IRGQ) were negatively correlated with TAU-195
only in the SMTG region, suggesting that these three RAD DEPs are
increasing with TAU hyperphosphorylation in this brain region. These
data underscore the well-described link between Aβ accumulation and
TAU hyperphosphorylation, and suggest potential contributions of
ICAM1 and IRGQ in this yet to be fully understood association.

We pursued other potential contributors to RAD through co-
expression network analysis and observed that one module, M5 in
HIPP, SMTG, and especially IPL, was significantly enriched in ADD
resilience-associated proteins, a result validated in DLPFC using Ban-
ner and UPP, and both regions using BLSA data. Across our study and
all validation sets, M5 had the pattern HC ≈RAD<ADD, implying that
increased expression of M5 proteins may be a molecular signature in
isocortical and HIPP regions of progression to dementia. In contrast,
M1 in HIPP was significantly underrepresented in RAD (HC ≈RAD>
ADD), a pattern validated in most external datasets and perhaps a
consequence of the extensive neurodegeneration in this region that
accompanies progression to dementia. Interestingly, Aβ was not a
component of M5 or M1 but rather M0, meaning that it was not con-
tained within a co-expression network despite its increasing tissue
concentration being a distinguishing feature between RAD and ADD.

Functional insight into the 181 component proteins of strongly
resilience-associated M5 by GO analysis yielded the three top cate-
gories including actin cytoskeleton organization, wound healing, and
cellular detoxification. Actin filament dynamics are essential to den-
drite and synapse formation and remodeling, and others have identi-
fied actin filament-based processes in enrichment analyses of AD30 and
bipolar disorder31. Importantly, preserved synaptic density is a feature
of resilience to AD, potentially linking our proteomic data with mor-
phological data to highlight synaptic plasticity as a key compensatory
feature of resilience32. Wound healing and detoxification are complex
responses to injury that showed a similar pattern of expression as actin
filament dynamics such that these three biological processes, which
represent compensatory change and response to injury, were several
fold greater in ADD than RAD in the three regions undergoing neuro-
degeneration. The lower response to injury in HIPP and isocortical
regions of RAD aligns well with our results showing lower soluble Aβ
concentration in these regions aswell aswith the extensively described
mechanisms of Aβ induced injury to neurons through both direct and
indirect mechanisms33,34. Together, these results suggest that RAD is a
state of equivalent histopathologic features but lower soluble Aβ and
less injury than ADD. In addition, we note that none of the M1 RAD
DEPs were included in the Synapse GO terms unlike what others have
published for AsymAD3,4,35,36 perhaps because of our focus on RAD
rather than AsymAD or our careful exclusion of co-morbidities. Fur-
ther, our results suggest that RAD is multifactorial and future studies
will need to determine whether modulation of some or all of actin
cytoskeleton organization, wound healing, and cellular detoxification
are necessary to achieve resilience.

Of the 33 RAD DEPs identified, M5 contained 14 and a few of
these deserve specific mention. CLUS, or clusterin, is also known as
apolipoprotein (apo) J. Variants in the CLUS gene have been
repeatedly associated with the risk of AD. Like the closely

functionally related APOE protein whose concentration was
strongly positively correlated, CLUS plays a major role in lipid
transport in brain where it critically supports synaptic remodeling
and repair, and modulates innate immune responses involving the
RAD DEPs CO4A and CO4B. ICAM1 is a master regulator of inflam-
mation and injury resolution and was a major contributing variable
in multiple brain regions to the near complete separation of HC/
RAD from ADD by PCA37. Immune-mediated neuronal injury is
widely supported as a major contributor to AD pathogenesis, and
variants in the gene encoding ICAM1 have been associated with risk
of AD33. The platelet-activating factor acetylhydrolase isoform 1B
complex, of which PA1B3 is a subunit, is broadly expressed across
neuronal cell types and is important in human brain development,
including neuron migration38,39. Also known as PAFAH1B3, this
protein was recently shown by elegant proteomic work of others
investigating Ctrl, AsymAD, and ADD samples from ROS/MAP to
reside at the center of a MAPK/metabolism module of proteins
associated with both amyloid plaques and neurofibrillary tangles3.

Intriguing anatomical differences also were observed in our data.
The CAUD subserves motor, cognitive, and behavioral functions, and
has been proposed as a site for temporary functional compensation in
AD40,41. Neither our differential expression analysis nor consensus
protein expression analysis identified significant changes in CAUD,
suggesting that like neurodegeneration the proteomic changes in this
region in AD are minimal. Rather both types of analysis localized
proteomic changes of RAD to HIPP and isocortex, further suggesting
that proteomic changes associated with RAD are unlikely to be non-
specific brain changes that accompany systemic impacts of dementia.
The two isocortical regions investigated, SMTG and IPL, had only one
overlapping RAD DEP, CAPG. Murine capg expression was shown
recently to be among a small set of disease-associatedmicroglia genes
uniquely upregulated by APOE ε4 in preclinical models of AD42.
Resilience-associated proteomic changes were largely non-
overlapping in IPL or SMTG, and were only partially validated in pre-
frontal cortex or precuneus fromexternal datasets, perhaps indicating
regional variation in isocortical contributions to RAD. Although the
RAD DEPs displayed regional variation, co-expression analysis showed
a consistent pattern for HIPP, IPL, and SMTG. Finally, when comparing
up or down regulation of Wounding Related and Cellular Process GO
terms, CAUD and SMTG displayed the intriguing pattern of down
regulation in RAD vs. HC and upregulation in RAD vs. ADD, while HIPP
and IPL showed upregulation in both group comparisons. Although
the significance of these region-by-group interactions are not clear,
they underscore the likely regional variation in molecular mechan-
isms of RAD.

Often called by different names, the concept of resilience—indi-
viduals with high levels of disease burden yet remain cognitively nor-
mal—has been widely documented in the neuroimaging, biomarker,
and neuropathology literature2,43. While low level disease in preclinical
individuals is pathogenic44, it is the mismatch of high pathologic bur-
den with normal cognition that defines RAD. We drew on the NIA-
supported Collaboratory on Research Definitions for Cognitive
Reserve and Resilience, whose goal was to develop operational defi-
nitions, research guidelines, and data sharing platforms to facilitate
communication among emerging research across the globe45.
Althoughwe can distinguish between preclinical AD andRADbased on
ADNCat the timeofdeath, it is impossible to know if someone in either
of these categories would have been diagnosed with dementia, or if a
case of preclinical AD might have advanced to RAD, had the person
lived longer. One approach to address this difficult issue is to reference
clinico-pathologic categories to the individuals’ ages, assuming that
older individuals would have lower likelihood of theoretical future
category change. Here, we investigated RAD in individualswho lived to
78–98 years of age (average 89). The average age of the asymptomatic
AD groups in three of the comparison studies (Banner, ROS/MAP, and
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BLSA) was 86–87 years, while the average age of the fourth asympto-
matic AD comparison study was only 70 years (UPP).

We have shown previously that one factor underlying apparent
resilience is clinical misassignment due to incomplete information on
co-morbidities8. Our work here removed confounding by co-
morbidities and revealed possible protein contributors to this dis-
cordant state for AD. Our findings suggest lower soluble Aβ tissue
concentration as a potential signature for RAD. This lower con-
centration could result from reduced AD-dependent processes or
from AD-independent processes. Indeed, it is likely that multiple
contributors to preserving cognitive ability despite high levels of dis-
ease burden, including molecular, cellular, and neural circuits, are yet
to be discovered for AD and other diseases that commonly conspire to
cause cognitive impairment in older individuals.

This study has several limitations. First, becauseweused stringent
criteria for cohort enrollment, a relatively small group of 43 high-
quality cases out of 737 eligible was assembled to focus on RAD. Sec-
ond, bulk tissue proteomics lacks cell-type specificity and likely
obscures important cell-specific changes. In light of our results, we
hope future studies will focus on single-cell analysis to further disclose
cell type-specific changes in RAD. Third, like all bottom-up proteomic
studies, we are unable to distinguish Aβ generated in vivo from trypsin
digestion products of APP that generate the Aβ fragment ex vivo.
However, we note that our proteomic Aβmeasurements based on the
peptides HDSGYEVHHQK and LVFFAEDVGSNK were significantly cor-
related with A score and C score, both histologic measures of Aβ
accumulation. Furthermore, other groups have demonstrated that the
tryptic peptides from APP spanning the Aβ region are a valuable sur-
rogate for amyloid levels in the brain23,46. Lastly, restricted by the
availability of stringently defined cases, we conducted independent
validation using external datasets that most closely approximated
ours. We hope our results motivate others to try to validate our find-
ings by creating an animal model or developing similarly stringently
defined clinico-pathological cohorts.

In conclusion, we have undertaken an extensive proteomic ana-
lysis of carefully annotated human brain regions to determine mole-
cular features of RAD. When compared to ADD, our validated results
show that lower tissue concentration of soluble Aβ in isocortical
regions as well as lower expression of actin filament-based processes
and cellular detoxification/repair in isocortex and hippocampus are
characteristic of RAD. Combined with the results of others, our study
suggests that people with RAD have lower disease-specific injury,
perhaps from less soluble Aβ, and thereby an appropriately limited
response to injury. These results provide insights into the molecular
features of RAD and suggest potential therapeutic strategies to limit
the clinical progression to Alzheimer’s disease and dementia.

Methods
Clinico-pathologic groups
This research was ethically approved by the University of Washington
Institutional Review Board (IRB) and the Stanford University IRB. All
study cohort participants provided informed consent under protocols
approved by these IRBs. Sex was considered in the study design and
was determined based on self-report (male N = 24 (55.81%), female
N = 19). Cognitive diagnosis of dementia or not dementia was made
usingDSM-IVR criteria; an initial provisional diagnosis of dementia was
followed one year later with a confirmed diagnosis of dementia.
Starting with 737 brain donations, a total of 340 research brain dona-
tions that had been dissected and flash frozen within 8 h (mean ±
SD= 4.4 ± 1.3 h) of death. Among them, 43 cases met eligibility criteria
for rigorously defined clinico-pathologic groups (Table S4): (i) Healthy
controls (HC, N = 11) had neuropsychological test results in the upper
quartile for the cohort at their last visit within 2 years of death, did not
have AD neuropathologic change (ADNC) according to NIA-AA
guidelines, and had clinically insignificant (none/low) pathologic

changes of VBI, LBD, HS, or LATE1,47,48; (ii) Cognitive resilience to AD
(RAD, N = 12) had neuropsychological test results in the upper quartile
for the cohort at their last visit within 2 years of death, had inter-
mediate or high level ADNC according to NIA-AA guidelines, and had
none/lowpathologic changes of VBI, LBD, HS, or LATE1,47,48; and (iii) AD
dementia (ADD,N = 20) were diagnosedwith dementia during life, had
intermediate or high level ADNC according to NIA-AA guidelines, and
had none/low pathologic changes of VBI, LBD, HS, or LATE1,47,48. Less
common neurodegenerative diseases, including FTLD-tau and FTLD-
TDP alsowere excluded following consensus guidelines1. In addition to
hematoxylin and eosin plus luxol fast blue histochemical staining for
assessment of vascular brain injury (VBI) and hippocampal sclerosis
(HS), immunohistochemistry for Aβ plaques (anti-b-Amyloid, 6E10,
Biolegend, cat#803002, dilution 1:1000), and neurofibrillary degen-
eration (PHF-Tau, AT8, ThermoScientific, cat#MN1020, dilution
1:1000) was performed in specified regions47. Antibodies to phospho-
TDP-43 (anti-pTPD-43, S409/410, Millipore, cat#MABN14, dilution
1:300) and phospho-alpha-synuclein (Anti-Alpha-synuclein, ps129,
Abcam, cat#ab51253, dilution 1:1000) also were used in specified
regions47,49. All caseswereoriginally evaluatedbyoneof the co-authors
who is a board-certified neuropathologist (C.L., C.D.K., or T.J.M.) and
all those selected for inclusion in the study were reviewed by T.J.M.
Importantly,we excluded fromall clinico-pathologic groups caseswith
low-level ADNC according to NIA-AA guidelines1,47. We have shown
previously insignificant interval change in diagnosis of not dementia
over 2 years between last research evaluation and death for individuals
who had neuropsychological test results in the upper quartile for the
cohort50; all HC and RAD participants had <2 years between last eva-
luation and death with an average interval of 352 days. Criteria for
including only none/low levels of the four prevalent comorbidities that
do not significantly contribute to the risk of dementia were: (i) for VBI:
no territorial or lacunar infarcts, no hemorrhages, <2 microinfarcts/
microhemorrhages51, (ii) for LB: none or amygdala only52, (iii) for LATE-
NC: none or amygdala only53, and (iv) no hippocampal sclerosis in the
unilateral hippocampus available for histopathologic analysis.

Sample preparation and proteomic analysis
Samples were dissected to be free of adjacent white matter by
visual inspection10. Two 25 μm thin frozen sections weremaintained at
−80 °C from four brain regions: caudate nucleus (CAUD, N = 38), hip-
pocampus (HIPP, N = 41), inferior parietal lobule (IPL, N = 38), and
superior and middle temporal gyrus (SMTG, N = 38) for a total of
155 samples (30 cases were matched across all four regions; Fig. S1).
SDS protein extraction was performed as previously described by us9

and presented in the Supplementary Methods.
The Skyline documents, raw files for quality control and DIA data

are available at Panorama Public https://panoramaweb.org/
ADBrainCleanDiagDIA.url. ProteomeXchange ID: PXD034525. Access
URL: http://proteomecentral.proteomexchange.org/cgi/GetDataset?
ID=PXD034525. Metadata of the study cohort is available in Supple-
mentary Information.

Peptide data was acquired by DIA mass spectrometry (DIA-MS)
based on the methodology described elsewhere10,54,55. Protein levels
were calculated by summing peptide abundances after performing
protein inference and parsimony56. After log2ðxÞ transformation,
median normalization was performed to adjust for minor sources of
variability that are difficult to either control or predict, followed with
batch correction to remove the effect of different experimental bat-
ches. In external datasets, for proteins with two or more isoform
identifiers, we kept the expressions with maximum read counts.

Protein extraction
Protein was extracted from the frozen brain sections by resuspension
in 120μl of lysis buffer containing 5% SDS, 50mM triethylammonium
bicarbonate (TEAB), 2mMMgCl2, 1X HALT phosphatase and protease

Article https://doi.org/10.1038/s41467-023-38376-x

Nature Communications |         (2023) 14:2747 9

https://panoramaweb.org/ADBrainCleanDiagDIA.url
https://panoramaweb.org/ADBrainCleanDiagDIA.url
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD034525
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD034525
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD034525


inhibitors. The samples were vortexed and briefly sonicated at setting
3 for 10 s with a Fisher sonic dismembrator model 100. A Barocycler
2320EXT (Pressure Biosciences Inc.) was used to further homogenize
30μl of the brain lysate in amicrotube cappedwith amicropestle for a
total of 20min at 35 °Cwith 30 cycles of 20 s at 45,000psi followed by
10 s at atmospheric pressure. The concentration of protein was
determined using a BCA assay (Pierce). A process control of 800 ng of
yeast enolase protein (Sigma)was added to 50 µg of brain homogenate
which was then reduced with 20mM DTT and alkylated with 40mM
IAA. The samples were then prepared for S-trap column (Protifi)
binding by the addition of 1.2% phosphoric acid and 350μl of binding
buffer (90%Methanol, 100mMTEAB). The acidified samplewasbound
to column incrementally, followed by 3 wash steps with binding buffer
to remove SDS and 3 wash steps with 50:50 methanol:chloroform to
remove lipids and a finalwash stepwith binding buffer. Eachwash step
included 1min centrifugation at 4000 × g. The digestion buffer of
trypsin (1:10) in 50mM TEAB was then added to the S-trap column for
digestion at 47 °C for 1 h. First hydrophilic peptideswere eluted using a
50mM TEAB buffer with 1min of centrifugation at 4000 × g. Then
hydrophobic peptides were eluted with a solution of 50% acetonitrile
in 0.2% formic acid followed by 1 min of centrifugation at 4000 × g.
Elutions were pooled, speed vacuumed and resuspended in 0.1%
formic acid.

We used S-trap sample preparation because it resulted in protein
digestion from brain samples with the greatest robustness and quan-
titative precision in empirical analyses. Brain is lipid rich, and the tissue
sections used contained optimal cutting temperature (OCT) com-
pound. OCT compound is particularly problematic as it causes peptide
signal suppression in electrospray. The use of 5% SDS was selected
because it is predicated for use with S-trap (Protifi) digestions. The
proteins were solubilized using a combination of 5% SDS and high
pressure barocycling (45,000 PSI).

The samples injected for DIA-LC/MS contained one µg of total
protein with 16 ng of enolase process control plus 150 fmol of a heavy
labeledPeptideRetentionTimeCalibrant (PRTC)mixture (Pierce) used
as a peptide process control. All samples and references from a batch
are equally represented in the library pools. For example, a batch
library pool consists of the 14 samples from the batch and two refer-
ences. System suitability injections contain 150 fmol of PRTC and BSA
which is used to assess the system before and during analysis. Four of
these system suitability runs are analyzed prior to any sample analysis
and then after every six sample runs another system suitability run is
analyzed.

Each sample was loaded onto a 30 cm fused silica picofrit (New
Objective) 75 µm column and 3.5 cm 150 µm fused silica Kasil1 (PQ
Corporation) frit trap loaded with 3 µm Reprosil-Pur C18 (Dr. Maisch)
reverse-phase resin analyzed with a Thermo Easy-nLC 1200. Liquid
chromatography (LC) buffer A was 0.1% formic acid in water and LC
buffer B was 0.1% formic acid in 80% acetonitrile. The 40-min system
suitability gradient consists of a 0–16% B in 5min, 16–35% B in 20min,
35–75% B in 1min, 75–100%B in 5min, followed by a wash of 9min and
a 30-min column equilibration. The 110-min sample LC gradient con-
sists of a 2–7% for 1min, 7–14%B in 35min, 14–40%B in 55min, 40–60%
B in 5min, 60–98% B in 5min, followed by a 9-min wash and a 30-min
column equilibration. Peptides were eluted from the column with a
50 °C heated source (CorSolutions) and electrosprayed into a Thermo
Orbitrap Fusion Lumos Mass Spectrometer with the application of a
distal 3 kV spray voltage. For the system suitability analysis, a cycle of
one 120,000 resolution full-scan mass spectrum (350–2000m/z) fol-
lowed by a data-independent MS/MS spectra on the loop count of 76
data independent MS/MS spectra using an inclusion list at 15,000
resolution, AGC target of 4e5, 20 millisecond (ms)maximum injection
time, 33% normalized collision energy with an 8m/z isolation window.
For the sample digest, first a chromatogram library of 6 independent
injections is analyzed from a pool of all samples within a batch. For

each injection a cycle of one 120,000 resolution full-scan mass spec-
trum with a mass range of 100m/z (400–500, 500–600, 600–700,
700–800, 800–900, 900–1000m/z) followed by a data-independent
MS/MS spectra on the loop count of 26 at 30,000 resolution, AGC
target of 4e5, 60msmaximum injection time, 33%normalized collision
energy with a 4m/z overlapping isolation window. The chromatogram
library data is used to quantify proteins from individual sample runs.
These individual runs consist of a cycle of one 120,000 resolution full-
scanmass spectrumwith amass range of 350–2000m/z, AGC target of
4e5, 100ms maximum injection time followed by a data-independent
MS/MS spectra on the loop count of 76 at 15,000 resolution, AGC
target of 4e5, 20msmaximum injection time, 33% normalized collision
energy with an overlapping 8m/z isolation window as described
previously54,57. Operation of the mass spectrometer and LC solvent
gradients are controlled by the ThermoFisher Xcalibur (version
3.1.2412.24) data system.

Thermo RAW files were converted to mzML format using Pro-
teowizard (version 3.0.20064) using vendor peak picking and demul-
tiplexing with the settings of “overlap_only” and Mass Error = 10.0
ppm. On column chromatogram libraries were created using the data
from the six gas phase fractionated “narrow window” DIA runs of the
pooled reference. These narrow windows were analyzed using Ency-
clopeDIA (version 1.4.10) with the default settings (10 ppm tolerances,
trypsin digestion, HCD b- and y-ions) of a Prosit predicted spectra
library based on the UniProt human canonical FASTA (January 2021).
The results from this analysis from each brain region were saved as a
“Chromatogram Library” in EncyclopeDIA’s eLib format where the
predicted intensities and iRT of the Prosit library were replaced with
the empirically measured intensities and RT from the gas phase frac-
tionated LC-MS/MS data. The “wide window” DIA runs were analyzed
using EncyclopeDIA (version 1.4.10) requiring a minimum of 3 quan-
titative ions and filtering peptides withQ-value ≤0.01 using Percolator
3.01. After analyzing each file individually, EncyclopeDIA was used to
generate a “Quant Report” which stores all the detected peptides,
integration boundaries, quantitative transitions, and statisticalmetrics
from all runs in an eLib format. The Quant Report eLib library is
imported into Skyline (daily version 22.2.1.278) with the human Uni-
Prot FASTA as the background proteome tomap peptides to proteins,
perform peak integration, manual evaluation, and report generation.

Derivation of 33 RAD DEPs
Weconducted two-sidedStudent’s t-tests for RADvs.HC, RADvs.ADD,
and ADD vs. HC; each comparison was run for 21,160 unique protein-
region pairs. We observed 7723 (12.17%) protein comparisons with P-
values < 0.05 (1767 for RAD vs. HC, 2658 for RAD vs. ADD, and 3298 for
ADD vs. HC). After controlling for multiple hypothesis tests using the
Benjamin-Hochberg procedure (FDR =0.05), we identified 85 sig-
nificant protein comparisons (adjusted P-value < 0.05). Of the 85 sig-
nificant protein comparisons (Fig. 2c), 76% (N = 65), were unique
indicating that most group differences in protein expression were
region-specific. The regional distribution of the 85 DEPs was coded for
significant paired group differences: 43 had significantly different
expression between ADD and HC, including only 3 in CAUD (Aβ, MT3,
PA1B3) with the Aβ result in ADD CAUD confirming our group
assignments. Importantly, the 42 preliminary RAD DEPs with sig-
nificantly different expression between RAD and HC or between RAD
and ADD were restricted only to HIPP and isocortical (IPL and SMTG)
regions. Nine of the 42 preliminary RAD DEPs had significantly differ-
ent expression when comparing RAD vs. HC (3 RAD<HC and 6
RAD>HC), and 33 had significantly different expression when com-
paring RAD vs. ADD (3 RAD>ADD and 30 RAD<ADD). With Aβ and
CAPGexpression significantlydifferent in two regions, andAβ in SMTG
and IF5 in HIPP overlapping between RAD vs. HC and RAD vs. ADD,
there were 38 unique preliminary RAD DEPs. Five of the 38 unique
preliminary RAD DEPs were not detected in all four regions (Fig. 3a);
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these five were excluded from further analysis, yielding 33 RAD DEPs
for detailed analysis.

Handling missing values
When performing univariate analysis, proteins for which all expres-
sions are missing were removed. If a protein has less than 3 available
regional sample expressions, the Student’s t-test and Spearman cor-
relation will not be performed for that protein (use missing value
instead). When performing low dimensional visualization and con-
sensus protein co-expression analysis, missing protein expressions
were imputed by mean values from other individuals within a certain
brain region. When validating protein co-expression modules with
external cohorts, proteins were either discarded if all values were
unavailable or imputed by mean values from other individuals if
available.

Consensus protein co-expression module analysis
For consensus protein co-expression module analysis, we adopted
the WGCNA algorithm and chose soft power = 7 according to
Fig. S4b. And by default, we chose deep split = 2, minimum module
size = 30, and merging cut height = 0.25. The consensus co-
expression module analysis takes all four brain regions into account,
and developed a single set of modules. After consensus merging,
module 2 was merged into module 1, and module 0 represents a
group of unassigned proteins, resulting 9 modules. Based on cate-
gorical groups conditions (HC: 0, RAD: 1, ADD: 2), Pearson correla-
tion was performed to evaluate the relationships between clinico-
pathologic groups and expression of the 9 eigenproteins, followed
with P-value adjustment (FDR cut-off = 0.05).

Gene ontology enrichment analysis
Gene ontology (GO) enrichment analysis was carried out by ToppGene
suite (version 2022-03-28. 20,669 genes in category)21. Protein’s pri-
mary gene was derived according to UniProtKB (2022_01) database.
Ancestor chart was constructed according to AmiGO2 Gene Ontology
database58. Z-scores were calculated based on number of up/down
regulated proteins from hit count in query:

zscore=
ðNup � NdownÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nhitcount

p ð1Þ

Up and down regulation was based on log2 fold change. If a
z-score > 0onRADvsHC, then the associatedGO term ismore likely to
be increased when RAD>HC59. We set z-score = ±1 as the cut-off
threshold to determine the up/down regulation signal of a GO term.
Patterns of the change in M5 z-scores were described in fontsize =
12 + 2 × ðzscoreavgÞ, where zscoreavg is the average change of z-score
within a GO category when comparing RAD to other clinico-pathologic
groups.

Validation with external datasets
For external validation, 179 individuals (Ctrl = 42, AsymAD = 45,
ADD = 92) were collected from Banner Sun Health Research Insti-
tute (Banner)12 in dorsolateral prefrontal cortex region (DLPFC,
Brodmann area 9), followed with batch effects removal via
ComBat60. 329 individuals (Ctrl = 78, AsymAD = 89, ADD = 162) were
collected from Religious Orders Study and Rush Memory and Aging
Project (ROS/MAP)11 in DLPFC region (TMT quantitation, version:
03/22/2022, SwissProt and TrEMBL human protein db 2015, median
polish corrected relative reporter abundance, followed with log2ðxÞ
transformation), and 95 individuals (Ctrl = 26, AsymAD = 20,
ADD = 49) were collected from the UPenn Proteomics study (UPP)13

in DLPFC region (label-free quantitation, version: 03/22/2022,
median polish ratio over global internal standard (GIS), batch cor-
rected relative reporter abundance, followed with log2ðxÞ

transformation). In addition, 41 individuals (Ctrl = 11, AsymAD = 13,
ADD = 17) in DLPFC region and 45 individuals (Ctrl = 13, AsymAD =
13, ADD = 19) in precuneus region (PC, Brodmann area 7) were col-
lected from Baltimore Longitudinal Study of Aging (BLSA)14.
Although these external datasets were the most closely related,
there were potentially important differences in clinico-pathologic
group assignments between our study and these four external
datasets.
1. Controls: By expert consensus guidelines from NIA-AA, our HC

groupwas free of ADNC and clinically significant levels of the four
other commonly comorbid diseases, while the approach used by
the external datasets permitted low level ADNC in the control
group and did not exclude VBI, LBD, HS, and LATE-NC from the
control group.

2. RAD vs. AsymAD: Our approach only included intermediate or
high ADNC in the RAD group, while the approach used by
others permitted low level ADNC in the AsymAD group (pre-
clinical AD)3,4. Intermediate or high level ADNC is sufficient to
cause dementia1,47, meaning that our approach focused on RAD
while AsymAD is a mix of preclinical AD and RAD cases (see
Table S2).

3. Apparent vs. actual resilience: Neuropathologic assessment of
VBI, LBD, HS, and LATE-NC was not included in the earlier
proteomic studies, so these diseases not only are unknowingly
present in the control group (vide supra), but apparent resilience
cannot be distinguished from actual RADwithout evaluation of all
five diseases8.

4. Dementia was classified differently among all datasets: for ROS/
MAP, dementia was clinical cognitive diagnosis summary at last
visit (dcfdx_lv) > 13,4, which includes mild cognitive impairment
and dementia; for Banner, dementia was last MMSE < 243,4; for
BLSA and UPP dementia was AD diagnosis code3,4.

Our more stringent criteria fall within those used by others,
meaning that our HC was a subset of external Ctrl, our RAD was a
subset of external AsymAD, and our ADDwas a subset of external ADD.
When we applied our more stringent criteria for ADNC to the external
datasets, between about one-quarter and one-half of cases were
excluded. If the other four comorbidities had been evaluated, then
even more external cases and controls would have been excluded,
underscoring the reality of the limited availability of high-quality
samples to investigate RAD. We struck the balance of comparing our
results for HC, RAD, and ADD to Ctrl, AsymAD, and ADD of the most
closely related external datasets as the best available external
validation.

Statistics and reproducibility
This study was designed to use computational approaches to analyze
mass spectrometry-based proteomics data for resilience to Alzhei-
mer’s disease in human brain. No statistical method was used to
predetermine sample size, and no data were omitted from the ana-
lyses. All of the samples included in our study were utilized in the
experiments. Since the cohort had already been established, there
was no subsequent randomization during the statistical analysis.
Researchers were blinded to clinico-pathologic group assignment
until after collection of proteomic data. In statistical analysis, blind-
ing was not performed after the collection of proteomic data, as
cohort and label of each sample had been defined. All protein
expressions were log2ðxÞ transformed before statistical analyses. For
differentially expressed proteins analysis, two-sided Student’s t-tests
were performed with P-values adjusted for multiple comparisons.
For correlation analysis, Spearman’s rank correlation method was
performed to evaluate the protein expressions. In consensus
weighted protein co-expression analysis, clinico-pathological groups
and other factors given module eigenproteins were analyzed by
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Pearson correlation. For analyzing the concentration of RAD DEPs
among co-expressed modules and calculating Q-values in gene
ontology enrichment analysis21, hypergeometric test61 with prob-
ability mass function

Pr X = kð Þ=
K
k

� � N�K
n�k

� �
N
n

� � ð2Þ

was adopted, where the binomial coefficient is defined as

N
k

� �
=

n!
k! n� kð Þ! : ð3Þ

In above equation, N is the population size (total number of
genes in the background), K is the number of hits in the targeted
gene list, n is the number of draws in the protein list of interests, and
k is the number of observed successes (The total number of mutual
proteins in both protein list of interests and the targeted
protein list).

For low-dimensional visualization, principal component analysis
(PCA) was adopted. Source code to derive the experiment results can
be found in Github: https://github.com/huangzhii/RAD/. All experi-
ments were performed in Macintosh OS v12.5, with the Apple M1 Pro
CPU (10 threads) and 16 GB memory. All differential expression ana-
lyses and correlation analyses were performed in Python v3.9.7, with
the following packages: pandas v1.4.2, numpy v1.19.5,matplotlib v3.5.1,
mpl_toolkits v1.2.1, seaborn v0.11.2, scipy v1.8.0, scikit-learn v0.24.2,
statsmodels v0.13.2, umap v0.5.2, combat v0.3.2, multiprocess
v0.70.12.2. All consensus co-expression analysis was performed in R
v4.1.2, with the following packages: WGCNA v1.70.3, stringr v1.4.0,
ggpubr v0.4.0, ggplot2 v3.3.5, dplyr v1.0.8, FactoMineR v2.4, fac-
toextra v1.0.7.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Skyline documents, raw files for quality control, andDIAdata used
in this study are available at Panorama Public with the following link:
https://panoramaweb.org/ADBrainCleanDiagDIA.url. The proteomics
data generated in this study have been deposited in the Proteo-
meXchange database under the access code: PXD034525 with the
following link: The external validation data are available and can be
obtained at https://www.synapse.org/. Specifically, Banner (https://
www.synapse.org/#!Synapse:syn7170616), ROS/MAP (https://www.
synapse.org/#!Synapse:syn3219045), UPP (https://www.synapse.
org/#!Synapse:syn17009177), and BLSA (https://www.synapse.org/#!
Synapse:syn3606086). UniProtKB (2022_01) database can be reached
at https://www.uniprot.org/release-notes/2022-02-23-release. The
experimental results generated in this study are provided in the Sup-
plementary Information and SourceDatafile. Sourcedata areprovided
with this paper.

Code availability
Source code is available atGithub: https://github.com/huangzhii/RAD/.
Python and R codes were used to study and analyze the pro-
teomics data.
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