
Article https://doi.org/10.1038/s41467-023-38335-6

NetBID2 provides comprehensive hidden
driver analysis

XinranDong1,5, LiangDing1,AndrewThrasher 1,XingeWang 1,6, JingjingLiu 1,
Qingfei Pan1, Jordan Rash1, Yogesh Dhungana1,2, Xu Yang1, Isabel Risch 1,3,
Yuxin Li 4, Lei Yan1, Michael Rusch 1, Clay McLeod1, Koon-Kiu Yan 1,
Junmin Peng 4, Hongbo Chi 3, Jinghui Zhang 1 & Jiyang Yu 1

Many signaling and other genes known as “hidden” drivers may not be
genetically or epigenetically altered or differentially expressed at themRNAor
protein levels, but, rather, drive a phenotype such as tumorigenesis via post-
translational modification or other mechanisms. However, conventional
approaches based on genomics or differential expression are limited in
exposing such hidden drivers. Here, we present a comprehensive algorithm
and toolkit NetBID2 (data-driven network-based Bayesian inference of drivers,
version 2), which reverse-engineers context-specific interactomes and inte-
grates network activity inferred from large-scale multi-omics data, empower-
ing the identification of hidden drivers that could not be detected by
traditional analyses. NetBID2 has substantially re-engineered the previous
prototype version by providing versatile data visualization and sophisticated
statistical analyses, which strongly facilitate researchers for result interpreta-
tion through end-to-endmulti-omics data analysis.We demonstrate the power
of NetBID2 using three hidden driver examples. We deploy NetBID2 Viewer,
Runner, and Cloud apps with 145 context-specific gene regulatory and sig-
naling networks across normal tissues and paediatric and adult cancers to
facilitate end-to-end analysis, real-time interactive visualization and cloud-
based data sharing. NetBID2 is freely available at https://jyyulab.github.io/
NetBID.

Omics technologies, including next-generation sequencing, have
played essential roles in identifying genetic/epigenetic alterations and
abnormally expressed genes and proteins involved in homeostasis and
diseases1. However, many signaling proteins (e.g., kinases), transcrip-
tion factors, and other factors that are crucial drivers of phenotypes
are not genetically/epigenetically altered or differentially expressed at
themRNA or protein level but are instead altered by post-translational
or other modifications2,3; hence, they are termed hidden drivers.

Conventional mutation analysis and differential expression analysis
may not be able to capture them. Moreover, hidden drivers may
operate in a context-dependent fashion, making them difficult to
capture by knowledge-based pathway enrichment analysis.

Signalinghiddendrivers aremost likely druggable4,5,making them
ideal therapeutic targets. Current targeted therapies against signaling
drivers for cancer treatment rely primarily on gene mutations6; how-
ever, actionable mutations are present in less than 25% of human
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cancers7. The most frequently altered oncogenes and tumor sup-
pressors, including MYC, KRAS, and TP53, are thus far undruggable8,
and many patients carry no known cancer mutations. On the other
hand, known genetics-based targeted therapeutics may target hidden
drivers in a different cancer context that are not driven by genomic
alternations. For example, dasatinib, a known ABL inhibitor, was
approved to treat ALL with the BCR-ABL1 fusion or fusions involving
other ABL class kinases9–11; however, a recent study showed that
dasatinib is also effective in T-cell acute lymphoblastic leukemia (T-
ALL) that has no ABL alterations and the network-based systems
pharmacology analysis identified that LCK is the hidden driver of
unexpected dasatinib sensitivity in T-ALL in a non-genetic-dependent
manner12. Beyond genomics, network-inferred hidden drivers, espe-
cially signaling drivers, are potential therapeutic targets and are
indispensable for precision cancer medicine.

Existing biomarkers of most targeted therapies, based on
single-gene mutations or protein expression6, have limited predictive
power. For example, more than 50% of patients with HER2 + breast
cancer do not respond to anti-HER2 therapy13. Transcriptomics-based
approaches showed promise in predicting in vivo and patient
responses to anti-cancer therapies14. For example, a recent study
showed that a network-based HDAC6 biomarker was able to
predict preclinical and clinical responses to the HDAC6 inhibitor
ricolinostat in breast cancer15,16. Integrative multi-gene-based compa-
nion diagnosis biomarkers, particularly network-based biomarkers,
have massive potential to stratify patients for targeted therapies and
immunotherapies.

To expose suchhidden drivers by usingmulti-omics data,we have
developed a comprehensive data-driven, network-based algorithm
and toolkit, NetBID2 (data-driven network-based Bayesian inference of
drivers, version 2) (Fig. 1). In NetBID2, we have substantially re-
engineered the prototype version of NetBID that has successfully
identified MST1 as a hidden driver in selectively programming CD8α+

dendritic cells for anti-tumor immunity17, CELSR2 as a negative driver
of chemo-resistance in ALL18, LCK as a non-genetic driver of unex-
pected dasatinib sensitivity in T-ALL12, and HDAC6 as a non-oncogene
addition hub of subtypes of breast cancer15. To quantify the driver’s
regulatorypotential, the concept “activity” is defined to summarize the
ability to control the expression of its transcriptional targets. Different
from expression, the driver’s activity can be influenced not only by its
RNA transcription but also by its protein synthesis, degradation, post-
translational modification, complex formation, subcellular localiza-
tion, and others. Hidden drivers usually exhibit differential activity
instead of differential expression. NetBID prototype was a proof-of-
concept version that has proven to be powerful in many successful
applications.

Building on NetBID, we developed NetBID2, a comprehensive,
versatile, and user-friendly software package of hidden driver infer-
ence toolkit, including state-of-the-art network analysis, gene expres-
sion analysis, functional analysis, meta-analysis, and visualizations.
More specifically, NetBID2 provides functions and features for input
data processing, normalization, batch correction, quality control of
input datasets, and generated networks. It includes visualization fea-
tures that facilitate users who might not have coding background.
Further, the new driver activity inference considers the direction of
targets. Therefore, NetBID2 has a variety of applications. For example,
it can integrate cancer genomic data with transcriptomics and other
omics data to capture hidden cancer drivers that may not show
genomic alterations or differential expression.

Results
Key features of NetBID2
NetBID2 includes the following key features (Fig. S1): (1) Reverse-
engineering context-specific networks. NetBID2 uses the latest version
of SJARACNe for reverse-engineering networks from transcriptomics

and proteomics data19. The SJARACNe uses the Common Workflow
Language (CWL) to supportmultiple parallel computing platforms and
improves the efficiency of network inference from large-scale data,
including proteomics data and single-cell transcriptomics data. (2)
Activity inference. NetBID2 introduces a “weighted mean” activity
inference algorithm that summarizes the expression pattern of the
target genes by taking into account both the strength and direction of
thedriver’s interactionwith its predicted target genes. (3)Visualization
and comprehensive analyses. NetBID2 provides versatile data visuali-
zation and sophisticated bioinformatics/statistical analyses, including
differential expression analysis, gene set enrichment analysis (GSEA),
network analysis, Bayesian analysis, and meta-analysis. These greatly
facilitate the interpretation of results through end-to-end multi-omics
data analysis. (4) QC reporting. NetBID2 implements state-of-the-art
quality control HTML reporting of gene expression/activity and
network data.

Visualization and cloud apps of NetBID2
For the benefit of users with limited or no coding experience, we have
developed the following interactive web and cloud applications of
NetBID2:
(1) NetBID2 Viewer. This interactive visualizer enables users to upload

their NetBID2 output object and to explore the NetBID2 results
interactively with an array of visualizations, including volcano
plots, GSEA plots, heatmaps, functional enrichment plots, bubble
plots, target networks, box plots, and driver target enrichment
plots. An example of a live viewer is available at https://yulab-
stjude.shinyapps.io/NetBID2_Viewer.

(2) NetBID2 Runner. This enables users to perform the one-step
NetBID2 hidden-driver analysis and generate amaster table with a
detailed R data file containing the project datasets.We developed
a NetBIDshiny R package to produce the NetBID2 Viewer and
Runner apps, and users can install them locally and/or publicly.

(3) NetBID2 Cloud App. To exploit the power of cloud computing, we
developed a cloud app for NetBID2 and deployed it on the NCI
Cancer Genomics Cloud, which hosts the world’s largest cancer
genomic datasets alongside thousands of bioinformatics tools.

A resource of 145 context-specific gene regulatory and signaling
networks
To facilitate the use of NetBID2 Runner, we have built a network
resource of transcription factor and signaling protein networks for 145
normal and cancer contexts using our improved SJARACNe algorithm.
Specifically, it includes 48 normal tissues from the Genotype Tissue
Expression project (GTEx)20, 51 pediatric cancer types/subtypes from
the Therapeutically Applicable Research to Generate Effective Treat-
ments initiative (TARGET)21, and 46 adult cancer types/subtypes from
The Cancer Genome Atlas (TCGA)22. It contains >145 million interac-
tions in total. We have used NetBID2 to generate comprehensive QC
reports for each of the 145 networks (Table S1), all of which have rea-
sonable regulon sizes (Fig. S2) and scale-free features (Fig. S3).We also
used the HALLMARKMYC targets to evaluate theMYC subnetworks in
eachof the normal tissues and cancer types, over half of which showed
significant enrichment (Fig. S4).

Example 1: NetBID2 identified MYC as a hidden driver in
KRAS-driven LUAD
To demonstrate the power of NetBID2, we first present examples of
hidden drivers in adult and pediatric cancers. The first example is
MYC in KRAS-driven lung adenocarcinoma (LUAD). MYC was recog-
nized as a functional driver of KRAS-mutant LUAD because MYC
knockout could eradicate KRAS-driven lung cancer in mice23. How-
ever, conventional analysis of a TCGA LUAD cohort24 identified no
significant association of MYC with KRAS mutation: only 11.9% of
KRAS-mutant samples also harbored an MYC mutation or
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Fig. 1 | Overview of hidden driver analysis by NetBID2.Multi-omics data such as
genomics, transcriptomics, proteomics, and phosphoproteomics, which measure
the quantitative characteristics of genes at different stages, can be used to identify
essential drivers by traditional differential analysis in case-control studies. How-
ever, many crucial drivers, especially “hidden drivers”, do not show much differ-
ential expression but still play an important role in biological processes of interest.
NetBID2 has provided a comprehensive toolkit to explore the “hidden drivers” by
the following key steps. Step 1: Reverse-engineering context-specific networks from

a large-scale expression profile. Step 2: Activity inference frommulti-omics data by
summarizing the expression pattern of the candidate driver’s predicted target
genes. Step 3: Do statistical analysis to find drivers with significantly differential
activity and integrate for multi-omics. In previous applications, NetBID2 can suc-
cessfully identify “hidden drivers” with significantly differential activity but no
significant differential expression in case vs. control and mutant vs. wild-type
comparison studies. Besides, the driver’s activity level rather than expression level
shows better performance in survival probability analysis.
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amplification (Fig. 2a), andMYC exhibited no differential expression
in KRAS-driven LUAD vs. wild-type normal samples (P = 0.73)
(Fig. 2b). In contrast, by using NetBID2, we could reconstruct a
LUAD-specific interactome from 493 LUAD RNA-seq profiles and use
the MYC subnetwork (Fig. 2c) to infer its protein activity, which
significantly differentiated mutant KRAS from wild type
(P = 2.3 × 10−38) (Fig. 2b, d). The power of NetBID2 to captureMYC as a
hidden driver of KRAS-driven LUAD partially relies on the data-
drivenMYC regulon (Fig. 2c), reflecting both its known functions and
unreported ones in LUAD (Fig. 2e). The predicted MYC targets in
LUAD were also validated by ChIP-seq analysis of A549, a LUAD cell
line, from the ENCODE project25 and footprinting analysis26 of the
A549 ATAC-seq data in ENCODE (Fig. S5a, b). In addition toMYC, we
also used the A549 ATAC-seq data to evaluate the overall LUAD TF
network, in which all TFs showed significant enrichment between
SJARACNe-predicted targets and the targets defined by A549 ATAC-
seq analysis (Fig. S5c).

Example 2: NetBID2 identified NOTCH1 as a hidden driver
in T-ALL
The second example isNOTCH1, the primary oncogene that ismutated
in approximately 74%of childhoodT-ALL, based on a recent analysis of
the TARGET RNA-seq data27 (Fig. 3a). However, NOTCH1 showed no
differential expression inmutant vs.wild-type T-ALL samples (P =0.26)
(Fig. 3b). In contrast, by using NetBID2, we could reconstruct a T-ALL-
specific interactome from RNA-seq profiles of T-ALL primary samples
(N = 261) and use the NOTCH1 subnetwork (Fig. 3c) to infer its protein

activity, which significantly differentiatedmutant cases fromwild-type
cases (P = 2.2 × 10−7) (Fig. 3b, d). The NOTCH1 regulon (Fig. 3c) inferred
from T-ALL RNA-seq profiles is significantly enriched by its putative
targets, definedbydifferentially expressed genes inNOTCH1-mutant T-
ALL cells with and without NOTCH1 inhibition28 (Fig. 3e). These results
further established the power of NetBID2 to captureprotein activity by
using a context-specific network.

Example 3: NetBID2 identified Gabpa as a hidden driver in CD4+

T cells upon TCR stimulation
We present one more example in which transcriptomics (mRNA),
whole proteomics (wProtein), andphosphoproteomics (pProtein) data
were integrated to capture hidden drivers of the naive CD4+ T-cell
response upon T-cell receptor (TCR) stimulation. We collected bulk
transcriptomics, whole-proteomics, and phosphoproteomics data for
CD4+ T cells before and after TCR stimulation in two previous
studies29,30. Using NetBID2, we reconstructed a naive CD4+ T-cell-
specific gene–gene interaction network from the transcriptomic pro-
files of 24 CD4+ T-cell samples and integrated different levels of omics
data to identify drivers in response to TCR stimulation at 8 h vs. 0 h. To
evaluate the performance of NetBID2, we curated eight positive con-
trol drivers (Cox10, Shmt1, Shmt2, Myc, Atf3, Gabpa, Akt1, and Gsk3b)
that had previously been identified with experimental validations31–35

(Table S2). Remarkably, NetBID2 could identify all of them (Fig. 4a)
(with adjusted P < 4.0 × 10−12), with the transcription factor Gabpa
being revealed as a particularly notable hidden driver (Fig. 4b–d).
Gabpa is a functionally validated positive driver of T-cell homeostasis

Fig. 2 | NetBID2 identifies MYC as a hidden driver for KRAS-mutant lung
adenocarcinoma (LUAD). a Dataset and basic NetBID2 analysis workflow and
oncoPrint ofKRAS andMYC in LUAD from the TCGAdata.bMYC activity inferred by
NetBID2 (right) and its expression (left) in KRAS-mutant LUAD (n = 151 biologically
independent samples) and wild-type normal samples (n = 59 biologically indepen-
dent samples). The P values were estimated using two-tailed t test (getDE.limma.2G
function in NetBID2). The center line represents the median and whiskers repre-
sents maximum (Q3 + 1.5*IQR) and minimum value (Q1 + 1.5*IQR). c TheMYC

transcription regulatory subnetwork in LUAD, inferred by SJARACNe from LUAD
RNA-seq data. The orange and green edges correspond to positive and negative
targets, respectively. The edge width is proportional to the mutual information of
the interaction. d GSEA plot of the MYC-LUAD regulon for the differential expres-
sion in KRAS-mutant LUAD vs. wild-type normal samples. The P values were esti-
mated using two-tailed t test (getDE.limma.2G function in NetBID2). e Function
enrichment of theMYC target genes. Each box shaded in orange in the plot region
indicates that the corresponding gene (column) is part of the pathway (row).
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and immunity33,34, but its mRNA andwhole-protein expression showed
no significant change, and the phosphoprotein expression was even
down-regulated after 8 h of TCR stimulation. However, NetBID2 was
able to capture its up-regulated activity at all three levels, namely
mRNA, wProtein, and pProtein.

This example provided us an opportunity to evaluate the effects
of different omics modalities and input sample sizes on hidden
driver inference. We compared the statistics using each modality
alone, mRNA + wProtein, and all three (Fig. S6). First, mRNA alone
consistently produced better statistical significance than wProtein
alone in all 8 cases, and wProtein alone is better than pProtein alone
in all except Akt1. Second, all three omics modalities produced
better statistical significance than each alone in all 8 cases. Third,
combining mRNA, wProtein, and pProtein had similar performance
as compared to the former two alone, suggesting that the con-
tribution of pProtein is rathermild. We also systematically examined
the overall correlations of NetBID2 z-statistics using all three omics
data using each of them alone (Fig. S7). The results suggested that
mRNA and wProtein had similar correlations with integrated, with a
correlation coefficient of 0.928 and 0.918, respectively. The pPro-
tein alone had a worse correlation than mRNA and wProtein, likely
due to the noise and limited information (e.g., phosphorylation
only) of phosphoproteomics data. We further tested the model
performance by gradually increasing the number of samples used
for network construction, and NetBID2 performance was improved
upon the increase in sample size (Fig. S8). In summary, proteomics,
especially whole proteomics data when available and large input

sample size, will greatly enhance the hidden driver discovery by
NetBID2.

“Weighted mean” outperforms “mean” for protein activity
inference
We also used the TCR response example with mRNA, wProtein, and
pProtein data to evaluate the “weighted mean” method for activity
inference in NetBID2 by comparing it with the “mean” approach used
in the NetBID prototype. Notably, the “weighted mean” approach
(Fig. 4a) yielded stronger statistical evidence of differential activity
than did the “mean” based method (Fig. 5a) for all eight positive con-
trol drivers. In particular, the “mean” approach failed to identify Akt1
(P = 0.099) and Gsk3b (P = 0.08) at the pProtein level and Gabpa at the
mRNA (P =0.042, but wrong direction), wProtein (P =0.28), and
pProtein (P =0.089) levels (Fig. 5b–e). Overall, the differential activity
scores derived with the “weighted mean” and “mean” approaches
correlated positively with each other, although the correlation at the
mRNA level (Pearson correlation coefficient r =0.77) is much stronger
than at the wProtein (r =0.48) and pProtein (r = 0.36) levels (Fig. 5f).
However, the “weighted mean” outperformed “mean” in inferring
driver activity and nominating hidden drivers such as Gabpa that was
completely missed by “mean” based approach.

Discussion
We have demonstrated that NetBID2 goes beyond genomics mutation
and conventional differential expression to infer protein activity from
data-driven and context-specific networks, thereby exposing hidden

Fig. 3 | NetBID2 captures NOTCH1 protein activity in NOTCH1-mutant T-cell
acute lymphoblastic leukemia (T-ALL). a Dataset and basic NetBID2 analysis
workflow and oncoPrint of NOTCH1 in T-ALL from the TARGET data. b NOTCH1
activity inferredbyNetBID2 (right) and expression (left) inNOTCH1-mutant (n = 192
biologically independent samples) andwild-typeT-ALL samples (n = 69 biologically
independent samples). The P values were estimated using two-tailed t test (get-
DE.limma.2G function in NetBID2). The center line represents the median and
whiskers represents maximum (Q3 + 1.5*IQR) and minimum value (Q1 + 1.5*IQR).
c The NOTCH1 transcription regulatory subnetwork in T-ALL, as inferred by

SJARACNe from T-ALL RNA-seq data. Orange and green edges correspond to
positive and negative targets, respectively. The edge width is proportional to the
mutual information of the interaction. d GSEA plot of the NOTCH1 regulon for the
differential expression ofNOTCH1-mutant vs. wild-type T-ALL samples. eGSEA plot
of theNOTCH1 regulon in the differential expression ofNOTCH1-mutant T-ALL cells
with or without NOTCH1 inhibition by a gamma-secretase inhibitor (GSE6495)28.
d, eThe P valueswere estimated using two-tailed t test (getDE.limma.2G function in
NetBID2).
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drivers of various biological processes. NetBID2 can integratemultiple
omics data, including transcriptomics, proteomics, and phosphopro-
teomics, which is different from existing gene-expression-focused
approaches such as VIPER36. NetBID2 can infer interaction networks
and activities of not only transcription factors (TFs) but also signaling
proteins such as kinases, epigenetic modulators, metabolic factors,
etc.We havedemonstrated significant enrichment of NetBID2-inferred
TF regulonswith targets definedbyTFChIP-seqorATAC-seqdata from
the matched contexts by using motif enrichment and footprinting
analyses. NetBID2 identifies the downstream targets influenced by the
hidden driver, but some targets could potentially be indirect targets
and therefore cannot bediscoveredbyChIP-seqor ATAC-seqdata. The
TF networks can be further improved by integrating with TF ChIP-seq
data or ATAC-seq data. The signaling networks can also be further
improved by integration with protein–protein interaction networks
reconstructed by affinity purification−mass spectrometry in specific
contexts such as breast cancer37.

It is important to emphasize that the main goal of NetBID2 is to
infer hidden drivers. Based on our activity framework, by aggregating
the signal from a set of target genes, we can infer the role of the driver
with stringent statistics. Nevertheless, the signal of individual targets
could be weak, and thus individual targets could be viewed as sec-
ondary results.

Transcriptomics is still the primary input dataset for NetBID2 to
uncover hidden drivers in most cases because of the limitations of
proteomics and phosphoproteomics data. Despite the increasing
number of proteomics profiles, it is still rarely available, especially
phosphoproteomics data, compared to RNA-seq. Even when they are
available, the sample size of proteomics data is usually small. Further,
the latest TMT mass spectrum can detect >14,000 proteins38, but the

coverage is still limited, given the intrinsic technical limitations. The
batch effects of proteomics data make it even more challenging to
analyze.

One limitation of NetBID2 is that it requires a relatively large
sample-sized transcriptomics dataset with the same biological condi-
tion as the dataset used for driver inference to reconstruct a context-
matched network. In some cases, it might be challenging to find mat-
ched datasets. The single-cell transcriptomics may solve the sample
size issue. NetBID2 has the potential to be applied to single-cell tran-
scriptomics data for cell-type-specific networks and hidden driver
inference. The intrinsic sparseness of single-cell RNA-seq data will
make the network reconstruction challenging. Re-engineering SJAR-
ACNe and pseudo-bulking or meta-cell analysis will be needed to
overcome the dropout effects for reasonable gene–gene correlation
estimation from single-cell data. The availability of matched scATAC-
seq data will help improve the TF network reverse-engineering. The
network-inferred activity profiles at the single-cell level will be able to
rescue the detection of many genes with many zero counts in single-
cell expression data. The less-sparse single-cell activity map may fur-
ther improve the clustering and integration analysis of single-cell data
from different cohorts.

Another limitation of NetBID2 is that the activity inference cur-
rently focuses onTF and SIGdrivers and assumes the correlation of the
driver’s activity with its expression. This strategy may miss some dri-
vers that do not function as TF or SIG or whose activities are inde-
pendent of expression. A potential solution might be using the first-
neighbor genes to infer the activity of any given gene since our data-
driven networks cover the whole transcriptome space. However, fur-
ther evaluation of new activity inference and non-TF/SIG driverswill be
required.

Fig. 4 | NetBID2 identifies Gabpa as a hidden driver in T-cell receptor (TCR)
stimulation from0h to 8 h. a Eight drivers that are differentially activated in TCR
stimulation from0h to8 h as inferred byNetBID2. Left, theNetBID2panel indicates
the significance level (color coded by z score; labeled values are adjusted P values)
in integrated analysis, transcriptomics (mRNA) data, whole-proteomics (wProtein)
data, and phosphoproteomics (pProtein) data. Right, differential expression of the
drivers (color coded by z score; labeled values are adjusted P values). TF: tran-
scription factor; SIG: signaling factor. b Gabpa activity inferred by NetBID2 at the
mRNA level (right) and the original mRNA expression (left) in TCR-8h (n = 4 bio-
logically independent samples) and TCR-0h samples (n = 4 biologically

independent samples). c Gabpa activity inferred by NetBID2 at the wProtein level
(right) and the original wProtein expression (left) in TCR-8h (n = 2 biologically
independent samples) and TCR-0h samples (n = 2 biologically independent sam-
ples). d Gabpa activity inferred by NetBID2 at the pProtein level (right) and the
original pProtein expression (left) in TCR-8h (n = 2 biologically independent sam-
ples) and TCR-0h samples (n = 2 biologically independent samples). In a–d, the
P values were estimated using two-tailed t test (getDE.limma.2G function in Net-
BID2). The central line represents the median and whiskers represents maximum
(Q3 + 1.5*IQR) and minimum value (Q1 + 1.5*IQR).
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In summary, NetBID2 is a powerful and comprehensive tool to
integrate with whichmulti-omics data and nominate hidden drivers in
cancer and other biological conditions that conventional mutation,
differential expression, and pathway analyses may fail to identify. This
tool will benefit researchers in the post-omics era, enabling them to
identify non-genetic dependencies and therapeutic targets for cancer
and other diseases. The NetBID2 Viewer, Runner, and Cloud apps, with
a valuable resource of 145 data-driven and context-specific networks,
will facilitate the broad and reproducible use of NetBID2 with
enhanced visualization, data management, and results sharing.

Methods
Input datasets for NetBID2
The two required input datasets of NetBID2 include (1) a tran-
scriptomic dataset in the relevant biological condition used for net-
work construction and (2) an expression profiling dataset (at least one
omics modality from RNA-seq, whole proteomics, and phosphopro-
teomics) with experimental design (e.g., case vs. control, phenotype
groups) for driver inference. For the network construction, the input
sample size is recommended tobe>20,which is enough for generating
reproducible networks. Although there is no optimal one-size-fits-all
solution inpractice,wenormally recommenda fewhundred if possible
and perform the QC of the input expression data carefully. For the
driver inference expression dataset, NetBID2 does not require all three
modalities (transcriptomics, proteomics, phosphoproteomics)—at
least onemodality omicsdatasetwill be sufficient. The transcriptomics
data that cover genome-wide gene expression levels outperforms
other modalities generally and the integration of proteomics will
increase the power of hidden driver inference.

A typical workflow of NetBID2
When the input is prepared, a typical workflow of NetBID2 includes
the following. (1) Perform QC for input gene expression profiles of

network inference and driver inference. (2) Reconstruct context-
specific TF and SIG networks, respectively, with the input of tran-
scriptomic profiles and curated TF and SIG driver lists by SJARACNe
and perform network QC. (3) Calculate activity for candidate drivers
in each of the driver inference datasets based on the SJARACNe-
inferred TF and SIG networks. (4) Perform differential activity (DA)
analysis for candidate drivers and differential expression (DE) ana-
lysis by BID (Bayesian inference of drivers). (5) Integrate DA and DE
results using BID if more than one modality omics dataset is pro-
vided or more than one comparison is conducted. (6) Generate
result objects (can be used as input for NetBID2 Viewer), master
tables, and all kinds of visualization plots for top drivers or a driver
of interest. (7) Perform functional enrichment analysis of top drivers
with visualizations. A detailed step-by-step tutorial with an example
and codes is described in the NetBID2 online.

Processing and QC of input data
NetBID2 provides a series of functions with visualizations to process
and QC different types of input datasets (e.g., microarray, RNA-seq,
proteomics), including gene filtering, normalization, ID conversion,
transcript-level to gene-level conversion, missing data imputation,
outlier detection, dataset combination, batch effect detection, and
removal, etc. TheHTMLQC report includes heatmap, PCA/MDS/UMAP
plots, sample correlation plots, distribution plots, etc.

Network reconstruction
With the transcriptomics data passing QC, NetBID2 prepares the input
files for SJARACNe. SJARACNe uses the common workflow language
(CWL) and node.js. It can be run on local machines and high-
performance computing clusters. Conda virtual environment is
recommended to set up the required Python and dependencies.
Recommended and default parameters include the number of boot-
straps (n) to be 100 and the consensus p-value (pc) to be 1e−5.

Fig. 5 | Comparison of the “weighted mean” method in NetBID2 with the
“mean” approach in the NetBID prototype to infer driver activities in the case
of TCR stimulation from 0h to 8 h. a Differential activity statistics of the eight
positive control drivers of CD4+ T-cell activation were obtained using the “mean”
approach to infer activity in integrated data and at the mRNA, wProtein, and
pProtein levels. TF: transcription factor; SIG: signaling factor. b–d Gabpa activity
inferred by the “mean” approach showed no significant difference betweenTCR-8h
and TCR-0h samples at themRNA (n = 4 biologically independent samples for each
group), wProtein (n = 2 biologically independent samples for each group), and
pProtein levels (n = 2 biologically independent samples for each group). The P
valueswere estimated using two-tailed t test (getDE.limma.2G function inNetBID2).

The center line represents the median and whiskers represents maximum
(Q3 + 1.5*IQR) and minimum value (Q1 + 1.5*IQR). e The Gabpa transcription reg-
ulatory subnetwork in CD4+ T cells as inferred by SJARACNe from RNA-seq profiles
of CD4+ T cells. The orange and green edges correspond to positive and negative
targets, respectively. The edge width is proportional to the mutual information of
the interaction. f The correlation of z scores for differential activity, comparing
TCR-8h with TCR-0h samples by using the “weighted mean” and “mean” approa-
ches to infer driver activity from mRNA, wProtein, and pProtein data. The Pearson
correlation coefficients (r) are labeled inside the box. The red points repre-
sent Gabpa.
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Network QC
NetBID2 provides a detailed QC report for SJARACNe-inferred net-
works, including the following:

• Network overview properties. A table of basic statistics to
characterize the network, including size and different centrality
metrics (e.g., density, degree, eigenvector, PageRank, etc.).

• Individual driver subnetwork statistics. A table of detailed sta-
tistics for each individual driver subnetworks.

• Target size plot. A density over the histogram shows the dis-
tribution of nodes’ degree and the drivers’ target size. Our
experience suggests that an average target size of around several
hundred may be preferable.

• Scale-free check. The scale-free attribute is oftenused asametric
to check the robustness of a network. The R2 from the linear
fitting between the degree (k) and degree distribution (pk) is
used as the metric—the higher R2 is, the more scale-free and
robust the network is.

An example of network a QC report can be found at: https://
jyyulab.github.io/NetBID_shiny/docs/tutorial4online/TCGA_network_
QC/LUAD.T_35321_16788_493netQC.html. QC reports for all 145 net-
works are available at https://jyyulab.github.io/NetBID_shiny.

Activity inference
NetBID2 uses the “weighted mean” approach to calculate driver
activity (cal.Activity function). It also provides other options, including
“mean”, “maxmean”, and “absmean”. “Weighted mean” is the MI
(mutual information) value with the sign of the Spearman correlation.
For example, if the user chooses “weighted mean” to calculate the
activity of a driver, then thehigher the expression valueof its positively
regulated genes and the lower the expression value of its negatively
regulated genes, the higher the activity value of that driver will be.
Z-transformation to the expression matrix (std=TRUE in cal.activity
function) is performed by default before calculating the activity. Net-
BID2 also generates QC reports for the activity matrix.

Differential activity and differential expression analysis
NetBID2 uses Bayesian linear regression or BID approach for DA and
DE analysis of two group comparisons by default. The default method
of BID is “Bayesian”, but “MLE” is an alternative. For phenotypes with
more than two groups, NetBID2 provides bid and limma functions.

Integration of multiple DA/DE results
NetBID2 uses Stouffer’s method to combine statistics from multiple
DA or DE results. It also provides Fisher’s approach to combine
p-values only. For DE combination, NetBID2 also provides a combina-
tion of other statistics, including logFC, AveExpr, etc.

Functional enrichment analysis
NetBID2 provides functions for comprehensive enrichment analysis
and visualization. It supports different kinds of enrichment algorithms,
including Fisher’s exact test, GSEA-like, two-set GSEA, activity-based
enrichment, etc. It also provides biclustering analysis and plots
(heatmap, bubble) of genes-pathways. Demos can be found on the
NetBID2 tutorial: https://jyyulab.github.io/NetBID/docs/advanced_
analysis.

The resource of 145 prebuilt data-driven networks of normal
tissues and cancers in NetBID2 Runner
In NetBID2 Runner for hidden driver analysis, we have prebuilt paired
networks (a transcription factor network and a signaling network) of
48 normal tissues from GTEx20, 51 pediatric cancer types or subtypes
from TARGET21, and 46 adult cancer types or subtypes from TCGA22 by
using the SJARACNe19 algorithm with the default settings. The total
number of interactions is >145 million. Detailed statistics and QC

reports for each network are available in Table S1 or at https://jyyulab.
github.io/NetBID_shiny.

Statistics and reproducibility
No statistical method was used to predetermine sample size. In
Example 1, LUAD-specific interactome were reconstructed from 493
LUAD RNA-seq profiles by SJARACNe. The activity level for all genes
were inferred by NetBID2 cal.Activity function. The differential
expression and activity analyses for genes between 151 tumor samples
withKRASmutation (MU_Tumor) and 59normal samples (WT_Normal)
were conducted by NetBID2 getDE.limma.2G function. The target
genes forMYC_TFwere extracted from the reconstructed network and
the function enrichment analysis was performed by NetBID2 funcEn-
rich.Fisher function, visualized by draw.funcEnrich.cluster function.
The GSEA plot was created by NetBID2 draw.GSEA function. Narrow
Peaks for A549 Chip-Seq of MYC were downloaded from ENCODE
(ENCFF542GMN) and annotated to hg38 known gene region by ChIP-
seeker with default settings. A549 ATAC-seq results were downloaded
from ENCODE (ENCFF143XED) and annotated to hg38 known gene
region by ChIPseeker with default settings. Footprinting analysis was
performed to defineMYC targets fromATAC-seq data. In Example 2, T-
ALL-specific interactome were reconstructed from 261 T-ALL primary
samples by SJARACNe. The activity level for all genes were inferred by
NetBID2 cal.Activity function. The differential expression and activity
analyses for genes between 192 tumor samples with NOTCH1mutation
(MUT_Tumor) and 69 without NOTCH1 mutation (WT_Tumor) were
conducted by NetBID2 getDE.limma.2G function. The target genes for
NOTCH1_TF were extracted from the reconstructed network. The
expression from GSE6495 was processed by NetBID2 load.exp.GEO
function and the differential expression profile was calculated by
getDE.limma.2G function. The GSEA plot was created by NetBID2
draw.GSEA function. In Example 3, naive CD4+ T-cell-specific
gene–gene interaction networks were reconstructed from the tran-
scriptomic profiles of 24 CD4+ T-cell samples by SJARACNe. The
activity level for all genes were inferred by NetBID2 cal.Activity func-
tion. The differential expression and activity analyses for genes
between TCR stimulation at 8 h vs. 0 h were conducted by NetBID2
getDE.limma.2G function. The target genes for Gabpa_TF were
extracted from the constructed network.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The RNA-seq dataset for the non-small cell lung cancer are available at
https://portal.gdc.cancer.gov/projects/TCGA-LUAD. The RNA-seq
dataset for the T-cell acute lymphoblastic leukemia is available on
https://platform.stjude.cloud/ and in the GEO database under the
access code GSE6495. The whole-proteomics and phosphoproteomics
datasets for T-cell activation is available in the Supplemental Data S1A
and S1B of Tan et al.30, and thematchedmicroarray dataset is available
in the GEO database under the access code GSE5166829. A549 MYC
ChIP and ATAC-seq data were downloaded from the ENCODE
database25 under the access codes ENCFF542GMN and ENCFF143XED.
Processed data is also available on Zenodo39. All other relevant data
supporting the key findings of this study are available within the article
and its Supplementary Informationfiles. Sourcedata areprovidedwith
this paper.

Code availability
The source code for NetBID2 is available as Supplementary Software
and online at GitHub: https://github.com/jyyulab/NetBID and
Zenodo40. The documentation with a tutorial is available online at
https://jyyulab.github.io/NetBID. The NetBID prototype is available at
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https://github.com/jyyulab/NetBID/releases/tag/1.0.0. The new ver-
sion of SJARACNe with CWL is available at https://github.com/jyyulab/
SJARACNe. NetBIDshiny is available at https://github.com/jyyulab/
NetBID_shiny and Zenodo41. The documentation with a tutorial is
available online at https://jyyulab.github.io/NetBID_shiny. TheNetBID2
Viewer and Runner demo apps generated by NetBIDshiny are available
at https://yulab-stjude.shinyapps.io/NetBID2_Viewer and https://yulab-
stjude.shinyapps.io/NetBID2_Runner, respectively. The NCI Cancer
Genomics Cloud NetBID2 app is available at https://cgc.sbgenomics.
com/public/apps/stjude/netbid/netbid.
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