
Article https://doi.org/10.1038/s41467-023-38232-y

Identification of CircRNA signature
associatedwith tumor immune infiltration to
predict therapeutic efficacy of
immunotherapy

Yu Dong1,2,3,4,14, Qian Gao1,5,6,14, Yong Chen 7,8,14, Zhao Zhang9,10,14,
Yanhua Du2,3,14, Yuan Liu 9,11,12, Guangxiong Zhang4,5, Shengli Li 13,
Gaoyang Wang 2,3, Xiang Chen 1,5 , Hong Liu 1,5 , Leng Han 9,11,12 &
Youqiong Ye 2,3

Circular RNAs (circRNAs) play important roles in the regulation of cancer.
However, the clinical implications and regulatory networks of circRNAs in
cancer patients receiving immune checkpoint blockades (ICB) have not been
fully elucidated. Here, we characterize circRNA expression profiles in two
independent cohorts of 157 ICB-treated advanced melanoma patients and
reveal overall overexpression of circRNAs in ICB non-responders in both pre-
treatment and early during therapy. Then, we construct circRNA-miRNA-
mRNA regulatory networks to reveal circRNA-related signaling pathways in the
context of ICB treatment. Further, we construct an ICB-related circRNA sig-
nature (ICBcircSig) score model based on progression-free survival-related
circRNAs to predict immunotherapy efficacy. Mechanistically, the over-
expression of ICBcircSig circTMTC3 and circFAM117B could increase PD-L1
expression via the miR-142-5p/PD-L1 axis, thus reducing T cell activity and
leading to immune escape. Overall, our study characterizes circRNA profiles
and regulatory networks in ICB-treated patients, and highlights the clinical
utility of circRNAs as predictive biomarkers of immunotherapy.

Received: 9 December 2021

Accepted: 17 April 2023

Check for updates

1Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya
Clinical Research Center for Cancer Immunotherapy, Furong Laboratory, Changsha, Hunan 410008, P. R. China. 2Center for Immune-Related Diseases at
Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China. 3Shanghai Institute of
Immunology, State Key Laboratory of Oncogenes and RelatedGenes, Department of Immunology andMicrobiology, Shanghai Jiao TongUniversity School of
Medicine, Shanghai 200025, China. 4Lin Gang Laboratory, Shanghai 200025, China. 5National Clinical Research Center for Geriatric Disorders, Xiangya
Hospital, Changsha, Hunan 410008, P. R. China. 6Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China.
7Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China. 8Department of Oncology, Shanghai
Medical College, Fudan University, Shanghai 200032, P. R. China. 9Department of Biochemistry and Molecular Biology, McGovern Medical School at The
University of TexasHealth ScienceCenter atHouston,Houston, TX 77030,USA. 10MOEKeyLaboratory ofMetabolismandMolecularMedicine, School of Basic
Medical Sciences, Fudan University, Shanghai 200433, P. R. China. 11Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology,
Texas A&M University, Houston, TX 77030, USA. 12Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX
77030, USA. 13Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University
School of Medicine (SJTU-SM), Shanghai 201620, China. 14These authors contributed equally: Yu Dong, Qian Gao, Yong Chen, Zhao Zhang, Yanhua Du.

e-mail: chenxiangck@126.com; hongliu1014@csu.edu.cn; leng.han@tamu.edu;
youqiong.ye@shsmu.edu.cn

Nature Communications |         (2023) 14:2540 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-7188-4566
http://orcid.org/0000-0002-7188-4566
http://orcid.org/0000-0002-7188-4566
http://orcid.org/0000-0002-7188-4566
http://orcid.org/0000-0002-7188-4566
http://orcid.org/0000-0003-2030-1153
http://orcid.org/0000-0003-2030-1153
http://orcid.org/0000-0003-2030-1153
http://orcid.org/0000-0003-2030-1153
http://orcid.org/0000-0003-2030-1153
http://orcid.org/0000-0001-5430-303X
http://orcid.org/0000-0001-5430-303X
http://orcid.org/0000-0001-5430-303X
http://orcid.org/0000-0001-5430-303X
http://orcid.org/0000-0001-5430-303X
http://orcid.org/0000-0001-6941-7363
http://orcid.org/0000-0001-6941-7363
http://orcid.org/0000-0001-6941-7363
http://orcid.org/0000-0001-6941-7363
http://orcid.org/0000-0001-6941-7363
http://orcid.org/0000-0001-8187-636X
http://orcid.org/0000-0001-8187-636X
http://orcid.org/0000-0001-8187-636X
http://orcid.org/0000-0001-8187-636X
http://orcid.org/0000-0001-8187-636X
http://orcid.org/0000-0001-9976-2985
http://orcid.org/0000-0001-9976-2985
http://orcid.org/0000-0001-9976-2985
http://orcid.org/0000-0001-9976-2985
http://orcid.org/0000-0001-9976-2985
http://orcid.org/0000-0002-7380-2640
http://orcid.org/0000-0002-7380-2640
http://orcid.org/0000-0002-7380-2640
http://orcid.org/0000-0002-7380-2640
http://orcid.org/0000-0002-7380-2640
http://orcid.org/0000-0001-8332-4710
http://orcid.org/0000-0001-8332-4710
http://orcid.org/0000-0001-8332-4710
http://orcid.org/0000-0001-8332-4710
http://orcid.org/0000-0001-8332-4710
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38232-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38232-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38232-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38232-y&domain=pdf
mailto:chenxiangck@126.com
mailto:hongliu1014@csu.edu.cn
mailto:leng.han@tamu.edu
mailto:youqiong.ye@shsmu.edu.cn


Melanoma is themost commonhistological subtypeof skin cancer and
causes approximately 75% of deaths related to skin cancer with, an
incidence of 15–25 per 100,000 individuals at the global level1. The
median survival time of metastatic melanoma patients is just 6–12
months2. Immune checkpoint blockade (ICB) therapies targeting pro-
grammed cell death receptor 1(PD-1) and cytotoxic T lymphocyte
antigen 4 (CTLA-4) have been a revolutionary breakthrough in oncol-
ogy, especially for the treatment of metastatic melanoma3–6. Unfortu-
nately, only a small proportion of patients achieve durable clinical
benefits from ICB immunotherapy7,8. It is thus urgent that additional
predictive biomarkers be identified to guide immunotherapy utiliza-
tion for precision oncology.

Circular RNAs (circRNAs) are a class of single-stranded non-cod-
ing RNA characterized by a covalently closed circular structure9, gen-
erated from pre-mRNAs through the back-splicing of a downstream 5′
splice site to an upstream 3′ splice site10. CircRNAs are involved in
various biological and cellular functions, such as tumorigenesis11 and
the epithelial-mesenchymal transition (EMT)12, though their abilities to
bind specific miRNAs13 and/or proteins14. Notably, recent studies have
demonstrated that circRNAs are participants in the regulation of var-
ious anti-tumor immune responses and immune cells15. For example,
the circRNA hsa_circ_0020397 can bind and inhibit the expression of
miR-138, which targets PD-L1 to inhibit its expression. Therefore, the
overexpression of hsa_circ_0020397 promotes the upregulation of PD-
L1, leading to immune escape in colorectal cancer16. CircRNAsmay also
interact with proteins. For example, circFoxo3 can regulate p53-
influenced immune responses by inducing the ubiquitination-
dependent degradation of p53 through binding to MDM217,18. Tumor
cells may produce abnormal circRNAs caused by genetic mutations19,
chromosomal translocation20, TGF-β signaling regulation21, and other
aberrant events22. For example, PML/RARα chromosomal transloca-
tions lead to the generation of fusion circRNAs (F-circRNAs) in acute
promyelocytic leukemia, which promote cellular transformation, cell
viability, and resistance to therapy23. Furthermore, there is evidence of
a correlation between circRNAs and the infiltration of immune cells in
several cancers24,25. These studies suggest that circRNAs play impor-
tant roles in the tumor microenvironment (TME), which may further
enable them topredict patient responses to immunotherapy26. Despite
the emerging roles of circRNAs in the immune system, no studies have
systematically profiled the circRNA expression landscape involved in
cancer immunotherapy.

To date, several biomarkers associated with response to ICB
treatment have been identified. Tumor mutational burden (TMB) (≥10
mutations/megabase) has been approved as an ICB therapeutic bio-
marker for the treatment of unresectable or metastatic solid tumors
with pembrolizumab27,28. PD-L1 expression, as determined by immu-
nohistochemistry (IHC), is also currently used clinically as a compa-
nion diagnostic biomarker, although such staining has been found to
be an inadequate determinant of treatment benefit in multiple clinical
trials29–32. CD8+ T cells, which are critical for tumor cell recognition and
killing33, have been identified as a positive biomarker to predict ICB
responses in multiple cancer types34. Transcriptome-based signatures
have also been proposed as candidate biomarkers of ICB
responses35–51, such as IMmuno-PREdictive Score (IMPRES)47, inter-
feron (IFN)-γ signaling pathways52, and Innate anti-PD-1 Resistance
(IPRes) Signatures27. However,most of these transcriptomic signatures
are derived from a single tumor type and a limited number of patients,
constraining their utility. Recently, circRNAs, a class of noncoding
RNAs, have been identified as potential biomarkers associated with
disease diagnosis and treatment53. However, there are no circRNA-
based biomarkers for the therapeutic efficacy of ICB.

In this study, we characterized the expression landscape of cir-
cRNAs using total RNAseq data from two melanoma patient cohorts,
including 88 melanoma patients treated with single-agent anti-PD-1
or combined anti-CTLA-4 and anti-PD-1 immunotherapy54, and 69

melanoma patients treated with anti-PD-1 therapy55. Through this
approach, we identified several differentially expressed circRNAs and
demonstrated their associations with patient survival. Furthermore,
we constructed a circRNA signature (ICBcircSig) score for predicting
the efficacy of ICB through the use of a machine learning technique,
and further validated this signature in an independent cohort. Our
findings unveil the significance of aberrant circRNA expression in
patients with ICB treatment and provide insight into the potential
applications of circRNA signatures in ICB therapy.

Results
CircRNA profiling in two independent melanoma patient
cohorts undergoing ICB treatment
To characterize the significant roles that circRNAs may play in differ-
entiating between response and non-response in patients undergoing
ICB treatment, we retrieved two independent total RNA sequencing
datasets for individuals treated with single-agent anti-PD-1 and/or
combined anti-CTLA-4 and anti-PD-1. Cohort 1 consisted of 88 patients
treated with anti-PD-1 monotherapy (n = 47, including pre-treatment
[PRE] samples,n = 38, and earlyduring therapy [EDT] samples,n = 9) or
combined anti-CTLA-4 and anti-PD-1 therapy (patients, n = 41, includ-
ing PRE, n = 32 and EDT, n = 9; Supplementary Data 1), while Cohort 2
consisted of 69 melanoma patients undergoing anti-PD-1 therapy
(nivolumab or pembrolizumab) (Supplementary Data 2). The unmap-
ped reads per patient ranged from 1,646,487 to 28,592,124 reads in
Cohort 1 and from 1,044,568 to 7,607,887 reads in Cohort 2 (Supple-
mentary Fig. 1a, b), and these data were used to quantify circRNA
expression. To reliably identify circRNAs, we combined four well-
established circRNA-detection tools with user-friendly computational
algorithms21, including CIRI256, find_circ57, CircExplorer258, and
CircRNA_finder59, to quantify back splice-spanning reads (Fig. 1a, b; See
Methods). There was no significant correlation between the number of
unmapped reads and the number of circRNAs detected by any of these
circRNA-detection tools (Supplementary Fig. 1c, d), suggesting that the
detectable number of circRNAs is not dependent on the number of
unmapped reads. Different circRNA-detection tools identified varying
numbersof circRNAs60 (Fig. 1a, b), sowe kept those circRNAs identified
by at least two tools with ≥2 back-splicing reads. We ultimately iden-
tified 89,204 total circRNAs from the 88 samples in Cohort 1 (Fig. 1c,
Supplementary Data 3), and 43,911 circRNAs from the 69 samples in
Cohort 2 (Fig. 1d, Supplementary Data 4). The detectable number of
circRNAs ranged from 1440 to 16,653 in each patient from Cohort 1
(Supplementary Fig. 1e), and from 39 to 11,652 in each patient from
Cohort 2 (Supplementary Fig. 1f). To minimize potentially spurious
events,weonly considered circRNAs identified inmore than20%of the
total samples in each cohort. A total of 5350 circRNAs were retained in
Cohort 1, ranging from774 to4525 ineachpatient (Fig. 1e), while a total
of 3654 circRNAs were retained in cohort 2, ranging from20 to 3013 in
each patient (Fig. 1f).

In patient Cohort 1, the 5350 identified circRNAs originated
from 2678 host genes, with most of these host genes (1515/
2678 = 56.6%) having at least one circRNA, while 16 host genes
were associated with more than 10 circRNAs (Fig. 1g). In patient
Cohort 2, the 3654 identified circRNAs originated from 2110 host
genes, and 1333 host genes were associated with one circRNA,
while 5 host genes were associated with more than 10 circRNAs
(Fig. 1h). We found that circRNAs detected in this study were
ubiquitously located across whole genomic regions (Supplemen-
tary Fig. 1g, h), and most circRNAs were back-spliced from exonic
regions (Supplementary Fig. 1i, j). We performed overlap analyses
among the two cohorts in this study, circAtlas61, and the
MiOncoCirc62,63 database. A significant overlap of detectable cir-
cRNAs was observed between Cohort 1 and Cohort 2, with 90.4%
(3293/3644) of the circRNAs in Cohort 2 having been detected in
Cohort 1 (Fisher test, p < 2.2e-16; Fig. 1i). We further found that
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96.6% of the circRNAs (5168/5350) in Cohort 1 and 97.3% (3544/
3654) in Cohort 2 were identified in MiOncoCirc database, sug-
gesting circRNAs in these two cohorts have also been identified in
various tumor tissues. 98.5% of the circRNAs (5271/5350) in
Cohort 1 and 98.8% (3612/3654) in Cohort 2 were identified in the
circAtlas database61. Furthermore, 95.4% of circRNAs (5106/5350)
in Cohort 1 and 96% (3508/3654) in Cohort 2 were identified in
both the circAtlas and MiOncoCirc databases, suggesting the
conserved expression of these circRNAs in both normal and
tumor samples.

Identification of circRNAs associated with immune responses
through circRNA-miRNA-mRNA regulatory axes
To better understand the molecular regulation of tumor responses to
immunotherapy, we used a linear mixed effects (LME) model to iden-
tify circRNAs that were differentially expressed between the response
(n = 54) group, defined as partial/complete response (PR/CR) or stable
disease (SD) with progression-free survival (PFS) >3 months and the
non-response (n = 16) group, defined as progressive disease (PD) or SD
with PFS < = 3 months before treatment (PRE), with the expression of
these differentially expressed circRNAs then being further examining
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early during therapy (EDT) (response, n = 13; non-response, n = 5). In
the PRE biopsies, we found 227 upregulated and 23 downregulated
circRNAs (P <0.05 and |log2 (fold change) | ≥0.5) in non-responder
patients compared to responder patients. In EDTbiopsies,wedetected
1547 upregulated and 10 downregulated circRNAs after ICB treatment
(Fig. 2a, b). More upregulated circRNAs and fewer downregulated
circRNAs were found in the non-responder group at both the PRE and
EDT time points, suggesting a potential association between the
overexpression of circRNAs and resistance to immunotherapy. Cir-
cRNAs were relatively highly abundant in the non-responder group,
whereas no significant differences in the expression of their host genes
were observed (Supplementary Fig. 2), suggesting the independent
roles of circRNAs in the response to immunotherapy.

To further explore the functional effects of circRNAs in immu-
notherapy, we have assumed that circRNA expression at PRE time
point may be elevated in order to be elevated at EDT time point, and
thus focused on 81 upregulated circRNAs shared between non-
responder and responder patients at the PRE and EDT timepoints for
subsequent analysis (Supplementary Table 3), which were derived
from74 host genes (Fig. 2c).We focused on the circRNA-miRNA-mRNA
interactions in which circRNA expression was positively correlated
with mRNA expression to identify potential functional roles for these
upregulated circRNAs in immunotherapy responses. We constructed
circRNA-miRNA-mRNA regulatory networks mediated by common
miRNAs that bind to the upregulated circRNAs and mRNAs and are
correlated with the expression of those circRNAs. We used the miR-
anda algorithm64 to predict high-confidence binding sites, and selec-
ted the top 30 miRNAs for each of 81 upregulated circRNAs. A total of
773 miRNAs and 2429 interactions were detected for the circRNA-
miRNA axis. Next, we identified the potential targets of miRNA-mRNA
interactions using the Tarbase databases65, which incorporates
experimentally supported interactions, and the TargetScan database.
Taken together, these analyses enabled us to identify 184,587 pre-
dicted circRNA-miRNA-mRNA interactions based on the miRNA target
sites shared by circRNAs and mRNAs. We filtered low-confidence
associations based on multiple criteria including expression correla-
tions (see Methods), after which 8449 (81 circRNAs − 183 miRNAs −
2046 mRNAs) ICB response-associated interactions were retained for
further study (Fig. 2d; Supplementary Data 6).

Pathway analyses based on these 2046 mRNAs suggested their
significant enrichment in cancer signaling pathways, including the
Hippo, p53, mTOR, and AMPK signaling pathways (Fig. 2e. These
mRNA targets were also enriched in several biological processes,
including cell cycle checkpoint, cellular response to hypoxia, autop-
hagy, and regulation of Wnt signaling pathways. For example,
targeting Wnt/β-Catenin signaling may reverse the resistance to
immunotherapy by altering antigen presentation66. Our analysis
revealed the unexpected upregulation of circRNAs in non-responder
patients, suggesting that certain circRNAs may mediate tumor resis-
tance to immunotherapy through the alteration of cancer signaling
pathways.

Identification of an ICBcircSig prognostic model to predict
immunotherapeutic efficacy
CircRNAs may serve as potential biomarkers in cancer67, but it is
unclear whether they can serve as biomarkers capable of predicting
patient responses to cancer immunotherapy. To identify prognosis-
related cirRNAs, we performed univariate Cox regression analyses
examining the relationship between patient PFS and the expression
levels of 227 upregulated circRNAs in PRE biopsies from Cohort 1. We
found that high levels of expression for 25 circRNAs were significantly
associated with poorer PFS (log-rank test, FDR <0.05, and Cox FDR <
0.05). To identify the optimal circRNAs for use as prognostic bio-
markers, we employed a LASSO Cox regression model analysis68 using
the expression profiles for these 25 circRNAs and associated clinical

information, and ultimately selected four circRNAs with non‐zero
regression coefficients (Supplementary Fig. 3a, b). We considered
these four circRNAs as variables in a subsequent multivariate Cox
regression analysis and found both circTMTC3 and circFAM117B to be
significant predictors of patient survival (Supplementary Fig. 3c).
Specifically, the expression of these two circRNAs was associated with
worse PFS (Fig. 3a, b), and patients that exhibited CR/PR or SD fol-
lowing anti-PD-1 therapy exhibited significantly lower expression of
circTMTC3 and circFAM117B as compared to patients with PD (Fig. 3c,
d). We further collected 11 and 4 pre-treatment tumor biopsies from
patients who did or did not respond to anti-PD1 treatment (Supple-
mentaryTable 1). Expression levels of circTMTC3 and circFAM117Bwere
detected in these samples by qRT-PCR. We found that both circRNAs
were significantly upregulated in the non-responder group relative to
the responder group (Fig. 3e, g). Sanger sequencing further confirmed
that these PCR products spanned the circular junction for both
circTMTC3 and circFAM117B (Fig. 3f, h).

We further constructed an ICB-related circRNA signature (ICB-
circSig) score by weighting the expression values of circRNAs in ICB-
circSig based on their established multivariate Cox regression
coefficient values. When assessing the clinical relevance of these
scores, we found that the ICBcircSig score was able to distinguish
between responder and non-responder patients with an AUC of 0.8
(Fig. 3i).We then determined that patients with a high ICBcircSig score
had worse PFS compared with those patients with a low ICBcircSig
score (log-rank test, p < 0.001, Fig. 3j). The 12 and 24-month progres-
sion rates in the high ICBcircSig score group were 100% and 100%,
respectively, which were significantly higher than the rates (27% and
30%, respectively) in the low ICBcircSig score group. The respective
AUCs of the time-dependent ROC curves for this ICBcircSig score were
0.76 and 0.75 for 12- and 24-month PFS (Fig. 3k). The predictive ability
of the ICBcircSig score was validated through the random sampling of
90% of these samples 10 times, yielding mean time-dependent ROC
curveAUCvalues for the ICBcircSig score of0.757 and0.754 for 12- and
24-month PFS (Supplementary Fig. 3d, e), respectively.

To further examine whether the ICBcircSig scores could serve as
an independent prognostic factor in melanoma patients, we per-
formedmultivariate Cox regression analyses to adjust for the potential
confounding effects of other conventional clinical factors, including
age, gender, ICB treatment, CD274 (PD-L1), and PDCD1. The ICBcircSig
score (hazard ratio [HR] = 2.975, 95% confidence interval [CI]
1.723–5.138, p <0.001) remained an independent prognostic risk fac-
tor for PFS even after adjusting for these confounding factors (Fig. 3l).
We further investigated the association between the ICBcircSig score
and patient response to ICB treatment and demonstrated that
responders exhibited significantly lower ICBcircSig scores as com-
pared to non-responders (R vs NR, p = 1.8 × 10−4; Fig. 3m). In terms of
overall survival, a higher ICBcircSig score was also associated with a
shorter survival duration (log-rank test, p = 0.028, Fig. 3n).

Validation of the performance of ICBcircSig prognosticmodel in
an independent patient cohort
We further assessed the performance of the ICBcircSig score in an
independent patient cohort. CircTMTC3 and circFAM117B were asso-
ciated with worse PFS and tended to be enriched in the patients that
exhibited a PD response to ICB treatment in Cohort 2 (Supplementary
Fig. 4a–d).We further calculated the ICBcircSig scores for each sample,
and found ICBcircSig scores to be higher in the non-responder group
(Fig. 4a), consistent with our observation in Cohort 1. ICBcircSig scores
were also able to distinguish between responders and non-responders
(AUC=0.66; Fig. 4b). Survival analyses revealed that patients with high
ICBcircSig scores exhibited worse PFS as compared to patients with
low ICBcircSig scores (Fig. 4c), and the respective AUCs of the time-
dependent ROC curves for the ICBcircSig score were 0.69 and 0.65 for
12- and 24-month PFS (Fig. 4d). The predictive ability of the ICBcircSig
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score was further validated via the random sampling of 90% of these
samples 10 times, yielding respective mean AUC values for ICBcircSig
scores of 0.678 and 0.645 for 12- and 24-month PFS (Supplementary
Fig. 4e, f). To assess whether the ICBcircSig score is an independent
predictor for PFS, we considered stage, gender, CD274 expression,
PDCD1 expression, TMB, lactate dehydrogenase (LDH), and ICBcircSig
scores as variables in a multivariate Cox analysis, and we ultimately

found that ICBcircSig score (HR = 1.32, 95%CI: 1.0721–1.630, p =0.009)
was an independent predictor significantly associated with worse PFS
(Fig. 4e). We further found that higher ICBcircSig scores were asso-
ciated with worse overall survival (Fig. 4f), and these ICBcircSig score
model exhibited strong prognostic performance, with respective AUC
values for the ICBcircSig score of 0.71 and 0.67 for 12- and 24-month
OS (Fig. 4g). ICBcircSig score remained an independent predictor of
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melanoma patient OS even after adjusting for confounding fac-
tors (Fig. 4h).

In addition, we validated the ICBcircSig score using our in-house
cohort (Cohort 3) consistingof 24patientswithmelanomaundergoing
anti-PD-1 treatment (Supplementary Table 2, Supplementary Data 7).
Consistently, circTMTC3, circFAM117B, and ICBcircSig score values
were significantly enriched in non-responders (Fig. 4I, j). In this cohort,
the ICBcircSig score exhibited an AUC of 0.85 when predicting patient
responses to ICB treatment (Fig. 4k). A higher ICBcircSig score was
associated with worse PFS (Fig. 4l), and the AUCs of time-dependent
ROC curves for the ICBcircSig score at 12 and 18-months were0.82 and
0.76, respectively (Fig. 4m). Taken together, our results provide proof-
of-concept evidence that this ICBcircSig score may accurately predict
patient responses to immunotherapy.

The ICBcircSig score outperforms other transcriptome-based
signatures
Previous studies have explored multiple transcriptome-based
signatures to predict patient response to ICB treatment35–51. We
next compared the performance of the ICBcircSig score with 20
previously reported signatures (Supplementary Table 3) to assess
the predictive ability of these tools in our patient cohorts. The
ROC classification curves for non-responders and responders
based on the ICBcircSig score yielded AUC values of 0.80, 0.66,
and 0.85 for Cohort 1, Cohort 2, and our in-house cohort (Fig. 5a),
respectively. The mean AUCs of time-dependent ROC curves for
this ICBcircSig score when predicting the PFS of patients in these
three respective cohorts were 0.771, 0.676, and 0.825, respec-
tively, with these values being higher than those for other extant
predictors (Fig. 5b). We applied a univariate Cox regression model
to assess the relationship between each signature and PFS, and
found that 12, 3, and 1 of these 21 signatures were significantly
associated with the PFS of patients in Cohort 1, Cohort 2, and our
in-house cohort, respectively, with ICBcircSig score achieving the
highest HR in all patient cohorts (HR = 4.01, 95% CI: 2.38–6.75,
p < 0.05 in Cohort 1, HR = 1.35, 95% CI: 1.11–1.66, p < 0.05 in Cohort
2, HR = 1.35, 95% CI: 1.22–2.22, p < 0.05 in the in-house cohort;
Fig. 5c). We further compared the ability of transcriptomic bio-
markers to differentiate between ICB responders and non-
responders by performing the Wilcoxon Rank Sum test (Fig. 5d,
left panel) and univariate logistic regression analyses (Fig. 5d, right
panel). The results indicated that ICBcircSig scores were both
significantly able to distinguish patients with different responses
to ICB treatment and were superior to other predictive tools.
Finally, we evaluated the association between each signature and
overall survival based on AUC values, and found that ICBcircSig
scores also exhibited the highest mean AUC of 0.66 (Supplemen-
tary Fig. 5). Taken together, these findings demonstrate that this
ICBcircSig score outperforms existing transcriptome-based sig-
natures when predicting responses to ICB treatment.

The association between ICBcircSig score and cancer hallmarks
and immune features
To explore the functional implication of the ICBcircSig score in
immunotherapy, we performed an enrichment analysis of 50 hallmark
genes69,70 between high ICBcircSig score and low ICBcircSig score
groups based on a gene set enrichment analysis (GSEA) approach. The
low ICBcircSig score group was enriched for genes associated with the
immune response, including the IFN-α response (normalized enrich-
ment score [NES] = −2.58, p =0.0024), IFN-γ response (NES = −2.72,
p =0.0027), inflammatory response (NES = −2.03, p =0.0027), and IL6/
JAK/STAT3 signaling pathway (NES = −1.88, p =0.0023) in patient
Cohort 1 (Fig. 6a). Consistently, immune response-related cancer
hallmark pathways such as the IFN-α response (NES = −2.13, p = 0.029)
and IL6/JAK/STAT3 signaling pathway (NES= −1.95, p = 0.023) were
also enriched in the low ICBcircSig score group in Cohort 2 (Supple-
mentary Fig. 6a), suggesting that patients with low ICBcircSig scores
may exhibit a more activated immune microenvironment. To further
examine whether the ICBcircSig scores were associated with immune
infiltration, we conducted GSEA and single sample GSEA (ssGSEA)
analyses of the infiltration of 22 immune subpopulations71 in tumors
from patients with low or high ICBcircSig scores. We observed sig-
nificant differences in immune infiltration when comparing these two
ICBcircSig score-based groups (Fig. 6b and Supplementary Fig. 6b) in
both tested cohorts. Specifically, 17 and 18 out of the 22 analyzed
immune subpopulations exhibited higher levels of predicted infiltra-
tion in the low ICBcircSig score group in Cohort 1 and Cohort 2,
respectively. These results suggest that patients with low ICBcircSig
scores exhibit characteristically high levels of tumor immune infiltra-
tion thatmay explain their higher response rates to immunotherapy. In
addition, we assessed the association between ICBcircSig score and
cytolytic activity (CYT), a proxy used to reflect the ability of T cells to
kill cancer cells50, and GEP, which corresponds to a T cell-inflamed
environment49, and we observed that the high ICBcircSig score group
had a lower CYT score/GEP score than the low ICBcircSig score group
in both tested cohorts (Fig. 6c, d and Supplementary Fig. 6c, d), sug-
gesting their less robust cytolytic activity and impaired ability to kill
tumor cells.

To validate the functional role of circRNA signatures is based on
the circRNA-miRNA-mRNA regulatory axe. We generated the
circTMTC3 overexpression (OE) cell lines and circFAM117BOE cell lines
in SK-MEL-28 (Fig. 6e, h). According to miranda’s prediction27, hsa-
miR-142-5p can interact with circTMTC3 and circFAM117B, we observed
hsa-miR-142-5p significantly downregulated in OE cell lines of
circTMTC3 or circFAM117B (Fig. 6f, i). Then, we found the expression of
PD-L1 is significantly upregulated in both OE cell lines by RT-PCR
analysis (Fig. 6g, j). These suggest that ICBcircSig signature circTMTC3
and circFAM117B can regulate the hsa-miR-142-5p/PD-L1 pathway in
melanoma cell line. To further investigate the functional role of
circTMTC3 and circFAM117B in immunosuppression, we performed an
in vitro T cell cytotoxicity-mediated tumor killing assay based on SK-

Fig. 3 | Construction and validation of ICBcircSig as the prognostic biomarker.
Kaplan–Meier survival curves show expression of circTMTC3 (a) and circFAM117B
(b) in the ICBcircSig associated with PFS. The expression of circTMTC3 (c) and
circFAM117B (d) expression were significantly higher in PD groups (n = 16) than CR/
PR or SD groups (n = 54). e–h The qRT-PCR and Sanger sequencing validate
expression and junction of circRNAs. The expression of circTMTC3 (e) and cir-
cFAM117B (g) were detected by qRT-PCR in pre-treatment tumor biopsies from
patients show response (n = 11) and non-response (n = 4) to anti-PD-1 therapy. The
schematic diagram show generation of circTMTC3 (f, left panel) and circFAM117B
(h, left panel). Sanger sequencing confirmed that PCR products spanned the cir-
cular junction of predicted circTMTC3 (f, right panel) and circFAM117B (h, right
panel) in the patient with non-response to anti-PD-1 therapy. Themagenta dash line
indicates the circular junction site. i ROC curves quantifying ICBcircSig score
responsepredictionAUC incohort 1. jKaplan–Meier survival curves of PFS between

high- and low-risk patients stratified by ICBcircSig score using the optimal cutoff.
k Time-dependent ROC curve at 12 and 24-months of PFS for the ICBcircSig score.
l Forest plot for the HRs of multivariate Cox model of the ICBcircSig score and
clinicopathological variables. Black vertical lines indicate the 95% confidence
interval (CI).mBoxplot of ICBcircSig score amongNR (n = 16) andR (n = 54) groups.
n Kaplan–Meier survival curves of OS between high- and low-risk patients stratified
by ICBcircSig score. A log-rank test was used in a, b, j, and n. A two-sidedWilcoxon
rank-sum test was used in c–e, g, and m. The box in c–e, g, and m showed the
median ± 1 quartile, with the whiskers extending from the hinge to the smallest or
largest valuewithin 1.5× IQR from theboxboundaries. PFSprogressive free survival,
OS overall survival, CR/PR complete response/partial response, SD stable disease,
PD progressive disease, ROC receiver operating characteristic curve, HR hazard
ratio, R responder, NR non-responder. Source data are provided as a Source data
Fig. 3a–e, g, i–k, m, n.
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Fig. 4 | Validation of ICBcircSig score model in two independent cohort.
a Boxplot of ICBcircSig score between response (n = 38) and non-response (n = 30)
groups. b Receiver Operating Characteristic (ROC) curves quantifying ICBcircSig
score prediction AUC. c Kaplan–Meier survival curves of PFS between high- and
low-ICBcircSig score patients stratified by the optimal cutoff in cohort 2. d Time-
dependent ROC curve at 12 and 24-months of PFS for the ICBcircSig score. e Forest
plot for the HRs of multivariate Cox model of the ICBcircSig score and clin-
icopathological variables. f Kaplan–Meier survival curves of OS between high- and
low-risk patients stratifiedby ICBcircSig score using the optimal cutoff in validation
data. g Time-dependent ROC curve at 12 and 24-months of OS for the ICBcircSig
score. h Forest plot for the HRs of multivariate Cox model of the ICBcircSig score
for OS and clinicopathological variables. I, j Boxplot of expression of
circTMTC3/circFAM117B (i) ICBcircSig score (j) distribution between response

(n = 14) and non-response (n = 7) groups for in-house cohort 3. A log-rank test was
used in c, f and i. k ROC curves quantifying ICBcircSig score response prediction
AUC in in-house cohort 3. l Kaplan–Meier survival curves of PFS between high- and
low-risk patients stratified by ICBcircSig score using the optimal cutoff in in-house
cohort 3.m Time-dependent ROC curve at 12 and 24-months of PFS for the ICB-
circSig score in in-house cohort 3. A two-sidedWilcoxon rank-sum test was used in
a, i, and j. The boxes in a, i and j indicate the median± 1 quartile, with the whiskers
extending from the hinge to the smallest or largest value within 1.5× IQR from the
box boundaries. Black vertical lines in e and h indicate the 95% confidence interval
(CI). PFS progressive free survival, OS overall survival, ROC receiver operating
characteristic curve, HR hazard ratio, AUC Area Under the ROC Curve. Source data
are provided as a Source data Fig. 4a–d, f, g, i–l.
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MEL-28 melanoma cells overexpressing circTMTC3 or circFAM117B.
The overexpression of circTMTC3or circFAM117B significantly reduced
the CD8+ T cell cytotoxicity and the ability of these T cells to eliminate
tumor cells (Fig. 6k–m). Together, we thus identified a strong corre-
lation between ICBcircSig score and a series of immune signatures that
reflect the complex TME, highlighting the prognostic value of this
ICBcircSig score and the roles played by circTMTC3 and circFAM117B in
immunosuppression.

Discussion
The roles of circRNAs in cancer are increasingly well understood, but it
remains unclear as to whether circRNAs play significant roles in the
context of cancer immunotherapy, particularly with respect to whe-
ther these circRNAs can serve as biomarkers to predict patient
response to ICB treatment. In the present study, we systematically
characterized the expression of circRNAs in melanoma patients
undergoing ICB treatment in three independent cohorts.We dissected
the potential roles of circRNAs in the resistance to cancer immu-
notherapy through the identification of upregulated cancer signaling

pathways, including the Hippo, p53, and mTOR signaling pathways.
Importantly, we developed a machine learning-based method to con-
struct an ICBcircSig score to predict the response of ICB-treated mel-
anoma cohorts, which may serve as an independent prognostic factor
when adjusting for clinical and molecular features.

Increasing numbers of circRNAs have been reported in the con-
text of tumorigenesis and shown to be related to worse patient
prognosis, including circFGFR172, circ-CPA473, and Circ_000028474.
However, the circRNA landscape of ICB-treated cancer patients is not
well-characterized, particularly when comparing ICB responders and
non-responders. Our study established the circRNA expression land-
scape from more than 150 ICB-treated patients in two independent
cohorts, including pre-treatment and post-treatment tumor tissue
samples. We demonstrated that an overall increase in circRNA
expression levels in non-responders compared to responders. These
upregulated circRNAs can compete with mRNAs for complementary
miRNA binding, thereby indirectly regulating mRNA expression. We
further characterized circRNA-miRNA-mRNA networks to explore the
functional roles of dysregulated circRNAs, and observed that these

Fig. 5 | Comparisons of ICBcircSig score model and other transcriptome-based
signatures of ICB. a Performance of ICBcircSig score and other published sig-
natures based on ROC curves quantifying ICBcircSig score response prediction
AUC in each cohort.bAUCof time-dependent ROCof 6, 12, and 18-months for each
cohort. c HR for FPS in each cohort. The statistical difference is performed by cox
regression model. Red dashed line indicated p value 0.05. d P value of two-sided
Wilcoxon rank-sum test (left panel) and logistic regression test (right panel)

between response versus non-response, red dashed line indicated p value 0.05.
Blue point means 6months, red point means 12months and green point means 18-
months in b (n = 3). The boxes in b indicate the median ± 1 quartile, with the
whiskers extending from the hinge to the smallest or largest value within 1.5× IQR
from the box boundaries. ROC receiver operating characteristic curve, HR hazard
ratio, AUC Area Under the ROC Curve. Source data are provided as a Source
data Fig. 5.
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circRNAs were significantly enriched in cancer-related signaling path-
ways (e.g., Wnt/β-Catenin signaling), and are thus likely to participate
in anti-tumor immune and immunotherapy resistance66. Therefore, it is
vital that further research explore the overall impact of the dysregu-
lation of cancer-related circRNAs on cancer immunotherapy.

CircRNAs have emerged as biomarkers used to predict cancer
patient prognosis. However, the value of circRNAs as tools to predict
immunotherapeutic efficacy remains to be explored. Our ICBcircSig
score model is a highly robust predictor of the efficacy of

immunotherapy in patients with melanoma, irrespective of whether
they are undergoing anti-PD-1 treatment alone or combined anti-CTLA-
4 and anti-PD-1 treatment. Our ICBcircSig score model performs well
with respect to its predictive efficacy in ICB-treated patients as com-
pared to PD-L1 expression status or 20 transcriptome-based features.
CircRNAs are noncoding RNAs characterized by a covalently
closed circular structure, making them difficult to identify through
polyA-enriched RNA-seq analyses59. Previous efforts to develop
transcriptome-based signatures were based on polyA-enriched RNA-
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Fig. 6 | Functional characterization of the ICBcircSig score. a Volcano plots for
the enrichment of hallmarks for cohort 1 sampleswith high and lowICBcircSig score
basedon theNormalizedEnrichment Score (NES) fromtheGSEA.bThe enrichment
of immune cell for samples with high and low ICBcircSig score based on the Nor-
malized Enrichment Score (NES) from theGSEA. cCytotoxic T cell score in the high-
(n = 11) and low- (n = 59) risk groups stratifiedby the ICBcircSig score.dGEPscore in
the high- and low-risk groups stratified by the ICBcircSig score. e–g The expression
of circTMTC3 (e),miR-142-5p (f), and PD-L1 (g) in SK-MEL-28melanomacell linewith
circTMTC3 overexpression (oe) or control group (n = 3 in each group). h–j The
expression of circFAM117B (h), miR-142-5p (i), and PD-L1 (j) in SK-MEL-28melanoma
cell line with circFAM117B overexpression (oe) or control group. k–m SK-MEL-28

melanoma cells with or without overexpression of circTMTC3 or circFAM117B co-
cultured with activated T cells for 48h were subjected to crystal violet staining (k).
SK-MEL-28-to-T cell ratio, 1:3. l,m Statistical analysis comparing the ability of T cell
killing in (k), n = 3 in each group. Two-sided Wilcoxon rank-sum test was used in
c, d. The boxes in c, d indicate themedian ± 1 quartile, with the whiskers extending
from the hinge to the smallest or largest value within 1.5× IQR from the box
boundaries. The unpaired two-sided Student T-test was used in e–j, one-way
ANOVA and Tukey’s multiple comparison test was used in l, m. The error bars in
e–j and l, m indicate the mean± s.d. *p <0.05, **p <0.01 and ***p <0.001. Source
data are provided as a Source data Fig. 6a–d.
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seq data. Features derived based on polyA-enriched RNA-seq and total
RNA-seq data exhibited different levels of predictive power, and itmay
be of value to integrate these two layers of molecular features into a
multi-omics dataset with the goal of improving predictive power in the
future. In addition, tumors with a lower ICBcircSig score exhibit higher
levels of immune activity, including IFN responses, inflammatory
responses, cytolytic activity, NK cells, and CD8+ T cells. Furthermore,
we validated ICBcircSig circTMTC3 and circFAM117B promote immune
escape through regulating the hsa-miR-142-5p/PD-L1 pathway. These
results indicate that the ICBcircSig score is negatively correlated with
tumor immune activity, potentially contributing to a less robust
response to immunotherapy. In summary, we herein developed a
circRNA-based signature to predict immunotherapeutic efficacy,
highlighting the relevance of circRNAs in personalized cancer
immunotherapy.

Methods
Ethics declarations
The study was conducted in accordance with ethical guidelines of U.S.
Common Rule. All tissue samples were collected in compliance with
the informed consent policy. The study protocol was approved by the
Institutional Review Board of Fudan University Shanghai Cancer Cen-
ter (1906203-3).

Clinical information and RNA-Seq data of melanoma patients
The raw RNAseq data and clinical information of cohort 1 used in
this study were downloaded from the European Nucleotide Archive
(ENA) (https://www.ebi.ac.uk/ena) under accession number
PRJEB23709. Briefly, melanoma patients were treated with single
agent anti-PD-1 (nivolumab or pembrolizumab) or combination
anti-PD-1 and anti-CTLA-4 (ipilimumab). Pre-treatment (PRE) indi-
cates biopsies collected prior to immunotherapy, and early during
treatment (EDT) means biopsies collected 7–14 days following
immunotherapy. At subsequent follow-up, patient response was
determined using the Response Evaluation Criteria in Solid Tumors
(RECIST) 1.1 criteria, the response group defined as partial/com-
plete response (PR/CR) or stable disease (SD) with PFS > 3 months
and non-response group defined as progressive disease (PD) or SD
with PFS < = 3months. A total of 88 samples with RNA-seq data were
included in this patient cohort, including 47 patients treated with
anti-PD-1 monotherapy (pre-treatment [PRE], n = 38; early during
therapy [EDT], n = 9) and 41 patients treated with combined ipili-
mumab and anti-PD-1 immunotherapy (patients, n = 41; PRE, n = 32;
EDT, n = 9; Supplementary Data 1).

The raw RNAseq data and clinical information of cohort 2 used in
this study were downloaded from the database of Genotypes and
Phenotypes (dbGaP) (https://www.ncbi.nlm.nih.gov/gap/) under
accession number phs000452.v3.p1. Briefly, patients of advanced
melanoma were treated with single agent anti-PD-1 (nivolumab or
pembrolizumab) with and without previous anti-CTLA-4 treatment.
Patient response was assessed using the RECIST 1.1 criteria, which
included 30 with progressive disease (PD), 9 with stable disease (SD), 1
with mixed response (MR), 19 with partial response (PR) and 10 with
complete response (CR). Biopsies samples collected prior to immu-
notherapy. A total of 69 samples with RNA-seq data were enrolled in
this patient cohort (Supplementary Data 2).

The cohort of 24 patients with melanoma evaluated in this study
received anti-PD-1 treatment or combination anti-PD-1 and anti-CTLA-4
were collected between May 2018 and September 2020. They were
treated with anti-PD-1 monotherapy (n = 23 pembrolizumab 200mg/
cycle every3weeks;n = 1 ipilimumab200mg/cycle every2weeks). The
median age of the patients was 62.5 years (range, 41 to 85 years), with 9
(37.5 %) male patients and 15 (62.5%) female patients. The clinical
information is summarized in Supplementary Table 3.

Library preparation for total RNA transcriptome sequencing
A total of 1μg of total RNA per sample was used as input material for
lncRNA library preparation. Strand-specific libraries were generated
using the NEBNext® UltraTM RNA Library Prep Kit for Illumina® (NEB,
USA) according to the manufacturer’s recommendations, and index
codes were added to the attribute sequence for each sample. o pre-
ferentially select cDNA fragments of 150–200 bp in length, the library
fragments were purified using the AMPure XP system (Beckman
Coulter, Beverly, USA). The second strand was then digested with size-
selected adapter-ligated cDNA using USER Enzyme (NEB, USA) for
15min at 37 °C, followed by 5min at 95 °C prior to PCR. PCR was then
performed with Phusion High-Fidelity DNA Polymerase, Universal PCR
Primers, and Index (X) primers. Then, PCR products were purified
(AMPure XP system) and library quality was assessed on an Agilent
Bioanalyzer 2100 system. Index-encoded samples were clustered on
the cBot Cluster Generation Systemusing the TruSeq PECluster Kit v3-
cBot-HS (Illumina) according to the manufacturer’s instructions.
Finally, the library preparations were sequenced on Novaseq 6000
platform and 150bp stand-specific paired-end reads.

Identification of circRNAs in the ICB samples
Four tools, including CIRI256, find_circ57, CircExplorer258, and
CircRNA_finder59 were applied to identify circRNA with default set-
tings. After FastQC (http://www.bioinformatics.babraham.ac. uk/pro-
jects/fastqc/) for assessment of the data quality, reads that passed
thresholds were aligned to reference genome (GRCh38) using hisat275

with the default setting to obtainmapped and unmapped reads in bam
files. Unmapped reads were retrieved by samtools from bam files, and
unmapped reads in fastq format were done by bedtools bamtofastq.
We employed each program to identify circRNAs with default para-
meters and annotated with gencode_v28. CircRNAs identified by at
least two tools with ≥2 back-splice reads were retained for further
analysis. The previously identified human tumor circRNAs were
downloaded from MiOncoCirc (https://mioncocirc.github.io/)76.

Identification of differentially expressed circRNAs between
responders and non-responders
To identify differentially expressed circRNAs between responders and
non-responders samples in pre-treatment (PRE) and early during
treatment (EDT), respectively, a linear mixed-effects model(LME)
which allows for nested random effects (each individual sample) and
considers for potential confounding factors was utilized and executed
by the lmeprogram in theR package77. P <0.05 and |log2 (fold change)|
≥0.5 was considered as statistical significance.

Identification of circRNA-miRNA-mRNA regulatory axes
To predict circRNAs-miRNA interactions, we utilize Miranda, which
identify potential target sites for miRNAs in genomic sequence64, to
predict target sites of circRNAs. Alignment score and minimum free
energy were used to rank the candidate miRNAs for each circRNA.
Briefly, sequence information of each circRNA were obtained by
bedtools76 with location of each circRNA and sequence information of
each miRNA of human were download from miBase78. Then miranda
was conducted to predict target sites ofmiRNAs for each circRNAwith
following parameters: alignments with energies < = −7 and alignments
with scores > = 150). The miRNA–mRNA pairs were obtained from
Tarbase65 with experimentally supported miRNA-mRNA interactions
and TargetScan database79, and kept the shared miRNA–mRNA pairs
from two databases. Finally, the circRNA–miRNA–mRNA interaction
was filtered as following criteria: (1) we retained 95% of quantile miR-
NAs expressed in TCGA melanoma in order to filter non-melanoma-
related miRNAs; (2) we retained the top 30 miRNAs that interact with
circRNAare retained; (3)wekeptmiRNA that interactwith circRNAand
mRNA; (4) we retained the circRNA–miRNA–mRNA interaction with
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significantly positive Spearman correlation between circRNAs and
mRNAs (Rs >0.2 and p < 0.05)

Development of ICBcircSig score model by machine learning
We utilized a machine learning-based algorithm80 as previously
described to construct ICBcircSig. Briefly, (i) we performed uni-
variate survival analysis to identify prognosis relevant circRNAs
by assessing the association of progression-free survival (PFS)
and the expression of circRNAs; (ii) Based on LASSO Cox
regression model, cv.glmnet function in R package glmnet68 was
used. We first set seed 123, and deviance to measure loss to use
for cross-validation and 5 folds, to develop the LASSO Cox
regression model. Then, we filtered circRNAs with lambda coef-
ficient >0 to retain the optimal combination from circRNAs in (i).
The final signature, named “ICBcirSig”, include significant cir-
cRNAs (p < 0.05) by multivariate cox analysis of circRNAs in (ii).
(iii) The ICBcircSig score of each sample was built through the
following equations based on the expression value and multi-
variate Cox regression coefficient (1.001 ∗ circTMTC3 + 1.048 ∗
circFAM117B).

Survival analysis
For each circRNA, Kaplan–Meier survival analysis was performed for
patients with high and low expression according to the median of the
expression level by theRpackage survival. For ICBcirSig score,Maxstat
package was used to determine the optimal cutoff point between
ICBcirSig score and progression-free survival (PFS) of patient for each
cohort. According to the maximum selected log-rank statistics, the
patients were divided into the high ICBcirSig score group and low
ICBcirSig score group. Subsequently, log-rank test was used to calcu-
late the significance of the differences.

Multivariable cox proportional hazards regression model was
used to assess the association of variables with PFS through the coxph
function. The R package survivalROC was used to calculate time-
dependent receiver-operating characteristic (ROC) curves and area
under the ROC curve (AUC) for ICBcirSig score. The R package pROC
was used to calculate receiver-operating characteristic (ROC) curves
for quantify response for ICBcirSig score.

Gene set enrichment analysis
Fifty hallmark gene sets were downloaded from The Molecular Sig-
natures Database (MSigDB, http://software.broadinstitute.org/gsea/
msigdb/)69. A list of 22-tumor-infiltrating immune cell types markers
were derived from CIBERSORT. To compare the infiltration alteration
of immune cells between ICBcirSig score-high and -low group, we
utilize the clusterProfiler package of R to conduct gene set enrichment
analysis (GSEA) with marker gene set of each immune cell
subpopulation39. We calculated signature scores of 22-tumor-
infiltrating immune cell types using the GSVA algorithm81. Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Gene ontology
enrichment analysis was carried out for protein-coding genes in the
circRNAs-miRNA-mRNA axes by clusterProfiler package82.

Cell culture and transfection
The human malignant melanoma cell line SK-MEL-28 cells were cul-
tured in DMEMmedium (BI) supplemented with 10% FBS (BI), 100U of
penicillin per ml and 100mg/ml streptomycin (Gibco) at 37 °C and 5%
CO2. A circTMTC3 and circFAM117B overexpression vector was con-
structed from pHBLV (Hanbio Biotechnology, Wuhan, China). This
plasmid contains two repeated sequences named 5’circFrame and
3circFrame, which promote circRNA formation through reverse com-
plementation. Following the manufacturer’s instructions, Turbofect
(Thermo Fisher) was used for transient transfection of the over-
expression vectors.

RNA isolation and quantitative real-time PCR validation
Total RNA was extracted using TRIzol reagent (Invitrogen, USA) from
the tumor biopsy obtained frompatients with ICB treatment or in vitro
cell line, and then reversed transcribed using the HiFiScript gDNA
Removal cDNA Synthesis Kit (YEASEN Biotech, China) according to the
manufacturer’s instructions. Subsequently, we performed qRT-PCR
using SYBR Green assays. GAPDH was used as the reference gene. For
cirRNA amplification, RNAs were incubated with RNase R (VWR) 37 °C
for 30min to degrade linear RNAs.RNA was incubated at 70 °C for
10min to inactivate RNase R and then reverse-transcribed for RT-PCR
detection.The levels of miRNAs were measured by qRT-PCR using the
miDETECT A TrackTM miRNA qRT-PCR Kit containing a miRNA-
specific forward primer (RiboBio, Guangzhou, China) and performed
on QuantStudio3 Real-Time PCR System. For the quantitative analysis,
relative expression levels were calculated based on CT values (cor-
rected for GAPDH expression) according to the equation: 2-△CT
[△CT=CT (gene of interest) − CT (GAPDH)]. All qRT-PCR analyses
were performed in triplicate. Student’s t-tests were applied, and a
P-value <0.05 was considered significant.

We used specific primers to PCR circTMTC3, F5′-AATACTTCTTA-
CAGGCTACCCATGT-3′ and R 5′-AACCACAAAAGAGGCTGTTCC-3′; circ
FAM117B, F5′-CTTTGCCCAAATATGCAACC-3; and R 5′-CTTTGGAACA
GGAGCGAGCA-3′; PD-L1, F5′-GATCCAGTCACCTCTGAACATGA-3′ and
R 5′-TCAGGACTTGATGGTCACTGCT-3′; GAPDH, F5′-CAAGGTCATCCA
TGACAACTTTG-3′ and R 5′-GTCCACCACCCTGTTGCTGTAG-3′; U6, F
5′-CTCGCTTCGGCAGCACA-3′ and R 5′-AACGCTTCACGAATTT
GCGT-3′.

Sanger sequencing
Total RNA was extracted and treated with RNase R was send out for
Sanger sequencing with the primer as 5′-AATACTTCTTACAGG
CTACCCATGT-3′ for circTMTC3 and 5′-CTTTGCCCAAATATGCAACC-3′
for circFAM117B.

T cells mediated killing assay
To acquire activated T cells, human peripheral blood mono-
nuclear cells (LTS1077, Yanjin Biological) were cultured in CTS
AIIM V serum-free medium (SFM) (A3021002; Gibco) with
ImmunoCult Human CD3/CD28/CD2 T cell activator (10970;
STEMCELL Technologies) and IL-2 (1000 U mL−1; PeproTech,
Rocky Hill, NJ, USA) for 1 week according to the manufacturer’s
protocol. The experiments were performed with anti-CD3 anti-
body (100 ngmL−1; 16–0037; eBioscience, Thermo Scientifific),
interleukin-2 (IL-2), 1000 U mL−1. SK-MEL-28 melanoma cell line
from Guangzhou Cellcook Biotech Co., Ltd, which have been
authenticated. The cells were seed in the plates overnight and
then incubate with activated T cells for 24 h. The ratios between
cancer cells and activated cells were 1:3. T cells and cell debris
were removed by PBS wash and left cells were quantifified by a
spectrometer at optical density (OD) 570 nm, followed by crystal
violet staining.

Statistics and reproducibility
All experiments were performed at least three times unless specifically
stated. The statistical details and methods is described in the figure
legend. Statistical analysis for qRT-PCR and T cells mediated killing
assay was performed using GraphPad Prism 9.0. Data are expressed as
mean± SD (standard deviation). Unpaired two-tailed Student’s t test
was used to analyze the differences between two groups. Comparisons
among multiple groups were analyzed with one-way analysis of var-
iance. Differences between high and low ICBcirSig score groups were
assessed using Wilcoxon rank-sum test and Univariate logistic
regression, were performed in R version 3.6. P <0.05 was considered
statistically significant.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data of bulk RNA-seq generated in this study have been
deposited in the Genome Sequence Archive (GSA) under acces-
sion code HRA003368. The raw data of bulk RNA-seq data are
available under restricted access for data privacy laws related to
patient consent for data sharing, access can be obtained by
requesting and following the guidelines for GSA for non-
commercial use at https://ngdc.cncb.ac.cn/gsa-human/request/
HRA003368. The raw data of cohort 1 and 2 were downloaded
from the European Nucleotide Archive (ENA, PRJEB23709) and the
database of Genotypes and Phenotypes (dbGaP, phs000452.v3.
p1). The processed gene expression data of cohort 1, cohort 2,
and in-house cohort were submitted as Supplementary Data 3, 4,
and 7. The data information (e.g., sample size, overall survival
times, progressive free survival time) of cohort 1, cohort 2, and in-
house cohort were summarized in Supplementary Data 1, 2, and
Supplementary Table 2. The sequence information of miRNAs of
human were download from miBase (https://www.mirbase.org/)78.
The miRNA–mRNA pairs were obtained from Tarbase (http://
www.microrna.gr/tarbase)65 and TargetScan (https://www.
targetscan.org/)79 database. Source data are provided with
this paper.

Code availability
Codes were implemented in R 3.6.0 and are deposited in https://
github.com/Yelab2020/ICBcircSig and achieved at https://doi.org/10.
5281/zenodo.777172283.
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