
Article https://doi.org/10.1038/s41467-023-38135-y

Deep learning forecast of rainfall-induced
shallow landslides

Alessandro C. Mondini 1,2 , Fausto Guzzetti 1,3 & Massimo Melillo 1

Rainfall triggered landslides occur in all mountain ranges posing threats to
people and the environment. Given the projected climate changes, the risk
posed by landslides is expected to increase, and the ability to anticipate their
occurrence is key for effective risk reduction. Empirical thresholds and
physically-based models are used to anticipate the short-term occurrence of
rainfall-induced shallow landslides. But, evidence suggests that they may not
be effective for operational forecasting over large areas. We propose a deep-
learning based strategy to link rainfall to landslide occurrence. We inform and
test the systemwith rainfall and landslide data available for the last 20 years in
Italy. Our results indicate that it is possible to anticipate effectively the
occurrence of rainfall-induced landslides over large areas, and that their
location and timing are controlled primarily by the precipitation, opening to
the possibility of operational landslide forecasting based on rainfall mea-
surements and quantitative meteorological forecasts.

Rain is the leading cause of landslides, globally; but how much rain is
needed to trigger a landslide? For decades, this seemingly simple
question has resisted attempts to answer it. Recent estimates suggest
that landslides occur in about 17.1% of the landmasses, and that about
8.2% of the global population live in landslide prone areas1 where
people, properties, and the environment are subject to landslide
risk2–4. Given the projected climate and environmental changes5,
landslide risk to the population is expected to increase, and particu-
larly the risk posed by rapid-moving, rainfall-induced shallow-
landslides6. It is therefore not surprising that the interest in landslide
forecasting, and for operational geographical landslide early warning
systems is increasing in the literature and among decision makers7–10.

As with other hazards, the ability to anticipate landslide occur-
rence is key to the design and the implementation of effective risk
reduction strategies11–13. In the literature, two approaches are used to
predict in space and time the short-term– froma few to tens of hours –
occurrence of populations of rainfall-induced shallow landslides – i.e.,
from one to many landslides caused by one triggering event or by
multiple events in a short period14 – namely, empirical rainfall
thresholds, and physically-based hydrological–slope instability mod-
els. Rainfall thresholds define empirically the rainfall conditions that,

when reached or exceeded, are likely to result in slope failures
[e.g.,15–18], whereas physically-based models simulate spatially the
hydrological process of the rainfall infiltration trough the ground, and
the resulting mechanical consequences for the stability of the terrain
[e.g.,19–22]. Both approaches assume that the driving force for slope
instability is the rainfall – more precisely, the local rainfall history –

which acts on surface and sub-surface terrain conditions (e.g., mor-
phometry, geology, surface and sub-surface hydrology, land use and
coverage) that together define the propensity – or susceptibility – of
the terrain to fail.

In the two approaches, the transient driving force, R and the static
– at the temporal scale of a landslide triggering rainfall event – terrain
settings, S are considered to determine where and when landslides are
expected to occur in response to a transient input brought on a
landscape by a rainfall event. For coupled hydrological–slope
instability models the several parameters controlling the surface
and subsurface local settings are explicitly considered in the models
[e.g.,19–23]. When using empirical rainfall thresholds, the role of S is
considered constructing thresholds for different terrain and environ-
mental settings [e.g.,24–28], or (most commonly) it is assumed constant,
adopting a single threshold even for large areas with broadly different
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susceptibility settings [e.g.,15,27,29,30]. With a few exceptions [e.g.,21,31,32],
the physical models are applicable to areas of limited extent, due to
their high demand for accurate terrain and environmental data diffi-
cult to obtain over large areas33. Whereas, empirical thresholds are
applicable to all scales, from the local to the global15,18,30,34, with dif-
ferent degree of success.

In this work we take a conceptually different approach to the
approaches commonly used to anticipate landslides, using rainfall
thresholds or coupled hydrological–slope instability models. Our
approach is probabilistic, it models the occurrence and the lack of
occurrence of landslide events, and measures the uncertainty asso-
ciated to the forecasts. We show that it is possible to anticipate
effectively the occurrence of rainfall-induced landslides over large
areas using only hourly rainfall measurements, as the landslide loca-
tion and timing are controlled primarily by the rainfall. The ability to
forecast accurately the possible occurrence of populations of rainfall-
induced shallow landslides over large and very large areas without
detailed information on the terrain setting makes the approach sui-
table for operational landslide forecasting at scales raging from the
local to the global9,10,35.

Results
We assume that in a landscape forced by a transient rainfall input – i.e.,
by a rainfall event, R – landslides form, or do not form, on slopes
independently from the spatially changing local terrain and environ-
mental conditions, and we propose a deep learning, supervised binary
classification approach to distinguish between driving forces able, or
not able to trigger rainfall-induced shallow landslides. Inmathematical
language, the probability of landslide occurrence F conditioned by R,
the rainfall history, and by S, the local terrain setting measured by
landslide susceptibility, P(F∣R, S) becomes P(F∣R) × c, with c = 1 where
landslides can occur, and c = 0 elsewhere. We test our hypothesis in
Italy, where rainfall-induced shallow landslides are common27 and the
human consequences severe36, and for which a comprehensive cata-
logue of rainfall events with landslides is available (Fig. 1a), together
with rainfall measurements taken by a dense network of 2096 rain
gauges (Fig. 1b). Adopting a consolidated technique for the objective
reconstruction of rainfall events that can result in landslides37,38, we
define a rainfall event as a period of nearly continuous rainfall sepa-
rated from preceding and successive rainfall events by dry periods of
no rainfall. Using CTRL-T, the Calculation of Thresholds for Rainfall-
induced Landslides Tool software38, from the available landslide and
rainfall data (Fig. 1) we reconstruct 780,766 rainfall events, of which
2472 (0.3%) with at least one rainfall-induced landslide, and 778,294
(99.7%)with no reported landslides. Figure 2 shows thedistributions of
the rainfall duration, D (in hours) and the corresponding cumulated
rainfall, E (in mm) computed by CTRL-T, for all the reconstructed
rainfall events. This is the information commonly used to define
empirical thresholds for possible landslide occurrence15,18. Visual
inspection of the plot reveals that the distributions of rainfall condi-
tions (D, E) that did, and did not cause landslides have similar scaling
trends, but overlap largely, suggesting the use of an highly non-linear
separation model; a task well suited to a neural network modelling
approach39.

We further assume that a landslide-triggering rainfall event, R is
composed of two consecutive periods i.e., an antecedent period, Ra

that prepares the terrain to fail, followed by a triggering period, Ro

when the shear strain in the terrain is reduced and at the end of which
the slope fails and a landslide occurs16, 17,40–42 i.e., R = Ra +Ro (see Sup-
plementary Fig. 1). Rainmay continue to fall after the end ofRo, but it is
irrelevant for landslide occurrence. The lengths of the antecedent and
the triggering periods vary, depending e.g., on the rainfall history and
the local terrain and environmental settings16,17,43. We further assume
arbitrarily that in our dataset for Italy the maximum length of the
landslide triggering period, Ro is 24 hours. We do not set a limit to the

length of the antecedent rainfall period, Ra. To represent Ro in the
model, we introduce a lag, ℓ a continuous sequence of hours, from 1
(ℓ1) to 24 (ℓ24).

Fig. 1 | Locationof landslide and rain gauge data used in the study. aMap shows
locations of 2486 rainfall-induced landslides from February 2002 to December
2020 used in the work (red dots), including 14 landslides used to demonstrate the
potential operational use of the forecasting systemdiscussed in theDemonstration
section (dark red dots). Black dot shows location of the 26 November 2022,
Casamicciola Terme landslide, Ischia Island, also used for demonstration. b Map
shows locations of 2096 rain gauges (blue triangles) for which hourly rainfall
records were available to us, of which 29 rain gauges (dark blue triangles) used to
demonstrate the potential operational use of the forecasting system. In bothmaps,
geographical and administrative boundaries credits are from the European Envir-
onment Agency (EEA) and the Istituto Nazionale di Statistica (ISTAT).
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Each rainfall event, R defined by CTRL-T has a starting, Rs and an
ending, Re time, a duration, D = [Rs;Re], in hours (hr), and a cumulated
rainfall E ½Rs ;Re �, in mm, where the square brackets indicate that the Rs

and Re times are included. In a rainfall event with landslides, the
landslide occurrence time is Rf, with Rs≤Rf≤Re, and we assume that (i)
the period relevant for landslide initiation is [Rs;Rf], with a duration
D = [Rs;Rf] and cumulated rainfallE ½Rs ;Rf �, (ii) the rainfall period after the
landslide, (Rf;Re] is irrelevant for the landslide initiation, and (iii) the
rainfall in any of the other periods in the rainfall event, [Rs;Rf) is not
sufficient for landslide initiation, where the round brackets indicate
that the Rf time is excluded. Ultimately, we assume that all periods in a
rainfall event without landslides, regardless of the duration and the
corresponding cumulated rainfall, are insufficient for landslide
initiation.

Rainfall variables
We transform the rainfall information shown in Fig. 2 and, for all the
rainfall events, we calculate the rainfall duration—cumulated event
rainfall pairs for different periods, with andwithout landslides, in three
steps discussed in detail in theMethods section, and we construct two
subsets of rainfall data points associated, Y and not associated, X to
landslides, which together represent our modelling dataset, with the
following rainfall explanatory variables, Da, Ea,Do =Dℓ, and Eo, for the
antecedent (Da, Ea) and the triggering (Do, Eo) rainfall periods.

For our modelling, we first extract randomly from the entire
dataset, {X +Y}, 15 rainfall events with landslides and 14 rainfall events
without landslides to form subset Z (dark blue symbols in Fig. 1) which
we will use to demonstrate the system. Next, adopting a
train–valid–test data segmentation scheme44, we construct three
modelling subsets for bagging45. For each lag, ℓ i.e., for each con-
tinuous sequenceof hours from 1 (ℓ1) to 24 (ℓ24), we split randomly 100

times the remaining rainfall data points with landslides—from 2472 for
ℓ1 to 2092 for ℓ24—into two subsets, with (i)≈ 80% of the data points, to
which we add the same number of randomly selected data points
without landslides, to obtain subsets TV‘

i , with i ranging from 1 to 100,
formodel training& validation, and (ii) the remaining ≈ 20%of the data
points with landslides, and all the remaining data points without
landslides, more than 99.99% of all data points, to form subsetsW‘

i for
model testing. We further split randomly subsets TV‘

i to obtain (iii) the
training subsets, T‘

i having ≈ 64% of the data points, and (iv) the vali-
dation subsets, V‘

i with ≈ 16% of the data points.

Model structure and parametrization
Not having sufficient information on the relative role—and hence, of
the most appropriate duration—of the antecedent, Ra and the trig-
gering, Ro rainfall periods for landslide initiation16,17,46,47, and given the
large variability of the rainfall conditions (i.e.,Ra and Ro) that can result
in landslides in Italy27, we chose to prepare independent ensembles of
models for each lag, ℓ where ℓ represents different possible rainfall
triggering periods, Ro. For this reason, we use three of the four
explanatory (independent) variables in the modelling dataset i.e.,
Da, Ea, and Eo, since Do =Dℓ is constant for each lag, and would not
contribute to the separation of the rainfall conditions that can, and
cannot trigger landslides. We opt for a fully connected neural network
with one input layer to ingest the three explanatory variables, two
hidden layers with four neurons each, and one output layer with a
single neuron (Fig. 3). The model (M) provides the probability of
landslide occurrence, given the three explanatory variables (Da, Ea, and
Eo), and a set of 32 weights, θ and 9 biases, β connecting the neurons
obtained in the model calibration phase, PMð1∣x,θ,βÞ48,49.

Model training and validation
For each of the 24 lags, we train and validate 100 different models
using the 100 pairs of training, T‘

i and validation, V‘
i subsets, with i

ranging from 1 to 100 (bagging ensemble45). This allows to evaluate the
model ensemble accuracy and variability.We estimate the training and
the validation accuracy of eachmodel,Mi in the training phase as the
frequency with which the model prediction matches the true value in
the training, Tℓ and in the validation, Vℓ subsets, ≈ 64% and ≈ 16% of all
the rainfall events, nearly 1460 and 365 rainfall events with landslides.

Fig. 3 | Neural network geometry for every modelMi. Grey circles are neurons
arranged in four layers. Blue, input layer 0; green, hidden layers 1 & 2; red, output
layer 3. Neurons in the hidden (green) layers are activated by a tanh function.
Output (red) layer is activated by a sigmoid function h. akn is neuron n in the k layer,
β½k�
n in β[k] is the bias added to the n neuron in the k layer, and θkn in θ[k] is the weight

array of the neurons in the k − 1 layer in the n neuron of the k layer. τ stands for
transpose.

Fig. 2 | Empirical frequency density distributions of rainfall duration,D (h) and
hourly cumulated rainfall, E (mm) for 780,766 rainfall events in Italy obtained
through Two-Dimensional Kernel Density Estimation, KDE2d79. Violet shows
density for 2472 rainfall events from February 2002 to December 2020 for which
the occurrence of at least one landslide is known. Blue shows density for 778,294
rainfall events for which the occurrence of landslide is not known. Upper and right
plots show marginal distributions of D and E (violet and blue areas), and related
empirical cumulative distribution functions, ECDF (violet and blue lines) normal-
ised to the number of rainfall events with and without landslides, respectively.
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Assuming an a priori probability threshold to separate the rainfall
events predicted as having, p > 0.5 from those predicted as not having,
p ≤ 0.5 landslides, we obtain accuracies in the range from 84.8% to
78.3%, for both the training and the validation accuracies, with a ten-
dency to stabilise the accuracy for longer lags. The similar model
performance for the T‘

i and theV‘
i subsets for all i and ℓ reveals the lack

of overfitting, and a good generalisation capacity of the single models
Mi

49 (see Supplementary Figure 2a, b, c).

Model testing
To test the performances of our model bagging ensembles, B‘ we use
Wℓ. To handle the severe class imbalance inherent in the Wℓ subsets,
with a ratio of data points with &without landslides of ≈ 1/100,000, we
arbitrarily determine the probability threshold for each model as the
best trade-off between the model sensitivity i.e., the true positive rate
TPR = TP/(TP+FN), and specificity i.e., the false positive rate, FPR = FP/
(FP+TP) in a typical Receiver Operating Characteristic (ROC) curve50.

For all lags, the median of the area under the ROC curves, AROC is
large ( ≈0.92 to ≈0.88, Fig. 4), with larger ranges for model ensembles
with higher medians and little or no skewness. We note that the single
models are all far from a random guess (AROC =0.50), and that the
model ensembles perform more uniformly for long (ℓ ≥ 12) than for
short (ℓ ≤ 6) triggering periods. The general behaviour is confirmed by
the Balanced Accuracy, BA a good performancemetric for imbalanced
data sets averaging sensitivity and specificity51, with median values
from ≈0.80 to ≈0.82, with little variability and very low skewness
(Fig. 4). The large values of the two metrics are evidence of the high
performances of the single models, Mi and of the ensemble sets, B‘

also for highly unbalanced datasets; a typical case for landslide fore-
casting where the number of rainfall events with landslides is much
smaller that the number of rainfall events without landslides28,52,53. We
hypothesize that the (slightly) larger volatility of the performances of
the ensemble sets for shorter triggering periods is due to local effects
in the landslide occurrence process, with shorter rainfall triggering
periods better capturing local instability conditions.

Demonstration
We now demonstrate the potential operational use of our set of bag-
ging ensemblemodels,O combined through a simple voting scheme45,

54. For the purpose, we exploit the Z record set encompassing 14 + 1
(the Casamicciola Terme landslide) rainfall events with landslides and
14 rainfall events without landslides in different physiographic settings
in Italy (Fig. 1). We assign to the events in the Z record set the rainfall –
in this case – predicting variables Da, Ea, and Eo, for all 24 lags, from ℓ1

to ℓ24. Next, for each ℓ, we enter the three predicting variables in the
corresponding trained and validated model ensembles to obtain the
related probabilities of landslide occurrence, that we transform into
crisp (i.e., “landslide" or “no landslide") classifications using the prob-
ability thresholds determined in the model test phase.

We then combine the 100 individual forecasts in each lag by
voting45,54, where the final vote for each lag is given by Vℓ = argmax
(#"landslides") / (#"no landslides"), and we estimate the variance of Vℓ

as σ2 = (#"landslides”/100) × (#"no landslides”/100), a measure of the
dispersion of the votes of the single models, M‘

i in the bagging
ensemble sets, B‘. Then, using the same argmax criterion, we merge
the 24 combined votes, one for each lag, into a single, aggregated vote,
V̂—our forecast—on the possible occurrence of a landslide during the
rainfall event.

For the 29 demonstration rainfall events in the Z set, the map
in Fig. 5 portrays the aggregated vote, V̂ for rainfall events having
(circles) and not having (squares) landslides, coloured from green
—where none of the 24 combined votes are for landslide occur-
rence—to red—where all the 24 combined votes are for landslide
occurrence. In Fig. 5 the individual circular charts summarize
statistics for the 24 model bagging ensemble sets, B‘ shown in
clockwise order from ℓ1 to ℓ24. The inner spider plots show the
proportion of the 24 lags voting for (red) and against (green)
landslide occurrence. The central plots show the percentage of
votes for landslide occurrence in the 100 models of each B‘, with
their variance, σ2 shown by the outer plots in greyscale.

Visual inspection of Fig. 5 does not reveal any geographical or
other biases in the model performance. This confirms that the model
set, O is a good predictor of the possible occurrence of rainfall-
induced shallow landslides in Italy. Analysis of the 29 circular charts in
Fig. 5 reveals that 14 (out of 15, 93.3%) of the rainfall events with
landslides (red dots) were correctly voted (i.e., true positives, TP in Z)
with an agreement among the ensemble sets, B‘ larger than 91%, and
that the single incorrectly voted (i.e., false positive, FP in Z) event (#17)
has ≈ 63% of incorrect votes. Similarly, 12 (out of 14, 85.7%) of the
rainfall events without landslides (green squares) were voted correctly
(i.e., true negatives, TN)with an agreement ≥ 70% among the ensemble
sets B‘. The two incorrectly voted rainfall events, (#15, #16) have about
62.5%and 58%of incorrect votes. For the almost balanced set of events
Z, we obtain a Cohen’s kappa, κ = 0.7955, and a F1 score = 0.9056. We
note that the true positives are better represented than the true
negatives, and that the true negatives show a larger uncertainty than
the true positives. This was expected, given themuch larger number of
rainfall events without landslides.

Fig. 4 | Box-and-whisker plots showingperformanceof the2400M‘
i models of

setO, in the model testing phase. For each lag, ℓ (x-axis), purple boxplots show
variability of the AROC of the 100M‘ models (left y-axis), and violet boxplots show

BalancedAccuracy, BA51 (right y-axis).White horizontal lines showmedian value for
each boxplot. Boxplot legend: min and max are minimum and maximum values;
25th, 50th (median), and 75th are percentiles.
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Overall, in Fig. 5, themap and the associated charts, portray all the
information that a landslide forecaster in an operational centre, or an
automatic landslide early warning system (LEWS)7–10, can use to inform
with proper advisories timely actions to elicit appropriate risk miti-
gation responses10,12,13,28. The forecast can be readily updatedwhenever
new rainfallmeasurements, nowcasts or forecasts become available, to
anticipate, in space and time, the evolution and the possible effects of

a rainfall event in an area, assessing its expected ability to generate
landslides based on the past and the expected rainfall history.

Discussion
Our approach to anticipate where and when in a landscape forced by a
rainfall event rainfall-induced shallow landslides are expected is dif-
ferent from the approaches adopted by empirical rainfall thresholds
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and by physically-based hydrological–slope instability models. Typi-
cally, empirical rainfall thresholds use only information on rainfall
events that have resulted in landslides, and disregard the events that
have not resulted in landslides. Further, threshold models do not
consider the dynamics of the driving force i.e., the rainfall history that
leads to slope failures. Physically based models simulate the hydro-
logical and mechanical processes acting in the slopes forced by a
rainfall event, but at any given time and location the model outputs
depend solely on the local conditions, as the models do not consider
explicitly the rainfall history, and its spatial and temporal con-
sequences. Our approach overcomes these limitations considering all
the rainfall conditions that have, and have not resulted in landslides,
and the event rainfall history.

With our modelling exercise, we showed that exploiting a
relatively simple data-driven, deep-learning based approach
(Fig. 3), it is possible to forecast with very good performances
(e.g., from AROC ≥ 0.87 for ℓ1 to AROC ≥ 0.91 for ℓ9, Fig. 4), and over
large areas (in our case, ≈ 301,000 km2), the possible occurrence
of (future) rainfall-induced shallow landslides using predictors
obtained from a record of hourly rainfall measurements, and
information on the (past) occurrence, and lack of occurrence, of
event-triggered shallow landslides, without the need for detailed
terrain and environmental information.

Albeit the scope of our data-driven framework was to make reli-
able forecasts of the possible occurrence of rainfall-induced shallow
landslides and, hence, a direct interpretability of the model insight in
terms of physical relationships between the input variables (i.e., the
rainfall history, R) and the forecasts (i.e., the anticipation of the land-
slide occurrence) is not required39, we maintain that the empirical
evidence suggests two general results of geomorphological and
operational interest.

From a geomorphological perspective, we infer that in a land-
scape forcedby a transient rainfallfield, themain factor controlling the
initiation of shallow landslides is the rainfall i.e., the landslide event
driving force. The finding suggests that in the areas of a landscape
where landslides can occur due to the local terrain settings1, landslides
will occur where and when a set of—locally often unknown—rainfall
conditions are reached or exceeded15. The local terrain and environ-
mental conditions, including e.g., the morphometric, geological,
hydrological, structural, land use and land cover conditions, control
the location of the landslide initiation points at amuch finer scale than
the characteristic scale of the landscape considered in this work. We
stress that the local terrain and environmental conditions are difficult
and expensive to obtain with the adequate accuracy over large and
very large areas.With a few exceptions57, this limits their use to specific
cases and to areas of limited extent58,59.

From an operational perspective, we note that the forecasting
performances are very good, considering the difficulty of the task14,
and the paucity of the data. Our results open to the possibility that
geographical landslide early warning systems (LEWSs)7–10 working at
scales from the local to the global35,60, can predict the occurrence of
populations of rainfall-induced landslides using exclusively rainfall
measurements and quantitative rainfall forecasts, overcoming the
need for detailed, expensive, and difficult to obtain and update terrain
and environmental information used to construct landslide

susceptibility33 and hazard61 models. The finding suggests that the
operational prediction of populations of rainfall-induced landslides
can become part of standard weather forecasts, as anticipated nearly
half a century ago by Russell H. Campbell46, provided that reliable
quantitative rainfall forecasts or nowcasts e.g., throughmeteorological
radars, are available.

We expect our forecast model set, O to perform well in the same
general area where the rainfall and the landslide information was
available to construct themodel i.e., in Italy, and in other geographical
areas characterised by similar meteorological and climatic regimes;
firstly, in the landscapes inside and surrounding the
Mediterranean basin.

Ultimately, we stress that our approach is functional i.e., it
depends on the available data, and it assumes the stationarity of the
rainfall and the landslide records, which are not guaranteed over long
periods andwhere climate, environmental, and geological changes are
large6. Should the changes be significant, the model performance will
need to be re-assessed, the model set re-calibrated, or the neural
architecture redesigned entirely.

Methods
Rainfall and landslide data
We use two data sources. We obtain information on the occurrence of
rainfall-induced (mostly shallow) landslides in Italy from an updated
version of the catalogue prepared by Peruccacci and her coworkers27

built searching multiple sources of information, including national,
regional, and local newspapers, and event and fire fighter reports. Our
catalogue lists 2486 landslides fromFebruary2002 toDecember 2020,
and the 26 November 2022 Casamicciola Terme landslide, in all phy-
siographical areaswhere landslides are expected in Italy (Fig. 1a). In the
catalogue, landslides are first-time (new) failures, first-time failures
occurred inside pre-existing landslides, or partial or total reactivations
of pre-existing landslides. Temporal and geographical accuracies were
attributed to each landslide in the catalogue27,62. We select landslides
with a temporal accuracyof onehour, consistentwith ourmodelling of
the rainfall information in one-hour lag periods, and with a minimum
geographical accuracy of ≈ 10 km; with 98.1% of the landslides
within ≈ 1.8 km, and 25.7% of the landslides located exactly.

We obtain hourly rainfall measurements from a national network
of 2096 automatically recording rain gauges operated by Regional and
Provincial governments in Italy (Fig. 1b). This is an average of one rain
gauge every≈ 144.5 km2—a high gauge density63, with an average gauge
spacing of ≈ 12.0 km. Overall, the rainfall dataset contains more than
300 million records.

Using CTRL-T, the Calculation of Thresholds for Rainfall-induced
Landslides Tool software38, we reconstruct 780,766 rainfall events, of
which 2472 (0.3%) with at least one rainfall-induced landslide, and
778,292 (99.7%) with no reported landslides.

To separate the events in the rainfall record, we use a 48-h period
without rainfall for the dry season [June to September], and a 96-h dry
period for the wet season [October to May]27,37. The rainfall events
without landslides have 1 hr ≤ D ≤ 2150 hr ( ≈ 90 days), and cumulated
rainfall 1mm≤ E≤ 2070mm,whereas the rainfall eventswith landslides
have 1 hr ≤ D ≤ 1537 hr ( ≈ 64 days), and cumulated rainfall 3 mm ≤ E ≤
1330 mm (Fig. 2).

Fig. 5 | Demonstration of the forecasting system based on O, our set of 2400
models. Symbols in themap and near the circular plots show 15 (14 + 1 i.e., #10, the
26/11/2022 Casamicciola Terme landslide) rainfall events with landslides (circle),
and 14 rainfall events without landslides (square). Map shows locations of 29 rain
gauges for which the system is demonstrated. For location of the events see Fig. 1.
Colours show voting scores, from 0 (green) to 24 (red). Violet shows areas where,
according to Marchesini and co-workers80, landslides are not expected based on
morphometry i.e., c = 0 in P(F∣R) × c. Circular plots show voting statistics for the 29
rainfall events, for each lag, from ℓ1 to ℓ24, in clockwise order. Inner spider plots

show the scores, with the colour and the size of the coloured area giving the
percentage of lags that predicted landslide occurrence, from green (0%), to yellow
(50%), to red (100%), also given by the central figure, in percentage. Radial bars
show landslide occurrence voting scores, from white (0) to teal (100), of each B‘,
for each lag, ℓ. Outer plots give the variance (σ2) of the 100votes, fromnil (white) to
large (dark grey). In the map, geographical and administrative boundaries credits
are from the European Environment Agency (EEA) and the Istituto Nazionale di
Statistica (ISTAT).
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Landslide and rain gauges association
Following Peruccacci and her coworkers64, we assign each landslide in
the catalogue to a single rain gauge considering the topographic dis-
tance and the elevation difference between the landslide and the rain
gauge, and the local morphological setting. We could instead inter-
polate the rainfall history at the landslide site using the near available
rain gauges. Given the uncertainty inherent in the landslide location,
thiswouldnot result in any significant improvement in thedefinitionof
the rainfall history at the landslide site65.

Modelling datasets and rainfall variables
To prepare the modelling dataset {X +Y} of rainfall data points asso-
ciated, Y and not associated, X to landslides, we adopt the following
procedure.

To construct subset X, for each rainfall event without landslides:
• Step 1. For each ℓ, where ℓ is a continuous sequence of hours

from 1 (ℓ1) to 24 (ℓ24) hours, we compute the duration of the
antecedent, Da = [Rs;Re−ℓ] and the triggering, Do =Dℓ periods,
and the corresponding cumulated rainfall, Ea and Eo, obtaining,
for each ℓ,Da, Ea,Do =Dℓ, and Eo, which we enlist in subset X of
data points not associated to a landslide.

• Step 2.Wemove artificially the end of the rainfall event one hour
backwards i.e., [Rs;Re−1hr], and we repeat Step 1, for all ℓ.

• Step 3. We set Re =Re−1hr, and we repeat Step 2 until Da = 1 h.

Similarly, to construct subset Y, for each rainfall event with
landslides:

• Step 4. For each ℓ, from (ℓ1) to 24 (ℓ24) hours, we compute
the duration of the antecedent, Da = [Rs; Rf−ℓ] and the trig-
gering, Do =Dℓ periods, and the corresponding cumulated
rainfall, Ea and Eo, obtaining, for each ℓ, Da, Ea,Do =Dℓ, and
Eo, which this time we enlist to the subset Y of data points
associated to a landslide. We disregard the rainfall period
after the landslide, (Rf; Re] considered irrelevant for the
landslide initiation.

• Step 5. We move artificially the time of the landslide occurrence
one hour backwards i.e., [Rs;Rf−1hr], and we repeat Step 4, for all
ℓ. This time,weassign the computedDa, Ea,Do =Dℓ, and Eo, to the
subset X of data points not associated to a landslide, because a
landslide did not occur in the period [Rs; Rf−1hr].

• Step 6. We set Re = Re−1hr, and we repeat Step 5 until Da = 1 hour.

Net configuration and settings
To select the final network architecture, we tested 4 × 4, 6 × 6,
8 × 8, 8 × 4 × 8, and 8 × 8 × 8 network geometries for lags ℓ1, ℓ12,
and ℓ24. Since complex or deep neural architectures are often an
overkill where data are scarce49, we select the simplest 4 × 4
configuration and we keep it fixed (Fig. 3). For network optimi-
sation, we randomly initialise the 32 weights of each model, θ
with a normal distribution with mean, μ = 0 and standard devia-
tion, σ = 0.1, and we set the biases to zero, β = 0. All layers in the
network are regularised using the L2 regularization penalty
factor66, a weight decay, δ = 0.001, and a dropout, γ = 0.2567, to
mitigate overfitting49,68. All neurons are activated through an
hyperbolic tangent function, tanh except the last neuron which is
activated by a sigmoid function, h. Assuming landslide occur-
rence obeys a Bernoulli distribution, we build the model using the
binary cross-entropy loss function69, 0 ≤ p(y = ”yes”) ≤ 1, and the
Adaptive Moment Estimation method (Adam)34,70 with an inverse
time decay for the learning rate initially set to 1e−4, a decay rate,
δ = 0.05 every 100 update steps, β1 = 0.9, β2 = 0.999, and �ϵ= 1e�770.
We set the training phase using a batch size of 32, and a maximum
number of epochs of 200,000, including an early stopping over
the loss function with 1000 steps of patience, and a minimum
decay rate δ = 0.0000171.

Overfitting
All the loss and accuracy curves for the training and the validation sets
of the model set O converge numerically to very similar values (see
Supplementary Figure 2a, b, c). Occasionally, and more frequently for
lags ≤ ℓ5, the accuracy curve for the T set is ≈ 1% to 2% higher than the
curve for the Vℓ set (see Supplementary Figure 2c), or vice-versa,
indicating an excessive regularisation, or a poor representativeness of
the randomly selected training sets. We conclude that the preventive
exclusion from O of the models prepared with low representative
training sets, or a lag-dependent fine tuning of the network geometry
and of the related parameters, might lead to better generalization
capacity of the singleM‘ models inO. However, suchfine tuning is out
of the scope of this work.

Alternative data segmentation strategies
To construct our network, we opted for a classical train–valid–test
random data segmentation scheme44, and we generated balanced –

i.e., having the same number of landslide and no landslide events –

train, Tℓ and validation, Vℓ sets for the network tuning phase. In reality,
in many cases a rainfall event does not trigger landslides, resulting in a
large unbalance. We copewith the problem using unbalanced sets, the
Wℓ sets listing ≈ 450 rainfall events with landslides (0.00001%) and ≈
40 million rainfall events without landslides (99.99999%), a 1/
1,000,000 ratio, for testing the network. TheWℓ sets are fixed for each
ℓ to allow for the comparison of the B‘ models. We acknowledge that
an increase of the penalty for probabilistic false negatives during the
training phase69, other data splitting strategies with different “land-
slide” / “no-landslide” ratios, or other evaluatingmetrics could be used
to consider the inherent imbalance of the modelled process.

Alternative classification methods
Other methods exist to discriminate rainfall conditions that can and
cannot trigger landslides. The most promising include support vector
machines (SVMs) and long-short term memory (LSTM) convolutional
neural networks. SVMs are known for their performance with small
data sets when properly tuned, and they can work with the same data
structure used in our experiment. Hence, they represent a clear
alternative to our neural network approach. In fact, we have no a priori
justification for preferring our approach to SVMs, except that in the
initial phase of research, non-linear SVMs performed slightly less well
than our neural networks. Convolutional LSTM neural networks deal
effectively with time series in which an effect (e.g., the occurrence of a
landslide) depends on a sequence of feedbacks (e.g., the rainfall
record). Convolution makes it possible to exploit spatial rain fields to
improve the spatial representation of the forecast. As a limitation for
our case study, convolutional LSTM neural networks require further
research to workwith landslide events associated with gridded rainfall
data in the training phase, and a different definition of a rainfall event.

Uncertainties
Our experiment suffers from aleatory and epistemic uncertainty72. The
aleatory uncertainty is typical of the many physical processes that
control the landslide initiation, and cannot be cancelled. Epistemic
uncertainty affects the landslide and the rainfall data, and the neural
network model structure and parameters. Our landslide catalogue is
relatively large and it is accurate, but like any other unsystematic, non-
instrumental source of information, it is incomplete and the level of
completeness remains unknown. The landslide catalogue covers 19
years. In this period, not all the areaswhere landslides canoccur in Italy
were affected by rainfall events, and specifically events that could
trigger landslides. A longer period would guarantee a better coverage,
but would bring additional uncertainty due to environmental and cli-
mate changes that affect the rate of landslide occurrence42,73.

In the original catalogue27, the lack of accurate information on the
exact time of occurrence of the landslides – a notoriously difficult

Article https://doi.org/10.1038/s41467-023-38135-y

Nature Communications |         (2023) 14:2466 7



information to obtain15,74,75 – limits the ability to reconstruct the rainfall
triggering conditions, reducing the number of events that can be used
to train the system.

As a result, some of the model false negatives are due to lack of
information on landslide occurrence, in particular for rainfall records
whichare apparently indistinguishable from records thathave resulted
in shallow landslides for some lags. In these cases, the forecasts show
large uncertainties, and we maintain that use of different lags helps
reducing possible errors.

We set the maximum length of the landslide triggering period, Ro

in a rainfall event to 24 h, and wemodel it with different lag periods, ℓ.
We acknowledge that the selection was arbitrary, but wemaintain it is
reasonable for the scope of the work. Given the tendency of the
forecasting capability of the model sets towards similar values for
longer lag periods (Fig. 4), selecting a longer maximum Ro would not
increase substantially the prediction performance, and would add
epistemic and aleatory uncertainty to the results.

Epistemic uncertainty also affects the rainfall measurements and,
hence, the reconstruction of the rainfall history, and the true (and
unknown) rainfall characteristics that trigger, or do not trigger land-
slides during a rainfall event. These are typical of all attempts to
measure rainfall, and to model and anticipate landslide occurrence
using rainfall measurements65,76–78.

Epistemic uncertainty associated to the neural networkmodel set
are related to the selection of the type of the neural network, the
geometryof thenet (e.g., number of layers, neurons), and the selection
of the model hyperparameters (e.g., β1, β2, δ, γ). Use of large bagging
ensembles with 100 independent model repetitions, albeit not redu-
cing the uncertainty, has contributed to quantify it, or part of it. The
varianceof the votes for themodels ensemble,B‘ measures themodels
agreement, and it provides ameasure of the confidencewithwhich the
final vote should be considered; a low (high) variance is the result of a
large (reduced) agreement among the models in each lag, and gives a
high (low) confidence in the forecast. Forecast users should check the
cases with a high variance (e.g., cases #15, #16, and #17 in Fig. 5). We
maintain they are a minority.

Alternative variables
Our experiment revealed that variables obtained from standard hourly
rainfall records are sufficient to anticipate accurately the possible
occurrence of future landslides. Regardless, the inclusion of additional
explanatoryvariables could further improve theoverallmodel forecast
accuracy, provided the variables are collected and significant at the
scale of the analysis. Terrain morphology, lithology, soil type, land
cover, land use, and soil moisture are candidates, and their use in a
different, more complex neural network might capture more complex
associations, reducing in particular the false positives due to similarity
of the rainfall records that resulted and did not result in landslides.
Alternatively, one could use susceptibility as a lumped measure of the
local terrain conditions favourable or not favourable to landslide
occurrence33. However, given the already high classification perfor-
mance of our simple, 4 × 4 neural network, it is not certain that use of
additional explanatory variables will increase the classification per-
formance, reducing the misattributed cases, necessarily. The new
variables may not be sufficiently accurate to capture the landslide
initiation process adding uncertainty, and considering them may not
result in better performances72. When using variables that change over
time (e.g., seasonal variables) or collected over a period (e.g., digital
terrain models covering large areas), the temporal relation between
the thematic, terrain, and landslide information should be considered,
as it may add uncertainty and reduce model performance.

Software and hardware details
Themodel is written in Tensorflow2.3.0 (https://www.tensorflow.org/)
with the support of Python 3.8 (https://www.python.org/), Keras 1.1.2

(https://keras.io/), Scikit-learn 0.24.1 (https://scikit-learn.org/), Numpy
1.21.2 (https://numpy.org/), and Pandas – Python Data Analysis Library
1.2.3. (https://pandas.pydata.org) in Ubuntu® 20.04 (https://ubuntu.
com/).

Time to tune a single model varied depending on the time to
convergence, in general after ≈ 30,000 to 80,000 steps, and on the
hardware available. We used a desktop computer with 256 GB of RAM,
24 Intel® Xeon® W-2265 CPUs @ 3.50GHz, and NVIDIA® Corporation
TU102GL Quadro RTX 6000/8000 graphics, running Ubuntu® 20.04.
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