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DeepFLR facilitates false localization rate
control in phosphoproteomics

Yu Zong1, Yuxin Wang1,2, Yi Yang 1, Dan Zhao1, Xiaoqing Wang 3,
Chengpin Shen 3 & Liang Qiao 1

Protein phosphorylation is a post-translational modification crucial for many
cellular processes and protein functions. Accurate identification and quanti-
fication of protein phosphosites at the proteome-wide level are challenging,
not least because efficient tools for protein phosphosite false localization rate
(FLR) control are lacking. Here, we propose DeepFLR, a deep learning-based
framework for controlling the FLR in phosphoproteomics. DeepFLR includes a
phosphopeptide tandem mass spectrum (MS/MS) prediction module based
on deep learning and an FLR assessment module based on a target-decoy
approach. DeepFLR improves the accuracy of phosphopeptide MS/MS pre-
diction compared to existing tools. Furthermore, DeepFLR estimates FLR
accurately for both synthetic and biological datasets, and localizes more
phosphosites than probability-based methods. DeepFLR is compatible with
data from different organisms, instruments types, and both data-dependent
and data-independent acquisition approaches, thus enabling FLR estimation
for a broad range of phosphoproteomics experiments.

Protein phosphorylation is widely implicated in cell signal path-
ways and regulates many cellular processes. The dysregulation of
protein phosphorylation is commonly considered a hallmark of
cancer and autoimmune diseases1–3. Phosphorylation can happen
on different amino acid residues, typically serine (S), threonine (T),
and tyrosine (Y). This common post-translational modification
(PTM) is regulated by enzymes, like kinase and phosphatase, in a
dynamic way. It is highly important to characterize the dynamic
protein phosphorylation of a whole organism in an accurate and
high throughput manner at the proteome-wide level. During the
past years, phosphoproteomics has progressed rapidly, thanks to
the technological advances in phosphopeptide enrichment, high-
throughput mass spectrometry (MS), and computational
proteomics4. In addition to the peptide sequence analysis in typical
proteomics, it is crucial to determine phosphosite in phospho-
proteomics, which, however, is still a challenge due to the coex-
istence of multiple candidate phosphorylation sites in one peptide,
the lability of phosphate group during peptide fragmentation, and

the limited quality of tandem mass spectra when analyzing highly
complex samples5,6.

Despite the hurdles, a variety of phosphoproteome data analysis
workflows have been developed. The essential idea is to match
experimental tandemmass spectra to the theoretical fragment ionsm/
z. Then, phosphorylation site localization is performed based on the
observation of site-determining fragment ions, and the probability of
candidate phosphosites can be calculated by tools, such as AScore7,
PTM score (MaxQuant/Andromeda)8,9, phosphoRS10, pSite11, etc.
Otherwise, difference scores, including Mascot delta score (MD
score)12, SLIP score13, and PepArML14, are calculated based on the
identification scores given by search engines as an indication of the
level of ambiguity in the site localization. Phosphosite localization
based on the observation of site-determining fragment ions is usually
hinderedby the incompletenessof tandemmass spectrawhere no site-
determining fragment ions are observed.

An alternative strategy is to match experimental spectra to the
mass spectra in a library to select the best match result for
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phosphopeptide identification, which is not limited by the observation
of site-determining fragment ions. However, themain challenge of the
protocol is the spectral library building for phosphopeptides. One
strategy of phosphopeptides spectral library construction is to gen-
erate semi-empirical tandem mass spectra of phosphopeptides from
those of nonphosphorylated peptides by setting a mass shift of frag-
ment peaks and considering phosphoric acid neutral loss (NL) from
phosphorylated serine/threonine15,16. Another strategy attracting
increasing interest is tandem mass spectra (MS/MS) prediction by
machine learning. To date, there have already been a number of tools
for the prediction of peptide MS/MS, including the representative
conventional machine learning-based method MS2PIP17, and many
deep learning-based methods, such as pDeep18, Prosit19,
DeepMass:Prism20, DeepDIA21, etc. Nevertheless, there are only a few
tools available for the prediction of phosphopeptides MS/MS. pDeep2
reports deep learning-basedMS/MSprediction for peptideswith PTMs
including phosphorylation, which uses transfer learning to refine deep
learning models for MS/MS prediction of phosphopeptides based on
pre-trained models for unmodified peptides22. In 2021, Lou et al.
developed DeepPhospho for accurate prediction of MS/MS of phos-
phopeptides, which adopts a hybrid network design including a
bidirectional long short-termmemory (Bi-LSTM)network for encoding
peptides, a Transformer network for refining the peptide representa-
tion, and a regressor network for predicting fragment ion intensities23.

A common limitation of the currentmethods for phosphopeptide
identification is the lack of an accurate estimation of false localization
rate (FLR). Studies have shown that current tools follow disparate
score distributions, leading to different FLRs for the same score by
different tools24,25. Even for the same tool, an identical score can give
rise to diverse FLRs for various datasets24,25. Thus, a recommended
empirical score threshold by database searching or spectral matching
does not universally applicable to real biological datasets for FLR
control. So far, the most popular method to estimate FLR is to use
synthetic phosphopeptides, which, however, is time-consuming and at
a high cost. There have been tools introduced for phosphopeptides
FLR control. LuciPHOr5 generates decoys by adding phosphate groups
to all the non-candidate amino acid residues, i.e. any amino acids
instead of S/T/Y, in a target peptide sequence. SLIP score13 published a
decoy generation method of adding phosphorylated proline or glu-
tamic acid during database searching to estimate FLR for a specific
mouse dataset. To date, there are still not any universally acknowl-
edged FLR control methods in phosphoproteomics. Newmethods are
highly demanded that can accurately control FLR, accommodating the
diversity of datasets, while having little impairment on detection
sensitivity.

Herein, we present DeepFLR, a framework combining the deep
learning-based phosphopeptide MS/MS prediction and a target-decoy
approach for FLR control in phosphoproteomics. The deep-learning
model for phosphopeptideMS/MSprediction is basedonbidirectional
encoder representations from Transformers (BERT)26 trained using
>467,000 MS/MS of >184,000 phosphopeptides and >165,000 non-
phosphopeptides. Compared to the existing phosphopeptide MS/MS
spectra prediction tools, such as pDeep222 and DeepPhospho23, our
method can provide higher prediction accuracy as demonstrated
using different datasets fromHomo sapiens,Musmusculus,Arabidopsis
thaliana, Saccharomyces cerevisiae, and Escherichia coli. A target-
decoy strategy is developed for FLR control, where the decoys are
generated by randomly exchanging the phosphorylated amino acid
residue with another amino acid residue in the sequence, and the deep
learning model is used to predict MS/MS for both target and decoy
sequences. Identification of phosphopeptides is performed by
matching the experimental spectra to the predicted spectra of both
targets and decoys, and FLR estimation is performed based on the
observation of decoys in the identification results. We benchmarked
the DeepFLR on synthetic phosphopeptides datasets and biological

datasets acquired by different types of instruments (orbitrap and Q-
TOF). The results showed that DeepFLR can accurately estimate FLR
and can lead to the identification of additional phosphosites. DeepFLR
can perform analysis in combination with various database searching
tools (e.g. MaxQuant, PEAKS, and SpectroMine), identify both mono-
phosphopeptides and multiphosphopeptides, and assist in phospho-
proteomics data analysis by both data-dependent acquisition (DDA)
and data-independent acquisition (DIA) approaches.

Results
Deep learning model construction and performance evaluation
for phosphopeptide MS/MS prediction
The deep learning model for phosphopeptide MS/MS prediction
consists of four components: input, the embedding layer, the BERT
encoder and the output layer (Fig. 1a). The peptide sequence with
PTMs and charge states are taken as input. The embedding layer
contains amino acid sequence embedding, charge state embedding,
PTMs position embedding, and PTMs type embedding. The BERT is a
pre-trained deep learning model based on Transformer27 popular in
natural language processing (NLP). As peptide sequence holds similar
properties as the natural language, DeepFLR leverages BERT26 to learn
the representation of phosphopeptides and directly predicts the cor-
responding tandem mass spectra. We embedded input phosphopep-
tide sequences into hidden space and then used the BERT encoder to
extract interactions among all the amino acid residues, followed with
transforming hidden states into outputs with the output layer. Details
of the model architecture are explained in the Methods section.

The deep learningmodel was trainedwith fourteen higher-energy
collisional dissociation (HCD) phosphoproteome datasets (Train_1)
with >467,000 peptide-spectrummatches (PSMs) of >120,000 mono-
phosphorylated peptides, >63,000 multi-phosphorylated peptides
and >165,000 non-phosphorylated peptides for model training (Sup-
plementary Table 1). About 10% of the datasets were left as the vali-
dation dataset to verify the increase of MS/MS prediction accuracy
over training epochs, minimizing the risk of overfitting to the training
dataset. The splitting of the dataset for training and validation was
performedwithout data leakage as detailed in theMethods section. As
shown in Supplementary Fig. 1, compared with Transformer, BERT-
based model converged faster during training for the MS/MS spectra
prediction task. BERT took fewer epochs to reach the plateau value,
and to a value higher than the Transformer using the same hyper-
parameters. Pre-trainedon large-corpus, BERThas great initial solution
space for downstream tasks so it costs short training time for the task
of MS/MS spectra prediction.

The trained deep learning model based on BERT achieved excel-
lentMS/MSprediction performance on the validation dataset, with the
median cosine similarity between the experimental and predicted
spectraof0.957 and0.931 respectively formonophosphopeptides and
multiphosphopeptides (Supplementary Fig. 2). The deep learning
model was then applied to five LC-MS/MS datasets (Test_1, Test_2,
Test_3, Test_4, and Test_5, Supplementary Table 1), independent of the
training datasets, of phosphopeptides from different organisms for
performance evaluation. DeepFLR predicted phosphopeptide MS/MS
accurately for H. sapiens, M. musculus, A. thaliana, S. cerevisiae and E.
coli, with the median cosine similarity between the predicted and
experimental mass spectra for mono- and multi-phosphopeptides of
all the datasets over 0.86 (Fig. 1b and Supplementary Fig. 3). The
results demonstrated that DeepFLR can achieve excellent perfor-
mance on MS/MS prediction for phosphopeptides from different
organisms although it was originally trained with datasets from H.
sapiens.

To handle the data shift between datasets, fine-tuning was adop-
ted to further enhance the performance of the MS/MS prediction. For
each dataset, part of the data was used for fine-tuning and the other
was used for testing (see details in Supplementary Table 1). Non-
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phosphorylated peptideswere also included in the fine-tuning, but not
for the test. The splitting of the dataset for fine-tuning and testing was
performed without data leakage as detailed in the Methods section. It
was found that the prediction accuracy was significantly enhanced
after fine-tuning, with the median cosine similarity of 0.943 for the H.
sapiens dataset, 0.955 for theM.musculus dataset, and 0.929 for the A.
thaliana dataset (Fig. 1b). We did not differentiate the mono- and
multi-phosphorylated peptides for the cosine similarity calculation
after fine-tuning. We also calculated the cosine similarity of repeatedly
collectedmass spectra of the same phosphopeptides in one dataset to
quantify technical variability. It showed that the DeepFLR after fine-
tuning can predict phosphopeptide MS/MS at a quality highly close to
the experimental replication (Fig. 1b). For instance, the median cosine
similarity for the H. sapiens dataset by the fine-tuned DeepFLR was
0.943, while it was 0.945 by the experimental replication.

We then compared the performance of DeepFLR in MS/MS pre-
diction with pDeep222 and DeepPhospho23 (Figs. 1c and 1d). The results
showed that DeepFLR reached higher median cosine similarity for all
the test datasets of different organisms than pDeep2 and DeepPho-
spho. As the performance of DeepPhospho can be enhanced by fine-

tuning, we fine-tuned DeepPhospho with different epochs as sug-
gested by the publication of DeepPhospho, using part of the data in
Test_1, Test_2, and Test_3 (Supplementary Table 1, Supplementary
Figs. 4 and 1c). It turned out that the performance of fine-tuned
DeepPhospho still fell back to DeepFLR. We also fine-tuned Deep-
Phospho using the same training dataset Train_1 of DeepFLR. As a
result, the performance of DeepPhospho was enhanced but still not as
good as that of DeepFLR (Supplementary Fig. 5). For pDeep2, different
normalized collision energy (NCE) parameters ranging from 0.20 to
0.40 were tested (Supplementary Fig. 6), and the performance of MS/
MS prediction by pDeep2with the optimal NCEwas still not as good as
that of DeepFLR. Besides cosine similarity, we also show the distribu-
tion of the Pearson correlation coefficient computed between the
predicted and experimental spectra for DeepFLR, DeepPhospho, and
pDeep2, respectively (Supplementary Fig. 7).

Benchmarking the FLR control by DeepFLR on synthetic phos-
phopeptides datasets
With the accurate prediction of phosphopeptides MS/MS by deep
learning, a target-decoy method was established to control the FLR in
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phosphoproteomics. We tested two different strategies in decoy
generation: Method 1, exchanging the whole phosphorylated residue
with another non-candidate amino acid residue in the target sequence;
andMethod 2, randomly shifting the phosphate group to another non-
candidate amino acid residue in the target sequence (Supplementary
Fig. 8a). The initial peptides list was obtained by protein sequence
database searching of the raw LC-MS/MS data, which can be done by
different database searching software solutions, e.g.MaxQuant, PEAKS
and SpectroMine. Then, the MS/MS of identified phosphopeptides
with candidate phosphosites number > the phosphate groups number
were extracted for re-analysis by DeepFLR. A target phosphopeptides
list was generated from the search result by adding all possible phos-
phopeptides isoforms, i.e. the combination of all possible phosphates
locations on a peptide, and then the decoy for each target was gen-
erated using the aforementioned twomethods, respectively. Next,MS/
MS spectra for both target and decoy phosphopeptides were pre-
dicted by the deep learning model. Cosine similarity was calculated
between the predicted target/decoyMS/MS and the experimental MS/
MS. The top match was reported for each experimental MS/MS with a
delta score as the difference value between the maximum cosine
similarity and the cosine similarity of a target phosphopeptide closest
to the maximum cosine similarity. Identification of all extracted
experimental MS/MS was ranked by the delta score, and the FLR was
assessed by the presence of target and decoy phosphopeptides in the
identification list under a delta score threshold (Fig. 2a). We have
chosen four synthetic phosphopeptides datasets (Supplementary
Table 2) to evaluate the FLR control using the two decoy generation
methods. Based on the synthetic phosphopeptides sequence, empiri-
cal or real FLR can be calculated for comparison. As shown in Sup-
plementary Fig. 8b–i, the decoy generation Method 1 can lead to a
more accurate estimation of FLR and more identification of phos-
phopeptides under a given real FLR on all four synthetic phospho-
peptides datasets. Therefore, Method 1 was chosen for subsequent
data analysis.

We firstly combined the DeepFLR with MaxQuant. The initial
phosphopeptide list was from the database searching result by Max-
Quant with FDR ≤ 1% and phosphosite probability score ≥ 0. The cor-
responding MS/MS spectra were then reanalyzed by DeepFLR. The
performance of DeepFLR and MaxQuant was assessed on the four
synthetic phosphopeptides datasets including three orbitrap datasets
(Syn_1, Syn_2, Syn_3) and one quadrupole time-of-flight (Q-TOF) data-
set (Syn_4). As the decoy generation can introduce randomicity, we
repeated the analysis on the four synthetic phosphopeptides datasets
ten times (n = 10) to calculate the 95% confidence interval. As shown in
Fig. 2b–e and Supplementary Figure 9, on all the four synthetic pep-
tides dataset, the estimated FLR correlated well with the real FLR in a
wide range, and a good agreement between the estimated and real FLR
was obtained around 1% FLR.

We then compared the number of identified phosphopeptides
PSMs at 1% real FLR by MaxQuant and DeepFLR, excluding the ones
without phosphopeptide isoforms, i.e. the number of candidate
phosphosites = the number of phosphate groups. For Syn_1 (Supple-
mentary Table 2), at 1% real FLR, MaxQuant alone got 384 PSMs and
DeepFLR in combination with MaxQuant got 468 PSMs on average
(Fig. 2f). Since Syn_1 is very small (130 phosphopeptides, Supplemen-
tary Table 2), a relatively large variation in the number of PSMs was
observed. For all the 10 tests, DeepFLR gotmore PSMs thanMaxQuant
alone. It should be noted that the MaxQuant localization probability
scorewas 0.99 to achieve the 1% real FLR on this dataset, in contrast to
the recommended value of 0.7528.

Then, we compared DeepFLR and MaxQuant on another larger
synthetic phosphopeptide dataset acquired on an LTQ Orbitrap Velos
mass spectrometer. As the pre-trained DeepFLR deep learning model
was based on data from the newer version of Orbitrap mass spectro-
meters, i.e. Q Exactive, Q Exactive HF, Q Exactive Plus, and Orbitrap

Fusion, fine-tuning was applied for this dataset using about half of the
raw files (Supplementary Table 2 and Methods section). The refined
DeepFLR model was then used to identify phosphopeptides from the
rest raw files. The splitting of the dataset for fine-tunning and test was
performed without data leakage as detailed in theMethods section. At
1% real FLR, MaxQuant alone got 10,826 PSMs (localization probability
of 0.98), and DeepFLR in combination with MaxQuant got 9518 PSMs
on average (Fig. 2g). To note, the 95% confidence interval decreased
with sample size increasing. Herein, less PSMs were identified by
DeepFLR compared to MaxQuant. As noted by another publication
and the original paper, due to the synthesis strategy adopted by the
work, there can be numerous peptides with similar sequences in the
dataset29,30, which may limit the data analysis performance of the
target-decoy approach adopted by DeepFLR.

DeepFLR can be further extended to multiphosphorylated pep-
tides (Supplementary Fig. 10). For decoy generation, each of the
phosphorylated residues was exchanged randomly with another non-
candidate amino acid residue in the peptide sequence. For one target
double-phosphorylated peptide, two decoys can be generated. The
FLR calculation remains unchanged. We tested the method on the
synthetic phosphopeptides dataset Syn_3 (Supplementary Table 2),
which includes multi-phosphorylated and mono-phosphorylated
peptides. At 1% real FLR, MaxQuant alone identified 2073 PSMs (loca-
lization probability of 0.83), and DeepFLR in combination with Max-
Quant identified 2144 PSMs on average (Fig. 2h). The identification
results include both mono- and multi-phosphorylated peptides.

To demonstrate the performance of DeepFLR on other types of
instruments, the synthetic phosphopeptides dataset Syn_4 acquiredby
Q-TOF was further adopted (Supplementary Table 2). Since Q-TOF is
significantly different from orbitrap instrument, re-training of the
DeepFLR deep learningmodel was applied using three Q-TOF datasets
containing 34,077 PSMs of 16,297 phosphopeptides and 12,471 non-
phosphorylated peptides (Train_2, Supplementary Table 2). About 10%
of the datasets were left as the validation dataset. The re-trained
DeepFLR achieved good MS/MS prediction performance with the
median cosine similarity against experimentalMS/MSof 0.84 and 0.87
on the Syn_4 and the validation dataset of Train_2, respectively (Sup-
plementary Table 2, Supplementary Fig. 11). With the re-trained deep
learning model, DeepFLR in combination with MaxQuant localized
24.6% phosphosites (6815 on average) more than MaxQuant alone
(5470) at 1% real FLR (Fig. 2i). For MaxQuant, the localization prob-
ability was 0.90 to get 1% real FLR.

DeepFLR can also be combined with other database searching
tools, such as SpectroMine31 and PEAKS32. With Syn_3, DeepFLR com-
bined with SpectroMine obtained 2907 phosphopeptides PSMs at 1%
real FLR, while in contrast the SpectroMine alone cannot reach 1% FLR
by optimizing the localization probability score (P.LocalizationConfi-
dence), Supplementary Fig. 12. Combining with PEAKS, DeepFLR
identified 1832 phosphopeptides PSMs at 1% real FLR, while PEAKS
alone identified 1813 phosphopeptides PSMs at 1% real FLR where the
localization probability score (AScore) was 10.2 instead of the
recommended AScore of 207, Supplementary Fig. 12. Combining with
either SpectroMine or PEAKS, DeepFLR estimated accurately the FLR
for Syn_3 (Supplementary Fig. 12). It should be noted that DeepFLR
reanalyzes the results of database searching for phosphopeptides
identification, and hence its performance is related to the software
solutions used for database searching. For Syn_3, DeepFLR obtained
the most PSMs when combining with SpectroMine.

We further compared DeepFLRwith recently published localizing
algorithm AscorePro33 and PhosphoRS10. DeepFLR outperformed
AscorePro and PhosphoRS in sensitivity (Supplementary Fig. 12). We
also comparedDeepFLR toother FLR controlmethod, i.e. LuciPHOr234,
the extended version of LuciPHOr5, with Syn_3 based on the database
searching result by MaxQuant. LuciPHOr234 failed to filter wrong hits
and the real FLRonlydropped to4%when the estimated FLR reached0
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(Supplementary Fig. 12). In contrast, DeepFLR can estimate accurately
the FLR and identified 2144 PSMs at 1% real FLR (Fig. 2h, Supplemen-
tary Fig. 12).

To illustrate the performance of the target-decoy approach, the
delta score distribution of the top hit of each MS/MS for all the syn-
thetic datasets was plotted. As shown in Supplementary Fig. 13, the
distributionof decoyhitswas similar to thatof false hits. Therefore, the
decoy hits can trace how false hits distribute, and thus the DeepFLR
can estimate the real FLR. In contrast, the median of the delta score of
true hits was much larger than that of the decoy or false hits. Hence,
most true identification results can be retained during the FLR control

to guarantee good detection sensitivity. A bi-modal behavior can be
observed for the false hits on some synthetic datasets, which can be
due to the small size of the datasets that can lead to randomicity and
permutation. With the largest synthetic dataset, Syn_2, there is no
obvious bi-modal behavior.

To exemplify how the DeepFLR can localize a phosphorylation
site, the identification of a MS/MS for the phosphopeptide
pSTLVLHDLLK is illustrated in Supplementary Fig. 14. The phospho-
peptide has two adjacent potential phosphorylation sites, S1 and T2.
The site-determining ions are b1 and y9, which are missed in the MS/
MS spectra, making the two sites not distinguishable by database
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searching tools based on the observation of site-determine ions. In
DeepFLR, the MS/MS was successfully identified as pSTLVLHDLLK,
with a delta score of 0.080. This spectrumwas from the Syn_1 dataset,
where a delta score threshold of 0.054 corresponded to the FLR of
0.01. Therefore, DeepFLR can benefit the identification of phospho-
peptides without site-determining ions.

Analysis of biological samples by DeepFLR
After assessing the performance of DeepFLR on the synthetic phos-
phopeptides datasets, DeepFLR was further applied to large-scale
biological sample datasets. As the MS/MS prediction accuracy can be
enhanced through transfer learning, fine-tuning was applied to
DeepFLR before the analysis of the biological sample datasets (see
details in the Methods section). Although DeepFLR can handle phos-
phopeptides with more than two phosphate groups, multipho-
sphopeptides beyond doubly phosphorylated peptides are less
frequently observed and hence discarded in these examples to save
computation time. Based on the evaluation using synthetic phospho-
peptides datasets, the MaxQuant localization probability threshold
was set as 0.99 for 1% FLR. The phosphopeptides identified by Max-
Quant without phosphopeptides isoforms, i.e. the number of candi-
date phosphosites = the number of phosphate groups, were kept in the
identification list of both DeepFLR and MaxQuant for comprehensive
bioinformatic analysis.

We collected the first benchmark biological dataset Bio_1 using an
Orbitrap Fusion Lumos Tribrid mass spectrometer. The sample was
phosphopeptides enriched from the tryptic digests of proteins from
Hela cells without any specific treatment (Supplementary Table 3,
Methods section). At 1% estimated FLR, DeepFLR combining Max-
Quant localized 9727 phosphosites, while MaxQuant alone localized
5749 phosphosites with 0.99 localization probability (Fig. 3a, Supple-
mentary data 1). DeepFLR covered 99% of the phosphosites localized
by MaxQuant alone. On the phosphopeptides level, DeepFLR identi-
fied 4856 phosphopeptides more than MaxQuant alone and covered
99% of the phosphopeptides identified by MaxQuant alone (Fig. 3b,
Supplementary data 1). To test the reliability of the 9727 protein
phosphosites localized by DeepFLR, stepwise coverage was applied
(Fig. 3c). For all the 9727 phosphosites, 5698 proteins phosphosites
were covered by MaxQuant with 0.99 localization probability. For the
rest 4029 phosphosites, 3607 were covered by SpectroMine analysis
of the same dataset with 0.99 localization probability. Furthermore, 95
remaining phosphosites were covered by MaxQuant with 0.75 locali-
zation probability, and then 43 by SpectroMine with 0.75 localization
probability. We have also analyzed the same sample by another mass
spectrometer, the timsTOF Pro2, using the parallel accumulation serial
fragmentation data dependent acquisition (PASEF-DDA) strategy, and
analyzed the data by SpectroMine with 0.75 localization probability,
where 167 additional protein phosphosites were identified. Finally, the
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remaining uncovered phosphosites were subjected to targeted analy-
sis. We checked theMS/MS spectramanually and identified another 37
protein phosphosites with the support of site-determining fragment
ions (Supplementary data 2). Finally, therewere only 80 (0.8%) protein
phosphosites identifiedbyDeepFLRnot coveredby anyother software
solutions or analysismethods adopted here. The results supported the
reliability of the DeepFLR in phosphopeptides identification.

The second benchmark biological dataset is from the phospho-
peptides enriched from the tryptic digests of proteins of MCF7 breast
cancer cells treated with a cocktail of insulin-like growth factor-1,
epidermal growth factor and pervanadate, originally published by
Lawrence et al. (PXD003344, Bio_2 Supplementary Table 3)35. At 1%
estimated FLR, DeepFLR combining MaxQuant localized 5520 protein
phosphosites (Fig. 3d) compared to 3224byMaxQuant alonewith0.99
localization probability (Supplementary data 3). For 2336 additionally
localized protein phosphosites byDeepFLR, 1593were reported by the
original publication from the same sample combining the results by
different mass spectrometry methods35 (Supplementary Fig. 15a). It
should be noted that more kinase-regulated sites were identified by
DeepFLR than MaxQuant alone (Supplementary Fig. 15b). At the
phosphopeptides level and PSMs level, DeepFLR also gave more
identifications than MaxQuant alone (Supplementary Fig. 15c, d). By
comparing the identification results from technical replicates, it was
found that 30.6% protein phosphosites were identified from all four
technical replicates by DeepFLR, while only 26.4% by MaxQuant alone
(Fig. 3e), demonstrating that DeepFLR can provide identification
results with higher consistency among replication. Similar results were

observed at the phosphopeptides level (Supplementary Fig. 15e).
Then, the sequences of phosphopeptides identified by DeepFLR and
MaxQuant alone were exploited to construct a sequence logo (Fig. 3f),
where the 7 amino acid residues before and after the phosphorylated
S/T/Y were displayed. It showed that the phosphopeptides identified
by DeepFLR and MaxQuant shared a similar pattern of sequence logo,
but the frequency of threonine slightly rose while tyrosine was almost
unchanged and serine dropped in the DeepFLR-based result, indicat-
ing that DeepFLR has a stronger capability to identify low-abundant
phosphothreonines. Revealed by the sequence logo results, the pre-
valence of proline at position n + 1 may act as the sign of proline-
directed kinases36.

The third benchmark biological dataset is from a study by Bekker-
Jensen et al. (PXD014525, Bio_3, Supplementary Table 3)37. The dataset
is based on epidermal growth factor (EGF)-stimulated retinal pigment
epithelium (RPE1) cells with six conditions of no treatment, EGF trea-
ted only, and EGF treated with MEK inhibitors of Cobimetinib (5 μMor
0.5μM)or PD0325901 (5μMor0.5μM). At 1% estimated FLR,DeepFLR
combining MaxQuant identified 10,909 protein phosphosites, com-
pared to 6104 by MaxQuant alone with 0.99 localization probability
(Fig. 4a, Supplementary data 4). For the 4859 DeepFLR additionally
localized protein phosphosites, 3898 were reported by the original
paper37 combing all the results of different mass spectrometry meth-
ods for the same sample (Supplementary Fig. 16a). Better performance
by DeepFLRwas also observed at the phosphopeptides and PSMs level
(Supplementary Fig. 16b, c). To reveal the new biological insights by
DeepFLR, we performed an analysis of variance (ANOVA) test to
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identify significantly regulated sites. DeepFLR identified 186 sig-
nificantly regulated phosphorylation sites, nearly twice as many as the
number of significantly regulated sites identified by MaxQuant alone
(99) (Supplementary data 5). Unsupervised hierarchical clustering was
performed to generate a heatmap of the significantly regulated
phosphosites obtained by DeepFLR (Fig. 4b) and MaxQuant (Fig. 4c).
Similar patterns of regulated phosphorylation events revealed by the
two tools were observed. The red rectangles highlight the clusters of
phosphosites stimulated by EGF and regulated by MEK. The EGF
treatment induces the phosphorylation of its receptor38, and in turn
activates downstream mitogen-activated protein kinase (MAPK)
pathway,which involves the activationof extracellular signal-regulated
kinase (MEK1 andMEK2), andMAPK (ERK2 andERK1) kinases39.MEK1/2
regulate ERK, while ERK regulates a wide variety of cellular functions
by phosphorylating its substrates including p90RSK1, MNK1, MNK2,
and TOB38,40. The MEK inhibitors added after EGF stimulation can
inactivate the phosphorylation of ERK and hence down-regulate the
phosphorylation of the substrates of ERK41. The phosphosites of the
cluster highlighted by the red rectangles were exploited to construct
sequence logos for DeepFLR (Fig. 4d) and MaxQuant (Fig. 4e). Both
sequence logos demonstrated a Px[s/t]P motif (Fig. 4d, e), which is in
accordance to the known ERK kinase substrate motif (Supplementary
Fig. 16d), demonstrating the biologically relevant information from the
additionally identified phosphosites by DeepFLR. It should be noted
that although the sequence logos of DeepFLR and MaxQuant alone
showed similar pattern, DeepFLR localized ERK substrate phospho-
sites (n = 60) more than that by MaxQuant alone (n = 29).

It should be noted that the significantly enhanced number of
identified phosphosites by DeepFLR compared to MaxQuant on the
biological samples can be a result of the high localization probability
threshold we set forMaxQuant for a conservative estimate. To provide
amore comprehensive comparison, we show in Supplementary Figure
17 how the number of phosphosites changes as the MaxQuant locali-
zation probability cutoff is varied from0.75 to 1 for the three biological
datasets Bio_1, Bio_2, and Bio_3. With the decrease of MaxQuant
probability cutoff, the number of phosphosites increases significantly.
Nevertheless, even at the probability cutoff of 0.75, the number of
localized phosphosites by MaxQuant alone are fewer than that by
DeepFLR in combination with MaxQuant at 1% estimated FLR on all
three biological datasets, demonstrating the good performance of
DeepFLR.

Phosphopeptides DIA analysis with spectral libraries built by
DeepFLR
Recently, DIA has also been used for phosphoproteomics37. In contrast
to DDA, where the MS/MS is acquired based on the observation of
precursor ions, DIA performs a sequence of MS/MS scans within
defined isolation windows in each acquisition cycle, recording frag-
mentation information of all peptides in a sample42. The DIA data can
be analyzed by the spectrum-centric and peptide-centric strategies. In
the spectrum-centric strategies, pseudo MS/MS spectra are generated
by assembling precursor-fragment groups based on the elution pro-
files of precursor and fragment ions, and then subjected to routine
DDA database search. In the peptide-centric strategies, target peptides
are queried against DIA data to extract the best candidate chromato-
gram signals using prebuilt spectral libraries by DDA analysis of the
same sample containing the information of retention time and frag-
ment ions. The peptide-centric strategies can normally lead to more
sensitive identification.

In peptide-centric DIA analysis, the quality of the spectral library is
crucial for subsequent DIA analysis. As show in Supplementary Fig. 18,
when the spectral library contains a large amount of phosphopeptides
with incorrect phosphosites, detection sensitivity is significantly
restricted. Herein, we used DeepFLR to generate spectral libraries with
accurate phosphosites to facilitate DIA analysis. DDA data for spectral

library building was firstly processed by SpectroMine with localization
probability threshold of 0, and the MS/MS of identified phosphopep-
tides were re-analyzed byDeepFLR for phosphopeptides identification
with an estimated FLR of 0.01. Three spectral libraries were generated
by DeepFLR for DIA data analysis, including the predicted spectral
library (Fig. 5a), the hybrid spectral library and the re-localized
experimental spectral library. For the predicted spectral library, all
MS/MS spectra were predicted by DeepFLR. For the hybrid spectral
library, if DeepFLR identified a different phosphopeptide compared to
SpectroMine from a MS/MS spectrum, the MS/MS spectrum of the
phosphopeptide in the library was generated by DeepFLR prediction,
while the others were from DDa experiment. For the re-localized
experimental spectral library, all MS/MS spectra were from the
experiment but the phosphopeptide identification result was from
DeepFLR. All the retention time values in all three libraries were from
experiment. For comparison, DDA-based experimental spectral library
was also generated by SpectroMine with the localization probability
threshold of 0.75 (Fig. 5a). We tested the performance of the spectral
libraries on a synthetic phosphopeptides DIA dataset (DIA_1,
PXD01452537) (Supplementary Table 4). As shown in Supplementary
Figure 19 and Fig. 5b, c, the predicted spectral library led to the largest
number of identified phosphopeptides precursors among all the three
libraries. Precursors from different DIA runs were count separately.
Even without localization filtration during the DIA data analysis by
Spectronaut, the real FLR was smaller than 1% (0.83%) when using the
DeepFLR predicted spectral library. In contrast, the EG.PTMassay-
probability needed to reach 0.84 during the DIA data analysis to
reduce the real FLR to 0.01 and 0.88 to reduce the real FLR to 0.83%
when using the SpectroMine spectral library (Fig. 5b). For 0.83% real
FLR, DIA search results based on the DeepFLR predicted spectral
library identified 2896 phosphopeptides precursors, while the DIA
search result based on the SpectroMine spectral library identified only
2774 phosphopeptides precursors (Fig. 5c). We also compared the
performance of DeepPhospho with DeepFLR. As shown in Supple-
mentary Fig. 20, DeepFLR outperforms DeepPhospho in both sensi-
tivity and localization accuracy. For the DeepPhospho predicted
spectral library, the phosphopeptides in the library were obtained by
SpectroMine analysis of the corresponding DDA datasets with 0.75
localization probability threshold. Both the MS/MS spectra and the
retention time values were predicted by DeepPhospho.

The performance of the predicted spectral library by DeepFLR
was further tested on a biological sample dataset originally published
by Searle et al. (DIA_2,MSV00008295643, Supplementary Table 4). The
deep learning model of DeepFLR was fine-tuned by part of the DDA
data corresponding to the DIA data (Supplementary Table 4, Meth-
ods). The EG.PTMassayprobability cutoff was set as 0 and 0.88 for the
analysis using the DeepFLR predicted spectral library and the
SpectroMine-based experimental spectral library, respectively, based
on the results from the synthetic phosphopeptides dataset DIA_1. 5981
protein phosphosites were localized using the DeepFLR predicted
spectral library, while 5783 were localized by using the SpectroMine
spectral library, with 4441 shared by the two libraries (Fig. 5d, Sup-
plementary data 6). The coefficient of variation (CV) among three
technical replicateswas calculated for the identified phosphosites. The
CV based on the DeepFLR predicted spectral library was smaller than
that based on the SpectroMine spectral library (Fig. 5e).

Discussion
In this study, we propose DeepFLR to address the FLR control issue in
phosphoproteomics via a target-decoy approach, where MS/MS of
target and decoy phosphopeptides are predicted by deep learning and
used for spectra matching-based phosphopeptides identification. The
performance of DeepFLR was benchmarked on synthetic phospho-
peptides datasets and biological sample datasets acquired by different
types of instrument (orbitrap and Q-TOF) and with different data
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acquisition strategies (DDA and DIA). It should be noted that DeepFLR
is only used to locate phosphate groups on peptides and needs to be
used with different sequence database searching tools, such as Max-
Quant, PEAKS and SpectroMine, for peptide identification. In DIA,
DeepFLR is used to build a spectral library basedonDDAdata database
searching results. We have demonstrated that DeepFLR can lead to
more identification of phosphosites and accurate FLR control. In the
case of biological datasets, the additionally identified phosphosites
were verified using different software solutions and different mass
spectrometry-based approaches, such as PRM and PASEF-DDA, as well
as biological settings. DeepFLR does not restrict precursor charge
states, predicts 36 fragment types, handles sequence length less than
512 amino acids, and considers four common PTMs (Phospho (STY),
Oxidation (M), Acetyl (Protein N-term), Carbamidomethyl (C)), cov-
ering most of the phosphopeptides under normal circumstances. The
MS/MS spectra prediction speed is 110 spectra/s using RTX 3090

(GPU) and 20 spectra/s with AMD Ryzen 7 4800U (CPU), which is fast
enough for most current phosphoproteomics studies.

The deep learning model of DeepFLR is based on BERT, the
bidirectional encoder representations from Transformer. Compared
to the existing deep learning models for phosphopeptides MS/MS
spectra prediction, i.e. pDeep222 and DeepPhospho23, DeepFLR
enhances prediction accuracy. Different from the bidirectional LSTM
used in pDeep2, BERT used by DeepFLR utilizes attention mechanism
that enables each token to interact with all the other tokens whatever
distance between them, thus capturing long-range dependency.
Compared with DeepPhospho, the versatility of BERT can substitute
the Bi-LSTM module in DeepPhospho. BERT is a model pretrained to
understand natural language. Considering the fact that peptide
sequence holds similar properties as the natural language, we used
BERT with pre-knowledge from natural language processing for a
better initialization of representation and achieved better prediction
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libraries construction. Identification of phosphopeptides from a synthetic phos-
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precursors. d Venn diagram of the number of phosphosites localized for a biolo-
gical phosphopeptides dataset DIA_2 using DeepFLR predicted spectral library and
SpectroMine-based experimental spectral library. e Coefficient of variation calcu-
lated based on the protein phosphosites quantity among three technical replicates
in DIA_2 using DeepFLR predicted spectral library and SpectroMine-based experi-
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performance than theTransformerwithout pretraining. The utilization
of publicly-available pretrained general model is also a common
method to reduce training cost44.

DeepFLR utilizes a target-decoy strategy for FLR control. The
most commonly used decoy generation for FDR control in sequence
database searching is the reversal or shuffle of peptide sequences.
When the idea of the target-decoy method is extended to spectra
searching, decoy spectra are usually generated bymanipulation of real
spectra or by machine learning-based prediction45,46. Nonetheless, the
decoy generation approaches for FDR control cannot accurately cap-
ture errors associated with partial matches including the incorrect
assignment of PTMs sites46. For FLR control, LuciPHOr5 generates
decoys by adding phosphate groups to all the non-candidate amino
acid residues. However, adding phosphate groups on all the residues
except S/T/Y results in the generation of much more decoys than the
targets, which can lead to reduced sensitivity and large computational
costs. SLIP score13 adds phosphorylated proline or glutamic acid dur-
ing database searching. As the frequency of amino acids varies among
datasets, choosing specific residues to generate decoys can result in
distinct performances for different datasets. In this work, we tested
two decoy generation approaches, by exchanging the whole phos-
phorylated amino acid residue with another non-candidate amino acid
residue, or by randomly shifting the phosphate group to another non-
candidate amino acid residue. The method of exchanging residue can
estimate FLR accurately with high sensitivity.

Currently, the most commonly used workflow for phosphopro-
teomics is based on protein sequence database searching, using soft-
ware solutions such asMaxQuant8, PEAKS32, etc., together with built-in
probability-based localization algorithms, such as PTM score9,
AScore7, etc. In this study, the original identification result of phos-
phopeptides is obtained by MaxQuant, PEAKS, or SpectroMine, and
DeepFLR is used to re-localize phosphate groups for each identified
phosphopeptide and control FLR. DeepFLR achieves excellent per-
formance in combination with all the protein sequence database
searching tools. As demonstrated with four synthetic phosphopep-
tides datasets, the DeepFLR can estimate accurately 1% FLR for the
identification of phosphopeptides. In contrast, it is hard to define a
universal score threshold to determine FLR using probability-based
localization algorithms. For Syn_1, Syn_2, Syn_3, and Syn_4, the Max-
Quant probability scores for 1% FLR are 0.99, 0.98, 0.83, and 0.90,
respectively. However, a probability score threshold of 0.75 is
recommended in many publications24,28,47, making the phosphosite
localization less reliable in the proteomic study of real biological
samples, and hence introducing cumbersome tasks to the following
biological validation.

Although DeepFLR can estimate accurately 1% FLR for all the
synthetic phosphopeptides datasets, fewer phosphopeptides are
identified by DeepFLR than MaxQuant for Syn_2, which is a large syn-
thetic phosphopeptides dataset, acquired by Orbitrap LTQ Velos sys-
tem. In contrast, DeepFLR identifies more phosphopeptides than
MaxQuant for the other synthetic phosphopeptides datasets. One
possible reason for the restricted performance for Syn_2 can be due to
the synthesis strategy adopted to generate the dataset. The synthetic
phosphopeptide library was built from 96 seed peptides29, which
included numerous peptides with similar sequences and very different
from the condition of the real biological samples. The numerous iso-
mers in the library can render the data analysis performance of the
target-decoy strategy adopted by DeepFLR. We hope that more syn-
thetic phosphopeptides datasets would be available in the near future,
with which the target-decoy strategy for FLR estimation can be further
optimized to achieve amoreaccurate estimationof FLR in awide range
and more sensitive identification of phosphopeptides. To further
improve the detection sensitivity, contrastive learning48 can be used to
increase the differentiation between false phosphosites and correct
phosphosites.

DIA is an emerging alternative to DDA to provide comprehensive
information on samples. For peptide-centric DIA data analysis, it is
important to build a spectral library highly specific to the samples,
including as many as possible phosphopeptides with accurate phos-
phosites information. We tested three spectral libraries construction
methods, including the predicted spectral library, the hybrid spectral
library, and the re-localized experimental spectral library, among
which the predicted spectral library performs the best. The quality of
the MS/MS spectra in the predicted library can be better than the
experimental MS/MS spectra when the peptides are at low abundance
or when there is co-elution of peptides in the isolation window of MS/
MS acquisition by DDA, hence leading to better performance in DIA
analysis. DeepFLR can also be used to assist the spectrum-centric
analysis of DIA data for phosphoproteomics by performing spectra
deconvolution using DIA-Umpire49.

We anticipate that DeepFLR can be a key metric for FLR control
just as the conventional target-decoy measure for FDR in peptide
identification. DeepFLR can also be used to validate the localization
credibility of datasets and even public knowledgebases to promote
downstream usage. Besides, it can evaluate different computational
pipelines by classifying the individual score thresholds of a given
estimated FLR. We outlook that the concept of DeepFLR can be
extended to enhance site localization confidence in other PTMs, such
as glycosylation.

Methods
Phosphopeptides sample preparation
Human epithelial cervical cancer cells (HeLa, CCL-2, the American
Type Culture Collection (ATCC), Manassas, VA, USA) were cultured in
Gibco Dulbecco’s Modified Eagle Medium (DMEM) with 10% fetal
bovine serum and Penicillin-Streptomycin at 37 °C in an incubatorwith
5% CO2. Cells were harvested at approximately 80% confluency by
incubation with 0.25% trypsin/EDTA, washed three times with PBS,
pelleted by centrifugation for 5min at 3000 g, and collected in a lysis
buffer cocktail (8M urea,1mM EDTA, 1mMCAA, 150mMNaCl, 50mM
Tris-HCl pH 8.0, protease inhibitor, and phosphatase inhibitors). The
samples were then lysed on ice for 5min and centrifuged at 21,500 g
for 20min at 4 °C. Proteins were collected from the supernatant and
quantified by using the Pierce™ BCA Protein Assay Kit (Thermo Fisher
Scientific, Waltham, MA, USA). Five hundred micrograms of protein
were transferred into a new centrifugation tube and the final volume
was adjusted to 400μL with 8M urea. Ten microlitres of 0.5M tris(2-
carboxyethyl)phosphine (TCEP) was added and the sample was incu-
bated at 37 °C for 1 h. Then 20μL of 1M iodoacetamide was added to
the sample and the incubation was last for 40minutes protected from
light at room temperature. After that, five volumes of −20 °C pre-
chilled acetone were added to precipitate the proteins overnight at
−20 °C. The precipitates were washed with 1mL pre-chilled 90% acet-
one aqueous solution twice and then re-dissolved in 500μL 100mM
tetraethylammonium bromide (TEAB). Sequence grade modified
trypsin (Promega, Madison, WI, USA) was added at the ratio of 1:50
(enzyme: protein, weight: weight) to digest the proteins at 37 °C
overnight. The peptide mixture was desalted by Sep-Pak C18 1 cc Vac
Cartridge (WAT054955, Waters, Milford, MA, USA), quantified by
Pierce quantitative colorimetric peptide assay (Thermo Fisher Scien-
tific, Waltham, MA, USA), and then lyophilized by SpeedVac (Waters,
Milford, MA, USA). The phosphopeptides were enriched with High-
SelectTM TiO2 Phosphopeptide Enrichment Kit (Thermo Fisher Scien-
tific, Waltham, MA, USA) following the manufacturer’s instructions.
The enriched phosphopeptides were dried by a speed vacuum
concentrator.

LC-MS/MS analysis
The phosphopeptides enriched from 1mg of peptides were re-
dissolved in 15μL buffer A (0.1% formic acid in water) and analyzed

Article https://doi.org/10.1038/s41467-023-38035-1

Nature Communications |         (2023) 14:2269 10



by Orbitrap Fusion Lumos coupled to an EASY-nanoLC 1200 system
(Thermo Fisher Scientific, Waltham, MA, USA) with Thermo Xcalibur
(version 3.0.63) for data collection. A total of 4μL peptide sample was
loaded onto a 25 cm analytical column (75 μm inner diameter, 1.9μm
resin, Dr.Maisch) and separated with a 120min-gradient starting at 4%
buffer B (80% ACN with 0.1% FA) for 4min followed by a stepwise
increase to 50% in 116min, 95% in 1min and stayed there for 9min. The
column flow rate was maintained at 250 nL/min with a column tem-
perature of 55 °C. The electrospray voltage was set to 2 kV. The mass
spectrometer was run under data-dependent acquisition (DDA) mode,
and automatically switched betweenMS andMS/MSmode. The survey
of full scan MS spectra (m/z 350–1500) was acquired in the Orbitrap
with 1,200,000 MS resolution. The automatic gain control (AGC) was
targeted at 4e5 and the maximum injection time was 50ms. Then the
precursor ions were selected into the collision cell for fragmentation
by HCD, the collision energy was 30. The MS/MS resolution was set at
30,000, the automatic gain control (AGC) targeted at 105, the max-
imum injection time was 540ms, the isolation window was 4m/z, and
dynamic exclusion was 30 seconds.

The same sample was also analyzed by timsTOF pro2 (Bruker
Daltonics, Bremen, Germany)with Bruker CompassHyStar 6.0 for data
collection. TheUltiMate 3000 (ThermoFisher Scientific,Waltham,MA,
USA) LC systemwas connected to the timsTOFPro2. Samples enriched
from 0.5mg of peptides were re-dissolved in 20μL 0.1% FA (buffer A),
and 4μL was separated by an analytical column (25 cm× 75 μm i.d.,
Evosep) with a 72min gradient starting at 4% buffer B (80% ACN with
0.1% FA) followed by a stepwise increase to 23% in 50min, 44% in
10min, 90% in 7min and stayed there for 5min. The column flow rate
was maintained at 300 nL/min with a column temperature of 50 °C.
The instrument was operated in the PASEF-DDA mode with 10 PASEF
scans per topN acquisition cycle and accumulation and ramp times of
100ms each. MS and MS/MS spectra were recorded from 100 to
1700m/z and an ion mobility range (1/K0) of 0.6–1.6 Versus/cm2 was
used. Including charge was set to 0–5, the target value was set to
10,000 and dynamic exclusion was activated and set to 0.4min. The
quadrupole isolation width was set to 2 Th for m/z < 700 and 3 Th for
m/z > 700.

The PRM analysis was performed using the EASY-nanoLC 1200
coupledOrbitrap Fusion Lumos systemwith ThermoXcalibur (version
3.0.63) for data collection. The sample amount and LC condition were
same as the one for DDA analysis. PRM settings were as follow: Full MS
scans in the mass range from m/z 350 to 1500 were acquired with a
resolution of 120,000, normalized AGC target of 200% and a max-
imum injection time of 50ms. MS2 spectra were acquired with a
resolution of 30,000, a normalized AGC target of 200%, and a max-
imum injection time of 50ms. The inclusion list was imported into the
mass list table in the PRM mode.

Phosphoproteome data collected from public resources
The datasets and raw files used have been summarized in Supple-
mentary Data 7. In general, data was split by embedding pattern
(precursor charge, PTMs position, PTMs type, and peptide sequence)
for training/validation during model training or fine-tuning. If there
were spectra corresponding to the same combination of embedding
patterns, only the spectrum with the highest PSM score was retained.

For deep learning model training, 14 raw datasets (Train_1, Sup-
plementary Table 1) from PRIDE50 were obtained with the accession
number PXD00445251, PXD00137452, PXD00130553, PXD00352954,
PXD00213555, PXD00444756, PXD00061257, PXD00156558, PXD00425259,
PXD00155060, PXD00154660, PXD00228661, PXD00353162 and
PXD00239463. The combined datasets were divided into the training
dataset and the validation dataset with a ratio of about 9:1. The training
datasets contain 349,816 peptides, including 120,450 singly phos-
phorylated peptides and 63,580multiply phosphorylated peptides and
165,786 non-phosphopeptides. The validation datasets contain 50,331

peptides, including 17,491 singly phosphorylated peptides, 9090 mul-
tiply phosphorylated peptides, and 23,750 non-phosphopeptides. All
the spectra had different embedding patterns. There was no data
leakage during the model training.

For model re-training to fit the Q-TOF data, 3 datasets (Train_2,
Supplementary Table 2) from PRIDE50 were obtained with the acces-
sion number PXD00605664, PXD01243365, and PXD01568766. The
combined datasets were also divided into the training dataset and the
validation dataset with a ratio of about 9:1. The training datasets
contain 34,077 PSMs of 16,297 phosphopeptides and 12,471 non-
phosphorylated peptides. The validation datasets contain 3786 PSMs
of 2166 phosphopeptides and 1550 non-phosphorylated peptides. All
the spectra had different embedding patterns.

To evaluate the performance of DeepFLR in MS/MS spectra pre-
diction, five datasets were downloaded from PRIDE50 with the acces-
sion number PXD01866367 (Test_1), PXD01969768 (Test_2),
PXD01128469 (Test_3), PXD02336170 (Test_4) and PXD00821171 (Test_5).
The data are from five organisms, containing 12,968 (H. sapiens),
22,437 (M. musculus), 2674 (A. thaliana), 136 (S. cerevisiae), and 69 (E.
coli) phosphopeptides, respectively. Parts of the datasets PXD018663,
PXD019697 and PXD011284 were used for fine-tuning to further
enhance the performance of the deep-learning model for MS/MS
spectra prediction, as detailed in Supplementary Table 1. Non-
phosphorylated peptides were included for fine-tuning, but not for
test. Spectra used for fine-tuning and test had different embedding
patterns.

To evaluate the performance of DeepFLR in FLR control, four
synthetic phosphopeptides datasets were downloaded from PRIDE50

with the accession number PXD00705872, PXD00013829, PXD01452537

and PXD01321073 (Supplementary Table 2). For Syn_1 (PXD007058),
the synthetic phosphopeptides were separated into five pools, and
therefore only phosphopeptides belonging to their own pool were
considered as correct identification. The same strategy was applied to
Syn_2 (PXD000138) andSyn_4 (PXD013210). The rawfiles in Syn_2were
separated into the dataset (file name 1.raw to 48.raw) for fine-tuning
and the test dataset (file name 49.raw to 96.raw). Each of the 96 raw
files has different seed peptides. Thus, the spectra for fine-tuning and
test have different peptide sequences. Syn_1 contains 809 PSMs of 130
phosphopeptides. The fine-tunning dataset of Syn_2 contains 62,906
PSMs of 24,186 phosphopeptides and 25,373 non-phosphopeptides,
and the test dataset of Syn_2 contains 15,207 PSMs of 6537 phospho-
peptides. Syn_3 contains 2546 PSMs of 184 phosphopeptides including
7biphosphopeptide, 1 triphosphopeptide, and 1 tetraphosphopeptide.
Syn_4was acquired fromaSCIEXTripleTOF 5600+mass spectrometer,
containing 21,778 PSMs of 1063 phosphopeptides.

To evaluate the performance of DeepFLR in the analysis of bio-
logical samples, three biological datasets were obtained (Supplemen-
tary Table 3). One biological dataset Bio_1 was generated by ourselves
aforementioned. Two datasets were downloaded from PRIDE50 with
the accession number PXD00334435 and PXD01452537. Bio_2
(PXD003344) was from MCF7 breast cancer cells. Bio_3 (PXD014525)
was from EGF-stimulated REP1 cells treated with different MEK inhi-
bitors. Part of the data from the biological datasets were used for fine-
tuning the deep learning model. For Bio_1, 27,599 PSMs of 21,319
phosphopeptides and 3188 non-phosphopeptides were used for fine-
tuning. For Bio_2, 11,387 PSMs of 8335 phosphopeptides and 1065 non-
phosphopeptides were used for fine-tuning. For Bio_3, 34,278 PSMs of
18,106 phosphopeptides and 10,366 non-phosphopeptides were used
for fine-tuning. It should be noted that the PSMs used for fine-tuning
from the biological datasets may also be subjected to DeepFLR
analysis.

To evaluate the performance of DeepFLR in DIA analysis, two DIA
datasets were downloaded from PRIDE50 with the accession number
PXD01452537 and from MassIVE proteomics repository (https://
massive.ucsd.edu/) with project identifier MSV00008295643

Article https://doi.org/10.1038/s41467-023-38035-1

Nature Communications |         (2023) 14:2269 11

https://massive.ucsd.edu/
https://massive.ucsd.edu/


(Supplementary Table 4). DIA_1 is a synthetic phosphopeptides DIA
dataset acquired by a Q Exactive HF-X mass spectrometer, and its
corresponding DDA dataset is Syn_3. DIA_2 is a biological sample
dataset. DIA_2 and its correspondingDDAdatasetwere acquired by aQ
Exactive HF mass spectrometer, with four DDA and DIA technical
replicates, respectively.

Protein sequence database searching
DDA data analysis was performed with different software solutions.
SpectroMine (version 2.5.201125, Biognosys AG, Schlieren, Switzer-
land) analysis was performed with the following settings: Phospho
(STY), Oxidation (M) and Acetyl (Protein N-term) as variable mod-
ifications; Carbamidomethyl (C) as fixed modification; PTM Localiza-
tion Filter enabled. The others were default. Andromeda integrated in
MaxQuant8 (version 1.6.17.0) was performed with the following set-
tings: Phospho (STY), Oxidation (M) and Acetyl (Protein N-term) as
variable modifications; Carbamidomethyl (C) as fixed modification.
The others were default. The parameters for PEAKS (PEAKS studio
version X + , Bioinformatics Solutions Inc., Waterloo, Canada) were:
Phospho (STY), Oxidation (M) and Acetyl (Protein N-term) as variable
modifications; Carbamidomethyl (C) as fixed modification; mass tol-
erance for the precursors as 20 ppm; maximum allowed variable PTM
per peptide as 4; peptide level P-values <0.01. The other parameters
were set as default. AscorePro was downloaded from https://github.
com/gygilab/MPToolkit. The parameters for AscorePro were: Phospho
(STY), Oxidation (M), and Acetyl (Protein N-term) as variable mod-
ifications; Carbamidomethyl (C) asfixedmodification. The otherswere
default. For phosphoRS (version 3.1), we conducted it using a com-
mand line interface phosphoRS-cli (https://github.com/lmsac/
phosphoRS-cli). Carbamidomethyl (C) was set as a fixed modifica-
tion, while Phospho (STY), Oxidation (M), and Acetyl (Protein N-term)
were set as variable modifications. The other parameters were set
default. LuciPHOr2 (JAVA Version 8 Update 321) was downloaded from
http://luciphor2.sourceforge.net/. The parameters for LuciPHOr2
were: Phospho (STY), Oxidation (M), and Acetyl (Protein N-term) as
variable modifications; Carbamidomethyl (C) as fixed modification;
algorithm as 1, referring to the HCD-based method; minimum m/z for
fragments as 0; maximum charge state as 3; neutral loss of phos-
phorylation considered; minimum score a PSM to be considered for
modeling as 0.99. The others were default.

For PRM data analysis, raw files were analyzed by SpectroDive
(version 11, Biognosys AG, Schlieren, Switzerland) with the default
settings. SpectroDive calculated the ideal mass tolerances for data
extraction and scoring based on its extensivemass calibration. Q-value
cutoff on precursor was applied as 1%.

DIA datasets (DIA_1 and DIA_2) were searched by Spectronaut
Enterprise x6474 (version 16.1.220730.53000, Biognosys AG, Schlieren,
Switzerland) with PTM localization filter enabled. For spectral library
construction, DDA datasets were searched by SpectroMine (version
2.5.201125, Biognosys AG, Schlieren, Switzerland). All the settings were
default.

FASTA files were from UniProt H. sapiens reference proteome
(access date 2019-12, 20,600 entries), UniProt M. musculus reference
proteome (access date 2020-7, 17,082 entries), UniProt A. thaliana
reference proteome (access date 2017-10, 27,468 entries), UniProt S.
cerevisiae reference proteome (access date 2014-7, 108,460 entries)
and UniProt E. coli reference proteome (access date 2020-7, 11,179
entries), respectively. For the synthetic peptide datasets, FASTA files
were from the synthetic phosphopeptides sequences published by the
corresponding papers.

Deep learning model construction
The model of DeepFLR consists of four components: input, the
embedding layer, BERT encoder and the output layer. Input is formed
as (X, Y),whereX is the sequencematrix of input phosphopeptides and

Y is the correspondingMS/MS spectra. The final embedding is the sum
of four embeddings of amino acids, charge, PTMs position and PTMs
type. To simulate the fragmentation between amino acids, a special
token “[SEP]” is used between every neighbor token. “[CLS]” is placed
before every sequence. For peptides, “1” is used to represent phos-
phorylation (STY), “2” to represent oxidation (M), “3” to represent
carbamidomethyl (C) and “4” to represent acetyl (protein N-terminal).
The parameters for the BERT26 base model was downloaded from
Hugging Face (https://huggingface.co/bert-base-uncased). The BERT
encoder, it consists of twelve Transformer layers, each with two sub-
layers. The first sublayer is a multiheaded self-attention layer, and the
second is a fully connected point-by-point feed-forward network.
Residual connection andnormalization areused in each sublayer. After
the BERT encoder, an output layer is used to transform the hidden
states into predictedMS/MS fragments. For each sequence, we extract
hidden states from the token “[SEP]” to get the representation of every
fragmentation position. Finally, weuse a simplemulti-layer perceptron
(MLP) head to transform hidden states into the final predicted frag-
ments. Mean square error (MSE) loss was used to optimize the model.
Model construction was performed using python (3.8.3) with the fol-
lowing packages: FastNLP (0.6.0), pytorch (1.8.1), bidict (0.22.0),
pyteomics (4.5.5), and transformers (4.12.5).

DeepFLR considers 36 types of fragment peaks (b1, bn1, bo1, b2,
bn2, bo2, y1, yn1, yo1, y2, yn2, yo2, bp1, bnp1, bop1, bp2, bnp2, bop2,
yp1, ynp1, yop1, yp2, ynp2, yop2, b2p1, bn2p1, bo2p1, b2p2, bn2p2,
bo2p2, y2p1, yn2p1, yo2p1, y2p2, yn2p2, yo2p2). The first character
means ion type (b ions or y ions), followed by neutral loss type (o
means loss of H2O, n means loss of NH3, p means loss of H3PO4, op
means loss of H2O and H3PO4, np means loss of NH3 and H3PO4, 2p
means loss of two H3PO4, o2p means loss of one H2O and two H3PO4,
n2pmeans loss of one NH3 and two H3PO4). The final character means
fragment charge (1 or 2).

To train/retrain/fine-tune DeepFLR, DDA data were analyzed by
SpectroMine. The intensity values were normalized to a 0-1 range and
were log-transformed with log2 (x + 1), where x is the normalized
intensity value. Training of DeepFLR using the dataset Train_1 took one
day, and re-training of DeepFLR to fit Q-TOF using the dataset Train_2
took two hours on a single GPU RTX 3090 with batch size 128 and
learning rate 2 × 10−5. Fine-tuning was processed for less than ten
epochs with batch size 128 and learning rate 2 × 10−5.

MS/MS prediction evaluation
Cosine similarity was calculated between the predicted and experi-
mental spectra. The experimental spectra were converted to Mascot
generic format (MGF) using MsConvert75 from the ProteoWizard
Package (3.0.11579). Predicted spectra were generated by the deep-
learning model. A tolerance of 25 ppm was set to recognize the com-
mon peaks between the experimental and the predicted spectra. If
there was a discrepancy between two compared spectra, then the
intensity for the missing peak was set as 0. The cosine similarity
between the replicated experimental spectra for the same peptide was
also calculated in the same way.

The published tools, i.e. pDeep222 and DeepPhospho23, were also
used for MS/MS spectra prediction. For pDeep2, the source code and
the pre-trained model parameter pretrain-180921-modloss-transfer-
Phos.ckpt were downloaded from the Github repository (https://
github.com/pFindStudio/pDeep/tree/master/pDeep2), and theMS/MS
spectra prediction was carried out according to the corresponding
instruction. DeepPhospho was downloaded from the Github reposi-
tory (https://github.com/weizhenFrank/DeepPhospho). RPE1_DDA
provided in DeepPhospho was used as the model for MS/MS predic-
tion without fine-tuning and PretrainParams was used for fine-tuning.
The fine-tuning datasets of Test_1, Test_2 and Test_3 for DeepPhospho
were the same as the ones used by DeepFLR (see details in Supple-
mentary Table 1) and were transformed into the format of SNLib to fit
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the DeepPhospho. DeepPhospho was also fine-tuned using the same
training dataset Train_1 used by DeepFLR using the RPE1_DDA model
and configuration provided by DeepPhospho (https://github.com/
weizhenFrank/DeepPhospho/blob/main/demo/ConfigDemo-
IonModel-ModelTestWith_U2OS_DIA-Train.json). DeepPhospho fil-
tered the predicted spectra of peptides with few fragments. Here, we
treated the missing value of DeepPhospho as zero.

Identification of phosphopeptides by DeepFLR
After database searching, the identified MS/MS of phosphopeptides
(localization probability score threshold = 0, with No. of candidate
phosphosites > No. of phosphate groups) were extracted for DeepFLR
analysis. The target phosphopeptides were generated by placing
phosphate groups on all candidate residues to generate all possible
isoformsof the identified phosphopeptides bydatabase searching. For
each target phosphopeptide, the corresponding decoy phosphopep-
tide was generated by exchanging the phosphorylated amino acid
residue with another amino acid residue randomly. Cosine similarity
was calculated between each experimental spectrum and the pre-
dicted spectra of its corresponding candidate target and decoy
phosphopeptides. The identification result was reported as the target
or decoy phosphopeptide with the highest cosine similarity score, and
the delta score was calculated as the difference value between the
maximum cosine similarity and the closest cosine similarity of a target
phosphopeptide. Identification results of all experimental spectra
were ranked by the delta score, and the FLR was calculated as the ratio
of decoys among all the identification results above a certain delta
score threshold adjusted by the numbers of all candidate decoys and
target phosphopeptides:

FLRestimated =
Ndecoy +Ntarget

Ndecoy
× #D

#T+#D ð1Þ

whereNdecoy is the total number of decoy in the database; Ntarget is the
total number of targets in the database; #D is the number of identified
decoy hits; and #T is the number of identified target hits. To evaluate
the performance of the FLR estimation, synthetic phosphopeptides
datasets were used to calculate the real FLR:

FLRsyn =
False Positive

True Positive + False Positive ð2Þ

where False Positive refers to the count of PSMs not matching the
synthetic phosphopeptide sequence and True Positive refers to the
count of PSMsmatching the synthetic phosphopeptide sequence. The
synthetic phosphopeptides datasets were repeatedly analyzed by
DeepFLR (n = 10) to assess the randomicity of DeepFLR in FLR esti-
mation. The 95% confidence interval was calculated:

μ= �x ±2:26

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

xi��xð Þ2
n n�1ð Þ

r

ð3Þ

where 2.26 is the coefficient α based on the degree of freedom (f = 9)
for bilateral experiments; n is the observed number of PSMs; x is the
measured value. If only one experiment had a valid value at a specific
cutoff, the confidence interval was set as 0. Data analysis in this part
was performed using python (3.8.3) with the following packages:
pandas (1.0.5) and numpy (1.18.5).

Construction of spectral libraries for DIA analysis
For spectral library construction for DIA analysis, corresponding DDA
datasets were searched by SpectroMine (version 2.5.201125, Biognosys
AG, Schlieren, Switzerland) with a localization probability threshold of
0, and the results were submitted to DeepFLR for re-localization with
an estimated FLR of 0.01. For a predicted spectral library, all MS/MS
spectra were predicted by DeepFLR. For the hybrid spectral library, if
DeepFLR identified a different phosphopeptide compared to

SpectroMine from an MS/MS spectrum, the MS/MS spectrum of the
phosphopeptide in the library was generated by DeepFLR prediction,
while the others were from the experiment. For the re-localized
experimental spectral library, all MS/MS spectra were from the
experiment but the phosphopeptide identification result was from
DeepFLR. All the retention time values for the three libraries were from
the experiment. For the SpectroMine-based experimental spectral
library, the DDA results were filtered with a localization probability of
default value (0.75). DIA data were then analyzed by Spectronaut
Enterprise x6474 (version 16.1.220730.53000, Biognosys AG, Schlieren,
Switzerland) with PTM localization filter enabled using the DeepFLR-
based spectral library or the SpectroMine-based experimental spectral
library.

For comparison, DeepPhospho was also used to generate a pre-
dicted spectral library. The phosphopeptides in the library were
obtained by SpectroMine with 0.75 localization probability threshold.
Both the MS/MS spectra and the retention time values were predicted
by DeepPhospho using RPE1_DDA model.

Statistics and bioinformatics analysis
For the dataset Bio_2, kinase-reacted sites were identified by matching
the localized phosphosites to the kinase database. Kinase information
(Kinase_Substrate_Dataset.txt) was downloaded from
PhosphoSitePlus76 (access date 2021-12). The sequence logo was con-
structed by WebLogo (version 3.7.4). The type was set as protein and
units were set as probability. For the dataset Bio_3, DeepFLR and
MaxQuant results were processed to produce a.txt file of localized
protein phosphosites quantification matrix to be compatible with
Perseus (version 1.6.15.0). The quantification information of each
protein phosphosite was the summed quantification information of all
phosphopeptides corresponding to the protein phosphosite. Pro-
cessed by Perseus, only protein phosphosites with a minimum of two
valid values in at least one treatment group (no treatment, EGF treated
only, and EGF treated with different MEK inhibitors of Cobimetinib
(5μM or 0.5μM) or PD0325901 (5μM or 0.5μM)) were kept, and then
subjected to log2(x) transformation and z-score normalization. Miss-
ing values were imputed by randomly sampling the lower end of the
normal distribution (width0.3 and downshift 1.8 as the default settings
of Perseus) in the whole matrix. One-way ANOVA significance test was
performed with parameter settings of s0= 0 and Permutation-based
FDR =0.05 to identify significantly regulated sites with ANOVA q-value
<0.05. Heatmaps of all significantly regulated phosphorylation sites
were generated by unsupervised hierarchical clustering using Eucli-
dean distance. The sequence logo was constructed by WebLogo (ver-
sion 3.7.4). The type was set as protein and units were set as bits. The
kinase substrate information used to draw the sequence logo of ERK1/
2 substrates was from the aforementioned kinase database (Kinase_-
Substrate_Dataset.txt). Visualization was performed using custom
scripts in R (4.0.2) with the following packages: VennDiagram (1.6.20),
ComplexHeatmap (2.13.2) and ggplot2 (3.3.2). For coefficient of var-
iation (CV) calculation in DIA analysis, the quantification was denor-
malized and then uploaded to Perseus to calculate phosphosite
stoichiometry by a custom-coded plugin Peptide collapse (version
1.4.4) downloaded from https://github.com/AlexHgO/Perseus_Plugin_
Peptide_Collapse.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the LC-MS/MS raw data, FASTA files, search results, saved projects
and database searching parameters generated in this study have been
deposited to ProteomeXchange via the iProX77 partner repository
under accession code PXD037580 or IPX0005248000. The 14 raw
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datasets used in this study for deep learning model pre-training are
available in the PRIDE50 database under accession code PXD00445251,
PXD00137452, PXD00130553, PXD00352954, PXD00213555,
PXD00444756, PXD00061257, PXD00156558, PXD00425259,
PXD00155060, PXD00154660, PXD00228661, PXD00353162 and
PXD00239463. The three datasets used in this study for model re-
training to fit the Q-TOF data are available in the PRIDE50 database
under accession code PXD00605664, PXD01243365, and PXD01568766.
The five datasets used in this study for evaluating the performance of
DeepFLR in MS/MS spectra prediction are available in the PRIDE50

database with the accession number PXD018663 (Test_1)67,
PXD019697 (Test_2)68, PXD011284 (Test_3)69, PXD023361 (Test_4)70

and PXD008211 (Test_5)71. The four synthetic phosphopeptides data-
sets used in this study to evaluate the performance of DeepFLR in FLR
control are available in the PRIDE50 database with the accession num-
ber PXD007058 (Syn_1)72, PXD000138 (Syn_2)29, PXD014525 (Syn_3)37

and PXD013210 (Syn_4)73. Two external biological datasets used in this
study to evaluate the performance of DeepFLR in the analysis of bio-
logical samples are available in the PRIDE50 databasewith the accession
number PXD003344 (Bio_2)35 and PXD014525 (Bio_3)37. Two DIA
datasets used in this study to evaluate the performance of DeepFLR in
DIA analysis are available in the PRIDE50 database with the accession
number PXD014525 (DIA_1)37 and fromMassIVE proteomics repository
with project identifier MSV000082956 [https://massive.ucsd.edu/
ProteoSAFe/dataset.jsp?task=92965d2a3515472aa16100fa2525928d]
(DIA_2)43. The source data underlying all figures except for those not
including statistics are provided as a Source Data file. Source data are
provided with this paper.

Code availability
DeepFLR is open source and freely available onGitHub [https://github.
com/lmsac/DeepFLR] and Zenodo [https://doi.org/10.5281/zenodo.
7777409]78.
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