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Latent generative landscapes as maps of
functional diversity in protein
sequence space

Cheyenne Ziegler 1,4, Jonathan Martin 1,4, Claude Sinner1 &
Faruck Morcos 1,2,3

Variational autoencoders are unsupervised learning models with generative
capabilities, when applied to protein data, they classify sequences by phylo-
geny and generate de novo sequences which preserve statistical properties of
protein composition. While previous studies focus on clustering and gen-
erative features, here, we evaluate the underlying latent manifold in which
sequence information is embedded. To investigate properties of the latent
manifold, we utilize direct coupling analysis and a Potts Hamiltonian model to
construct a latent generative landscape. We showcase how this landscape
captures phylogenetic groupings, functional and fitness properties of several
systems including Globins, β-lactamases, ion channels, and transcription fac-
tors. We provide support on how the landscape helps us understand the
effects of sequence variability observed in experimental data and provides
insights ondirected andnatural protein evolution.Wepropose that combining
generative properties and functional predictive power of variational auto-
encoders and coevolutionary analysis could be beneficial in applications for
protein engineering and design.

During the process of evolution, proteins are subject to changes in
their amino acid composition via mutation, insertions, deletions, and
gene duplication. These changes are constrained by fitness and
selective pressures as determined by the overall structure, function,
stability, and folding of protein sequences in the organism that
encodes them1,2. These constraints impose statistical signatures in the
collection of evolutionarily related sequences that allow features, such
as structure, function, and interactions, to be reconstructed from
homologous sequence alignments using methods such as direct cou-
pling analysis (DCA), GREMLIN, and EVcouplings3–6. These methodol-
ogies offer excellent performance in identifying relevant amino acid
interactions useful for structure inference7–10, complex formation5,11–14,
molecular specificity15–19, the effects of protein mutations20–22, and
protein design, including engineering of functional proteins with
specific properties, such as repressors23, fluorescent proteins24,25, and

enzymes26, and can be used to inform evolutionary models27, but they
lack strong performance in classifying specific functions of a given
protein. Recent focus has shifted towards using state-of-the-art
machine learning approaches. Notable methods to predict protein
structures include Alphafold28 and end-to-end differentiable
learning29, but other machine learning models have been used to
understand protein sequence attributes that are correlated with cer-
tain functions and outcomes, such as DeepPPI for interactions30,
restricted Boltzmannmachines (RBM) to detectmotifs associatedwith
function31, and variational autoencoders (VAE) for phylogenetic clus-
tering and predicting effects of protein mutation32,33. Architectures
such as VAE34 and Transformers35 are also capable of generating pro-
teins. In this work, we address further capabilities of the VAE, an
unsupervised and generative machine learning model, to study the
evolution and function of protein families.
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VAEs consist of an encoder and a decoder. The encoder com-
presses input data (x) into a latent variable ensemble (z), where z has
been constrained into a multivariate latent distribution with an
approximated Gaussian prior. The decoder then takes the encoded
variable z and reconstructs the input data in a Bayesian framework36,37.
The embedding of data into the lower-dimension latent manifold
creates a continuous latent space that can be sampled to generate new
data based on the approximated posterior distribution learned by the
encoder. These samplings of the latent space from the VAE archi-
tecture can be sufficient to create new objects38 and are capable of
generating new protein sequences when trained on a family of
proteins34,39,40.

Since VAEs approximate a posterior distribution, they are pow-
erful tools to cluster data in a latent space and have become a pop-
ular replacement for principal component analysis (PCA). Their
performance is proven to be comparable with robust PCA models41

and has been employed on biological data sets with favorable
results32,42,43. Previous analyses of protein sequences in latent space
have shown the organization of sequences into phylogenetic
clusters32,44, but the latent space embedding itself was not investi-
gated. We propose that combining the predictive power of coevo-
lutionary models with the classification and generative power of the
VAE would better inform the analysis, generation, and modification
of protein sequences in a manner that requires no labeling infor-
mation. Through this combination of statistical models, we create a
latent generative landscape (LGL), where accessible VAE sequence
space is assessed using the inferred fitness from DCA. By exploring a
large amount of sequence space, we have uncovered a new method
to traverse the diversity of functional space in proteins that is
more flexible than other architectures, such as transformers45,46 and
generative adversarial networks (GANs)47, due to higher diversity of
encoded possible sequences, no required labeling, and easily
accessed latent representations. Specifically, the LGL provides a
framework to rationally sample and traverse latent space where

certain protein attributes may be selected without input of labeling
information. We show how this LGL can be applied to multiple pro-
tein systems including the identification of functional features in
the family of globins, exploring diversity in fitness in β-lactamases,
local functional details of cold sensitive proteins, the pathways
of directed evolution in transcription factors as well as the analysis
of evolutionary propagation of spike proteins in coronaviruses.
This framework to study the sequence space of complete protein
families serves as a conceptual and quantitative map to get insights
into fitness, functional diversification, and a guide for generative
protein design. We also developed software for interactive visuali-
zation of these landscapes that we have made available for oth-
ers to use.

Results
LGL captures phylogenetic, function, and fitness information
To learn sequence attributes that confer certain properties to protein
families, we compiled multiple sequence alignments (MSAs) for each
family of interest using PFAM and HMMER48,49. The MSA is then fed
into two separate models. First, the MSA is defined as a set of binary
matrices where each sequence x is a 23 by L matrix. Rows encode all
possible amino acid characters, including a gap character, selenocys-
teine, and pyrrolysine, and L is the length of x. Then, the inputmatrices
are used as the training data set for the VAE. The VAE architecture
consists of an encoder module and decoder module, which are con-
nected using two latent variables, z0 and z1 (Fig. 1a). The encoder
approximates the true posterior probability distribution pθ(z∣x),
defined on the parameters θ, using a family of distributions qϕ(z∣x),
defined on parameters ϕ, which are the trainable weights of the
encoder network. The learned distribution by the decoder, pθ(x∣z), is
approximated to be a multivariate Gaussian. The latent space con-
structed by z0 and z1 is treated as a manifold, which can be sampled to
generate new sequences. Each coordinate in a 500 × 500 grid is sam-
pled from the latent space manifold to generate the maximum

Fig. 1 | An overview of latent generative landscape (LGL) methodology. a A
schematic overview of Hamiltonian mapping of VAE latent space and its applica-
tions. Using a multiple sequence alignment as input, DCA and VAE models are
independently trained.Maximumprobability grid-sampled sequences (S*) from the
VAE latent space are then scored by DCA with a Hamiltonian value, H(S*), to create
the latent generative landscape. The landscape may then be used for various
applications, including de novo protein generation, protein engineering, protein
classification, and evolutionary trajectories. b A schematic overview of the LGL. In

the bottom left, an example of mutational paths on the landscape. On top, a
streamplot of re-encoding vectors from generated sequences highlighting strong
correspondence of the encoder-decoder relationship to the latent generative
landscape. On the right, the embedding of sequences in the basins of favorable
Hamiltonian values of landscape. The landscape color is defined by the DCA
Hamiltonian of the maximum probability sequence generated by the decoder at
that point. This sample landscape constitutes a total of 250,000 sequences.
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likelihood sequence at the central coordinate and is represented by a
pixel in a landscape plot (Fig. 1a).

Secondly, the MSA is used to perform DCA3. DCA is a global sta-
tistical inference model, in which the maximum entropy principle is
utilized to derive a joint probability distribution of sequences para-
meterized by residue position couplings (ei,j) and local fields (hi)
representing independent statistics. These parameters may then be
used as input to a large-q Potts Hamiltonianmodel50–52. By applying the
Hamiltonian function to each coordinate-associated sequence in the
5002 pixel grid, we construct the latent generative landscape (LGL) in
which sequence space is organized by the VAE latent variables and the
learned distribution, qϕ(z∣x), and the sequence “energy” to traverse the
space is defined as the Hamiltonian, Fig. 1a. Thus, we are retrieving
the VAE’s innate encoding of fitness using the Hamiltonian value as a
score50. While the VAE’s assessment of fitness could also be estimated
using theVAE’s ELBO score (Equation (4)) and the ELBO is correlated to
the DCA Hamiltonian (see Supplementary Fig. 1), the Hamiltonian
score has ample evidence demonstrating its utility and predictive
capabilities for functional outcomes in proteins20,26,52–54.

As shown in Fig. 1, the VAE is subsampled in a grid-like fashion
where each element of the 5002 pixel grid represents a generated
sequence (Equation (8)) by its associated Hamiltonian score. Although
different pixel-grid densities can be selected, this choice of pixel
density is sufficient to capture the complexity of our latent space (see
Supplementary Fig. 2). This scoring procedure uncovers an elaborate
landscape of sequences where basins of low Hamiltonian sequences
are surrounded by barriers of high Hamiltonian sequences, with the
sequences used in the training of the VAE typically being embedded in
the basins. Higher order clustering of sequences can be seen in which
the barriers encapsulate smaller clusters of sequences under a single
larger classification, which could provide an improvement on the
unsupervised classification capabilities of the VAE model alone. Fur-
thermore, this latent generative landscape may assist users in gen-
erating functional sequences with desired properties. Although more
than two latent dimensions can be used to produce models with
smaller training loss for the purpose of generating sequences40, we
show in Supplementary Fig. 3 that, using a statistical validation out-
lined in the next section, two dimensions are sufficient to capture the
critical statistics of protein families and addingmore dimensions does
not necessarily indicate an improvement, a result which is consistent
with other work55. Given this, we expect that the LGL could be used in
the functional design of proteins. Using the landscape, areas with less

favorable fitness and/or lower family-likeness can be avoided to aid
functional sequence generation. To generate sequences with parti-
cular attributes, users may sample within global or local basins where
proteins with known properties are embedded, providing a clear
subset of sequence space in which to sample. Similarly, a known pro-
tein may be mutated in silico towards a new, known function by
tracking mutants’ escape from a basin and movement into sequence
space associated with the new function.

Additionally, the positional relationship between encoded
sequences within the latent space suggests an attractive model for
studying sequence evolution and phylogenetic relationships, hear-
kening back to older theories of evolutionary landscapes56 where
genes were imagined as points on landscapes of high and low fitness.
One way of understanding the latent space organization is shown in
the upper section of Fig. 1b with a vector plot, where at each pixel
coordinate, amaximumprobability sequence is generated and then re-
encoded through the encoder, yielding vectors of coordinate change.
Sequences generated on Hamiltonian barriers are generally re-
encoded within the basins and towards what appears to be central
regions of little coordinate change. This re-encoding has strong cor-
respondence with the visualized LGL, and further justifies the use of
the decoder-generated landscape to analyze novel encoded sequen-
ces, such as evolutionary trajectories created through other methods.

To more quantitatively measure the relationship between enco-
ded sequences and the decoder-produced landscape, we encode
training sequences into the landscape and decode through Equation
(8) the maximum probability sequence at the encoded μ coordinate,
then compare this sequence’s Hamiltonian with the input sequence’s
Hamiltonian. We analyzed this relationship with the tRNA Synthetase
family. Shown in blue in Fig. 2a,we find a positive correlation (R =0.64)
between the two values. We noticed, however, that this correlation
changes depending on the variability of the decoder distributions
produced by the VAE, which are higher towards the center of the plot,
(Fig. 2b), and thus havehigher entropy at eachcoordinate as calculated
by Equation (11). By selectively removing sequences from our corre-
lation calculation based on their proximity to the high entropy center,
we can reliably improve the correlation of the LGL produced sequen-
ces, see Fig. 2a (red symbols, R =0.89) and Fig. 2c. We note that
while the correlation measured is family specific (Supplementary
Fig. 4), we found, in all families tested, that correlation between the
sequence Hamiltonian and LGL Hamiltonian improves notably for
sequences outward from the high entropy areas.

a b c

Fig. 2 | Relationship between entropy and Hamiltonian score fidelity to train-
ing sequences for the tRNA Synthetase family. a Comparison of Hamiltonian
scores for input training sequence and argmaxpðx∣zÞ sequence generated at
training sequence’s encoded μ coordinate, shown at different radial exclusion
distances. b Entropy of decoder distribution at each coordinate (Equation (11)).

c Improvement of correlation between Hamiltonians of input and argmax
sequences through exclusion of sequences within the center. A radius is expanded
where sequences lying within the radius are excluded from correlation calculation.
Color is number of sequences remaining for calculation after exclusion step.
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LGL identifies latent space for specific functions and family-
likeness
Across many training sets, we find that the VAE clusters sequences
having members with similar phylogenetic relationships, which had
been observed previously32. While phylogenetic information can be
reconstructed from VAE models, functional information has also been
shown to be encoded33. Using the latent generative landscape, we
show how the underlying landscape encodes phylogenetic and func-
tional information. In the LGL for Globin family (PF00042)48, clusters
are defined by functional classification, where individual clusters have
sequences with similar classifications from Uniprot, Fig. 3a. The alpha
and beta hemoglobin clusters are indicated because they each contain
sets of genes that exist in the same locus on different genomes, with
different regulatory mechanisms coordinating their differential
expression during the development of many vertebrate organisms57.
The high Hamiltonian barrier separating these two clusters, which is
not present between the clusters within the bubble, allows additional
classification power to distinguish between these two coevolving sets
of sequences.

Additionally, the training set for this model included many
sequences which either lacked clear annotation or had more obscure
classifications. Many of these sequences could be better annotated
based on themost common constituents of the basins they exist in, as
shown in Supplementary Fig. 5. While other VAEs have been used to
identify related sequences44, the LGL provides a clear subdivision of
latent space rather than relying only on clusters of input sequences.
The preservation of phylogenetic relationships between points is
captured by the underlying landscape and can be demonstrated by
comparing phylogenetic trees built from natural sequences with those
built using VAE generated sequences. We used the Clustering Infor-
mation (CI) metric58 to measure the similarity between landscape
sampled trees and real sequence trees based on their topological
organization (seeMethods and Supplementary Fig. 6 formoredetails),
with a score of zero meaning identical trees and a score of one indi-
cating completely dissimilar trees (expected score for comparing
random trees of this size shown in Fig. 3b(iv)). In Fig. 3b(i), pairs of
trees randomly created from the same pool of real Globin sequences
average a CI score of 0.36, while comparing real Globin trees to
landscape sampled trees gives an average CI score of 0.41 (Fig. 3b(ii)).

When Globin trees are compared with a distinct protein family, e.g.,
FA_Desaturase family trees (Fig. 3b(iii)), the average CI score is 0.81,
indicating that the landscape generated sequences contain much of
the precise sequence information to create the real Globin trees and
that this information is specific to the Globin family of sequences. In
this way, the latent landscape can be used as a generative phylogenetic
tree, where specific phylogenetic properties can be captured and
studied by sampling from basins.

While phylogenetic relationships between sequences are main-
tained within the basins, the extreme barriers between the basins
indicate dramatic shifts in the output probability distributions of the
decoder as distinct regions of the latent space are interpolated. One
interpretation of this landscape is that the sample space of likely
functional sequences in the VAE is not uniform across the Gaussian
distribution prior that the decoder was trained with. We assess the
statisticalfidelity of the landscape through the r20metric55, computing
higher order marginal statistics of VAE generated sequences and
comparing them to a reference set. We compare our generated
sequences to the input training set and see that by avoiding high
Hamiltonian barrier regions when generating sequences we produce
data sets of higher accuracy to the training data (Fig. 4). It also implies
that some paths of interpolation can break amino acid couplings
within a protein sequence, while others preserve these important
relationships.

Local LGL encodes important information for function and
fitness
While the VAE is capable of clustering proteins by phylogenetic
information32,59, we demonstrate that local differences in VAE latent
space can be retrieved and interpreted using the LGL. In Fig. 5a, we
analyze how the LGL of class-A β-lactamases (PF13354) encodes func-
tion. β-lactamases are a family of enzymes that hydrolyze the β-lactam
ring of β-lactamantibiotics, conferring antibiotic resistance.Within the
β-lactamase family are different classes of β-lactamases, which have
differing mechanisms of hydrolysis60. Underneath class-A is a sub-
classification (TEM, SHV, CTX-M, KPC, CARB) that aims to definewhich
antibiotics can be hydrolyzed by the enzyme, but these subclassifica-
tions are often difficult to define60. Being able to computationally
define separate subclassifications and identify sequence attributes

ba

Fig. 3 | TheLGLhighlightsphylogenetic and functional clustering. aAnexample
of the global clustering shown by the Hamiltonian landscape. The alpha and beta
gene cluster boxes indicate genome level clustering, labeled with squares and tri-
angles, respectively. Other globin classifications are shown in the third legend box.
b The VAE landscape encodes phylogenetic information. Each plot indicates 100

tree comparisonsusing theClustering Information (CI)metric, comparing (i) extant
sampled trees with extant sampled trees, (ii) extant sampled trees with landscape
sampled trees, (iii) extant globin trees with extant desaturase trees, (iv) extant
sampled trees and its leaf shuffled copy.

Article https://doi.org/10.1038/s41467-023-37958-z

Nature Communications |         (2023) 14:2222 4

https://www.ebi.ac.uk/interpro/entry/pfam/PF00042/
https://www.ebi.ac.uk/interpro/entry/pfam/PF13354/


leading to overlap may assist biomedical research in identifying which
antibiotics are susceptible to hydrolysis for uncharacterized β-lacta-
mase variants. When taking into consideration local regions of the
latent generative landscape, separations between different local clus-
ters may become apparent, as observed with the separation between
TEM and SHV β-lactamases, Fig. 5b(i)61. This shows that even less
prominent basins in the LGL may represent real attributes about pro-
teins and their evolution.

Typically, TEM and SHV classifications must be determined
experimentally by the enzyme’s ability to hydrolyze oxyimino β-lac-
tams, but using the LGL, we are able to subdivide sequence space into
TEM and SHV subsets62–64. Further development of these capabilities
could yield reliable prediction of antibiotic susceptibility using
sequence alone, where sequences that occupy barriers are not as “fit”
as the wild-type sequences but may still be functional. Furthermore,
being able to predict when a bacterial population is more liable to
generate new extended-spectrum β-lactamases (ESBLs) could help
identify meaningful antibiotic rotation regimes65,66. To analyze move-
ment of variants within the LGL, we consider PSE-1 and TEM-1 β-lac-
tamase mutants generated by Stiffler, et al.67 and Fantini, et al.68,
respectively. These experiments perform experimental evolution on
class A β-lactamases in an attempt to create input data for structural
prediction and residue contact map creation. These data sets have
been used to construct contact maps and are useful in showing
movement of functional, but mutating, sequences within latent space
because it is assumed that important couplings and local fields are
preserved. We observe the behavior of generated mutants when
placed in the latent space by the encoder, Fig. 5b(ii–iii). For Stiffler,
et al. PSE-1 mutants shift away from wild-type PSE-1 and the local PSE
basin, crossing multiple areas of lower fitness. For Fantini, et al. TEM-1
mutants, mutants move further into the local TEM basin where the
inferred fitness is more favorable, with later rounds exhibiting mild
population of the CARB basin. For each set of mutants, the Δ Hamil-
tonian quantifying the difference between wild-type β-lactamase and
each mutant was calculated using Equation (10). The distribution of Δ

Hamiltonian scores further supports the movement toward more
favorable fitness sequence space for Fantini mutants and toward less
favorable or neutral fitness sequence space for Stiffler mutants (Sup-
plementary Fig. 7). Additionally, Stiffler mutants were shown to be
more diverse than Fantini mutants54. This difference in mutant library
diversity has been attributed to differences in selection pressure
between the two experiments. Stiffler mutants underwent lower
selection pressure while Fantini mutants underwent a higher selection
pressure54. While Fantini mutants appear to occupy a larger space, it is
important to recall that the latent generative landscape is non-
Euclidean and sequence space closer to the origin tends to encode a
higher density of unique sequences (Supplementary Fig. 8). Addi-
tionally, sequence identity betweenmutants and their respective wild-
type protein are high for both TEM1 and PSE1mutants (Supplementary
Fig. 9). This demonstrates how the LGL is capturing information
beyond sequence identity. Since all sequences provided by Stiffler and
Fantini are functionally able to hydrolyze β-lactamrings, it is important
to note that unfavorable fitness does not alwaysmean complete loss of
function. The movement and diversity of Stiffler mutants, when com-
pared to Fantini mutants, demonstrates how variants can cross
Hamiltonian barriers under lowered selection pressure to access new
basins of favorablefitness sequence space. Population of less favorable
LGL sequence space under lowered selection was also observed for
VIM-2 metallo-β-lactamase under treatment with varying concentra-
tions of ampicillin, shown in Supplementary Fig. 7d. This indicates that
the latent generative landscapemay beuseful in describing diversity of
populations and movement to or away from other areas of known
function. While some functional space may appear to occupy discrete
regions in the LGL, it is also possible that these functions exist on a
spectrum, as observed with functional β-lactamase sequences occu-
pying LGL barriers. Sequences encoded in barriers should not be
assumed to be nonfunctional, but perhaps only less-fit in comparison
to the protein functions encoded in nearby basins.

When considering local regions of the latent generative land-
scape, we can compare the landscape surrounding a sequence of

ba

Fig. 4 | The barriers are regions of poor fit to training set statistics. a Sampling
wasperformed using anN ð0,2IÞ distribution, only permitting coordinateswhich lie
below the specified Hamiltonian cutoff. A total of 10,000 sample coordinates were
generated in each case, and sequences were generated through evaluating the

decoded probability distribution at each point. b The corresponding r20 correla-
tion scores. Low Hamiltonian regions have better K-site marginal correlations,
indicating greater statistical accuracy to the input training set.
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interest using neighboring differences in Hamiltonian values, as cal-
culated in Equation (10). This allows visualization of local, rugged
sequence space. Transmembrane protein 8 (TRMP8) is an ion channel
present in many organisms, but only important for cold thermo-
sensation in a subset of organisms. Sequence diversity has been used
to yield important information about the function and mechanism of
these channels69–71. In the case of TRMP8, we are able to visualize how
phenotypical information about cold-sensitivity is encoded in the LGL
by using the wild-type, cold-sensitive rat sequence as the sequence of
interest (Fig. 6a, d). When analyzing the non-cold-sensitive squirrel
wild-type sequence, we see that it occupies a more positive (unfavor-
able) Hamiltonian space than the cold-sensitive wild-type rat
sequence, hinting that the specific cold-sensing function of this
channel is associated with a lower Hamiltonian value. Furthermore, we
evaluate TRMP8 mutants generated by ref. 69. When the squirrel
sequence is mutated in 6 key positions towards the amino acids pre-
sent in the rat wild-type (H726Y, A762S, P819S, A927S, H946Y, and
S947N), we see that this cold-sensitive variant moves towards the rat
wild-type sequence and also to a more favorable relative Hamiltonian
space. Similarly, when the rat wild-type sequence key residues are
mutated to the squirrel amino acids, we see that the non-cold-sensitive
rat mutant moves towards the squirrel wild-type sequence and into
less favorable Hamiltonian space. For the squirrel 5-mutant, only 5 of
the 6 key residues were changed into the rat amino acids (H726Y,
A762S, A927S, H946Y, and S947N). This mutant had increased cold-
sensitivity but was not as responsive as the squirrel 6-mutant. In
Fig. 6d, the squirrel 6-mutant is slightly deeper into the basin of
favorable Hamiltonian than the squirrel 5-mutant. Overall, we observe
that mutants in more favorable fitness sequence space are
correlated with the functional attribute of cold sensitivity. TRMP8
proteins that have the cold-sensitivity function move deeper into the
local basin, while TRMP8 mutants lacking cold sensitivity move away
from the local basin. This behavior shows how local basins encode

preference for certain sequence attributes, including functions, and
thus, sampling of basins or directing mutations to improve location
relative to the local basin can assist in engineering of specific protein
properties.

While movement towards a local basin in the latent generative
landscape may help predict an attribute of mutants, we observe in the
case of glycoside hydrolases that local fitness barriersmay divide areas
of sequence space with distinct properties. The glycoside hydrolase,
D2-BGL, is of interest in material development due to its saccharifica-
tion activity. In Kao, et al., D2-BGL mutants were generated to find
variants with higher saccharification efficiency than wild-type D2-
BGL72. Figure 6b, e shows wild-type D2-BGL and the increased pro-
ductivitymutants generated.Weobserve that nomutants populate the
peak of the local fitness barrier. Many mutants are clustered nearby
wild-type D2-BGL in the local basin. Two of the key variants in the local
basin were shown to have increased activity due to higher enzymatic
efficiency. MutM, the highest productivity mutant, exhibited a 2.7 fold
increase in expression, which was due to increased sorting, folding,
and export from the endoplasmic recticulum while the other mutants
nearby wild-type D2-BGL had increased expression due to increased
enzymatic efficiency72. While all mutants exhibited increased pro-
ductivity, we observe mutants crossing a local barrier of unfavorable
fitness exhibit different properties than the proteins occupying the
local basin. These local differences are often not discernible when only
considering the global landscape (Supplementary Fig. 11b). This illus-
trates that local barriers can also divide sequence space into subsets
with distinctive functional properties.

Accessing new or different properties is often the goal of protein
engineering, but mutagenesis often leads to large libraries of non-
functional mutants. To avoid destruction of important properties,
rounds of positive and negative selection are interchanged to access
new functional sequences73–77. One example of this is the toggled
selection regime for allosteric transcription factor, BenM, to recognize

Beta Lactamase Latent Space Beth Israel Lahey Health Datasetsb

ii

i

iiiStiffler, et. al. PSE1 Mutants Fantini, et. al. TEM1 Mutants

a

z0

z1

H
am

iltonian

,

Fig. 5 | Analysis of LGL forClass-A β-lactamases. a β-lactamase latent space shows
separation of proteins by phylogenetic information. The top 5 classes with the
largest number of sequences in trainingMSA are shown.b Local LGL for a subset of
class-A β-lactamases is expanded. (i) A local separation between TEM and SHV β-
lactamases is observed, indicating that the LGL allows subsets of sequences with
specific properties to be identified. In this case, we observe the separation of the
poor oxyimino-β-lactam hydrolyzer: TEM, and the efficient oxyimino-β-lactam
hydrolyzer: SHV, by a low barrier of unfavorable fitness. Determining the classifi-
cation between SHV and TEM usually must be done experimentally, but with the

LGL, division between these two groups based on sequence information is easily
identified. (ii) Stiffler, et al.67 PSE-1 mutants were generated using experimental
evolution, where mutants are generated using error-prone polymerase chain
reaction (epPCR), screened using 6μg/mL of ampicillin, and selected for survival.
Subsequent rounds aregenerated fromsurvivingmutants.Weobserveescape from
the local fitness basin due to lower selection pressure and are overall more diverse
than the Fantini, et al. mutants68. (iii) Fantini, et al. mutants were also generated
using directed evolution, and we observe thatmutants remain in local fitness basin
due to increased selection pressure.
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a new ligand, adipic acid, from ref. 78. A mutant library was generated
for BenM and nonfunctional mutants were removed, mutants with
increased expression upon treatment with the cognate ligand, cis,cis-
muconic acid, are designated as dynamic mutants. This mutational
round is indicated by label (1) in Fig. 6f. When viewing dynamic
mutants in the local LGL of allosteric transcription factors (PF03466), 2
of the 3 dynamic mutants occupy the local barriers around the BenM
basin (Fig. 6c, f). The onedynamicmutantwithin the local basin,MP02-
G10, exhibits a >15 fold improvement over wild-type BenM and out-
performs the other dynamic mutants. This indicates that robust
expression upon activation is associated with the local basin around
BenM. This selection round has lower selection pressure, and we see
mostmutants occupying less favorable or neutral sequence space. The
dynamicmutants are then used to create a secondarymutant library in
which mutants are selected for similar expression to BenM after
treatment with cis,cis-muconic acid and adipic acid, indicated by (2) in
Fig. 6f. These mutants are designated operational range mutants and
are shown to move back towards the local fitness basin. This supports
the idea that increased selection pressure drives mutants toward
landscape basins. Then, a tertiary library is generated fromoperational
range mutants, indicated by (3) in Fig. 6f. Mutants showing higher

expression with adipic acid than cis,cis-muconic acid are selected to
create the inversionmutants. Inversionmutants undergo less selection
pressure, exit the local basin, and occupy less favorable fitness space.
Inversion mutants are then used to generate a quaternary mutant
library where mutants are selected for comparable expression after
treatment with adipic acid when compared to wild-type BenM treat-
ment with cis,cis-muconic acid, indicated by (4) in Fig. 6f. Mutants
selected from this final library are designated as specificity mutants.
Specificity mutants once again move towards the local basin, indicat-
ing restoration of shared attributes that control enzymatic efficiency in
wild-type BenM. These subsequent rounds of positive and negative
selection are reflected in the local generative landscape, where low-
ered selection pressures allow movement of mutants toward less
favorable or neutral sequence space, and high selection pressures
enforce entrapment ofmutants into the local basin. The occupation of
higher diversity space under lowered selection pressure mimics
behaviors observed in the Stiffler, et al. β-lactamase mutants
(Fig. 5b(ii)). Toggling selection pressure for evolution-guided engi-
neering has shown how sequences can move within and out of basins
to gain specific attributes by accessing a different subset of
sequence space.
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Fig. 6 | Application of local generative landscapes for protein engineering.
a, d Transmembrane protein 8 (TRMP8) ion channel variants occupy different
sequence space within a local basin. This difference is correlated with cold-
sensitivity. Rat wild-type TRMP8 is cold sensitive while squirrel wild-type TRMP8 is
not. Mutating 6 residues in the squirrel TRMP8 into those of the rat sequence
induces cold-sensitivity and the reverse procedure diminishes cold-sensitivity in
the rat 6 mutant sequence. Shown in 2-dimensions in (a) and 3-dimensions in (d).
b, e Movement towards a basin can increase probability of generating a protein
with specific properties. β-glucosidase D2-BGL mutants are engineered for higher
saccharification efficiency. All mutants shown have similar or increased pro-
ductivity to wild-type D2-BGL. Mutants near the wild-type show increased enzy-
matic efficiency, while mutM exhibits a 2.7 fold increase due to improvements in
protein folding, sorting, and export efficiency in the endoplasmic reticulum. Shown
in 2-dimensions inb and 3-dimensions ine. This illustrates how localfitness barriers
divide sequence space with different functional properties. c, f Evolution-guided

engineering of allosteric transcription factor, BenM, to recognize a new small
molecule, adipic acid. Mutants showing increased gene expression over wild-type
when treated with cis,cis-muconic acid are called dynamic range mutants (1).
The dynamicmutant with asterisk ismutantMP02-G10, which exhibits the greatest
increase in expression. Further mutation of dynamic mutants results in the
operational range mutants (2) which exhibit similar levels of expression when
treated with cis,cis-muconic acid and adipic acid as BenM. Further mutation of
operational mutants results in inversion mutants (3) which now show higher
expression when treated with adipic acid than cis,cis-muconic acid. Finally, muta-
tion of inversionmutants results in specificitymutants (4) which,when treatedwith
adipic acid, exhibit similar expression to BenM under cis,cis-muconic acid treat-
ment. Shown in 2-dimensions in (c) and 3-dimensions in (f). This system further
supports the notion that changes in selection pressure control escape from or pull
towards basins. Rotational plots of 3D plots are available in Supplementary Fig. 10.
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Functional annotation of sequences using LGLs
For globins and β-lactamases, we proposed how the LGL could assist in
the classification and analysis of uncharacterized proteins. To test the
usefulness of the LGL for functional annotation of sequences, we
compared LGL performance against current and also state-of-the-art
methods (see Methods for details). Two separate protocols were used
to compare the potential of LGL for annotation, the results are shown
in Fig. 7. The first protocol focuses on functional annotation utilizing
gene ontology (GO) terms, and the second compares annotations
performed by the LGL and ProtNLM, which is a recently developed
large language model79. GO annotations assigned using the LGL were
comparable to those made by Pannzer2, Argot2.5, and eggNOG-
mapper80–82, shown in Fig. 7a. LGL GO annotation of test sequences
returned no synonymous predictions but performedmarginally better
than other methods at providing more specific GO labels, which were
exact matches to the test sequence GO labels. To avoid effects of
alignment of input sequences on performance, both unaligned and
aligned input sequences were used for Argot2.5, Pannzer2, and
eggNOG-mapper. Alignment of input sequences only had a noticeable
impact on Pannzer2. The LGL had increased performance over
eggNOG-mapper in all cases, but it is worth noting that eggNOG-
mapper has a user friendly interface. Furthermore, the compared GO
annotationmethods do not require users to utilize their own compute
resources. When comparing languagemodel annotations between the
LGL and ProtNLM, the LGL had comparable or marginally better per-
formance for the protein families analyzed. We speculate in part
because while ProtNLM had to learn and store labels using model
parameters, the LGL was trained in an unsupervised way and retrieved
prediction labels in a method more akin to a database of labels. One
example of a common coverage error made by the language model is
from the tRNA Synthetase family, where in our test set ProtNLM never
produced the label “Aspartate–tRNA(Asp/Asn) ligase” and only pre-
dicted “Aspartate–tRNA(Asp) ligase”, despite these two labels con-
veying important functional specificity differences. These findings
demonstrate that latent generative landscapes can also be reliably
used for functional annotation of sequences.

The latent landscape as an evolutionary map
In addition to functional classification and fitness, the LGL can be used
as a tool to interpret and obtain insights on evolutionary trajectories.
One example includes the engineering of ancestral hemoglobin

sequences to gain functional heterotetramerization of alpha and beta
hemoglobin sequence variants83. In brief, ancestral reconstruction was
used to produce ancestral alpha/beta, alpha, and beta hemoglobin
sequences, with the ancestral alpha/beta sequence having 41 amino
acid substitutions compared to the beta sequence. The alpha/beta
sequence was modified, swapping in residues from beta hemoglobin
until it could form an α/β tetramer in solution with the ancestral alpha
hemoglobin. The sequence gained tetramerization butwas not soluble
for nativemass spectrometry at 9mutations(α/β9), an additional set of
mutations were required for native tetramerization (α/β14). Shown in
Fig. 8a, when these sequences are encoded and shown in the landscape
this transition can be explained through the coevolutionary informa-
tion embedded in the VAE. The ancestralα/β hemoglobin encodes into
the alpha hemoglobin basin (solid circle), and through successive
mutation eventually crosses the landscape barrier and enters the beta
hemoglobin basin (dashed circle), all of which is in line with the
described experimental results. In this way, the landscape allows
directed evolution experiments to be tested in silico in an unsu-
pervised framework, where mutation from one sequence to another
can be done at large scale and assessed within the landscape. In this
example, there are 30 possible mutations between the aligned
sequences of ancestral α/β and the β hemoglobin (Supplementary
Table 1), and there are many combinations of 14-mer mutants that
would allow the sequence to traverse the barrier and enter the beta
hemoglobin basin (shown as a cloud of points in Fig. 8a). By counting
the frequencyof occurrenceof positions used in synthetic 14-mers, the
positions which push the encoded points towards the ancestral
β hemoglobin often, but not always, agree with the original 14 chosen
through structural analysis, Supplementary Figs. 12 and 13.

Qualitatively, the heights of these barriers can offer some indi-
cation of evolutionary distance between sequences. Shown in Fig. 8b,
when plotting an alignment of spike proteins from the coronavirus
family of viruses, the heights of the barriers coincide with established
phylogenetic relationships between family members84. With the LGL it
is clear that straight linemovement from the SARS-CoV2 cluster to the
Human MERS cluster entails breaking many more of the sequence
couplings than a similar distance from the SARS-CoV2 cluster to the
SARS-CoV cluster, highlighting the evolutionary distances between
these three betacoronaviruses. The SARS-CoV2 cluster contains all
unique sequences from the NCBI SARS-CoV2 repository85 (accessed on
March 31st, 2022), and they are distributed radially around the earliest
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Fig. 7 | Comparison of LGL functional annotation performance and other
sequence-based methods. a GO annotation predictions for glycoside hydrolase,
globins, and tRNA synthetase were performed using the LGL, Pannzer2, Argot2.5,
and eggNOG-mapper. Both aligned and unaligned sequences were used for other
methods to ensure fair comparison. Annotations are considered exact if the test GO
label matches the predicted GO label. Annotations are considered synonymous if
the predicted GO label is either a child or parent of the test GO label. Annotations

that are missed are test GO labels that were not predicted by the given method.
b Annotation predictions for glycoside hydrolase, globins, and tRNA synthetase
were performedby LGL and ProtNLM.Annotations are correct when they are either
an exact match to the test protein or have the same meaning. Annotations with a
coverage error are annotations where the correct label never appears in the pre-
dicted label set and the resulting prediction is not synonymous. Annotations are
incorrect when the wrong annotation is selected.
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SARS-CoV2 sequences deposited, which can be seen more clearly in
Supplementary Video 1. The map also shows how there is no clear
barrier between the Bat Coronavirus sequence (white arrow) and the
large number of variants sequenced during the pandemic, consistent
with the notion that the Bat might be the link between human and
animal SARS-Cov2.

Discussion
While previous work has found that the intrinsic dimension of protein
sequence datasets is close to 1086, in this work, we show how 3
dimensions (2 latent variables and the DCA Hamiltonian) in the latent
generative landscape provides greater interpretability of the VAE
manifold and useful information on protein sequence properties
which would be more difficult to achieve with higher dimensions. As
shown in Figs. 3a, 5a and 8, phylogenetic and functional differences
can be easily identified using the LGL. The simplest information gain is
that high Hamiltonian barriers can be considered as a demarcation
between groups of proteins. In previous methods, classifying
sequences using a VAE required clustering analysis, but by using
Hamiltonian barriers instead, we could utilize biologically relevant
information to inform classification of sequences. This could reduce
errors when a sequence seems to be equidistant to two clusters of
known function and/or phylogeny, but in reality there exists a coevo-
lutionary (Hamiltonian) barrier between them as shown in Fig. 8a. In
Fig. 3, for example, unlabeled sequences encoding near the barrier
between myoglobin and hemoglobin subunit α would be difficult to
classify with distance based clustering analysis alone, yet with the LGL
barrier this becomes significantly easier and more reliable. Classifica-
tion based on landscape barriers seems a promising method, Fig. 3b,
and may provide advantages over other methods when classifying
sequences. Furthermore, the LGL allows further subclassification of
sequence space that cannot be achieved through clustering alone. By
identifying subsets of sequence space divided by weak Hamiltonian
barriers, such as the separation between TEM and SHV β-lactamases in
Fig. 5b(i), we are able to distinguish between functionally different
groups. In the case of TEM and SHV, identifying whether a class-A
β-lactamase belongs to either group is usually done experimentally as
even their structures are incredibly similar64. Thus, the LGL provides a
powerful tool for classifying new variants in silico.

It is important to also recognize that the latent generative land-
scape quantifies the attributes of all sequence space, not only the pro-
teins within the training set. Thus, the underlying landscape can be
rationally sampled to select for certain traits when generating de novo
proteins. Sampling from basins is recommended because, as shown by
encoding of higher ordermarginals in Fig. 4, these regions tend to have
higher fidelity to input sequence statistics. This means that the like-
lihoodof generating a functional sequencemay behigher in basins than
in barriers15. While it is true that the regions of the VAE landscape which
have a higher Hamiltonian could still be expressed and produce valid
proteins (Supplementary Figs. 14 and 15), there is good evidence that
theHamiltonian energy has predictive power for the functional viability
of an expressed protein23,26. Moreover, we observe that regions near the
origin have high entropy and low adherence to family statistics, Fig. 4
and Supplementary Fig. 8. While it is possible that this sequence space
contains useful information, such as the sequence of family origin32,
reconstructing any sequence of relevance to the family might be more
challenging and computationally expensive due to high Shannon
entropy of decoded sequences. Thus, sampling the origin could pro-
duce an extraordinary number of unique sequences, in which many do
not adhere to family statistics as indicated by Fig. 4. The entropy affects
the Hamiltonian scores of sequences generated through evaluating
decoded distributions, as shown in Supplementary Figs. 16 and 17,
highlighting that this variability is inversely related to the distance from
the central region of the landscape. When observing Hamiltonian bar-
riers outside of the origin, we observe varying heights. Thus, we pro-
pose that some barriers have a higher cost to cross than other barriers.
High cost of traversal between more distantly related sequences was
also demonstrated in Fig. 8b.

With the latent generative landscape defining subsets of sequence
space and cost of fitness to access new functions, we can also consider
smaller, local differences encoded in the landscape. In the case of
TRMP8, cold-sensitive sequences are encoded deeper into basins. This
includesmutant sequences, whichwere not present in the training set,
Fig. 6a, d. This example demonstrates how proteins can be mutated
toward new functions using the LGL. It also suggests that this frame-
work can be used to rationally sample sequence space in attempt to
preserve specific attributes, such as cold-sensitivity.When considering
local differences, we also see how local barriers subdivide sequence

SARS-CoV

SARS-CoV2

Human MERS

ba

Alpha

Beta

Fig. 8 | The VAE and landscape allow study and visualization of sequence
evolution. aAncestral sequences used for structural analysis and guided evolution
labeled as Ancestral, and Ancestral α/βmutants chosen through structural analysis
plotted with Anc prefix. Computationally generated 14-mer mutants plotted

underneath. b The betacoronavirus family, colored separately by SARS-CoV2 line-
age and viral type. Circles in this plot are all SARS-CoV2 lineage sequences, and the
white arrow points at the RaTG13 Bat Coronavirus Spike sequence which has been
suggested as the link between the animal and human SARS-CoV2.
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space in the case of glycoside hydrolase, Fig. 6b, e. Functionally
improved mutants, which were not in the training set, cluster near
wild-type D2-BGL in a basin when their increase in function is asso-
ciated with increased enzymatic efficiency. MutM shows increased
performance due to more efficient folding and export from the
endoplasmic reticulum to the Golgi body, as determined by changes in
expression of unfolded protein response (UPR) genes72. This supports
the idea that proteins with similar functions are encapsulated in local
basins and that even relatively small barriers can indicate sequence
space with differing attributes. Generating sequences from within the
basin may give specific enzymatic properties, but mutating sequences
to different local basins may allow new attributes to be gained.
Through these examples, we show how highly-specialized mutants
could be more reliably generated, screened, and designed using
the LGL.

Interestingly, the LGL could also be useful in modeling evolu-
tionary trajectories. In Fig. 8a, the process of hand selecting the
mutants used in ref. 83 required expert knowledge and a wealth of
prior information on the structure and function of hemoglobin,
whereas a similar result can be found by a less informed but more
exhaustive, in silico assessment of mutations to create variants with
potentially the desired function. This could lead to a method for
unsupervised assessment of directed evolution in proteins with less
supporting information. Additionally, in Figs. 5b(ii, iii) and 6c, f, we
see how lowered selection pressure allows directed-evolution
mutants to occupy less favorable sequence space and cross Hamil-
tonian barriers while directed-evolution mutants under higher
selection pressure move further into basins. In these cases, we
observe how lowered selection pressure allows mutants to occupy
sequence space that is otherwise not accessible. Multiple rounds of
varying pressure also seem to influence ability of sequences to
occupy less favorable spaces, but this maybe be attributed to
robustness encoded in the protein family. We can assume that pro-
tein families with higher sequence diversity also allow for less
favorable sequences to more easily persist, as it has proven advan-
tageous. The circular movement of mutants during a toggled selec-
tion regime (see Fig. 6f) is reminiscent of the re-encoding of
generated sequences as shown in Fig. 1b and Supplementary Fig. 18.
These flows show a striking correspondence with the landscape, and
intriguingly, the direction of the arrows implies that there are many
regions within these maps where sequences which are generated
from the decoder do not change their position upon re-encoding.
Perhaps these flows capture some evolutionary behavior that is
controlled by selection pressure. VAEs have been connected to
concepts like attractors before87, though in our example, the effect is
not due to intentional model over-fitting, and so in the context of
phylogenetics these basins of attraction may have useful similarities
with the ancestral reconstruction method of sequences through
phylogenetic relationships. Further investigation of flows can help
identify if this phenomenon is only an attribute of the model or
indicative of some real, evolutionary behavior.

Altogether, we have presented several examples in which the LGL
could be used to inform selection of coordinates for generation of de
novo proteins by avoiding sequence space with poor Hamiltonian
values. This may improve generation of functional proteins for VAEs
and VAE-related architectures, which have faced challenges in the
past34,39,40. Sampling from basins may also be useful in selecting for
variants with specific functions. We have shown the present metho-
dology could be used to generate and screen mutants for properties
that are defined by landscape basins. This allows for in silico testing
where libraries are generated computationally and then specific var-
iants are selected based upon their LGL coordinates. The landscape
itself may also be useful for understanding how and why mutants are
able to access new sequence space and what sequence features allow
for neofunctionalization. Thus, our next steps include the further use

ofmachine learningmethodson coevolutionary information to further
improve in silico protein engineering and generation, as well as
explore and define relevant evolutionary behaviors.

Methods
Pfam sequence collection
HMMSearch49 against the Uniprot database was used to obtain MSAs
for the protein families Globin (PF00042), FA_desaturase (PF00487),
Beta-lactamase2 (PF13354), Acetyltransf_1 (PF00583), and LysR_sub-
strate (PF03466) using the PFAM HMM seed48. Seed sequences were
used for TRMP8 and glycoside hydrolase due to poor coverage of
PFAM domain with experimental mutational sites and are available in
the Datadryad repository. Number of training sequences for each
family is shown in Supplementary Table 2.

Betacoronavirus spike sequence collection
Seed sequences were full length spike proteins which were aligned so
that all human SARS-CoV2 spike protein positions were included
(L = 1274). This seed MSAwas used to perform an HMMSearch on the
Uniprot database. SARS-CoV2 sequences were pulled from NCBI on
March 31st, 2022, and were aligned to the seed HMMwith hmmalign.
All duplicate sequences were removed before training. This final MSA
was used to train a VAEmodel which had 2548 hidden units. All SARS-
CoV2 label information was parsed programmatically from the json
file which accompanied the NCBI data deposition, and all other
sequences were labeled with information from their respective Uni-
prot headers.

Data pre-processing
The collected MSAs were filtered to remove sequences with 20% or
greater contiguous gaps. Sequences of length N were one hot
encoded with gaps encoded as an additional character. One hot
encoding is the procedure in which data is converted into a binary
matrix. For the model, each aligned sequence, x, is a 23 by L matrix.
Rows encode all possible amino acid characters, including a gap
character, and L is the length of x. When analyzing mutant libraries,
mutants with a nonsense mutation of over 20% the original protein
length were discarded.

VAE model architecture
The design goal of the variational autoencoder is to generate data
samples x∈ X using a latent variable model defined on some para-
meters θwith a prior pθ(z) on latent variables z, such that the marginal
likelihood is equal to

pθðxÞ=
Z

pθðx∣zÞdpθðzÞ ð1Þ

The parameters θ and the latent variables z are not known, and this
form does not give a tractable algorithmic solution for finding them.
The solution proposed in ref. 36 is to approximate the posterior dis-
tribution pθ(z∣x) with another model defined on parameters ϕ,

qϕðz∣xÞ ð2Þ

Thismodel defined onϕ is termed the encoder, and themodel defined
on θ is termed the decoder. The marginal likelihood of generating a
sample x through the decoder can now be written as

logpθðxÞ=DKLðqϕðz∣xÞ∣∣pθðz∣xÞÞ+Lðθ,ϕ,xÞ ð3Þ

where DKL is the Kullback-Leibler divergence, measuring the fit
between the decoder’s posterior distribution on z and the encoder’s
posterior, and the last term L is the lower bound of the model’s fit to
themarginal distribution over z. Equation (3) can be rewritten into the
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evidence lower bound function (ELBO)

ELBO= � Ez∼qϕðz∣xÞ logðpθðx∣zÞÞ+DKLðqϕðz∣xÞ∣∣pθðzÞÞ ð4Þ

which is the objective function minimized during training. On the
right-hand side, the first term is the reconstruction error which
measures how well the encoded data matches the generated data
(minimum of zero), and the second term is the measure of fit of the
latent distribution which is being encoded and an assumed prior
distribution (minimum of zero). We follow36 and encode the posterior
qϕ(z∣x) using a reparameterization procedure to ensure our model to
be differentiable. The encoder model encodes sequences as Gaussian
parameters μ and σ2, and these parameters are combined through an
element-wise matrix product with an auxiliary noise variable ϵ, such
that

z =μ+ σ � ϵ ð5Þ

This reparameterized z is the code that the decoder uses to generate
sequences, and this lets us define pθ(z) as a Gaussian distribution to
give the gradient of Equation (4) an analytical solution. For our specific
implementation, the data is represented as a one hot encoded vector,
where for a protein of length Lwe create an array of shape 23 × L, with
each row containing a 1 in a position linked to an amino acid identity
with the remaining row positions containing a 0. A total of 23 rows
were used to encode the 20 canonical amino acids, a gap character,
and additional less common amino acids. The latent variables z are
decoded into a Softmax probability distribution with the same array
dimensions as the input, where the output layer ψ : R23 × L with each
column corresponding to 23 sequence symbols (a∈A) is measured as

pða∣zÞi =
expðψai

ðzÞÞP
k2A expðψki

ðzÞÞ ð6Þ

whichgives L rowswithprobability values summing toone in each row.
The reconstruction error term in Equation (4) will evaluate as zero if
the input and output matrices are identical (i.e., the only sequence
possible at some point z is the input sequence).

Hyperparameters and training
For all of our models, unless stated otherwise, we used 3 × L hidden
units for both the encoder and decoder, the ReLU activation function
for these hidden units, a latent dimension of 2, the Adam optimizer
with a learning rate of 1e − 4, and a l2-regularization penalty on the
hidden units of 1e − 4. Trainingwas stoppedwhen loss did not improve
within 10 epochs. With only 2 latent encoding dimensions we saw no
improvement in test set validation when using more than 3 × L hidden
units. Models were built using Tensorflow88 and trained either on
workstations or on NVIDIA A100 GPUs.

Landscape generation
For a given trained VAE model, the input training sequences used to
create the VAE are used to generate a Direct Coupling Analysis (DCA)
model3, defined as

PðSÞ= 1
Z
exp

X
i<j

eijðAi,AjÞ+
X
i

hiðAiÞ
( )

ð7Þ

which defines the probability of a sequence S of length L, defined by
the statistics of occuring amino acids at single positions Ai and pairs of
positions (Ai,Aj). The eij term are parameters related to the pairwise
couplings between MSA positions and the hi is a local field related to
the frequency of amino acids at that position. The parameters of this
model can be inferred in different ways4,89,90, here we used the inverse
of the cross-correlated matrix as described in ref. 3. In a grid-like

fashion, the VAE’s decoder is fed with uniformly spaced coordinates
(z0, z1) to generate a decoded Softmax distribution as described in
Equation (6). The maximum probability sequence from this output
distribution is generated as

S*ðzÞ=ai . . . L, where ai = argmax
a2A

pða∣zÞi ð8Þ

Each sequence is given a Hamiltonian score using the parameters
obtained from theBoltzmann-likeDCAdistribution, defined as follows:

HðS*Þ= �
X

1≤ i<j ≤ L

eijðai,ajÞ �
XL
i= 1

hiðaiÞ ð9Þ

Delta Hamiltonian score
We can also quantify and create landscapes with the difference
between Hamiltonian scores using a reference sequence. This Δ
Hamiltonian is defined as

ΔHSn
=HSn

� HSref ð10Þ

where Sn can be either a generated sequence or a mutated sequence
while Sref can be awild-type or extant sequence or a reconstructedwild
type in the case of local landscapes, where all sequences (including
wild-type) used to construct the LGL are in their decoded representa-
tion S*. The landscapemap is then created with the collection of latent
coordinates z0, z1 and the value of the Hamiltonian for each of the
sequences generated using Equation (8).

Tree topology comparison
For Fig. 3b(i, ii), a Gaussianmixturemodel was usedwith 70 clusters to
separate the encoded training data arbitrarily into groups. We chose
70 clusters in order to fit Gaussian distributions that did not overlap
with barriers and did not heavily fragment the clustering in the land-
scape, and to this end, we additionally removed 6 of the Gaussians,
which spanned across barriers to leave us with 64 distributions. The
mean and variances of the distributions were used to generate points,
and thosepointswerefirstfiltered to ensure theydidnot lieonbarriers
(aHamiltoniancutoff at−850was used for theGlobin family), andwere
then used as input into the decoder to produce a probability dis-
tribution which was evaluated to generate a sequence. For each clus-
ter, 10 sequences were generated and 10 natural sequences were
randomly chosen and each was assigned a group number label and a
number 0–9, with each MSA totaling 640 sequences. This allows
generated sequences to be matched to real sequences where topolo-
gical similarity implies phylogenetic correspondence of VAE sequen-
ces and extant sequences. For Fig. 3b(iii), no clustering was used, and
instead theGlobin (PF00042) and FA_Desaturase (PF00487) PfamMSA
were sampled. The full MSAs were used, and when sampled, their
identity was set to their taxonomic ID number given by Uniprot so that
tree similarity would be defined by taxonomic organization. A total of
100 of these MSA pairs were generated, each with 640 sequences to
ensure comparable scores. All MSAs created were computed into
phylogenetic trees using the FastTree software91 set to default settings.
The metric used to compare trees was the Clustering Information
Distance (CID) from the TreeDist R package58, which measures the
similarity in leaf arrangement between two trees. This method finds
optimal matching between split points on two trees being compared
(each tree is split into two subtrees), then uses a mutual information
score to measure the information difference between the two trees
based on the leaf labels in their respective subtrees given by the split.
This is done for all optimal tree splits given two trees and summarized
as a distance score. If the trees are identical their clustering distance is
zero, and for completely random trees their score increases in pro-
portion to their size. For Fig. 3b(iv), the natural Globin trees generated
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for subfigure Fig. 3b(i) had their leaves shuffled randomly and were
compared to the ordered trees. This shows the expected null score
from this metric at these tree sizes.

VAE sampling for r20 scoring
For Fig. 4, the Globin (PF00042) Pfam family was used to train a VAE
model, and a 500 × 500 element (pixels) landscape was generated.
Coordinates were generated with a N ð0,2IÞ distribution. These coor-
dinates were fed into the decoder, producing probability distributions
whose values were used to generate two sequences, one sequence
through evaluating the probability distribution and a second through
Equation (8). For each coordinate, if the sequence created through
Equation (8) had a Hamiltonian score below the specified cutoff, the
probability evaluated sequence was added to the dataset, and this
process was repeated until 10,000 sequences were generated. These
filtered MSAs were compared to the training data using the r20 cor-
relation score used in ref. 55. For each K∈ {2, 3, 4, 5, 6, 7} the K-site
marginal statistics were compared between the generated sequences
and the input training sequences. For each K-mer, 3000 unique sets of
K columns from the trainingMSAwere chosen and all unique sequence
motifs in thesepositionswere counted and normalizedwith the top 20
most common motifs being chosen for comparison. The same col-
umns were chosen in the generated MSAs, and the selected 20 motifs
were counted and normalized. These normalized frequencies were
compared through a Pearson correlation score to measure the agree-
ment between the K-site statistics in the real sequences and the syn-
thetic sequences, with a score of 1 meaning perfect agreement. These
20correlationswere averaged toproduce thefinal value foreachK-site
point in each generated MSA.

For the sequence statistics analysis shown in Supplementary
Fig. 3, we follow, with some differences, the method described in
ref. 55 for producing the four Pfam derived datasets for PF00005,
PF00069, PF00072, and PF00076. Seed sequences from Pfam were
downloaded and queried against the Uniprot database (2021_02) using
HMMSearch. From these aligned sets we filter out sequences with
greater than 20% contiguous gaps, then randomly sample from this
dataset, each time removing sequences from the sample pool with
sequence identity greater than 55% to the newly sampled sequence.
When 20,000 sequences are selected, we split this set randomly into
10,000 train and 10,000 test sequences.We train VAEmodels with two
and seven latent dimensions on the full training sets asdescribed in the
Hyperparameters and Training section, with no holdout validation
sets. Sequence generation and r20 evaluation was performed as
described above, with no cutoffs used. These sequences were com-
pared to the testing set to produce the reported data.

Ancestral Globin plot
The VAE was trained using the Globin Pfam MSA (PF00042). The
deposited Ancestral Globins and mutants from ref. 83 were aligned to
the Globin Pfam MSA using the HMM from Pfam before being enco-
ded. There were 39 sequence differences between the Ancestral α/β
Hemoglobin and theAncestralβHemoglobin, and theα/βHemoglobin
was the template for mutation. For eachmutant, 14 of the 39 positions
were chosen and those positions were mutated to match the β
Hemoglobin sequence. We generated 10,000 of these mutants and
plotted them in Fig. 8a.

Streamplot
The streamplot was created using matplotlib92. For each 2-D coordi-
nate input in a grid-like fashion in order to generate the latent gen-
erative landscape, a maximum probability sequence was generated
through Equation (8), and this sequence was subsequently fed into the
encoder portion of the VAE to generate a new latent coordinate (z1, z2).
The initial pixel coordinates and the resulting encoded coordinates
becomes the set of vectors used to create the streamplot. Both

streamplots weremadewith the Globin VAEmodel described in earlier
Methods.

Latent space entropy calculation
Entropy landscape is calculated in a grid-like fashion using decoder
distribution (X) at each position in the landscape, where average
entropy per amino acid at any given coordinate is termed Ĥ,L is the
length of the protein, i is the residue position, and q is each amino acid
character possibility.

ĤðX Þ= � 1
L

XL
i = 1

X23
q= 1

P xq
i

� �
log P xq

i

� �� �
ð11Þ

Functional annotation comparisons
For the ProtNLM comparison, we query Uniprot release 2022_04 using
seed sequences for Globin (PF00042), tRNA Synthetase (PF00152),
and Glycohydrolase (single seed sequence), then split the data into
train and test sets using sequences which were added to Uniprot
before the 2021_02 release as the training set to train two dimensional
VAEmodels for each family, mimicking the temporal split used to train
ProtNLM79. The resulting splits are: 10,218 Globin training sequences
and 5037 Globin test sequences, 27,164 Glycohydrolase training
sequences and 3357 Glycohydrolase test sequences, and 98214 tRNA
Synthetase training sequences and 14845 tRNA Synthetase test
sequences. The prediction target labels for both methods are the
Uniprot Protein names associated with each test sequence. ProtNLM
was run on anNVIDIA 3090using the freely available pretrainedmodel
and code in order to predict labels for the test sequences, taking the
top scoring prediction. For the VAE, test sequences were encoded into
the LGL and the nearest training sequence to the encoded test
sequence had its sequence label pulled as the prediction label. For
both VAE and ProtNLM methods we made our best attempt to match
ambiguous labels, for example, if the Uniprot derived truth label is
“Hemoglobin Subunit Beta” and ProtNLMpredicts “HBBProtein” this is
considered “Correct”. These matches are combined with exact mat-
ches to produce the “Correct” score. Predictions which fail to match
are assessed to see if the truth label being predicted existed within the
set of all prediction labels produced for the test set. If the ground truth
label did not exist in the set of all generated prediction labels, then this
is considered a “Coverage Error”; all other errors are listed as “Incor-
rect”. For the 351 Globin ground truth labels, ProtNLM learned 82 and
the LGL received 260 through the training data. For the 169 Glycohy-
drolase ground truth labels, ProtNLM learned 12 and the LGL received
166 through the training data. For the 159 tRNA Synthetase ground
truth labels, ProtNLM learned 34 and the LGL received 152 through the
training data.

For Gene Ontology annotation benchmarking, the LGL was tested
against three sequence-based methods: Pannzer2, Argot2.5, and
eggNOG-mapper80–82. Pannzer2 is aweightedk-nearest neighbors (KNN)
based on sequence similarity and enrichment80. Argot2.5 utilizes a
weighting algorithm for homologous sequence GO annotations81.
EggNOG-mapper utilizes precomputed phylogenies and orthologs to
assignGOannotations82. GO annotations were collected usingQuickGO
API and only GO annotationswith experimental evidencewere used93,94.
Therewere 314 annotatedGlobins, 577 annotatedGlycohydrolases, and
451 annotated tRNA Synthetases. For each annotated protein, multiple
annotations frequently exist, usually describing separate features of
each protein. There were 2216 total experimental globin GO annota-
tions, 1731 total experimental glycoside hydrolase GO annotations, and
1724 total experimental tRNA synthetase GO annotations. Proteins with
GO annotations were split into 90% training and 10% test randomly 10
times. TrainingGOannotationswere used to assign test GOannotations
using nearest neighbor in VAE latent space. Testing set sequences were
used as input to the LGL, Pannzer2, Argot2.5, and eggNOG-mapper.
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Since allmethodologies require a homology search, bothunaligned and
aligned inputs were input to Pannzer2, Argot2.5, and eggNOG-mapper
to ensure fair comparison to the LGL. Since GO annotations exist in
trees where leaf nodes aremore descriptive, parent and child nodes are
considered synonymous.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sequence, model, and validation data generated in this study have
been deposited in the DataDryad database under accession code
[https://doi.org/10.5061/dryad.51c59zwbn]95. The processed HMM
seed data are available at PFAM on InterPro [https://www.ebi.ac.uk/
interpro/]48. Theunprocessed sequencedata are available at Swiss-Prot
and TREMBL on Uniprot [https://www.uniprot.org/]96. The plotting
data generated in this study are provided in the Source Data file are
available in the DataDryad database.

Code availability
An Interactive tool to generate and visualize LGLs (Supplementary
Fig. 19) accompanied by code, scripts, and the Dockerfile used in this
work is available on Github (https://github.com/morcoslab/LGL-
VAE/)97.
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