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Learning perturbation-inducible cell states
from observability analysis of transcriptome
dynamics

Aqib Hasnain 1 , Shara Balakrishnan2, Dennis M. Joshy1, Jen Smith3,
Steven B. Haase 4 & Enoch Yeung1

Amajor challenge in biotechnology and biomanufacturing is the identification
of a set of biomarkers for perturbations and metabolites of interest. Here, we
develop a data-driven, transcriptome-wide approach to rank perturbation-
inducible genes from time-series RNA sequencing data for the discovery of
analyte-responsive promoters. This provides a set of biomarkers that act as a
proxy for the transcriptional state referred to as cell state. We construct low-
dimensional models of gene expression dynamics and rank genes by their
ability to capture the perturbation-specific cell state using a novel observa-
bility analysis. Using this ranking, we extract 15 analyte-responsive promoters
for the organophosphate malathion in the underutilized host organism Pseu-
domonas fluorescens SBW25. We develop synthetic genetic reporters from
each analyte-responsive promoter and characterize their response to mala-
thion. Furthermore, we enhancemalathion reporting through the aggregation
of the response of individual reporters with a synthetic consortium approach,
and we exemplify the library’s ability to be useful outside the lab by detecting
malathion in the environment. The engineered host cell, a living malathion
sensor, can be optimized for use in environmental diagnostics while the
developed machine learning tool can be applied to discover perturbation-
inducible gene expression systems in the compendium of host organisms.

A major step in biomanufacturing and biotherapeutic processes is the
optimization of production efficiency and therapeutic efficacy,
respectively. Often, destructive or costly measurements such as high-
performance liquid chromatography or next-generation sequencing
are used to observe the partial or total effect of a compound on known
biomarkers that act as proxies for the cellular state. These biomarkers,
though difficult to identify, once known, can be used as sensors to
gauge the efficiency and efficacy of biotechnological processes across
a wide array of experimental conditions.

Transcriptional genetic sensors are a class of biological com-
ponents that control the activity of promoters1 andhave beenused to

construct whole-cell (living) biosensors2–4. A large portion of tran-
scriptional sensors rely on transcription factor-promoter pairs5 and
have been used in whole-cell biosensing for detection of heavy
metals6, pesticides and herbicides7–9, waterborne pathogens10, dis-
ease biomarkers11–14, andmanymore applications discussed in ref. 15.
Sincemicrobes are found in virtually all terrestrial environments, one
could imagine that there would be no shortage of transcriptional
genetic sensors for novel sensing applications. However, given a
novel sensing application for a target compound or perturbation,
transcriptional genetic sensors are typically unknown a priori.
Moreover, a complete methodology for discovering sensors and
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biomarkers for the target analyte in novel organisms does not
yet exist.

The transcriptional activity of an organism can be measured
through RNA sequencing (RNA-seq) to produce a snapshot of the bulk
cell state subject to intrinsic and extrinsic perturbations. The typical
approach for identifying upregulated anddownregulated genes across
experimental conditions is to apply differential expression analysis16,17.
A major pitfall with differential expression analysis is its lack of sta-
tistical power when faced with a sparse number of biological repli-
cates. That is to say that the false-positive rate increases drastically
when only a small number of biological replicates are available18 as is
often the case due to the costliness of RNA-seq. A related issue arises in
that one must sacrifice time points for biological replicates, reducing
the fidelity of the dynamical process being studied. As most biological
processes are dynamic, time-series profiles are essential for accurate
modeling of these processes. Furthermore, differential expression
analysis provides no information beyond which genes are upregu-
lated/downregulated19. An analysis of expression dynamics provides a
potential route to design a sensing scheme for a target analyte for
which no single sensor exists.

A typical RNA-seq dataset contains hundreds to tens of thousands
of genes; despite that, a subset of genes, often referred to as bio-
markers, are typically sufficient for representing the underlying bio-
logical variation in the dataset. This is explained by the fact that
variations in many genes are not due to the biological process of
interest20 and that many genes have correlated expression levels21.
Several algorithms to identify the mode-of-action for a compound
have been developed from the perspective of network reconstruction
and have been used to reconstruct known regulatory networks and
discover new ones22–26. Network reconstruction relies on steady-state
data, is computationally expensive for high-dimensional systems, and
the number of unknownparameters necessitate the collection of large,
diverse datasets. It is recommended to collect 1/10th the amount of
samples as number of genes screened. To screen amodel bacteria, e.g.
E. coli, this amounts to roughly 400 RNA-seq samples; this can be
prohibitively expensive. Conversely, we aim to devise a methodology
that identifies biomarkers of interest from time-series data that is
computationally inexpensive, andwe validate our approach on limited
datasets by closing the design-build-test loop.

The task of identifying a subset of the state (biomarkers) which
recapitulate the entire state (transcriptome/cell state) and explain the
variations of interest is well studied in the field of dynamics and con-
trols in the form of optimal filtering and sensor placement27,28. In the
context of dynamic transcriptional networks, sensor placement is
concerned with inferring the underlying cell state based on minimal
measurements; this introduces the concept of observability of a
dynamical system29. The transcriptome is observable if it can be
reconstructed from the subset of genes that have been measured. In
other words, these genes encode the required information to predict
the dynamics of the entire transcriptome. To the best of our knowl-
edge, measures of observability have not been applied to genetic
networks to identify genetic sensors, biomarkers, or other key genes.

Due to the lack of DNA-binding information, transcriptional
measurements of a population are not sufficient for the identification
of biosensors. Several techniques have been developed to analyze
temporal correlations in time-series RNA-seq data in order to identify
biomarkers of interest30. Dynamic clustering tools have been devel-
oped which group genes according to co-expression patterns31,32.
Dynamic gene regulatory network reconstruction (GRN) tools use
time-series RNA-seq data to infer the functional interplay among genes
when affected by a perturbation33,34. In both clustering and GRN, the
question of selection of informative genes for downstream targeted
gene profiling is not addressed. A primary advantage of observability
analysis is the use of temporal correlations to identify an optimal set of
biomarkers that act as proxy for the perturbation-induced cell state.

Genes which contribute more to observability are considered as
informative genes or optimal biomarkers; these biomarkers can then
be selected for targeted gene profiling.

Overall, a systematic approach for identifying genetic reporters
from RNA-seq datasets is still an open and challenging issue. In this
work, we develop a machine learning methodology to extract
numerous endogenous biomarkers for analytes of interest from time-
series gene expression data (Fig. 1). Our approach consists of three key
steps, each of which is depicted in the middle panel of Fig. 1. The first
step adapts dynamic mode decomposition (DMD)35–37 to learn the
transcriptome dynamics from time-series RNA-seq data. Beyond
the scope of sensor discovery, we show how the dynamic modes can
be utilized to cluster genes by their temporal response. Secondly, we
construct and solve a sensor placement problem which assigns
weights to each gene38,39; highly ranked genes are those which can
recapitulate the perturbation-induced cell state. Using this ranking,
optimal biomarker genes may be selected. To ensure the ranking is
identifying genes which can recapitulate the cell state, the final step is
to measure how well a chosen subset of genes can reconstruct the cell
state. To validate our proposed methodology, we use our method to
generate a library of 15 synthetic genetic reporters for the pesticide
malathion40–42, an organophosphate commonly used for insect con-
trol, in the bacterium Pseudomonas fluorescens SBW25. The transcrip-
tional sensors play distinct biological roles in their host and exhibit
unique malathion response curves. Our method uses no prior knowl-
edge of genes involved inmalathion sensing ormetabolism.Moreover,
we use no data source beyond RNA-seq, thereby providing a cost and
computationally efficient approach for biomarker identification.

Results
Induction of malathion elicits fast host response
To start, we will first introduce the time-series RNA-seq dataset that we
will use throughout this work. The transcriptional activation and
repression of the soil microbe Pseudomonas fluorescens SBW25 was
induced bymalathion at amolar concentration of 1.29μM (425 ng/μL).
This concentration was chosen for the following two reasons: (i) it is a
moderate amount that can typically be found in streams and ground
water after recent pesticide use based on studies done in the United
States, Malaysia, China, Japan, and India43,44, and (ii) the characteristic
concentration of a metabolite in bacteria is on the order of
0.1−10μM45. Malathion is an organophosphorus synthetic insecticide
usedmainly in agricultural settings46while SBW25 is a strain of bacteria
that colonizes soil, water, and plant surface environments47. This
makes the soil-dwelling strain a prime candidate for identification of
transcriptional genetic reporters for the detection of malathion.

To enable rapid harvesting and instantaneous freezing of cell
cultures, we made use of a custom-built vacuum manifold, enabling
fast arrest of transcriptional dynamics (Supplementary Fig. 13 and
“Methods” section). Following malathion induction, cells were har-
vested at 10min intervals for 80min, obtaining a total of 9 time points
across two biological replicates that were sequenced. As the focus of
our study is on identifying trends and correlations across time, we
heavily favored time points in the trade-off between time points and
biological replicates. To identify candidate biomarker genes for
malathion induction and subsequently build synthetic transcriptional
reporters, we also collected samples from a cell culture that was not
induced with malathion. See the “Methods” section for further details
on cell culturing and harvesting.

RNA sequencing (RNA-seq) provides a snapshot of the entire
transcriptome i.e. the presence and quantity of RNA in a sample at a
given moment in time. In this work, we examine the fold change
response given by first normalizing the raw counts to obtain tran-
scripts per million (TPM)48 followed by calculating the fold change of
the malathion condition with respect to the negative control,
z = (xM+ 1)/(xC + 1). The implication is that the fold change is the cell
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state, zk for some time point k, we are concerned with for discovery of
genetic reporters. Of the nearly 6000 known genes in the SBW25
genome, a large fraction of them were not expressed at significant
levels. We filtered genes with TPM< 100 and specifically only 10% of or
624 genes are kept for modeling and analysis due to their relatively
high abundance.

Given our goal of extracting salient analyte-responsive promoters
from time-series gene expression data, we first model the dynamical
process that is driven by the input of malathion on the SBW25 tran-
scriptome. In thenext section,we applydynamicmodedecomposition
(DMD) to approximate the fold change response with a sparse col-
lection of dynamic modes. We demonstrate how DMD can accurately
describe gene expression dynamics by decomposing the time-series
gene expression into temporally relevant patterns.

Dynamic mode decomposition uncovers modes of host cell
response
Dynamic mode decomposition (DMD) is a time-series dimensionality
reduction algorithm that was developed in the fluid dynamics com-
munity to extract coherent structures and reconstruct dynamical
systems from high-dimensional data35. Recently, several works have
adapted and applied DMD to biological systems in various
contexts49–53, choosing DMD for its ability to (i) reproduce dynamic
data over traditionally static methods such as principal component54

or independent component analysis55 and (ii) represent the dynamics
of high-dimensional processes, in our case gene interaction networks,
using only a relatively small number of modes.

To uncover the diverse modes of the host cell response to mala-
thion induction, we performed (exact) DMD37 on the transcriptomic
dataset (see “Methods” section for the details). Specifically, we per-
form exact DMD on the standardized fold change, �z, which decom-
poses a gene expression matrix (genes × time points) into dynamic
modes, eigenvalues, and amplitudes in the form

ẑt =
Xr
i= 1

viλ
t
i bi =VΛ

tb=VΛtV�1z0 ð1Þ

where the rank r reconstruction of the cell state at time t is ẑt , vi are the
learned dynamic modes, λi, are the learned eigenvalues, and bi is the
amplitude associated with each dynamic mode (often known as load-
ing in the dimensionality reduction literature). From this we see that
the transcriptomedynamics aremodeled by a sum of damped, forced,
and unforced sinusoidal behavior when the magnitude of the eigen-
values are less than one, greater than one, or exactly equal to one,
respectively. This decomposition constructs a low-dimensional linear
model fromhigh-dimensional time-series data; quantitative features of
a nonlinear model are not captured in our model, e.g. multiple
equilibria and chaos. If these nonlinear features are relevant to the
system being studied, one can extend DMD to capture arbitrary
nonlinearities, at the cost of requiring a larger number of samples to
infer the parameters of the nonlinear function56. In this section we will
describe how modeling the fold change response with DMD enables
the identification of biologically relevant temporal patterns that are
driven by the malathion perturbation.
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Fig. 1 | Transcriptional genetic sensors underlying the response from envir-
onmental perturbations canbe extracted using data-driven sensor placement.
Bulk RNA sequencing (RNA-seq) measures transcript abundance over time fol-
lowing transcriptome perturbations (left). Our method (middle) starts by applying
dynamic mode decomposition (DMD) to the fold change response of the tran-
scriptome of a population of cells to discover dynamic modes which govern the
evolution of the cell state. The dynamic modes are used to design a state observer
(or equivalently, optimal gene sampling weights) from which the contribution of
each gene to the observability of the transcriptome dynamics can be assessed. The
gene sampling weights provide an interpretable ranking for the selection of

biomarkers that are then used for cell state reconstruction. Ourmethod returns: (1)
a dynamics matrix (or equivalently, a set of dynamic modes) describing how
expression of gene i at time t is impacted by gene j and time t − 1. and (2) gene
sampling weights signifying a gene’s contribution to the observability of the cell
state. The outcome (right), demonstrated in this work, is a library of synthetic
analyte-responsive promoters (genetic reporters) that are used to detect an analyte
of interest. Since each genetic reporter has a unique response to the same per-
turbation, the library can be pooled at the assay level to fuse the reporter
responses, resulting in enhanced analyte detection.
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We found that 10 dynamic modes provide an optimal balance
between predictive accuracy and model instability. As the number of
modes, r, is increased, we see monotonically increased predictive
accuracy as measured by the coefficient of determination (R2) (Fig. 2a
(left)). However, the number of eigenvalues with magnitude greater
than one, i.e. unstablemodes, also increases with the number of modes
(Supplementary Fig. 3). As we will discuss in further detail in the next
section and in the Methods, instabilities introduce challenges in
observability analysis, therefore we aimed to minimize the presence of
unstable modes in the learned dynamics. Although, since predictive
accuracy is important, we could not altogether removeunstablemodes.

Using the 10 dynamic modes, we obtain an accuracy of 0.92 as
measured across all genes. Figure 2b shows a set of 5 genes and their
temporal predictions using the DMD model. The predictions are
computed by feeding an initial condition (the gene expression at time
t =0) to the model and then predicting the expression at all all sub-
sequent time points; the nine time points in the dataset. This amounts
to two eight-step predictions across the biological replicates. We
emphasize that this is distinct from measuring model accuracy by
computing a one-step prediction for each time point, which gives very
little information about the dynamic process that has been captured.
The low-dimensional model learned via DMD has accurately captured
the dynamics of the fold change response. To provide a foundation for
understanding when linear models can accurately represent fold
change dynamics, we have shown, in the Supplementary Information

(Section 1.4), that the fold change response of two linear systems,
under stated assumptions, can be represented as the solution of a
linear system.

Our DMD analysis uncovers three distinctmodal responses of the
malathion-perturbed transcriptome dynamics, namely stable, oscilla-
tory, and unstable responses. We classify each mode’s response type
by the behavior of the associated eigenvalue. If the associated eigen-
value has magnitude <1 or >1, the mode is classified as stable and
unstable, respectively. If the eigenvalue also has a nonzero imaginary
part, themode is classified asoscillatory aswell.Wehaveplotted the 10
DMD eigenvalues relative to the unit circle in Fig. 2c and labeled the
eigenvalues according to their type.

Stable modes are characterized by eigenvalues which are inside
the unit circle. The magnitude of eigenvalues inside the unit circle are
strictly less than one and such a set of stable modes indicate relative
decay, that is to say that many genes have a temporal response which
only transiently deviate from a neutral fold change (fold change equal
to one for non-standardized trajectories and fold change equal to zero
for standardized trajectories). Stable modes that have eigenvalues
nearer to the unit circle are capturingmajorly uninhibited genes, while
stable modes that are nearer to the origin are capturing genes which
converge to neutral fold change exponentially, i.e. they exhibit strong
relative decay in their fold change.

Dynamic modes which are oscillatory are characterized by by
eigenvalueswith nonzero imaginarypart. Sincegene expressiondata is

a b

c

Relative decay
(stable)

Relative growth
(unstable)

Oscillation

Stable response No responseUnstable response

Fig. 2 | Dynamic mode decomposition provides a predictive and interpretable
model of gene expression dynamics. a The coefficient of determination for the
reconstruction is shownwhile varying numberofDMDmodes, r in (1) (left). 10DMD
modes are used to construct transcriptome dynamics in this work and the mean-
squared error per gene is shown in the histogram on the right. b The eight-step
prediction is visualized for five randomly selected genes in the transcriptomic
dataset. The mean fold change across the two biological replicates (blue solid
curve) and across predictions (orange dashed curve) are depicted. Magenta
squares overlapping eachgene’s initial condition indicates the data that is provided
to make predictions. The coefficient of determination, R2, for the eight-step

prediction across all genes is computed to be 0.92. c (Left) The DMD spectrum
reveals the growth, decay, and oscillation of each of the 10 dynamic modes that
comprise the transcriptomic dataset. Eachmarker is aneigenvalue, and its diameter
is proportional to themagnitude of the corresponding dynamicmode. Eigenvalues
inside the unit circle correspond to decaying dynamics, eigenvalues with nonzero
imaginary part correspond to oscillatory dynamics, and eigenvalues outside the
unit circle correspond to growing dynamics. (Right) The eigenvalue scaled ampli-
tudes, λti bi, of modes 1, 2, and 6 are visualized (upper) along with the 10 genes
whose dynamics aremost impacted by eachof themodes (lower). Themarker used
for each mode indicates which eigenvalue it corresponds with in c.
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always real-valued, oscillatory modes will always come in complex
conjugate pairs. Each pair of complex-valued modes then describes a
fixed frequency of oscillation, and each gene’s dynamics can be
reconstructed from one or more of these frequencies. The work of
Sirovich found that the oscillatory modes obtained from DMD repre-
sent the genes underlying the yeast cell cycle, and the frequencies of
oscillation were shown to provide an estimate of the cell cycle period
that agrees with the literature51.

Unstable modes are characterized by eigenvalues whose magni-
tude is larger than one.Many genes show temporal response that were
either upregulated or downregulated. If the upregulation and down-
regulation is persistent throughout the gene’s temporal profile or
occurs at later times, there must be at least a single mode with
eigenvalue outside the unit circle to be able to capture the underlying
unstable response. This is because DMD is essentially learning a linear
state-space representation of the fold change response and a linear
system can only exhibit three types of limiting behaviors, (i) con-
vergence to the origin (stable), (ii) periodic orbits, and (iii) divergence
to infinity (unstable). Therefore, for the reconstruction accuracy to be
maximized, DMD eigenvalues with magnitude larger than one may be
necessary. Such eigenvalues aremarkedwith relative growth in Fig. 2c.
Though the two unstable eigenvalues are outside the unit circle, they
are only marginally so, implying that unstable trajectories make up
only a small portion of the transcriptomic response to malathion.

Despite the fact that most genes require a superposition of all of
the dynamic modes for accurate reconstruction, we show that the
modes can successfully group genes into interpretable clusters. Fig-
ure 2d (upper) shows the evolution of three dynamic modes (λti bi)
representative of the transcriptomic dataset: modes 1, 2, and 6, cor-
responding to stable (modes 1 and 6) and unstable (mode 2) directions
in gene space. The loading of mode j on gene i, Vij, can be used to
identify genes which aremost influenced by the correspondingmode.
In this way, we can use the DMDmodes to cluster temporal responses
in gene space, providing an interpretation to each DMD mode. The
temporal gene clusters are shown in Fig. 2d (lower).

The genes which are most influenced by mode 1 are those which
diverge, in a stablemanner, froma neutral fold changewhile the genes
most influenced bymode 2 are those which diverge away fromneutral
fold change, capturing unstable trajectories. This is consistent with the
eigenvalues of mode 1 and mode 2, which are stable and unstable,
respectively. Finally, the genes most influenced by mode 6 are those
with no clear trend present in their dynamics. In the next section, we
will characterize those genes which contribute to cell state recon-
struction and act as reporters for the malathion specific response.
Relatedly, of the 20 genes that are most impacted by mode 1, seven of
these genes contribute highly to cell state reconstruction (they are
within the top 20 genes that contribute to the observability of the
system).

The results of this section demonstrate that the set of 10 recov-
ered DMDmodes, eigenvalues, and amplitudes are indeed biologically
relevant to the dynamics of the malathion response in the window of
time that we have sampled the transcriptome. A key takeaway is that
gene expression dynamics sampled at the resolution ofminutes can be
well approximated by a linear dynamical system, i.e. by a set of
exponentially shrinking and growing modes. In what follows, we
develop a sensor placement framework, relying on the learned linear
dynamical system, to generate a ranked list of biomarker genes, i.e.
subsets of genes which show variation tomalathion induction and that
can recapitulate the cell state.

Sensor placement for cell state inference and extraction of
genetic sensors
Gene interaction networks are complex systems that induce sys-
tematic interdependencies between genes. That is to say that the
expression of most genes, if not all, depends on the expression of at

least onemore genes in the network. These interdependenciesmake it
possible to measure only a subset of genes to infer the behavior of all
other genes57. The approach taken in this work for evaluating whether
a gene is an encoder of cell state information is to quantify howmuch
eachgene contributes to observability. To do this, weoptimize a scalar
measure of the observability gramian, a matrix which determines the
amount of information that a set of sensors can encode about a sys-
tem. Specifically, if we let the DMD reconstruction of the cell state be
rewritten as ẑt =VΛV

�1zt�1 =Kzt�1 and define an output equation

yt =w
>ẑt ð2Þ

wherew is a vector of weights, called sampling weights, that define the
contribution of each gene to the output of the system, then we define
the observability gramian58 as

Xo =
X1
i=0

Ki>ww>Ki: ð3Þ

In the context of transcriptome dynamics, given the DMD repre-
sentation of the dynamics,K, and a chosen gene sensor placement,w,
the gramian quantitatively describes (i) to what degree cell states are
observable and (ii) which cell states cannot be observed at all.
Increasing (i) while decreasing (ii) is the aim ofmany sensor placement
techniques; furthermore, many scalar measures of the gramian have
been proposed to determine the sensor placement (the weights w)
which maximize the observability of the underlying dynamical
system59–61. Many of the proposed approaches require explicit com-
putation of the observability gramian, which can be computationally
expensive for high-dimensional networks and intractable for unstable
systems.

Here we develop an optimization framework which does not
require explicit computation of the gramian.Wedo this bymaximizing
the signal energy,

PT
i =0 y

2
i , of the underlying system. The resulting

sensor placement problem is then defined to be an integer program in
which the weights can only takes binary values 0 or 1. As high-
dimensional integer programs are known to be computationally
intractable, we employ several relaxations on the problem. The details
of the full sensor placement problemand the relaxations are presented
in the Supplementary Information (Section 1.2). Notably, we have
approximated the full sensor placement problem to one in which an
analytical solution always exists. This reduces the overall computa-
tional complexity, providing an approachwhich scales for a wide array
of high-dimensional biological datasets collected from diverse host
organisms.

The strategy we employ is to assign gene sampling weights,wg, to
eachgene g through optimizing sensor placement, i.e.,maximizing the
signal energy. The significance of the magnitude of each weight is to
rank each gene by their contribution to observability. The Methods
section provides quantitative details on the relationship between
observability, the observability gramian, and signal energy for sensor
placement. In the Supplementary Information (Section 1.3), weprovide
a brief exposition of the sensor placmenet problem on simulated
systems. We show how the sampling weights are affected by network
topology and the number of time points.

By examining the learned gene sampling weights, we found that
nearly all 624 modeled genes contribute, many insignificantly, to the
observability of the system. Displayed in Fig. 3a (upper) are the mag-
nitude of gene sampling weights, w, normalized by the standard
deviation of the corresponding gene, that maximize the observability
of the cell state.Weights that are negative-valued (onlymagnitudes are
shown here) correspond to downregulated genes and weights that are
positive-valued correspond to genes that are upregulated. The higher
the magnitude of the gene sampling weight, the more important the
gene is likely to be for cell state reconstruction. The lower portion of
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Fig. 3a shows the histogram of the sampling weights in w, displaying
that there are fewer highermagnitude genes overall. To test the notion
that genes with higher weights contribute more to the observability,
the sampling weights are artificially grouped into three categories,
distinguishing genes which correspond to the top (green), middle
(orange), and lower (blue) third for magnitude of sampling weights.
Each category contains 208 genes, and next we show the gain in
information that can be achieved when sampling from one category
over another.

To examine the contribution toobservability providedbygenes in
each of the categories, we perform Monte Carlo simulations to esti-
mate the expected predictability of the initial cell state. From output
measurements, yt (t = 1, 2, . . . T), that are generated by randomly sam-
pling 50genes froma specified category (low,mid, high), the initial cell
state, �z0, is estimated and the coefficient of determination (R2)
between the actual and estimated cell state is computed as a measure
of reconstruction accuracy. The simulation is repeated 100 times for
each category and the resulting distributions over the random gene
sets areplotted in Fig. 3b. In the toppanel, we can see thatwhenT = 2 (2

time points are used for reconstruction), predictability of the cell state
is highest for the genes in the high category. Specifically, the recon-
struction accuracy is three and two times larger in the high category
than in the low andmid categories, respectively. In the lower panel we
show how the reconstruction accuracy changes with changing the
number of timepoints,T, for the high groupof genes.We find that that
reconstruction accuracy monotonically increases with T, however we
point out that due to not being able to accurately capture network
topology from sparse data, the results gathered at large T (T ≥ 6) do
not show significant differences between the groups. This is due to the
fully-connected topology of the state-space model we have learned
using DMD. The interdependencies between genes (though mostly
miniscule) are amplified exponentially over time, resulting in highly
observable genes transferring information to lowly observable genes.
Hence, itmaynot bepossible todistinguish reconstruction accuracyof
the groups of genes when evaluated at large times.

Measuring fewer genes for many time points leads to higher cell
state reconstruction accuracy than if many genes are measured for
fewer time points. This result is demonstrated in Fig. 3c which shows

a c

d e

fb

Fig. 3 | Gene sampling weights which maximize observability provide machine
learned ranking for extractionofgenetic sensingelements. aThegene sampling
weights,w, normalized by standard deviation of the corresponding gene, sortedby
magnitude and plotted in the upper panel. The weights are grouped into three
categories: (i) the third of genes with highest magnitude of sampling weights
(green), (ii) the third of genes with second highest magnitude of sampling weights
(orange), and ii) and the lower third that remains (blue). The lower panel is a
histogram of the sampling weights and a kernel density estimate is superimposed.
b The reconstruction accuracy (R2) between the true initial condition and the
estimated initial condition when sampling 50 genes at random from each of the
aforementioned groups for T = 2 time points (top). (Bottom) The reconstruction
accuracy for the high group as a function of T. c Reconstruction accuracy between
the estimated initial condition ẑ0 and the actual �z0 is plotted for number of sam-
pled time points T = 1 to T = 10. d The average fold change response of each of the

20geneswhich contributemost (top) and least (bottom) to the observability of the
initial cell state are plotted. e The background subtracted TPM (malathion
(TPM) − negative control (TPM)) of the 15 biomarker genes selected from the
proposed ranking–by contribution to observability. The label on each x-axis indi-
cates the percentage rank (out of 624 genes) of the gene, with respect to the gene
sampling weights, with 100% corresponding to highest rank. The two biological
replicates are shown using solid and dashed lines, respectively. Malathion was
introduced to the cultures after collecting the sample at 0 minutes, hence this
sample is not used for modeling and cell state inference (shaded in gray). f A Venn
diagram comparing 180 differentially expressed genes and genes with the largest
sampling weights identified by our approach (top). DESeq216 was used to identify
differentially expressed genes. The bottompanel shows a histogramof the L2norm
(Euclidean distance from the origin) of the fold change responses for the genes in
the unique sets in the Venn diagram.
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how the cell state reconstruction accuracy is affected by two para-
meters, the number of sampled genes and the number of time points,
T, that the genes are measured for. The reconstruction accuracy is
again the coefficient of determination, R2, between the reconstructed
initial condition, ẑ0, and the actual initial condition �z0. For each T, the
first data point is generated by sampling only the five genes with the
highest sampling weights for T time points. The complete cell state is
then inferred from these measurements alone and the coefficient of
determination between the estimated and actual cell state can be
computed (see “Methods” section for a detailed description of the cell
state inference algorithm). To compute subsequent data points, the
next five genes with maximum sampling weights are simultaneously
measured along with previously measured genes, and the cell state is
reconstructed again. For the response of SBW25 to malathion, we find
that even if only the top five genes are measured but for T = 10 time
points, the cell state reconstruction is still more accurate than if all
genes with nonzero sampling weights are measured with T ≤ 8 time
points. Specifically, the reconstruction accuracy with 5 genes sampled
for T = 10 time points is nearly 0.9 while the reconstruction accuracy
with 600 genes sampled for T = 8 time points is slightly >0.8. This
signifies that the ability to study the dynamics of a few genes with fine
temporal resolution can greatly increase the knowledge of the entire
system.

Failure to reconstruct the initial cell state is a result of two
mechanisms. The first is that we only have access to the DMD repre-
sentation of the dynamics, not the true dynamics. Therefore, any
output measurements generated using the DMD model will certainly
incur an error with respect to the actual dynamics. As error accumu-
lates each time-step, it is possible for the reconstruction accuracy to
decreasewith increasing timepoints. The secondhindrance for full cell
state reconstruction is when many genes contain redundant informa-
tion. If two genes have nearly identical gene expression profiles, add-
ing the second gene to the set of measurements provides no useful
information for the cell state inference. This may explain the asymp-
totic behavior of the curves in Fig. 3c. There are only relatively few
distinct dynamic profiles present in the transcriptomic dataset, and
once all distinct profiles have been sampled, no further improvement
in reconstruction can occur. This explanation is consistent with the
fact that many genes co-express21 and this fact has even been used to
reconstruct dynamic gene regulatory networks62.

The gene samplingweights,w, provide amachine learned ranking
for discovering genetic biomarkers. Recall that the fold change was
taken to be the state of the systemwhen performing DMD. In so doing,
we show that the observability-based ranking can also predict genes
that respond to malathion in a condition specific manner. Specifically,
genes which contribute highly to the observability of the system are
genes which show prolonged dysregulation in the presence of mala-
thion. This is visualized in Fig. 3d where in the top panel the 20 genes
which have the largest sampling weights are plotted. Each of the 20
genes show dysregulation from the neutral fold change (0) that is
persistent over the course of the time-series. Conversely, the 20 genes
with lowest sampling weights show no clear trend or signal of dysre-
gulation. Significant correlations are present among the genes which
contribute highly to observability. This is due to the fact that we have
solved a relaxed version of the sensor placement problem that allows
each gene to have nonzero weight towards maximizing the observa-
bility. In the unrelaxed problem, only a pre-defined number of genes
can have nonzero weight and therefore to capture all the distinct
temporal profiles in the transcriptomic dataset, selected genes are
likely to be uncorrelated.

To show that observability-ranked genes can act as genetic
reporters for malathion, we selected a set of 15 genes with which to
construct transcriptional reporters from. We considered several
approaches for gene selection that depend on the learned weights in
Fig. 3a and the criteria we considered were gene rank, correlations

among the chosen gene set, and/or the ability of the gene set to
recapitulate the cell state. Correlations among the gene set are con-
sidered because they can be used as a predictor for the variety of
responses the library will generate after being subjected to malathion.

By choosing the top ranked genes we can sample top malathion
responders, though as can be seen in Fig. 3d they are highly correlated
with each other. The correlations between the top responders are
shown in Supplementary Fig. 5b. The variety of reporter responses
from this libraryof genes is predicted tobe low, however the biological
processes that the top responders are involved in is diverse (Supple-
mentary Fig. 5c).

Since high variety of reporter response is of interest, we further
consider a correlation-based strategy for gene selection which first
selects the top ranked gene, then subsequently selects genes from the
ranking only if its correlation with previously selected genes is less
than a chosen threshold. In Supplementary Fig. 6, the RNA-seq tem-
poral profiles of genes selected using a correlation threshold of 0.5 are
visualized. To measure the gene set correlation and compare across
gene sets, we introduce the following metric,

C = ∣∣1k × k � Rabs∣∣F ð4Þ

where 1k×k is the matrix of k × k ones and Rabs is the element-wise
absolute value Pearson correlation coefficient matrix of the k selected
genes. When the metric approaches zero, the overall correlation
between the selected gene set is large. Conversely, when the metric
approaches infinity, the overall correlation between the selected gene
set is small. For the gene set chosen using the correlation-based
strategy, C = 7.8, while for the gene set chosen using only the
ranking, C = 2.9.

Next, we want to consider the cell state reconstruction ability of
gene sets. If we evaluate the reconstruction ability for T = 8 timepoints
using the top responders, we obtain an accuracy of 0.39, while for the
correlation-based selected genes, we obtain an accuracy of 0.37. To
obtain gene sets which have higher reconstruction accuracy, we
employed a randomized, Monte Carlo approach for sampling gene
sets. Isolating to the top half of the ranking, we selected 15 genes at
random and tested their ability to reconstruct the cell state. In result,
we obtained a gene set with reconstruction accuracy in the top 92% of
tested gene sets (R2 = 0.51; Supplementary Fig. 7). This set also has the
lowest correlation metric of all tested gene sets in the top 15% of
ranked genes (94 genes) as well as reconstruction accuracy in the top
95 percentile (Supplementary Fig. 7a). Moreover, the correlation
metric for this gene set is C = 7.0, slightly below that of the gene set
chosen using the correlation-based strategy. This gene set was then
selected for themalathion reporter library as it has both high cell state
reconstruction and low overall correlation.

The 15 time-series profiles for the selected genes generated
via RNA-seq are visualized in Fig. 3e in the form of
TPMmalathion −TPMcontrol. Of the 15 selected biomarker genes, 12
appear to be activated by induction ofmalathionwhile the remaining 3
appear to be repressed. Table 1 lists themolecular functions of each of
the selected genes based on their Gene Ontology (GO) annotations63.
Where gene names are not available, we have used protein annotations
to denote those genes. It is shown that the set of molecular functions
are diverse, indicating that malathion drives the activation and
repression of disparate biological processes. When synthesized into
genetic reporters, as we will show in the next section, these biomarker
genes exhibit distinct dynamic range, sensitivity, and time-scales in
response to malathion.

Comparing our approach to differential expression analysis, we
find that our results are largely in complement to each other. To start,
we used DESeq216 and found five significantly differentially expressed
genes after multiple-testing correction with the Benjamini–Hochberg
procedure. The fold changes of the five genes lie in the range0.52–1.54
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and the control subtracted temporal responses are visualized in Sup-
plementary Fig. 12. Of these five genes, our observability approach
ranks two genes in the top 82% and four in the top 55% of obser-
vable genes.

To be able tomake a larger comparison between themethods, we
next used non-corrected p-values and a significance threshold of 0.05
to call a gene differentially expressed. Including the five genes that
were significantly differentially expressed, this identified a total of 180
differentially expressed genes (however 175 of these genes cannot be
called significant) after induction of malathion. Comparing these
genes to the genes with 180 largest sampling weights, we find that
there are 31 genes are in common (Fig. 3f, upper). To show the dis-
tinction between the genes identified between the two approaches, we
visualize the histogram of the L2 norm of each gene’s fold change
response (Fig. 3f, lower). We see that our approach, labeled, obs.
max., identified genes with fold change response centered around 3.0,
while DESeq2 identifies two clusters of genes centered around
3.2 and 2.5.

Overall, differential expression analysis is not always suitable for a
dataset with low number of biological replicates and can result in very
few genes being called as differentially expressed. After multiple-
testing correction, 5 out of 6009 genes were called significantly dif-
ferentially expressed, and there is considerable overlap between the
observability ranking and these genes. The results may indicate that
the two methods may converge in the case of large number of biolo-
gical replicates. However, in the case of low biological replicates, our
approach, as we show in the next section, identifies numerous mala-
thion responsive genes that differential expression analysis was not
able to identify. This indicates that our observability framework is
useful for analysis of time-course RNA-seq measurements.

Design and characterization of fluorescent malathion sensors
To validate the transcriptome-wide analysis for identification of
analyte-responsive promoters, the putative promoters of the

candidate sensor geneswere cloned into a reporter plasmid containing
a reporter gene encoding sfGFP (superfolder green fluorescent pro-
tein) and transformed into the host SBW25 (Fig. 4a). The reporter
strains are cloned in an unpooled format, allowing for malathion
response curves to be generated at the reporter level as opposed to a
pooled study which would incur additional sequencing costs for
individual strain isolation.

Malathion reporters are characterized in the laboratory in an
environmentally relevant way by sourcing malathion from the com-
monlyused commercial insecticide called Spectracide (containing 50%
malathion). First, it was verified that the response of the reporters to
analytical standard malathion was consistent with the response when
induced with Spectracide. That is to say that if the reporter was
upregulated (downregulated) in response to malathion, it was also
upregulated (downregulated) in response to Spectracide. Further-
more, the culturemedia containing nutrients and Spectracide that the
reporter strainswere cultured inwas analyzedwithmass spectrometry
and compared to the mass spectrum of analytical standardmalathion.
Comparing the two mass spectra, we found that they are nearly iden-
tical (Supplementary Figs. 14–26). See the “Methods” section for more
details about the use of Spectracide as a source for malathion and
Supplementary Fig. 9 for the effect of Spectracide on the growth of the
reporter strains.

To examine the transcriptional activity of sfGFP, controlled by the
biomarker gene promoters, cells are grown in rich medium and
fluorescence output was measured every three minutes over 24 hours
of growth. This resulted in 400 timepoints per reporter strain, a nearly
45 fold increase over the number of time points obtained via RNA-seq
see Supplementary Fig. 10. Prior to starting the experiment and col-
lecting fluorescence measurements, reporter strains were induced
with Spectracide to drive the reporter response. Due to the long half-
life and fast maturation time of sfGFP64, the reporter protein can
accumulate inside the cell and does not accurately represent the
mRNA abundance – which is subject to fast degradation by

Table 1 | Sensor promoter library metadata and transfer curve parameters for the fitted Hill equations in Fig. 4d

Malathion reporter Locus tag Molecular function Act./Rep. ymin ymax KM n

atpB PFLU_6124 Proton-transporting ATP synthase activity, rotational mechanism Activated 1467 1783 0.6 4.5

petA PFLU_0841 2 iron, 2 sulfur cluster binding, Activated 853 1125 1.4 2.4

– Metal ion binding – – – – –

– Ubiquinol-cytochrome-c reductase activity – – – – –

sucC PFLU_1823 ATP binding Activated 257 337 0.2 1.9

– Magnesium ion binding – – – – –

– Succinate-CoA ligase activity – – – – –

rpoA PFLU_5502 DNA binding Activated 1256 1542 0.9 3.0

– Protein dimerization activity – – – – –

– DNA-directed 5’-3’ RNA polymerase activity – – – – –

fabA PFLU_1836 Dehydratase activity Activated 292 373 0.2 1.1

– Isomerase activity

anti-sigma 28 factor PFLU_4736 Negative regulator of flagellin synthesis Activated 339 535 0.7 1.5

Uncharacterized protein I PFLU_3761 – Activated 2465 3110 0.5 2.7

cspA2 PFLU_4150 Major cold shock protein Activated 706 1186 1.5 5.3

Putative ABC transport protein PFLU_0376 Ligand-gated ion channel activity Activated 584 1083 1.0 2.0

gltA PFLU_1815 Citrate (Si)-synthase activity Activated 238 458 0.9 1.9

lpxC PFLU_0953 Metal ion binding Activated 1017 2418 0.4 7.4

– Deacetylase activity – – – – –

Uncharacterized protein II PFLU_1358 – Repressed 1073 3387 0.3 1.9

capB PFLU_1302A Cold shock protein Repressed 9616 10543 0.9 2.9

Putative outer membrane porin A protein PFLU_4612 Porin activity Activated 642 1172 0.6 1.5

acrA PFLU_1380 Transmembrane transporter activity Activated 354 682 0.9 2.9
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ribonucleases. This results in the genetic reporters serving as a proxy
for the rate of transcription initiation over time, rather than mRNA
abundance. This is distinctly different from the transcript abundance
that ismeasured viaRNA-seq due to the instability ofmRNAmolecules.

Examining the transcription initiation driven by malathion at
distinct concentrations reveals detailed gene expression dynamics,
dependencies of expression onmalathion concentration, aswell as the
correlations. Firstly, the fold change (with respect to 0.0μMmalathion
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Fig. 4 | Our machine learning approach successfully extracted 15 sensors, each
with distinctmalathion response curves. aAmapof the plasmid, pBHVK, used to
construct the library. The plasmid contains a kanamycin resistance gene aswell as a
fast-folding sfGFP gene.bAverageper cell sfGFP signal at 0.37μM(left) and 1.83μM
(right) malathion normalized by signal at 0.0μM malathion is shown for all 15
engineered strains. c Transfer curves (or dose-response curves) for each strain are
depicted withmarkers and their fit to Hill equation kinetics are given by solid lines.
The Hill equation parameters are given in Table 1. The promoter sequences

corresponding to each reporter and timepoints for each transfer curve are given in
Supplementary Tables 2 and 4, respectively. The transfer curves are plotted at the
time point of maximal fold change of the 2.24μM response with respect to the
0μM response. The error bars represent the standard deviation from the mean
across three biological replicates. d Transfer curve parameters for the dose-
responses depicted in c. The error bars represent the standard deviation from the
mean across three biological replicates. Source data are provided as a Source
Data file.

Article https://doi.org/10.1038/s41467-023-37897-9

Nature Communications |         (2023) 14:3148 9



and referred to as the background) reveals oscillatory signals in several
strains; the reporters atpB, petA, cspA2, and acrA each contain oscil-
lations that are near in phase at 0.38μM malathion (Fig. 4c). As the
concentration of malathion is increased, only atpB and petA appear to
remain in phasewhile the signals of the other strains strongly increase.
We also see that anti-sigma 28 factor and rpoA oscillate with lower
frequency and that anti-sigma 28 factor hits a peak around 10 hours
after induction while rpoA hits an anti-peak around 10 hours after
induction. For the lower malathion concentration, sucC has a large lag
time until transcriptional activation occurs, however there is a sharp
decrease in the lag time at the higher concentration. The strains acrA,
gltA, putative outer membrane porin A, putative ABC transport system,
and lpxC consistently respond within minutes of malathion induction
with lpxC being the reporter with highest signal over background and
acrA the reporter with highest overall signal energy (area under the
curve) in early times. Though cspA2was shown by the RNA-seq data to
be repressed by malathion, we find that cspA2 strain is consistently
activated in the presence of malathion. Of the remaining repressed
promoters, uncharacterized protein II is far more repressed in the
presence of malathion across all concentrations tested.

The response curves of the reporter strains to malathion can be
mathematically characterized by Hill functions65 (“Methods” section)
which are described by two parameters. The first parameter is the Hill
coefficient or cooperativity, n, which is a measure of how steep the
response curve is. This is also denoted as a measure of ultrasensitivity
which results in sigmoidal like responsecurves. The secondparameter,
KM, is the Michaelis constant and it is equal to the malathion con-
centration at which the response is half of its minimum value sub-
tracted from its maximum value. Figure 4d shows the malathion
response curves of each reporter strain at the time point with max-
imum fold change with respect to the 0μM malathion condition. The
solid line depicts the fit of a Hill function to the experimentally gen-
erated response curves and the parameters of each Hill function are
given in Table 1. The response shown is the average fluorescence per
cell obtained by normalizing the sfGFP signal by the optical density.
See Supplementary Table 4 for the precise time points used here for
each strain and see Methods for further details on parameter fitting.

We find that there is significant variation across the Hill coeffi-
cient, dynamic range, andMichaelis constant in the library of reporters
(Fig. 4d). The Hill coefficient, n, ranges from 1.1 to 7.4, and recalling
that this parameter is a measure of sensitivity, the extremes depicted
by a small slope in strain fabA and large slope in strain sucC, respec-
tively. The dynamic range, measured as the difference between the
maximum signal and the minimum signal, ranges from 80 to 1401 and
is obtained by sucC and the repressed uncharacterized protein II,
respectively. The Michaelis constant ranges from 0.2 to 1.5, depicted
by the shift in malathion concentration at which half of the maximum
signal is achieved from fabA and cspA2.

Overall, wefind that each synthetic reporter, selected via our data-
driven sensor placement framework, is capable of detectingmalathion
with distinct dynamic ranges and sensitivity. We next sought to char-
acterize the specificity of the reporters tomalathion. We note that two
of the selected reporters, ABC transporter and acrA, are membrane
transporters which often respond to many environmental stimuli.

Through screening of our reporter library with four other com-
pounds, we found in comparison that the response of the reporters to
malathion is unique. To characterize the specificity of reporting to
other pesticides, we tested with zeta-cypermethrin and permethrin,
two frequently usedpesticides. To testwhether the reporters response
changes due to overall changes in metabolism, we tested with the two
sugars fructose and lactose. The concentration of the pesticides were
1.87μM to be consistent with previous malathion screens and the
concentration of fructose and lactose were 14.2 and 7.5μM, respec-
tively. The time-lapse response of all 15 reporters to the four com-
pounds and malathion are shown in Supplementary Fig. 11.

In Fig. 5a we show the Pearson correlation coefficients between
reporter responses to malathion and reporter responses to the four
other compounds. The rows of the heatmap show how correlated
themalathion response of a single reporter is across compoundswhile
the columns show the overall correlation of a compound response to
the malathion response for the 15 reporters. The correlation metric
shows that induction with permethrin is most (linearly) related to
malathion response while induction with zeta-cypermethrin is least
related to malathion response.

Though the correlation coefficient between malathion response
and other compounds may be high for several (reporter, compound)
combinations (e.g. lpxC and acrA), the time-lapse response of the
reporters show significant deviations across comopund in their tran-
sient response. The top row of Fig. 5b show the fold change response
of lpxC and acrA after perturbation with each of the compounds. We
see that at early times, the response due to malathion is significantly
larger compared to the response due to other compounds. At later
times, each of the responses converges to a neutral fold change,
resulting in an overall high correlation. The bottom row Fig. 5b shows
the fold change response of two reporters with overall negative cor-
relation across compounds. Here we see that both the transient and
long-term responses of other compounds deviate from the malathion
response. Of the 15 reporters, 10 of them show no significant response
to fructose or lactose (see Supplementary Fig. 11), indicating that
overall the selected genes are not responding to broad changes in
metabolism.

Overall, through observability analysis for extraction of sensor
promoters and through the analysis presented in Fig. 5a, we find that
the set of 15 reporters acts as a 15-dimensional cell state that can be
used formalathion sensing anddetection. Thoughwecannot conclude
from our experiments and analysis that malathion directly interacts
with any single promoter we have extracted, the 15-dimensional fin-
gerprint provided by our reporters has been shown to be reproducible
and unique among the tested compounds. Our approach to detection
has limitations; since we cannot compare the response to malathion
with the response to an exhaustive list of compounds, it may be the
case that molecules which are highly similar in structure to malathion
may induce similar responses.

Pooling reporters at the assay level results in an enhanced
malathion reporter
One criteria we optimized for in the malathion reporter library was
diversity of response. As opposed to a set of reporters with similar
responses, when aggregating diverse responses a unique output can
be expected. Thus, we next established an experimental assay for
pooling of individual reporters; this is in lieu of constructing a com-
binatorial promoter which can be challenging due to the curse of
dimensionality when combining n promoters out of a set of N total
promoters.

The motivation for such an experiment is due to the difficulty of
strain isolation in an environmental setting. In order for our library of
reporters to prove useful in the field, they should be able to operate in
tandem without negative effects on the malathion response. To mea-
sure the response of all reporters in a pooled fashion, we first cultured
all 15 reporter strains individually. Then before taking measurements,
we pooled all the strains in equal numbers by carefully measuring the
density of each culture. The pooled culture was then put into a plate
reader and the sfGFP and optical density were measured over time.

Pooling all 15 genetic reporters results in a salient malathion
response. The time-lapse curves of the sfGFP normalized by cell den-
sity are shown in Fig. 6a and the fold change 24 hours after malathion
induction is shown in Fig. 6b for varying concentrations. At amalathion
induction concentration of 1.12μM, the pooled reporter exhibits a
sustained response after an initial transience with a fold change of 2.1
after 24 h of growth. In contrast, the maximum fold change achieved
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by any individual reporter at the same concentration is 2.3 and is a
transient response (lpxC, see Fig. 5b). The maximum fold change cor-
responding with a sustained response is 1.5 obtained by cspA2. For
sustained response to malathion, the pooled reporter provides more
salient response than any individual reporter alone.

Our experiments confirm the usefulness of the malathion repor-
ters outside of the laboratory and in field environments. A potential
strategy for environmentalmalathionmonitoringwouldbe to collect a
soil sample, culture the pooled reporters from amedia made from the
sample, then measure the sfGFP response. Though this strategy is

enticing, theremaybegrowth competition effects between strains that
we have not addressed. Next, we aim to understand if it is possible to
detect malathion in environmental samples from our individual
reporters.

Detecting malathion in environmental samples
The malathion reporter library, selected through observability analy-
sis, has only been examined in an ideal laboratory scenario with either
pureor processedmalathionwhosemass spectrumhas been analyzed;
it is not yet known if the reporterswill be able to sensemalathionwhen
induced with actual environmental water samples that have been
treated with the insecticide. In the previous section we showed that
pooled reporters act as salient malathion sensors. However, con-
founding factors may be present in the environmental sample such as
other small compounds that may make it difficult to deconvolve
malathion response from the response due to the confounder.
Therefore, in this sectionwedescribe an experiment to assess whether
or not the malathion concentration can be deduced from our indivi-
dual reporters treated with environmental insecticide samples.

In order to test if the genetic reporters can sense malathion from
environmental samples, irrigation water was collected from three
crops after being sprayed with a mixture of Spectracide (50% mala-
thion) and water (Fig. 7a). The concentration of the mixture sprayed
was either 0, 1, or 8 times the maximum recommended working con-
centration of Spectracide – 1 fluid ounce per gallon of water. To rid the
solution of unwanted microbes and particles, the irrigation water was
strained and filtered prior to to the induction of the genetic reporters
(see “Methods” section). The growth and induction protocols all
remain the same as for the samples treated with Spectracide in
Fig. 4c, d.

We found that a total 9 out of the 15 of the reporters were acti-
vated by induction of the irrigation water containing malathion. Fig-
ure 7a shows the average per cell fluorescence 24 h after induction of

a b

Fig. 5 | The 15-dimensional genetic reporter cell state provides a unique
response to malathion. a For each genetic reporter, the heatmap depicts the
Pearson correlation of the malathion fold change response (rows) with the
fold change response to zeta-cypermethrine, permethrin, fructose, or lactose
(columns). b The fold change response (reporter + compound with respect to

reporter + no compound) of four reporters – two with highest overall correlation
and two with lowest overall correlation across compounds. The error bars repre-
sent the propagated standard deviations of each of the individual responses across
three biological replicates. Source data are provided as a Source Data file.

Fig. 6 | Pooling all 15 malathion reporters results in enhanced reporting for
environmental monitoring. a Time-lapse response after pooling all 15 malathion
reporters into a single well and inducing with malathion. Error bars represent the
sample standard deviation across three biological replicates. b The fold change at
24h of the pooled reporter with malathion induction with respect to the pooled
reporter without malathion induction. The error bars represent the propogated
standard deviations of each of the individual responses across three biological
replicates and the bar height represents the fold change calculated using themean
sfGFP/OD signal from malathion and from control conditions. Source data are
provided as a Source Data file.
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the nine strains subjected to 0, 1, or 8 times the working concentration
of Spectracide. The reporters atpB, petA, sucC, rpoA, fabA, and gltA all
show a response to malathion at 1x working concentration, while the
remaining three did not show significant differences from the negative
control in this range. Among the strains in Fig. 7b, the strain sucC was
activated the most, showing an 80% increase from the 0x to 8x con-
dition after the 24h time period. This shows that many of the selected
genetic reporters, 60%, are able to detect malathion in environmen-
tally relevant scenarios, and, furthermore, we can use this data to infer
the concentration of malathion present in the samples collected from
the environment.

The response curves characterized previously in Fig. 4d for each
of the genetic reporters can be used to make an inference about the
amount ofmalathion present in each environmental sample. Note that
we are making the assumption that the response curves characterized
for each of the nine reporters can be applied to this new setting of
treatment with irrigation water. With this assumption we can then use
the fitted Hill equations from Fig. 4d and numerically estimate the
malathion concentration that reproduces the signal at 1 or 8 times the
working concentration of Spectracide. The results obtained are shown
in Fig. 7b for each of the nine strains. Through this approach, the
reporters provide a range of inferred malathion concentrations; at the
working concentration of Spectracide, we can infer that the con-
centration of malathion is in the range 0.48 −0.97μM and at 8 times
the working concentration of Spectracide, we can infer the con-
centration ofmalathion to be in the range 0.82−2μM. It is important to
note that formost, if not all, of the characterized reporter strains, 2μM
was the maximum discernable concentration before the signal satu-
rates. Therefore, it is possible the concentration of malathion is higher
than 2μM, however that range cannot be detected by our reporter
library.

Discussion
It is often the case thatbiologists seek to identify keygeneswhich show
variation for the biological process of interest. Many tools have been
developed or adapted to meet this need e.g. differential expression,
principal component analysis, and gene regulatory network recon-
struction to name only a few. However, when using the current tools,
there is potential to measure features that are redundant which can
lead to wasted time and resources. Furthermore, traditional tools do
not provide the capability of optimal gene selection for downstream

targeted gene profiling. Therefore, we developed an efficient method
that ranks the features for optimal gene selection. The method com-
bines dynamic mode decomposition (DMD) and observability of
dynamical systems to provide a systematic approach for the discovery
of genes which act as biomarkers for the perturbation-inducible cell
state. To extract optimal perturbation sensitive promoters from our
model, we showed that genes which contribute highly to observability
inform the design of transcriptional reporters that exhibit condition
specific sensing.

We introduced DMD as a novel tool for analysis of transcriptome
dynamics. In this case, we studied bulk transcriptome dynamics at the
minutes resolution and showed that the low-dimensional DMD repre-
sentation accurately predicts the dynamics and clusters genes based
on temporal behavior. Our results suggest that DMD is a capable tool
for analysis of transcriptomic data and warrants further exploration in
single-cell RNA-seq and other ’omics technologies that aim to infer cell
trajectories, pseudotime, and single-cell regulatory networks.

The identification of transcriptional genetic sensors was posed as
a design challenge, where a subset of genes are selected to maximize
the observability of the cell state. It was shown that a large fraction of
genes contribute insignificantly to the cell state observability when
only few time points are measured, further validating the common
knowledge that genetic networks possess redundancies and are noisy.
We also showed that it is significantly more beneficial to measure a
sparse set of genes for more time points than to measure more genes
for fewer time points. Our results suggest future joint experimental
and computational approaches which limit the amount of resources
required to get a full description of the system dynamics. A natural
extension of our work is to determine how well measurements from a
small library of reporters recapitulate the bulk cell state under unseen
conditions. Such studies will inform how RNA-seq data should be
collected in the future in order to maximize the reconstruction accu-
racy and minimize labor and experimental costs.

The machine learning driven selection of genetic reporters was
shown to produce 15 functional genetic reporters with a variety of
malathion dose-response curves. We demonstrated how to aggregate
information fromeach reporter to create a pooled reporter.Moreover,
we showed that the genetic reporters can be used to detect malathion
in environmental settings, closing the design-build-test loop. More
generally, our results and methodology offer an innovative approach
that can be used to to identify perturbation-inducible gene expression

Fig. 7 | Irrigation water containing malathion from an agricultural setting
activates transcriptional reporters and allows for inference of environmental
malathionconcentration. aThree cabbage plants are sprayedwith a solutionof0,
1, and 8 times the working concentration of Spectracide, respectively. The flow-
through is first captured and filtered and then used to induce transcriptional
activity in the malathion reporter strains. Using previously characterized response
curves for each reporter, an inference for the malathion concentration can be
made. b The average per cell fluorescence (arbitrary units) of 9 out of the 15

malathon reporters, after 24hof induction, showedactivationdue to the soil runoff
solution containing malathion. The working concentration of Spectracide is
instructed as 1oz of Spectracide to 1 gallon of water. The error bars represent the
sample standarddeviation from themean across three biological replicates. Source
data are provided as a Source Data file. cThe concentration ofmalathion present in
the irrigation water is inferred using the signal from b and the fitted response
curves from Fig. 4d.
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systems. We emphasize that our approach takes advantage of the
largely untapped resources present in native host genomes and we
anticipate that techniques like the one developed here will accelerate
the optimization of parts for synthetic biologists to build useful
devices from.

Our approach makes no assumptions on the nature of the
underlying system. In that sense, the framework we have developed is
general and can be applied to data generated from other ’omics
techniques and from any organism. In the case that a linear response
model is insufficient for capturing the transcriptome dynamics, it can
be extended to a variety of nonlinear models to capture nonlinear
modes of response56,66.

Due to only analyzing the transcriptome of SBW25 under specific
environmental conditions, our approach cannot guarantee that the
identified sensor promoters respond directly to the target analyte of
interest. Our approach tobiosensing is to viewaproxyof the entire cell
state, which is a function of the entire underlying network. While this
approach is novel, it also implies that the identified sensor promoters
may not work in a different host or environmental context. Further
refinement of the list of biomarker genes could be obtained by fusing
ChIP-seq (chromatin immunoprecipation followed by sequencing)
with RNA-seq measurements to discover transcription factors, how-
ever such an experimental assay can be prohibitively expensive. The
DNA binding sites measured by ChIP-seq alone are not sufficient to
infer regulation of transcription. However, together with RNA-seq, the
set of biomarkers which causally drive the condition specific response
can be uncovered. We envision that our method will accelerate the
discovery and design of biosensors in novel host organisms for syn-
thetic biology applications.

Methods
Rapid culture sampling
For each biological replicate, Pseudomonas fluorescens SBW25 glycerol
stock was scraped and inoculated in 5mL of fresh LB broth (Teknova
Catalog no. L8022) and was incubated and shaken at 30 °C and 200
r.p.m. for 15 h. The OD600 of the 5mL culture was measured and the
entire culture was transferred to 50mL of fresh LB broth, which was
then proceeded by incubation and shaking. Once the OD600 of the
50mL culture reached0.5, the culturewas again passaged into 300mL
of fresh LB broth. The 300mL culture was grown until OD600 of 0.5.
Then the culture was split into two 150mL cultures (one for malathion
induction and one for the negative control). The two cultures were
sampled at evenly spaced intervals in time (see Supplementary Table 1
for sampling volumes and times) and after the 0 minute sample,
malathion (Millipore Sigma Catalog no. 36143) was introduced to the
positive condition at 1.83mM. To separate the media from the cells, a
vacuum manifold with 3D printed filter holders was constructed and
utilized (Supplementary Fig. 13). In all, 0.45μmPVDFmembrane filters
(DuraporeCatalog no. HVLP04700)were placedon thefilter holders, a
vacuum pump was turned on, and the culture sample was dispensed
onto the center of the filter, quickly separating the media from the
cells. The filter with the cells was then placed into a 50mL conical
centrifuge tube (Fisher Scientific 1495949A) using sterile tweezers. The
tube with the filter was then submerged into a liquid nitrogen bath for
10 s to flash freeze the sample. The sample were then stored −80 °C.

RNA extraction
To extract the RNA, first the filter-harvested cells were resuspended in
2 mL RNAprotect Bacterial Reagent (Qiagen Catalog no. 76506), then
pelleted in a centrifuge. To lyse the cells, the pellet was then resus-
pended in 200 μ L of TE Buffer containing 1mg/mL lysozyme. The RNA
was then extracted from the lysed cells using Qiagen RNeasy Mini Kit
(Catalog no. 74104), and the samples were DNase treated and con-
centrated using Zymo RNA Clean and Concentrator (Catalog
no. R1019).

RNA library preparation and sequencing
Bacterial rRNA was depleted using NEBNext Bacterial rRNA Depletion
Kit (Catalog no. E7850X). The indexed cDNA library was generated
using NEBNext Ultra II Directional RNA Library Prep (Catalog no.
E7765L) and NEBNext Multiplex Oligos for Illumina (Catalog no.
E6609S). In total, 40 samples (twobiological replicates, 10 timepoints,
two conditions) were prepped and sequenced. The library was
sequenced at the Genetics Core in the Biological Nanostructures
Laboratory at the University of California, Santa Barbara on an Illumina
NextSeq with High Output, 150 Cycle, paired end settings.

Pre-processing of sequencing data
The raw reads were trimmed for adapters and quality using
Trimmomatic67. The reads were then pseudoaligned with Kallisto68

to the Pseudomonas fluorescens SBW25 transcriptome generated using
GFFRead69 and GenBank genome AM181176.4. The normalized gene
expression of transcripts per million (TPM), which takes into account
sequencing depth and gene length, are used formodeling and analysis.
Genes with an average TPM less than 100 in all experimental condi-
tions were discarded from our analysis.

Malathion reporter library cloning
For the reporter plasmid cassette design, first, the closest intergenic
region to the gene target larger than 100 base pairs (bp) was identified
based on the open reading frame of the sequenced genome of Pseu-
domonas fluorescens SBW25 (GenBank genome AM181176.4). Primers
were designed to include the entire intergenic region in order to
capture any transcription-regulator binding sites surrounding the
promoter (Fig. 4a). The identified intergenic regions were amplified
using the primers and this is what we refer to as ‘promoter regions’
following the terminology of ref. 70. The promoter regions were
cloned into a cassette on the plasmid backbone pBHVK (Supplemen-
tary Fig. 8) containing a bicistronic ribosome binding site and super
folder GFP (sfGFP) as the reporter gene. Lastly, a cloning site was
placed in the cassette so that the cloned promoter controls tran-
scriptional activity of sfGFP.

The promoters were assembled onto the plasmid backbone
pBHVK (see Supplementary Fig. 8) via Golden Gate Assembly71 using
NEB Golden Gate Assembly Kit (Catalog no. E1601S). Because of the
potential of arcing during electrotransformation of Pseudomonas
fluorescens SBW25with Golden Gate reaction buffers, the plasmids are
first subcloned into E. coli Mach1 (Thermo Fisher Scientific Catalog no.
C862003) following the manufacturer’s protocol for chemical trans-
formation. Between three and six colonies are selected for each strain
and the reporter cassette was sent for sequencing at Eurofins Geno-
mics. Then the plasmid DNA was prepared from cultures of trans-
formedMach1 cells usingQiagen SpinMiniprepKit (Catalog no. 27106)
followed by chemical transformation into SBW25. SBW25 was made
chemically competent by washing a culture at OD600 of 0.3 with a
solution of 10% glycerol two times, then resuspending in 500μL of 10%
glycerol. The plasmidDNA is added to 80μL of the cell suspension and
kept at 4 °C for 30min, then the cells were electroporatedwith 1600V,
200Ω, and 25μF. The cells were immediately resuspended in 300μL
of SOC Broth (Fischer Scientific Catalog No. MT46003CR), recovered
for 2 h at 30 °C in a shaking incubator, and plated onto 1.5% LB Agar
plates with 50 μg

mL Kanamycin. Again, three to six colonies of each strain
have their reporter cassette sequenced at Eurofins Genomics and
simultaneously glycerol stocks of each colony is prepared for long-
term storage.

All promoter sequences and plasmid cassette sequences are
provided in the Supplementary Data File.

Photobleaching of spectracide
Spectracide malathion insect spray concentrate (Spectracide Catalog
no. 071121309006)wasutilized as the environmentally relevant source
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of malathion for the reporter library testing and contains 50% mala-
thion. Spectracide is an opaque liquid. We found that we can remove
the opaque substances by photobleaching a 5% Spectracide solution
(in LB) in a Synergy H1 plate reader (Biotek), at 30 °C and 800 r.p.m.
OD600 and fluorescence (excitation 485 nm, emission 528 nm) were
measured every 3min for 8 h. To ensure malathion remained in solu-
tion after photobleaching, the mass spectrum was analyzed at the
University of California, Santa Barbara Mass Spectroscopy Facility.
From this we determined thatmalathion is stable for the course of the
photobleaching (Supplementary Figs. 14–26).

Plate reader assays to measure response curves and dou-
bling times
Scrapes of culture from glycerol stocks of each strain were used to
inoculate 3mL of LB (Kanamycin 50 μg

mL) in 10mL 24 deep-well plate
sealed with a breathable film (Spectrum Chemical Catalog no. 630-
11763) and grown at 30 °C overnight in a shaker incubator. The over-
night cultures were diluted to an OD600 of 0.1 in 2mL of LB and the
cultures were grown for an additional 2 h. In all, 250μL of this culture
was then transferred to a 96-well optically-transparent microtiter
plate. Photobleached spectracide (50% malathion) is then introduced
(if relevant) to the cultures in the wells to give the desired con-
centration of malathion, and grown in a Synergy H1 plate reader
(Biotek), at 30 °C and 800 r.p.m. OD600 and sfGFP (excitation 485nm,
emission 528nm)wasmeasured every 3min for 48 h. Eachdata point in
a response curve was generated by normalizing the sfGFP signal
(arbitrary fluorescence units) by the OD600 to give the average per cell
fluorescence, and only the data points before cell death (due to
nutrient depletion or media evaporation) are used. The strain growth
rates were calculated as lnðinitial OD600=final OD600Þ=ðtfinal � tinitialÞ,
where the initial OD600 is the firstmeasurementwithin the exponential
phase and final OD600 is the last measurement within the exponential
phase. Then the strain doubling times were calculated as lnð2Þ divided
by the growth rate.

Collection and cleanup of irrigation water treated with
Spectracide
Three cabbage plants were each potted in 5 gallon buckets with fresh
soil and a water catchment tray was placed under the plants to catch
flow through. The first plant was sprayed with water containing no
malathion and the flow through was collected in a 1 L pyrex bottle. The
second plant was sprayed with a Spectracide (50%malathion) solution
at a concentration of 1 fluid ounce per of gallon water – the maximum
working concentration of Spectracide as recommended by the man-
ufacturer. Lastly, the third plantwas sprayedwith the solution at 8 fluid
ounces per gallon of water. Each plant was sprayed for oneminute and
the collected flow through from each plant were first strained using a
40μmcell strainer (VWR 76327-098) to remove large microorganisms
and large particles. The strained samples were then centrifuged to
separate dense, soil particles from the Spectracide solution. Finally,
the supernatant was vacuum filtered through a 0.22μm membrane
before induction of the reporters. The protocol for induction of the
reporters with the irrigation water is the same as above.

Computing the dynamic mode decomposition
We now discuss the details of applying dynamic mode decomposition
(DMD) to time-series data obtained from sequencing. As mentioned
previously, many algorithms have been developed to compute the
DMD modes, eigenvalues, and amplitudes, and a key requirement of
almost all of the techniques is that the time points are spaced uni-
formly in time. In our work we begin by collecting the data for a single
experimental condition into a time-orderedmatrix,X, which contains a
total of m × r data snapshots for a data set with m time points and r
replicates. For response to malathion, each xðjÞ

i corresponds to the

gene expression vector at time i in replicate j and is in the ((i +m) × j)th
column of the datamatrixXwhere i∈ {0, 1,…,m − 1} and j∈ {1, 2,…, r}.
For gene expression data obtained from RNA-seq, each data snapshot
typically contains thousands of rows denoted by n. The n × rm data
matrix for the response to malathion is then given by

Xmalathion =

∣ ∣ ∣ ∣ ∣
xð1Þ
0 xð1Þ

1 . . . xð1Þ
m�1 xð2Þ

0 . . . xð2Þ
m�1 . . .

∣ ∣ ∣ ∣ ∣

2
64

3
75 ð5Þ

where each xi 2 Rn represents the gene expression given in tran-
scripts per million (TPM) from the malathion condition. Similarly, the
data matrix for the control condition is constructed. The fold change
data matrix, Z, is subsequently computed as Z =Xmalathion⊘Xcontrol,
where⊘denotes the Hadamard (element-wise) division of two matri-
ces. Next we compute the mean-subtracted and standard deviation-
normalized data matrix �Z

�Z=
z0�μ0:m�1

σ2
0:m�1

z1�μ0:m�1

σ2
0:m�1

. . . zm�1�μ0:m�1

σ2
0:m�1

h i
ð6Þ

where μ0:m−1 is the vector of time-averages of each gene and σ2
0:m�1 is

the vector of time-standard deviations of each gene. The divisions in
Eq. (6) are performed element-wise. We see that Ẑ is obtained by
removing the time-averages from each gene and standardizing the
time-variances of each gene. The mean subtraction operation is
motivated by the fact that the mean of the data corresponds to the
eigenvalue λ = 1, which is always an eigenvalue of the Koopman
operator, the operator thatDMDultimately aims to approximate72, and
not one we are particularly interested in. The normalization by the
standard deviation is performed so that the magnitude of the fold
change has no implication on the connectivity of the learned
dynamical system.

The algorithm we make use of to compute the dynamic mode
decomposition (and the approximation of the Koopman operator) is
exact DMD37, which aims to identify the best-fit linear relationship
between the following time-shifted data matrices

�Zp = �z0 �z1 . . . �zm�2

� �
, �Zf = �z1 �z2 . . . �zm�1

� �
such that

�Zf =K�Zp + r ð7Þ

where r is the residual due toKonly providing an approximation of the
actual dynamics. Note that there are n2 unknown parameters in K and
n ×m equations in Eq. (7). The residual is then minimized by Exact
DMD (in the least squares sense) by first considering the reduced
singular value decomposition (SVD) of Ẑp =UΣT

> where Σ 2 Rk × k . As
the number of time points, m, obtained from sequencing is typically
much less than the number of genes, n, we keep k ≤m singular values.
Recognizing that minimizing the residual requires it to be orthogonal
to the left singular vectors, we can pre-multiply (7) with U⊤ to obtain

U>�Zf =KUΣT
>: ð8Þ

Rearranging the above equation, it is shown thatK is related to K̂
through a similarity transformation as shown in Eq. (9)

K̂=U>�ZfTΣ
�1 =U>KU ð9Þ

meaning that the eigenvalues of K̂, λ, are equivalent to the k leading
eigenvalues of K while the eigenvectors of K̂, s, are related to the k
leading eigenvectors of K, v, by v =Us. This eigendecomposition then
allows the fold change response to be written as the following spectral
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decomposition

ẑi =
Xk
j = 1

vjλ
i
jbj =VΛ

ib ð10Þ

whereV is amatrix whose columns are the eigenvectors (DMDmodes)
vj, and b is a vector of amplitudes corresponding to the gene expres-
sion at the initial time point as b=Vyẑ0. Here † represents the Moore-
Penrose pseudoinverse of a matrix.

Using the above spectral decomposition, the modes can then be
evolved in time for m − 1 time steps to reconstruct the data from
knowledge of the initial condition. Evolving past the mth time point
allows for forecasting of the fold change response. To measure the
accuracy of reconstruction we use the coefficient of determination

R2 = 1�
Pm

i =0ðẑi � ~ziÞPm
i =0ðẑi � �zÞ ð11Þ

where �z is the vector of each gene’s mean expression, formally
�zðjÞ =

Pm
k =0 ẑ

ðjÞ
k , and ~zk =K

k ẑ0 is the prediction of ẑk given by themodel
starting from the initial condition.

Computing the gene sampling weights
Here we describe our methodology for ranking genes based on their
contribution to the observability of the dynamical system learned via
dynamicmodedecomposition.We start by introducing the energy of a
signal in discrete-time as

Ey =
X1
i =0

y>
i yi ð12Þ

which is closely related to the idea of energy in the physical sense and
where y=W�z are measurements of the system state and W 2 Rp×n.
Rewriting the signal energy (12) using the recursion for y given as
yt =WKt�z0, we can reveal the connection between energy and obser-
vability

Ey =
X1
i =0

�z>0K
i>W>WKi�z0

= �z>0
X1
i=0

Ki>W>WKi

 !
�z0

= �z>0Xo�z0

ð13Þ

where Xo is the infinite-horizon observability gramian, a symmetric
matrix that is unique if the eigenvalues ofK all havemagnitude <1. The
observability gramian describes how much gain will be attained by a
system’s output, y, given an initial condition �z0. It simultaneously gives
a measure of how well the initial condition �z0 can be estimated given
only measurements of the system state y61.

We use the observability gramian along with the measure of
energy it provides to optimize for the gene sampling weights in the
rows of W that maximize the signal energy Ey. Formally, the objective
function is given as

max
W2Rp×n

�z>0Xo�z0

subject toWW> = Ip×p:
ð14Þ

where we seek the matrix W that maximizes the observability of the
cell state �z0. The constraint above enforces the following three points,
(i) the length of each row vector in W is not important, we are only

concernedwith the direction and the constraint sets the length of each
row vector to be equal to 1, (ii) the maximization problem is well-
posed, i.e. the objective cannot blow up to infinity with the length
constraint, and (iii) the rows of W form p vectors of an orthonormal
basis forRp, i.e.WW⊤ = Ip×p. Each row vector inW can then be viewed
as a set of weights, each orthogonal to one another, that rank genes
based on their contribution to the observability of the system. The
optimization problem (14) represents a quadratic program with linear
constraints, and the rows ofWwhichmaximize the objective are the p
eigenvectors corresponding to the p eigenvalues with highest magni-
tude of the Gram matrix

G=
X1
i=0

Ki�z0�z
>
0K

i> : ð15Þ

SinceG 2 Rn×n is a sumofquadratic forms, the result is thatGhas
non-negative, real-valued eigenvalues. If the eigendecomposition is
G =QDQ−1, then the solution to the optimization problem Eq. (14) is

W=

q>
1

..

.

q>
p

2
664

3
775 ð16Þ

where q1 through qp are the top eigenvectors of the Gram matrix G.
The proof of the solution to the optimization problem is provided in
the Supplementary Information (Section 1.1). The single set of gene
sampling weights that maximize the observability are precisely q1 and
from here on out we call these weights w.

Since transcriptomic data sets typically have few initial condi-
tions, i.e. biological and technical replicates, before solving for w we
enrichour data setwithN synthetic initial conditions that are randomly
sampled as Unif ormðminð�zðjÞ0 Þ,maxð�zðjÞ0 ÞÞ where j in {1, 2, . . . , r} and r is
the number of replicates. The motivation for the artificial data gen-
eration is given in ref. 73, where it is shown that artificially generated
data points improved the estimate of the DMD model when the data
set is affected by noise.N is chosen to be equal to the number of genes
to ensure the matrix of initial conditions has full rank. Another issue
that we have addressed are the instabilities present in the DMD
eigenvalues. Consequently, the observability gramian is not unique
and the sum in Eq. (15) diverges to infinity. To mend this issue, we
compute the finite-horizon Grammatrix, where the sum in Eq. (13) and
Eq. (15) is from 0 to m. This allows for the computation of the finite-
horizon signal energy from Eq. (13) where the bounds on the sum are
now from i =0 to i =m.

Oncew is obtained by solving Eq. (14), thenmeasurements yt, for t
in {0, 1, . . . , T}, are generated from yt =w

>Kt�z0 while keeping only the
q elements ofwwith largestmagnitude as nonzero. All other elements
ofw are set to zero to simulate the sampling of only selected genes. To
reconstruct �z0 using only the measurements, we form the following
observability matrix from the known sampling weights, w and the
dynamics matrix K

y0
y1
y2

..

.

yT

2
66666664

3
77777775
=

w>

w>K

w>K2

..

.

w>KT

2
6666664

3
7777775
�z0 =OT�z0 ð17Þ
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andusing theMoore-Penrosepseudoinversewecanobtainanestimate
of the initial condition as follows

Oy
T

y0
y1
y2

..

.

yT

2
66666664

3
77777775
= ẑ0 ≈ �z0: ð18Þ

Increasing q while keeping T constant results in increasing
reconstruction accuracy until a critical value of q such that the
reconstruction accuracy plateaus; a similar scenario holds for keeping
q constant and increasing T. When both T and q surpass the critical
values, perfect reconstruction may be achieved.

When the computation of the Gram matrix, G, is not computa-
tionally feasible, as canbe the casewhen the dimensionality of the data
are relatively high compared to that of bacterial transcription net-
works thatwe aredealingwith here, the reduced order dynamics given
by DMD can be used to compute an approximation to the leading
eigenvalues and eigenvectors. The reduced order G is then given by

~G =
X1
i =0

K̂
i
U>�z0�z

>
0UK̂

i> ð19Þ

where K̂ and U are given in Eq. (9). Supplementary Fig. 4 shows the
approximation of the leading eigenvalues and eigenvectors of G by ~G.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The RNA sequencing data generated in this study have been deposited
in the GEO database under accession code GSE200822. The processed
RNA sequencing data, DNA sequencing, and plate reader data are
available at the Github repository https://github.com/AqibHasnain/
transcriptome-dynamics-dmd-observability in the data directory. The
plate reader data used in this study are also provided in the Source
Data file. Sequences of oligonucleotides are provided in the Supple-
mentary Data file. Source Data are provided as a Source Data
file. Source data are provided with this paper.

Code availability
All codes used in this study are available at: https://github.com/
AqibHasnain/transcriptome-dynamics-dmd-observability or available
from the author’s upon request. The git repo hash key associated with
this manuscript is a0b742e.
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