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Seismic magnitude clustering is prevalent in
field and laboratory catalogs

Q. Xiong 1, M. R. Brudzinski 2, D. Gossett2, Q. Lin3,4 & J. C. Hampton 1

Clustering of earthquake magnitudes is still actively debated, compared to
well-established spatial and temporal clustering. Magnitude clustering is not
currently implemented in earthquake forecasting but would be important if
largermagnitude events aremore likely to be followed by similar sized events.
Here we show statistically significant magnitude clustering present in many
different field and laboratory catalogs at a wide range of spatial scales (mm to
1000 km). It is universal in field catalogs across fault types and tectonic/
induced settings, while laboratory results are unaffected by loading protocol
or rock types and show temporal stability. The absence of clustering can be
imposed by a global tensile stress, although clustering still occurs when iso-
lating to triggered event pairs or spatial patcheswhere shear stress dominates.
Magnitude clustering is most prominent at short time and distance scales and
modeling indicates >20% repeating magnitudes in some cases, implying it can
help to narrow physical mechanisms for seismogenesis.

Clustering in time and space is a well-recognized feature of earth-
quakes, with prominent examples being spatial clustering of after-
shocks around a mainshock and Omori–Utsu decay in the temporal
productivity1,2. These patterns are consistent with universal scaling
laws for the temporal and spatial patterns between successive
earthquakes3,4. However, the existence of clustering in earthquake
magnitudes is still a matter of active debate. Other than the power-
law characterization of the frequency-magnitude distribution
(Gutenberg-Richter law)5, magnitudes were thought to be indepen-
dent until a set of studies reported magnitude correlations between
sequential cataloged earthquakes6–8. However, these results could be
influenced by catalog incompleteness, questioning the significance
of the observed correlations9,10. If magnitude clustering does exist, it
has practical applications in the form of short-term forecasting,
particularly if larger magnitude events can be clustered in short time
windows11–14. Typical forecasting approaches, such as the epidemic-
type aftershock sequence (ETAS) approach, utilize a methodology
for simulating seismicity with spatial and temporal clustering but
without magnitude clustering13,15,16. Determining whether magnitude
clustering exists is also paramount to understanding fault behavior

considering proposed magnitude correlations appear to be more
apparent when earthquakes occur close-in-time and space17,18. If
magnitude clustering is a universal feature of seismic behavior, it
provides a new opportunity to evaluate physical mechanisms for
seismogenesis.

In this study, we evaluate the existence of magnitude clustering
extensively in a variety of field and lab settings.

Results
Prior studies and the Southern California catalog
Much of the prior work on magnitude clustering has focused on the
Southern California catalog (e.g., ref. 19). Prior work found the mag-
nitude of a given event may depend on the magnitude of the previous
event20, the correlations between consecutive magnitudes are
restricted to recurrence times <30min6, and thenext earthquake tends
to have a magnitude similar but smaller than the previous one18.
However, the limited observation of magnitude correlations to short
recurrence times suggested it may be a spurious effect due to short-
term aftershock incompleteness (STAI), and that overall catalog
incompleteness associatedwith seismic network density increased the
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probability for the magnitudes of subsequent earthquakes to be
similar10.

To address this debate, we performed a similar analysis on the
same high precision Southern California catalog from 1985 to 2001
with more than 400,000 events19, (Fig. 1A). To test for magnitude
clustering, we followed the approach of prior work in comparing the
probabilistic distribution (P) of magnitude differences (4m) of suc-
cessive events between the real catalog and a randomly shuffled cat-
alog using the equation δp m0

� �
= P 4m= m0

� �� Pð4m* = m0Þ, where
4m* represents the magnitude differences after randomly shuffling
the order of the cataloged events. If magnitude clustering is present,
δp m0

� �
should significantly deviate from zero for a given magnitude

difference m0. In a catalog with randomly arranged magnitudes,
δp m0

� �
would not deviate from zero. Our findings show that these

statistically significant deviations do indeed occur, and they occur at
several different magnitude thresholds (Fig. 1B). The largest prob-
ability occurs at the small magnitude differences. These deviations
were most strongly observed in the cumulative distribution of mag-
nitude differences: δP m0

� �
=P 4m<m0

� �� Pð4m*<m0Þ (Fig. 1C),
which were the specific target of Davidsen and Green10.

Demonstrating magnitude clustering despite catalog
incompleteness
We investigated Davidsen and Green’s10 claims that magnitude
incompleteness caused the apparent magnitude clustering by apply-
ing two standard approaches to estimate the magnitude of com-
pleteness via the frequency-magnitude distribution of the catalog21

(Fig. S1). Themaximum curvaturemethod generally produces a lower,
more inclusive estimate22, while the b-value stability method produces

a higher, more conservative estimate23,24. We also followed the David-
sen and Green10 approach to correct for STAI by removing magnitude
differences during periods following larger mainshocks and excluding
all event pairs separated by less than 2min to address smaller main-
shocks. Fig. 1D shows the signature of the magnitude clustering
remains prominent even when strategies for addressing incomplete-
ness are implemented. We also investigated the claim that spatial
variability of the magnitude of completeness could contribute to
magnitude clustering by focusing on smaller (10×10 km2) areas of the
California catalog with the most productive seismicity. Although the
uncertainties are larger for the smaller datasets, the magnitude clus-
tering patterns remain statistically significant at these spatial scales
along several different faults (Figs. 1E and S2). These findings are
similar to Lippiello et al.17 that used two regions with different mag-
nitude of completeness thresholds to argue that magnitude correla-
tions do not depend on catalog incompleteness.

To further demonstrate the statistical significance of magnitude
clustering in spite of potential incompleteness that could pro-
portionally influence smaller magnitude events, we developed a new
approach to compare successive events based on their positions in the
empirical cumulative density function (ECDF) of the magnitudes (see
“Methods”). Figure 2A shows the results from calculating the number
of event comparisons that fall into each bin. To help establish true
variations from the catalog magnitude distribution, ECDF values were
also calculated on the catalog randomized by time (Fig. 2B). Sub-
sequent events with the same ECDF bin value (diagonal line) occurred
at significantly higher rates than randomized catalogs. The biggest
difference (+26%) occurred for the largest magnitude bin, highlighting
that magnitude clustering is not restricted to small magnitude

Fig. 1 | Study area andmagnitude clustering plots. AMap of southern California
study area. B Non-cumulative distribution of difference in probability between the
observed catalog and a randomized version, δP m0

� �
, as a function of magnitude

difference (m0), for the southern California catalog. mc = magnitude of com-
pleteness, n = number of events. Error bars correspond to the 1 standard deviation
confidence interval. C Cumulative distribution of the difference in probability,

δP m0

� �
, for the southernCalifornia catalog before applying filters.D Same asCbut

after applying filters to address potential issues from catalog incompleteness.
E Cumulative distribution for 3 areas of 10×10 km2 in southern California with
pronounced seismicity, represented by solid black boxes in the southern
California map.
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comparisons. We found a >99.9999% confidence level that the
increased number of events along the 1:1 diagonal line for the real
catalogwere statistically different from that of 1000 randomly shuffled
realizations of the catalog (Table S1).

Application to Injection Induced Seismicity Catalogs
Althoughmany of the studies investigating magnitude clustering have
focusedonCalifornia, somehave not9,11,12. A noteworthy study is that of
hydraulic fracturing induced seismicity that identified prominent
magnitude clustering and interpreted it as a consequence of the spe-
cific geometrical constraints of finely laminated shale gas and tight oil
reservoirs25. To investigate this idea, we turned our attention to a
variety of field-scale human induced seismicity catalogs (Fig. 3). Two
catalogs are from hydraulic fracturing well pads a few km apart in
Harrison County, Ohio (Ryser and Hamilton)26,27. The other two cata-
logs are from wastewater disposal cases near Guthrie in central Okla-
homa and theDelaware Basin inwest Texas,which are about 10 kmand
50 km wide, respectively28–30.

We find that all of these seismicity catalogs have significant
magnitude clustering, with several nearly identical to results from the
California catalog. Fig. 3D shows this after limiting to the conservative
magnitudeof completeness threshold, but the significancecanbe seen
at even higher magnitude thresholds (Figs. S3 and S5). Perhaps the
most noteworthy difference is the larger signature from the Hamilton
catalog, which is intriguing, considering the similar conditions to the
nearby Ryser catalog26,27, although Hamilton was stimulated 2 years
after Ryser. While most of the catalogs in this comparison are from
strike-slip environments (California, Ohio, Oklahoma), the West Texas
catalog is dominated by normal faulting31, demonstrating that magni-
tude clustering is not restricted to a particular fault type at the
field scale.

A key advantage of induced sequences is that they are swarms
instead of aftershock sequences32,33, so it removes the concern about
STAI when evaluating magnitude clustering. The induced sequences
show the same degree of magnitude clustering as the California tec-
tonic seismicity catalog (Fig. 3D), further supporting the notion that
STAI is not artificially causing magnitude clustering observations17,18.

Time dependency of magnitude clustering
The Guthrie catalog is noteworthy for its high seismicity rate28–30, and
we determined that a shorter 10-s interevent time filter was still
appropriate for this catalog given the advanced subspace detection
technique. Even after implementing this shorter interevent time

restriction, the size of themagnitude clustering signaturewas reduced
by more than half in the Guthrie catalog (cf. Fig. 3D, E), indicating that
magnitude clustering in this case is prominent among eventswith time
separations less than 10 s. To further explore the effect of interevent
time on magnitude clustering, we split each catalog into interevent
time intervals (Fig. S11). Figure 4 shows how the Guthrie, Oklahoma
wastewater disposal catalog has significant variation in magnitude
clustering with different interevent times while the California tectonic
catalog does not. This result provides intriguing clues that something
about the wastewater disposal process is enabling magnitude clus-
tering over shorter time scales but disrupting it over longer time
scales.

Application to laboratory catalogs
Based on the verification of magnitude clustering in a variety of field
environments, we turned our attention to the laboratory environment
to see whether these patterns would persist at even smaller scales and
toprobe thephysicalmechanisms.Thewider variability and controlled
conditions of environments in the laboratory provides an opportunity
to explore the necessary conditions and the potential controlling
factors for magnitude clustering. The fundamental similarities
between laboratory rock fracture processes and seismogenic pro-
cesses are well documented34–37. The investigated tests cover more
than a decade of effort of different academic and industrial research
laboratories, but all the laboratory catalogs display scale-invariance
features in that they obey Gutenberg–Richter magnitude–frequency
power–law and even can exhibit universal scaling laws for interevent
times anddistances35,38–44. The labcatalog spans of absolutemagnitude
difference (M0) are variable due to the differences of rock types and
data acquisition systems used at different industrial and research
institutes but are generally smaller than the field studies. These tests
also cover a wide range of different loading protocols and stress
conditions in multiple rock types (see “Methods”), so we found it
useful to divide into those generating rock fracture under shear stress,
either under extending35 or confined39 conditions (Fig. 5C), and those
causing rock fractures under dominatingly tensile stress, including
tensile bending and hydraulic fracturing40–43 (Fig. 5D, E).

Magnitude clustering in laboratory catalogs
We found magnitude clustering in rock fracture under shear stress
occurs regardless of loading protocols, rock types, and observable
magnitude ranges imposed by different data acquisition systems. As in
the field-scale investigations, we addressed potential issues of catalog

Fig. 2 | Empirical cumulative density function (ECDF) value of an event mag-
nitude (m(i)) compared to that of the subsequent event (m(i + 1)). Comparisons
are forA the real,filtered southernCalifornia catalog andB this catalog randomized
by event time. Color scale shows the number of event comparisons that fall into

each 0.2 × 0.2 bin by illustrating the difference relative to the expectedmean (total
number of comparisons divided by total number of bins). Diagonal line highlights
cases where an event has the same ECDF bin value as the subsequent event.
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incompleteness in our processing of the laboratory catalogs. Figure 5a
illustrates how prominent magnitude clustering occurs under both
extending35 and confined39 shear rock fractures. Significant magnitude
clustering occurs regardless of whether the magnitude of complete-
ness is met (Figs. S12a and S15b). In fact, magnitude clustering appears
to be “unconditional” in shear rock fracture tests as it can be observed
regardless of temporal, spatial, loading protocol, or magnitude con-
ditioning (Supplementary Note 2). The lack of influence of spatial
condition indicates geometric constraints are not a first order control
for magnitude clustering under shear stress. The energy input for
these tests is also not the artificial factor for imposing magnitude
clustering, as the energy input for most of the tests is progressively
decreasingduring the fractureprocesses, andunconditional clustering
for shear rock fractures can be observed under both increasing and
decreasing energy input conditions (Figs. S12, S16, and S17). The
clustering became more significant as we progressively removed the
AE events of the early testing time from the analysis and kept only
the last several-hundred events (Fig. S14a). Such observation suggests
the rock fracture evolution can amplify the magnitude clustering
phenomena in shear rock fractures, but this influence is secondary as it
did not alter the statistical significance of magnitude clustering.

Effects of stress condition and interevent distance
For rock fracture under dominatingly tensile stress (tensile bending
and hydraulic fracturing), the overall catalogs didnot showstatistically
significant magnitude clustering (Fig. 5B). However, we were able to
find significant magnitude clustering in these catalogs when
we restricted the interevent distance (Figs. 5A and S12b). Specifically,
the non-clustering pattern changed to significant clustering when the
inter-event distance was conditioned to the range of the tests’ char-
acteristic length (i.e., the influence of geometric constraints). For the
hydraulic fracturing test this characteristic length is the distance
between the fracturingwellbore and the pre-cut fault (Fig. S13), and for
the tensile bending tests this length is the thickness of the specimens
(Fig. S12b). The increase of statistical significance in magnitude clus-
tering are also most clear when interevent distance conditioning
approaches the characteristic length of the specimen. Some clues to
why this restriction is necessary to observed magnitude clustering
come from additional observations during tests that generated both
tensile and shear rock fracture in the same sample38 (Fig. S17). Non-
clustering occurred when the wing-shaped rock fractures were devel-
oping under tensile stress, but the later developing shear fracture
shifted the magnitude clustering behavior to significant clustering.

Fig. 3 | Study area and magnitude clustering plots. A Map of Harrison County,
Ohio study area. Seismicity on the left side of the map is associated with the Ryser
well pad, and seismicity on the right associated with Hamilton well pad. B Map of
the Logan County, Oklahoma study area near the town of Guthrie. C Map of the
west Texas study area.DComparisonof the cumulative distributionofdifference in

probability between the observed catalog and a randomized version, δP m0

� �
, as a

function of magnitude difference (m0), for each catalog before any filters are
applied. E Same as D but after applying filters to address potential issues from
catalog incompleteness. Same labeling conventions as Fig. 1.
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This indicates the remarkable finding that significant (i.e., exceeding
3-standard deviations) magnitude clustering appears to be universal
when a shear rock fracture condition is met.

Lack of magnitude clustering in synthetic catalogs
We investigated whether magnitude clustering exists in synthetics
catalogs generated with a variety of techniques to identify whether
magnitude clustering arises from existing knowledge of earthquake

patterns (see “Methods”). None of these approaches, including sev-
eral ETAS strategies and random draws from a FMD45–47, produced
any statistically significant signature of magnitude clustering (Figs. 6
and S10). This includes when catalog incompleteness is
artificially included or when the ETAS parameters are tuned to
earthquake catalogs with magnitude clustering in them. These find-
ings indicate that current strategies for modeling earthquake mag-
nitudes, and the forecasting strategies that result, are unable to

Fig. 4 | Comparison of A) California and B) Guthrie cumulative distribution
after splitting the filtered versions of these catalogs into different time ranges.
n = number of events, mc = magnitude of completeness. The filtered Guthrie

catalog shows a decay in the magnitude clustering signature as the events are
further separated in time.

Fig. 5 | Magnitude clustering in laboratory earthquakes. A Normalized magni-
tude clustering phenomena for various types of rock fractures on different rock
types. Absolute M0 spans of the curves are varied as tests are conducted on dif-
ferent rock types with different data acquisition systems. B The non-clustering
observations on the whole catalogs of the rock fractures under dominatingly

tensile stress. Catalogs are on tests conducted atUniversity ofMinnesota (left), and
Halliburton (right), respectively. C–E The induced rock fractures under extending
and shear stress35 conditions (left of C), confined and shear stress39 conditions
(right of C), tensile stress42,43 conditions (D), and hydraulic fracturing (E)40,41.
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account for the temporal-based magnitude relationships demon-
strated in this study.

Discussion
Modeling of observations catalogs with repeating events added
to synthetic catalogs
To help investigate the causes of the magnitude clustering patterns
demonstrated in multiple field and laboratory environments, one
possibility to explain the observed patterns of magnitude clustering
is if a higher than expected portion of events in the catalog are
repeated events with approximately the same magnitude. We gen-
erated synthetic seismic catalogs and added repeating events to
look for similarities to observed catalogs (see “Methods”). Figure 6
shows the best-fitting curves and shaded 2σ from the synthetic cat-
alogs compared with a pair of field and lab catalogs, along with
the corresponding percentage of inserted repeating events. For the
California and mixed mode catalogs, a modest amount (~10%) of the
event magnitudes repetition is needed to fit the data, although
the uncertainty from this approach indicates it could be as small as
2%. For the Hamilton and extending shear catalogs, a larger portion
(25–40%) of event magnitudes repetition, with at least 12–21%
repeating based on the 2σ. The ideal laboratory environment under
shear dominant stress is best fit by including 39% repeating events.
Even though insertion of repeated events into synthetically gener-
ated catalogs is a simplistic way to envision the true process, it
indicates a substantial relationship between magnitudes in observed
seismicity catalogs.

Potential physical mechanisms for magnitude clustering
We then used the laboratory catalogs to evaluate the potential phy-
sical mechanisms for magnitude clustering. Hypotheses we sought
to evaluate were (1) whether fault patches rupture with incomplete

strain release such that they can rupture again soon after to
form similar size events or (2) whether there are conditions con-
trolling event size that change slowly enough between events to
produce a clustering ofmagnitudes. The precision of the lab catalogs
allowed us to define triggered pairs (one event triggers an after-
shock) based on whether they violate the null hypothesis that events
occur randomly in space, time, and magnitude following well-
established scaling relationships35,48–52 (see Supplementary
Information).

Influence of triggering
Intriguingly, restricting to triggering-triggered (T-T) pairs created the
most significant magnitude clustering patterns we observed in rock
fracture under dominatingly tensile stress, far exceeding the increases
under all other types of interevent spatial and/or temporal constraints
discussed above (Fig. 7A).

The magnitude clustering pattern for the T-T pairs shows sig-
nificantly higher probability for triggered events to be smaller mag-
nitude (higher probability in negativeM0 range).Wehave elucidated in
previous research that, observing a smaller magnitude event is
expectable for remotely triggered events35. Narrowing our focus to
long distance (>10mm) T-T pairs or long waiting time (<100 s) T-T
pairs produce magnitude clustering patterns of even higher sig-
nificance (Fig. 7A). Moreover, once we remove all event pairs violating
the null hypothesis of GR law and preserve the pairs obeying that null
hypothesis, we can even observe distinctively different types of sig-
nificant magnitude clustering (Fig. 7B, C), i.e., significantly lower
probability in negativeM0 range (Fig. 7C). Such observation suggests a
possibility that, the overlapping of different magnitude clustering
patterns from obeying or violating the null hypothesis of GR law in
different ratios can result in globally non-clustering or clustering
observations.

Fig. 6 | Key results of synthetic catalog analysis. A Comparison of cumulative
distribution for synthetic catalogs generated with different approaches, including
adding artificial incompleteness to the stochastic catalog and tuning the ETAS
parameters to the Hamilton, OH catalog. ECDF results for the B ETAS catalog fit to
Hamilton parameters, C stochastic catalog with incompleteness added, and D 22%
repeating events added to the ETAS catalog. Magnitude clustering patterns

observed in field (E, F) and lab (G, H) settings compared with best-fitting patterns
from synthetic seismicity catalogs with varying amounts of repetitive events. A grid
search over repeating percentage, magnitude uncertainty, and b-value was used to
identify a range of synthetic catalogs that best fit the observed pattern (gray
shading, dashed line indicatesmean). Percentages of repeating events for the range
of fitting catalogs are reported.
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Future work
The discovery that magnitude clustering is pervasive in both lab and
field seismicity but with different prevalence depending on specific
conditions provides tantalizing opportunities to explore physical
mechanisms with future work. Hypotheses to evaluate would include
(1) whether fault patches rupture with incomplete strain release such
that they can rupture again soon after to form similar size events or (2)
whether there are conditions controlling event size that change slowly
enough between events to produce a clustering of magnitudes. For
example, the increased magnitude clustering signature for long dis-
tance T-T pairs appears to be inconsistent with the identical patch
rupture hypothesis, unless the incomplete strain release leads to
transferred stress that promotes slip on patches of similar but smaller
strength. Regardless, improving characterizations of magnitude clus-
tering that integrate laboratory andfield scaleobservationswill narrow
the possible physical mechanisms for earthquakes.

Methods
Data sources
Seismicity associated with the Ryser well pad was locally recorded
between September 2013 and January 2014. Seismicity associated with
the Hamilton well pad was locally recorded between August and
November 2015. The seismicity catalogs were enhanced using a
repeating signal detection algorithm based on waveform similarity26.
Wells on the Ryser pad were stimulated sequentially (one lateral at a
time), while operations on the Hamilton pad utilized a common “zip-
per-frac” approach where stages are alternated between two well
laterals27. The Guthrie seismicity catalog was locally recorded in Logan
County, Oklahoma between February and August 2014. The catalog
was enhanced using a subspace detection technique28. It is well
established that seismicity in central Oklahoma during this time was
induced by widespread, large rate wastewater disposal53. The West
Texas seismicity catalog was regionally recorded between March 2017
and December 201829. The catalog was enhanced using regional tem-
plate matching30.

The investigated laboratory tests include a variety of different
types of laboratory tests (3- and 4-point bending tensile tests, flawed
rock compressive tests, hydraulic fracturing test; with different load-
ing paths or protocols) under different types of stress conditions
(tensile, shear, and hydraulic fracturing stress conditions) on a variety
of different types of rocks (Dakota Granite, Carrara Marble, Berea
sandstone, and sand-mixed cement, with different levels of homo-
geneity). These tests were conducted in different laboratories at dif-
ferent institutes (University ofMinnesota-TwinCities, ColoradoSchool
of Mines, Rock Mechanics Lab of Halliburton, and Nanyang Techno-
logical University, Singapore) spanning a decade. The energy releases
from the rock fracture processes are also recorded by different types
of acquisition systems. See supplementary Information for more
details on specific tests.

The cumulative distribution of the probability comparison
The cumulative distribution of the difference in probability between
the observed catalog and a randomized version as a function of
magnitude difference shows a sinusoidal pattern for our observa-
tional catalogs. During the larger negative x-values (m0), the rando-
mized catalogs have a larger probability of producing this larger
negative m0, because the real catalog is deficient in larger negative
m0 values as it tends to have more smaller m0 values (both negative
and positive). In essence, the real catalog is "trailing behind" the
randomized catalogs in terms of cumulative percentage of events
when we are on the negative part of them0 axis. The real catalog flips
to being ahead of the randomized catalog once we enter the positive
part of them0 axis as all of the smallm0 values allow it to surpass the
relative percentage of the randomized catalogs. This pattern is not
seen in Fig. 7, because only a portion of the observed catalog is being
compared to a randomized version of the full catalog, such that the
comparisons do not sum to the same number of events in a cumu-
lative distribution. The consistently positive values occur due to the
higher probability of observing similar magnitude events through
the triggering-triggered (T-T) pairs.

A

B

C

M  = 00

M  = 00

M  = 00

Fig. 7 | Cumulative distributions of difference in probability between portions
of observed catalogs and a randomized versionof the full catalog. AMagnitude
clustering of all triggering-triggered (T-T) pairs (cyan), long T-T waiting time pairs
(purple), long T-T distance pairs (red), derived from a tensile stress catalog that did
not show significant magnitude clustering (whole catalog, 1 or 3 SD, yellow)42,43.

B Different magnitude clustering patterns of T-T or non-T-T pairs, derived from
extending and shear stress35 conditions. C Shifting of magnitude clustering pattern
by removing all possible pairs below a threshold (n) in the normalized space-and-
time distance, derived from tensile stress42,43 conditions.
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Empirical cumulative density function for magnitudes
The ECDF was calculated by sorting the already filtered catalog mag-
nitudes from smallest to largest and assigning a value equal to the
count divided by the total number of events. The catalog was then
resorted by time and the ECDF value of each event (i) was compared to
the ECDF value of the subsequent event (i + 1).

Determining the time filter to address interevent
incompleteness
Following the approach of prior research10, we estimated the tem-
porary completeness magnitude mtc(t,m) at time t (in days) after a
mainshock of magnitudem:mtc(t,m) =m − 4.5 −0.75 log10(t). Thus we
corrected for STAI by removing earthquakes and their magnitude
differences during periodswheremtc (t,m) >mc for allmainshockswith
m ≥ 6. For the filtering to avoid events hidden within coda of recent
event, we used a minimum interevent time of 2min for the California
catalog as in prior work10, However, when we examined seismograms
associated with our induced seismicity catalogs, we identified that this
time filter could be reduced to at least 30 seconds given the amplitude
of small events and rates of coda decay.

Synthetic catalog processing
The stochastic synthetic catalogs were drawn from a probability
density function based on the Gutenberg-Richter magnitude-fre-
quency relation (e.g., Zhuang and Touati45). We explored issues with
catalog incompleteness by artificially removing an increasing num-
ber of events towards the smaller magnitude end of the catalog. We
also investigated issues with magnitude uncertainty by smearing via
a normal distribution using the Box-Muller Transform. When seeking
tomodel the observed catalogs, we generated stochastic catalogs for
a range of different b-values, magnitude uncertainties, and percen-
tage of events that were repeated. Goodness of fit to cumulative
magnitude clustering curves between the real catalog and synthetic
catalogs from grid search of the parameters were evaluated using a
probability density function for the chi-squared statistic. We also
used two differentmethods of simulating catalogs based on the ETAS
approach that incorporate aftershock triggering. The ETAS model
incorporates the Gutenberg–Richter Law, the Omori-Utsu Decay Law,
and spatial clustering of aftershocks to assign an occurrence rate
R0ðm,x,y,tÞ of events with magnitudes m>m0 at a position ðx,yÞ
during time t. The first ETAS method used estimates the ETAS
parameters based on the expectation maximization (EM) algorithm
originally applied to the ETAS model by Veen and Schoenberg54 in
200847. The important parameters for the model are the background
rate μ and the parameters k0, α, c, ω, τ, d, γ, ρ, which define the
aftershock triggering rate R0. We used the default estimates of the
parameters.

We also applied a Bayesian approach to ETAS simulation that
incorporates a maximum likelihood estimation to determine the
model parameters46. Rather than using individual point estimates for
themodel parameters, it draws upon the posterior distribution pðθ∣Y Þ,
where θ equals an unknown parameter vector. This posterior dis-
tribution represents uncertainty in θ based on observed catalogs and
any prior knowledge from previous studies, which can then be incor-
porated into the ETASmodeling by averaging the forecast distribution
over the posterior. Initially, we simulated an ETAS catalog of ~20,000
events using the default parameters. We also used the maximum
likelihood estimation to fit the model parameters using the observed
data in both the Southern California Catalog and the Hamilton, OH
catalogs, and then created simulated catalogs using these parameters.

Data availability
The field, laboratory, and synthetic catalogs are available via https://
doi.org/10.5281/zenodo.732858555.

Code availability
Codes for analyses can be available upon request by reaching out to
Professor Jesse Hampton at University of Wisconsin-Madison
(jesse.hampton@wisc.edu).

References
1. Utsu, T., Ogata, Y. & Matsu’ura, R. S. The centenary of the Omori

formula for a decay law of aftershock activity. J. Phys. Earth 43,
1–33 (1995).

2. Felzer, K. R. & Brodsky, E. E. Decay of aftershock density with dis-
tance indicates triggering by dynamic stress. Nature 441,
735–738 (2006).

3. Saichev, A. & Sornette, D. “Universal” distribution of inter-
earthquake times explained. Phys. Rev. Lett. 97, 078501 (2006).

4. Davidsen, J. & Paczuski, M. Analysis of the spatial distribution
between successive earthquakes. Phys. Rev. Lett. 94,
048501 (2005).

5. Gutenberg, B. & Richter, C. F. Frequency of earthquakes in Cali-
fornia. Bull. Seismol. Soc. Am. 34, 185–188 (1944).

6. Corral, Á. Dependence of earthquake recurrence times and inde-
pendence of magnitudes on seismicity history. Tectonophysics
424, 177–193 (2006).

7. Corral, A. Long-term clustering, scaling, and universality in the
temporal occurrence of earthquakes. Phys. Rev. Lett. 92,
108501 (2004).

8. Lippiello, E., Godano, C. & de Arcangelis, L. Dynamical scaling in
branchingmodels for seismicity. Phys. Rev. Lett.98, 098501 (2007).

9. Davidsen, J., Kwiatek, G. & Dresen, G. No evidence of magnitude
clustering in an aftershock sequence of nano- and picoseismicity.
Phys. Rev. Lett. 108, 038501 (2012).

10. Davidsen, J. & Green, A. Are earthquake magnitudes clustered?
Phys. Rev. Lett. 106, 108502 (2011).

11. Nichols, K. & Schoenberg, F. P. Assessing the dependency between
the magnitudes of earthquakes and the magnitudes of their after-
shocks. Environmetrics 25, 143–151 (2014).

12. Spassiani, I. & Sebastiani, G. Exploring the relationship between the
magnitudes of seismic events. J. Geophys. Res. Solid Earth 121,
903–916 (2016).

13. Field, E. H. et al. A spatiotemporal clustering model for the third
uniform California earthquake rupture forecast (UCERF3‐ETAS):
toward an operational earthquake forecast. Bull. Seismol. Soc. Am.
107, 1049–1081 (2017).

14. Nandan, S., Ouillon, G. & Sornette, D. Magnitude of earthquakes
controls the size distribution of their triggered events. J. Geophys.
Res. Solid Earth 124, 2762–2780 (2019).

15. Ogata, Y. J. Statistical models of point occurrences and residual
analysis for point processes. J. Am. Stat. Assoc. 83, 9–27 (1988).

16. Hardebeck, J. L. Appendix S: Constraining Epidemic Type After-
shock Sequence (ETAS) Parameters from the Uniform California
Earthquake Rupture Forecast, Version 3 Catalog and Validating the
ETAS Model for Magnitude 6.5 or Greater Earthquakes. Report No.
Open-File Report 2013-1165-S, and California Geological Survey
Special Report 228-S (U.S. Geological Survey).(2013)

17. Lippiello, E., Godano, C. & de Arcangelis, L. The earthquake mag-
nitude is influenced by previous seismicity. Geophys. Res. Lett. 39,
n/a–n/a (2012).

18. Lippiello, E., de Arcangelis, L. & Godano, C. Influence of time and
space correlations on earthquake magnitude. Phys. Rev. Lett. 100,
038501 (2008).

19. Hauksson, E., Yang, W. & Shearer, P. M. Waveform relocated
earthquake catalog for Southern California (1981 to June 2011. Bull.
Seismol. Soc. Am. 102, 2239–2244 (2012).

20. Corral, A. Comment on “Do earthquakes exhibit self-organized
criticality”. Phys. Rev. Lett. 95, 159801 (2005). Discussion 159802.

Article https://doi.org/10.1038/s41467-023-37782-5

Nature Communications |         (2023) 14:2056 8

https://doi.org/10.5281/zenodo.7328585
https://doi.org/10.5281/zenodo.7328585


21. Mignan, A. & Woessner, J. Estimating the magnitude of complete-
ness for earthquake catalogs. Commun. Online Resourc. Stat.
Seismicity Anal. https://doi.org/10.5078/corssa-00180805 (2012).

22. Wiemer, S. & Wyss, M. Minimum magnitude of completeness in
earthquake catalogs, examples from Alaska, the Western United
States, and Japan. Bull. Seismol. Soc. Am. 90, 859–869 (2000).

23. Cao, A. & Gao, S. S. Temporal variation of seismicb-values beneath
northeastern Japan island arc. Geophys. Res. Lett. 29, 48-41–48-
43 (2002).

24. Woessner, J. & Wiemer, S. Assessing the quality of earthquake
catalogues: estimating the magnitude of completeness and its
uncertainty. Bull. Seismol. Soc. Am. 95, 684–698 (2005).

25. Maghsoudi, S., Eaton, D. W. & Davidsen, J. Nontrivial clustering of
microseismicity induced by hydraulic fracturing. Geophys. Res.
Lett. 43, 10,672–610,679 (2016).

26. Skoumal, R. J., Brudzinski, M. R. &Currie, B. S. An efficient repeating
signal detector to investigate earthquake swarms. J. Geophys. Res.
Solid Earth 121, 5880–5897 (2016).

27. Kozłowska, M. et al. Maturity of nearby faults influences seismic
hazard from hydraulic fracturing. Proc. Natl Acad. Sci. USA 115,
E1720–E1729 (2018).

28. Benz, H. M., McMahon, N. D., Aster, R. C., McNamara, D. E. & Harris,
D. B. Hundreds of earthquakes per day: the 2014 Guthrie, Okla-
homa, Earthquake Sequence. Seismol. Res. Lett. 86,
1318–1325 (2015).

29. Savvaidis, A., Young, B., Huang, G. C. D. & Lomax, A. TexNet: a
statewide seismological network in Texas. Seismol. Res. Lett.
https://doi.org/10.1785/0220180350 (2019).

30. Skoumal, R. J., Barbour, A. J., Brudzinski, M. R., Langenkamp, T. &
Kaven, J. O. Induced seismicity in the Delaware Basin, Texas. J.
Geophys. Res. Solid Earth https://doi.org/10.1029/
2019jb018558 (2020).

31. Snee, J.-E. L. & Zoback, M. D. State of stress in the Permian Basin,
Texas and New Mexico: implications for induced seismicity. Lead.
Edge 37, 127–134 (2018).

32. Skoumal, R. J., Brudzinski, M. R. & Currie, B. S. Distinguishing
induced seismicity from natural seismicity in Ohio: Demonstrating
the utility of waveform template matching. J. Geophys. Res. Solid
Earth 120, 6284–6296 (2015).

33. Schultz, R. et al. Hydraulic fracturing‐induced seismicity. Rev.
Geophys. https://doi.org/10.1029/2019rg000695 (2020).

34. Lockner, D. A., Byerlee, J. D., Kuksenko, V., Ponomarev, A. & Sidorin,
A. Quasi-static fault growth and shear fracture energy in granite.
Nature 350, 39–42 (1991).

35. Xiong, Q. & Hampton, J. C. Non-local triggering in rock fracture. J.
Geophys. Res. Solid Earth https://doi.org/10.1029/2020JB020403
(2020).

36. Reches, Z.Mechanisms of slip nucleation during earthquakes. Earth
Planet. Sci. Lett. 170, 475–486 (1999).

37. Bares, J., Dubois, A., Hattali, L., Dalmas, D. & Bonamy, D. Aftershock
sequences and seismic-like organization of acoustic events pro-
duced by a single propagating crack. Nat. Commun. 9, 1253 (2018).

38. Pan, X., Xiong, Q. & Wu, Z. New method for obtaining the homo-
geneity index m of Weibull distribution using peak and crack-
damage strains. Int. J. Geomech. https://doi.org/10.1061/(ASCE)
GM.1943-5622.0001146 (2018).

39. Xiong, Q., Lin, Q. & Hampton, J. C. Temporal evolution of a shear-
type rock fracture process zone (FPZ) along continuous, sequential,
and spontaneouswell-separated laboratory instabilities-from intact
rock to thick gouged fault. Geophys. J. Int. 226, 351–367 (2021).

40. Xiong, Q. &Hampton, J. C. A laboratory observation on the acoustic
emission point cloud caused by hydraulic fracturing, and the post-
pressure breakdown hydraulic fracturing re-activation due to
nearby fault. Rock Mech. Rock Eng. 54, 5973–5992 (2021).

41. Hampton, J., Gutierrez, M. & Matzar, L. Microcrack damage obser-
vations near coalesced fractures using acoustic emission. Rock
Mech. Rock Eng. 52, 3597–3608 (2019).

42. Lin, Q., Wan, B., Wang, S., Li, S. & Fakhimi, A. Visual detection of a
cohesionless crack in rock under three-point bending. Eng. Fract.
Mech. 211, 17–31 (2019).

43. Lin, Q., Wan, B., Wang, Y., Lu, Y. & Labuz, J. F. Unifying acoustic
emission and digital imaging observations of quasi-brittle fracture.
Theor. Appl. Fract. Mech. 103, 102301 (2019).

44. Lin, Q., Yuan, H., Biolzi, L. & Labuz, J. F. Opening and mixed mode
fracture processes in a quasi-brittle material via digital imaging.
Eng. Fract. Mech. 131, 176–193 (2014).

45. Zhuang, J. & Touati, S. Stochastic simulation of earthquake cata-
logs. Commun. Online Resourc. Stat. Seismicity Anal. https://doi.
org/10.5078/corssa-43806322 (2015).

46. Ross, G. J. Bayesian estimation of the ETAS model for earthquake
occurrences. Bull. Seismol. Soc. Am. 111, 1473–1480 (2021).

47. Mizrahi, L., Nandan, S. & Wiemer, S. Embracing data incomplete-
ness for better earthquake forecasting. J. Geophys. Res. Solid Earth
https://doi.org/10.1029/2021jb022379 (2021).

48. Baiesi, M. & Paczuski, M. Scale-free networks of earthquakes and
aftershocks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69,
066106 (2004).

49. Zaliapin, I., Gabrielov, A., Keilis-Borok, V. & Wong, H. Clustering
analysis of seismicity and aftershock identification. Phys. Rev. Lett.
101, 018501 (2008).

50. Davidsen, J. et al. Triggering processes in rock fracture. Phys. Rev.
Lett. 119, 068501 (2017).

51. Zaliapin, I. & Ben-Zion, Y. Earthquake clusters in southern California
I: Identification and stability. J. Geophys. Res. Solid Earth 118,
2847–2864 (2013).

52. Zaliapin, I. & Ben-Zion, Y. Earthquake clusters in southern California
II: Classification and relation to physical properties of the crust. J.
Geophys. Res. Solid Earth 118, 2865–2877 (2013).

53. Keranen, K. M., Weingarten, M., Abers, G. A., Bekins, B. A. & Ge, S.
Sharp increase in central Oklahoma seismicity since 2008
induced by massive wastewater injection. Science 345,
448–451 (2014).

54. Veen, A. & Schoenberg, F. P. Estimation of space–time branching
process models in seismology using an EM–type algorithm. J. Am.
Stat. Assoc. 103, 614–624 (2012).

55. Xiong, Q., Brudzinski, M. R., Gossett, D., Lin, Q., & Hampton, J. C.
Seismic magnitude clustering is prevalent in field and laboratory
catalogs [DATA] [Data set]. zenodo. https://doi.org/10.5281/
zenodo.7328586 (2020).

Acknowledgements
We thank Professor Joseph F. Labuz of University of Minnesota for per-
mission topublishdata on the three-point bending testsexperiments. All
other experimental data havebeencollectedby the authors. The authors
also would like to thank the Wisconsin Alumni Research Foundation at
the University of Wisconsin-Madison for partially supporting the work.

Author contributions
All authors contributed equally to this work. Q.X. performed experi-
mental analyses, methods, and code development. M.R.B. and D.G.
performed field-scale seismicity investigations, analyses, methods, and
code development. M.R.B. supervised field-scale seismicity analyses.
Q.L. provided a subset of the experimental data andmethoddiscussions
with Q.X. J.C.H. contributed to idea conception, interpretation, and
supervised experimental work and article generation.

Competing interests
The authors declare no competing interests.

Article https://doi.org/10.1038/s41467-023-37782-5

Nature Communications |         (2023) 14:2056 9

https://doi.org/10.5078/corssa-00180805
https://doi.org/10.1785/0220180350
https://doi.org/10.1029/2019jb018558
https://doi.org/10.1029/2019jb018558
https://doi.org/10.1029/2019rg000695
https://doi.org/10.1029/2020JB020403
https://doi.org/10.1061/(ASCE)GM.1943-5622.0001146
https://doi.org/10.1061/(ASCE)GM.1943-5622.0001146
https://doi.org/10.5078/corssa-43806322
https://doi.org/10.5078/corssa-43806322
https://doi.org/10.1029/2021jb022379
https://doi.org/10.5281/zenodo.7328586
https://doi.org/10.5281/zenodo.7328586


Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-37782-5.

Correspondence and requests for materials should be addressed to
J. C. Hampton.

Peer review information Nature Communications thanks Xiaowei Chen
and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-37782-5

Nature Communications |         (2023) 14:2056 10

https://doi.org/10.1038/s41467-023-37782-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Seismic magnitude clustering is prevalent in field and laboratory catalogs
	Results
	Prior studies and the Southern California catalog
	Demonstrating magnitude clustering despite catalog incompleteness
	Application to Injection Induced Seismicity Catalogs
	Time dependency of magnitude clustering
	Application to laboratory catalogs
	Magnitude clustering in laboratory catalogs
	Effects of stress condition and interevent distance
	Lack of magnitude clustering in synthetic catalogs

	Discussion
	Modeling of observations catalogs with repeating events added to synthetic catalogs
	Potential physical mechanisms for magnitude clustering
	Influence of triggering
	Future work

	Methods
	Data sources
	The cumulative distribution of the probability comparison
	Empirical cumulative density function for magnitudes
	Determining the time filter to address interevent incompleteness
	Synthetic catalog processing

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




