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Deep learning to estimate lung disease
mortality from chest radiographs
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Prevention and management of chronic lung diseases (asthma, lung cancer,

etc.) are of great importance. While tests are available for reliable diagnosis,

accurate identification of those who will develop severe morbidity/mortality is
currently limited. Here, we developed a deep learning model, CXR Lung-Risk,
to predict the risk of lung disease mortality from a chest x-ray. The model was
trained using 147,497 x-ray images of 40,643 individuals and tested in three

independent cohorts comprising 15,976 individuals. We found that CXR Lung-
Risk showed a graded association with lung disease mortality after adjustment
for risk factors, including age, smoking, and radiologic findings (Hazard ratios
up to 11.86 [8.64-16.27]; p < 0.001). Adding CXR Lung-Risk to a multivariable
model improved estimates of lung disease mortality in all cohorts. Our results
demonstrate that deep learning can identify individuals at risk of lung disease

mortality on easily obtainable x-rays, which may improve personalized pre-
vention and treatment strategies.

Prevention and management of chronic lung diseases such as
COPD, asthma, or lung cancer are of great importance given their
high prevalence and the associated economic burden on the
healthcare system'”. While dedicated tests are available for reli-
able diagnosis and monitoring of lung diseases®®, accurate pre-
diction to identify those who will eventually develop severe
morbidity and mortality is currently limited. Therefore, new
methods to improve risk stratification are desirable. Chest radio-
graphs (CXR) are the most common diagnostic imaging test and
are acquired in the workup of many lung diseases’. However,
although most of them are without actionable radiological findings
by a human reader’, especially in the early stages of lung disease,
more quantitative, computer-aided analyses may provide a

window into the risk and extent of lung disease beyond established
methods.

With recent advances in artificial intelligence, new possibilities to
automatically capture and quantify a multitude of information have
become available™" This is particularly true in medical imaging, where
deep learning (convolutional neural networks or CNNs) has demon-
strated high performance in estimating the risk of mortality, incident
lung cancer, or biological aging from a chest radiograph image"™.
These results indicate that medical imaging might be helpful to per-
sonalize risk assessment based on changes to our anatomy, even in an
asymptomatic preclinical stage'*™. Moreover, using medical imaging
for risk estimation may have broader applications compared to
established methods in clinical care as imaging-based measures can be
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calculated opportunistically from existing scans acquired in daily
routine™**2,

In this study, we developed a CNN (CXR-Lung-Risk) to identify
individuals at high risk for lung disease mortality. The only input to the
model is a single existing chest radiograph and the output is a risk for
lung disease mortality expressed in years meaning, if the model out-
puts a risk of 75 years this is an equal risk of lung disease mortality as
the risk of an average 75-year-old individual. We tested the prognostic
value of CXR-Lung-Risk in three distinct clinical scenarios, including an
asymptomatic community population enrolled in the Prostate, Lung,
Colorectal, Ovarian (PLCO) Cancer Screening Trial”?*, heavy smokers
eligible for lung cancer screening CT enrolled in the National Lung
Screening Trial (NLST)* and patients with histologically confirmed
early-stage (I-lll) lung cancer from the Boston Lung Cancer Study
(BLCS). Our findings motivate the use of deep learning to identify
individuals at high risk of lung disease mortality from easily obtainable
and low-cost chest radiograph images. These findings may allow for
improved risk assessment of those who would benefit most from
personalized prevention and treatment strategies.

Results

We developed a deep learning model to estimate the risk of lung dis-
ease mortality using a chest radiograph as the only input and inde-
pendently tested the model in three held-out datasets comprising
more than 15,000 individuals: I) 20% of participants (n = 10,155, median
follow-up=17.0 [IQR 14.8-19.0] years) not seen during model devel-
opment from PLCO*?. PLCO was a multicenter randomized con-
trolled trial of chest radiography for cancer screening in asymptomatic
individuals aged 55-74 years enrolled at 10 US sites from 1993 through
2001. Outcomes were assessed via annual questionnaires, commu-
nication with next of kin and the National Death Index. Cause of death
was determined using ICD-9 codes. II) Participants from the NLST*
chest radiograph arm (n = 5,414; median follow-up=11.9 [IQR 7.3-12.3]
years). NLST was a randomized controlled trial that enrolled heavy

smokers (=30 pack years) aged 55-74 years for lung cancer screening
via chest CT vs. chest radiograph at 21 US sites from 2002 through
2004. Similar to PLCO, outcomes were assessed via annual ques-
tionnaires, communication with next of kin and the National Death
Index and ICD 9 codes were used to determine cause of death. III)
patients from the BLCS (n=407; median follow-up=3.4 [IQR 1.5-7.2]
years), which is an ongoing multicenter observational epidemiologic
cohort registry of patients with histologically confirmed lung cancer.
Mortality was verified by study staff via manual chart review and was
available for lung cancer-specific mortality only. An overview of the
study design and analyses is provided in Fig. 1.

PLCO had the lowest mean CXR-Lung-Risk (mean 63.0 + 5.5 years),
followed by NLST (screening eligible heavy smokers; [mean
66.1+ 5.7 years]) and then BLCS (patients with histologically confirmed
lung cancer [mean 70.5 + 6.7]) (p < 0.001 for all comparisons). In gen-
eral, CXR-Lung-Risk was significantly higher in men, current or former
smokers, and if traditional radiographic findings were present (Sup-
plementary Figs. 1and 2). Further detailed patient demographics for all
datasets are provided in Tables 1a, b and 2, and Supplementary Table 1.

Internal testing in PLCO: First, CXR-Lung-Risk was independently
tested in the remaining held-out dataset of PLCO (n =10,155) not seen
during any part of training. Kaplan-Meier survival analysis revealed a
graded association between CXR-Lung-Risk categories and lung dis-
ease mortality (Fig. 2a). The univariable hazard ratio for lung disease
mortality for those with a CXR-Lung-Risk between 65 and 75 years old
was 5.74 [4.69-7.01]; p<0.001 and 31.45 [24.43-40.48]; p < 0.001 for
those >75 years old compared to the reference group (CXR-Lung-Risk
<65 years old). This association remained robust after adjusting for
baseline demographics (chronological age, sex, race, smoking status,
pack years, body mass index) and clinical risk factors (prevalent dia-
betes mellitus, hypertension, history of stroke, myocardial infarction
and cancer) (adjusted hazard ratio for CXR-Lung-Risk between
65-75 years old was 3.52 [2.81-4.41]; p < 0.001 and 11.86 [8.64-16.27];
p <0.001 for those >75-year-old).
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Chest x-ray (CXR) CXR Lung Risk Risk Estimate
Prostate Lung Colorectal Ovarian Cancer (PLCO) Prostate Lung Colorectal Ovarian Cancer (PLCO) n=10,155
) . e Remaining 20% of participants not used for model development
e Asymptomatic participants aged 55-74 years e Outcomes are based on the actual observed deaths during follow-up
enrolled for cancer screening via CXR vs. controls
e Random sample of 80% individuals (n = 40,643) National Lung Screening Trial (NLST) n=5,414
from the intervention arm and CXRs from all e Asymptomatic participants age 55-74 years with a smoking history >30 pack years
timepoints (n=147,497) enrolled for lung cancer screening via CXR vs. chest CT
e Participants from the CXR screening arm
e Labels of respiratory disease mortality are based e Outcomes are based on the actual observed deaths during follow-up
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those that did not die e Patients age 35-90 years with histologically confirmed early stage lung cancer (I-11l)
e Outcomes are based on the actual observed deaths during follow-up
b
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Fig. 1| Overview of the study design. a The CXR-Lung-Risk model was developed
in PLCO. The only input to the model is a chest radiograph image; the model output
is an estimated risk of lung disease mortality. Independent testing was performed in
a held-out subset of PLCO participants, individuals enrolled in NLST and patients
with histologically confirmed lung cancer from the BLCS. b The prognostic

= Prognostic value of CXR Lung-Risk
Assessment of the prognostic value of
CXR Lung-Risk to predict respiratory
disease mortality

CXR Lung-Risk in clinical scenario
Evaluation in patients with newly diagnosed
lung cancer compared to baseline

demographics and clinical risk factors

performance of the CXR-Lung-Risk model was evaluated and compared to clinical
risk factors in all datasets. Source data are provided as a Source Data file. PLCO
Prostate, Lung, Colorectal, Ovarian Cancer Screening Trial; NLST National Lung
Screening Trial, BLCS Boston Lung Cancer Study.
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Table 2 | Patient demographics and clinical risk factors of BLCS patients for the entire data set stratified by CXR-Lung-Risk

groups
Variables BLCS
Entire dataset Lung-Risk Lung-Risk > 65-<75 years Lung-Risk p
<65 year >75 year
N 407 89 231 87
Age (years) 65.9+10.7 58.3+8.8 66.4+10.3 725+8.6 <0.001
CXR-Lung-Risk 70.5+6.7 62.9+1.9 69.7+2.7 80.4+5.4 <0.001
Sex (m) 50.1% (204/407) 33.7% (30/89) 52.4% (121/231) 60.9 (53/87) <0.001
Race
White 90.4 (368/407) 87.6% (78/89) 91.8% (212/231) 89.7% (78/87) 0.22
Black 4.7% (19/407) 4.5% (4/89) 3.5% (8/231) 8.0% (7/87)
Other 4.9% (20/407) 7.9% (7/89) 4.8% (11/231) 2.3% (2/87)
Obese (>30 kg/m2) 25.1% (102/407) 28.1% (25/89) 27.3% (63/231) 16.1% (14/87) 0.09
Smoking
Never 11.5% (47/407) 19.1% (17/89) 8.7% (20/231) 11.5% (10/87) 0.08
Former 48.4% (197/407) 47.2% (42/89) 47.6% (110/231) 51.7% (45/87)
Current 40.0% (163/407) 33.7% (30/89) 43.7% (101/231) 36.8% (32/87)
Tumor Stage
1 40.0% (163/407) 44.9% (40/89) 39.4% (91/231) 36.8% (32/87) 0.45
|| 14.3% (58/407) 13.5% (12/89) 12.6% (29/231) 19.5% (17/87)
|1 45.7% (186/407) 41.6% (37/89) 48.1% (111/231) 43.7% (38/87)
Treatment
Single treatment regime 36.9% (150/407) 36.0% (32/89) 36.8% (85/231) 37.9% (33/87) 0.96
Multimodal regime 63.1% (257/407) 64.0% (57/89) 63.2% (146/231) 62.1% (54/87)
Lung cancer-related mortality 42.8% (174/407) 32.6% (29/89) 41.6% (96/231) 56.3% (49/87) 0.005
Follow-up in years (IQR) 3.4 (1.5-7.2) 5.6 (2.8-6.4) 3.4 (1.4-7.0) 1.9 (1.1-4.2) <0.001

BLCS Boston Lung Cancer Study, IQR interquartile range.

As appropriate, the chi-square test, student’s t-test, Wilcoxon test or Kruskal Wallis test were calculated. All p values are two-sided.

To test whether CXR-Lung-Risk adds incremental value to a
baseline multivariable model with the same covariates but without
CXR-Lung-Risk, nested Cox proportional hazard models were com-
pared. Adding CXR-Lung-Risk to the baseline model resulted in a
modest improvement to estimate lung disease mortality compared to
the baseline model alone (c-index: 0.83 [95% CI 0.81-0.85] vs. 0.81[95%
Cl1 0.79-0.83)).

To account for the confounding effect of smoking, we stratified
the PLCO dataset by smoking status (n=5505 ever smoker and
n=4650 never smokers). After adjustment for the same risk factors,
CXR-Lung-Risk remained independently associated with lung disease
mortality in both subpopulations (Supplementary Fig. 3b, ¢, Supple-
mentary Table 1).

In addition, stratified analyses by sex and chronological age (<65
years old vs. =65 years old) are provided in the Supplements (Sup-
plementary Figs. 4 and 5), which revealed similar results for all inves-
tigated subgroups.

In a sensitivity analysis, we tested the association between CXR-
Lung-Risk and lung cancer-specific mortality in the entire PLCO testing
data set and in current or former smokers (quit <15 years ago) with a
smoking history of >30 pack years to allow for a better comparison to
individuals enrolled in NLST (see below). CXR-Lung-Risk showed a
graded and independent association with lung cancer-specific mor-
tality after adjusting for demographics and clinical risk factors (Sup-
plementary Fig. 6a, b).

External testing in heavy smokers participating in NLST: As in
the PLCO testing data sets, Kaplan-Meier survival curves showed a
graded association between CXR-Lung-Risk categories and lung
disease mortality in NLST (Fig. 2b). Univariable hazard ratios for
lung disease mortality for those with a CXR-Lung-Risk between 65
and 75 years old was 3.03 [2.34-3.93]; p<0.001 and 10.92

[8.07-14.77]1; p < 0.001 for those >75-year-old. Multivariable hazard
ratios adjusted for the same baseline demographics and clinical risk
factors as in PLCO were 2.48 [1.88-3.29]; p < 0.001 for those with a
CXR-Lung-Risk between 65-75 years and 6.48 [4.52-9.31]; p<0.001
for those with a CXR-Lung-Risk > 75-year-old. In addition, CXR-
Lung-Risk showed a modest improvement in estimating lung dis-
ease mortality when added to the multivariable model of demo-
graphics and clinical risk factors alone (c-index: 0.76 [95% CI
0.74-0.78] vs. 0.72 [95% CI 0.70-0.74).

As for PLCO, similar results were seen in NLST participants for sex
and age-stratified analyses (Supplementary Figs. 7 and 8) and lung
cancer-specific mortality for the entire cohort (Supplementary Fig. 6¢).

Testing in patients with early-stage lung cancer from the BLCS:
Similar to asymptomatic screening individuals, CXR-Lung-Risk showed
a significant graded association with lung cancer-specific mortality in
patients with histologically confirmed early-stage (I-1ll) lung cancer in
the BLCS (Fig. 3A). The univariable hazard ratio for a CXR-Lung-Risk
between 65-75 years was 1.74 [115-2.64]; p=0.009 and 3.30
[2.07-5.25]; p<0.001 for a CXR-Lung-Risk >75 years. After multi-
variable adjustment for age, sex, race, obesity, smoking status, cancer
stage, and treatment, the association for the CXR-Lung-Risk category
65-75 years was attenuated (hazard ratio: 1.28 [0.81-2.02]; p=0.30)
but remained robust for those categorized as being >75 years old
(hazard ratio: 2.33 [1.36-3.99]; p = 0.002). Likewise to the other testing
data sets, a small improvement to estimate lung cancer-specific mor-
tality was found for CXR-Lung-Risk when comparing multivariable
nested Cox models with and without CXR-Lung-Risk (c-index: 0.76
[95% CI 0.72-0.80] vs. 0.75 [95% CI 0.71-0.79]).

In subanalysis stratified by chronological age (<65 years old vs.
>65 years old), we found a significant association between CXR-Lung-
Risk categories and lung cancer-specific mortality in chronologically
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Fig. 2 | Independent testing of the CXR-Lung-Risk model in the PLCO testing
dataset and in NLST to estimate lung disease mortality. The CXR-Lung-Risk
model was independently tested in (a) the PLCO testing set (n =10155 independent
individuals) and in (b) NLST (n = 5414 independent individuals). Kaplan-Meier sur-
vival analysis shows a graded association between CXR-Lung-Risk groups and lung
disease mortality. Pairwise comparison of survival curves was performed using two-
sided Log-Rank tests. P-values are adjusted for multiple comparisons using the
Bonferroni-Holm method. Forest plots show univariable and multivariable-

1.00 Hazard Ratio

adjusted hazard ratios (box) with 95% confidence intervals (error bars) for the
different CXR-Lung-Risk groups. Multivariable models are adjusted for: chron-
ological age, sex, race, smoking status, pack years, body mass index, prevalent
diabetes mellitus, hypertension, history of stroke, myocardial infarction, cancer
and 9 chest x-ray findings as described in the methods. Source data are provided as
a Source Data file. **p values <2*10°. CXR chest radiograph, PLCO Prostate, Lung,
Colorectal, Ovarian Cancer Screening Trial, NLST National Lung Screening Trial;
y years.

older patients, which was not observed in chronologically younger
patients (Fig. 3b, c).

To investigate the potential clinical impact of CXR-Lung-Risk in
patients with lung cancer we calculated risk reclassification tables
based on the CXR-Lung-Risk categories and chronological age (<65
years old vs. >65 years old) (Table 3). We found increasing mortality
rates by CXR-Lung-Risk categories in both those <65 years of chron-
ologic age and =65 years.

In a subset of BLCS patients with available lung function testing
(n=348), the proposed CXR-Lung-Risk was compared to a previously
described method to estimate a lung age (Lung-Age) via a
linear regression using the forced expiratory volume in the first
second (FEV1), sex and height®®, which showed a modest correlation
(Pearson’s r=0.45; p<0.001) with CXR-Lung-Risk (Supplementary
Fig. 9a). Univariable and multivariable hazard ratios for CXR-Lung-Risk
and Lung-Age are provided in Supplementary Fig. 9b, c.

Finally, the relation between CXR-Lung-Risk and FEV1 was inves-
tigated, which showed a moderate negative correlation (Pearson’s
r=-0.30; p <0.001; Supplementary Fig. 10a). When adding FEV1 to a
multivariable model with the same demographic and clinical risk fac-
tors as above, the association between CXR-Lung-Risk and lung-
cancer-specific mortality remained significant for the >75 years old
category (hazard ratio: 1.99 [1.07-3.68]; p=0.03; Supplementary
Fig. 10b).

Discussion

In this study, we propose a deep-learning convolutional neural network
that estimates the risk of lung disease mortality from a chest radiograph
image as the only input. In three independent testing datasets, CXR-
Lung-Risk discriminated individuals at high vs. low risk for lung disease
mortality. In addition, CXR-Lung-Risk proved to be independent of and
additive to baseline demographics (including age and smoking status),
cardiovascular risk factors and traditional radiologic findings after
multivariable adjustment. We observed a graded association between
CXR-Lung-Risk and individual risk profiles. Higher CXR-Lung-Risk esti-
mates were associated with risk factors like smoking, hypertension, a
history of myocardial infarction and stroke as well as traditional radi-
ologic findings. The lowest mean CXR-Lung-Risk (63.0 + 5.5 years) was
found in PLCO, an asymptomatic screening population without known
lung cancer 23. NLST25 (all =30 pack year smokers) had a higher CXR-
Lung-Risk on average (mean 66.1+5.7 years), while the highest CXR-
Lung-Risk was found in BLCS patients with histologically confirmed
lung cancer (mean 70.5 + 6.7 years). These findings can be intuitively
understood - increasing damage to the chest is associated with higher
CXR-Lung-Risk regardless of other risk factors.

These findings could have clinical implications for the treating
physician and the patient as decisions on treatment allocation are
strongly based on clinical risk factors such as chronological age, FEV1
and comorbidities of an individual to estimate eligibility and
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Fig. 3 | Independent testing of the CXR-Lung-Risk model in the Boston Lung
Cancer Study (BLCS) to estimate lung cancer-specific mortality. In contrast to
PLCO and NLST, cause of death was only available for lung cancer but not for other
lung diseases. a Kaplan-Meier survival analysis shows a graded association between
CXR-Lung-Risk groups and lung cancer-specific mortality in the entire cohort
(n=407 independent individuals). Subgroup analyses stratified by chronological
age (b) <65 years old (n =194 independent individuals) vs. (c) 265 years old (n =213
independent individuals) revealed that this effect seems to be driven by older
patients with a chronological age =65 years. Pairwise comparison of survival curves
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was performed using two-sided Log-Rank tests. P values are adjusted for multiple
comparisons using the Bonferroni-Holm method. Forest plots show univariable and
multivariable-adjusted hazard ratios (box) with 95% confidence intervals (error
bars) for the different CXR-Lung-Risk groups. Multivariable models are adjusted for
chronological age, sex, race, obesity, smoking status, cancer stage, and treatment.
Source data are provided as a Source Data file. *p value = 0.01; **p value = 2.6*107;
ns = nonsignificant; **p value = 0.0006; CXR chest radiograph, BLCS Boston Lung
Cancer Study, y = years.

tolerability to the chosen regimen®*?, For example, Walter et al.
found that increasing age was negatively associated with the receipt of
cancer-directed treatment (e.g. surgery or radiotherapy) in a cohort of
more than 13,000 lung cancer patients”. Wang et al. reported in a
study including more than 20,000 veterans with lung cancer that
higher age was a stronger predictor for not receiving guideline-

recommended treatment than the presence of comorbidities®. If CXR-
Lung risk, a personalized risk estimate, rather than chronological age
was used, this could affect treatment decisions for tumor-directed
therapy. In this context, CXR-Lung-Risk might be a helpful objective
decision-making tool to reduce age-related bias by the treating phy-
sician and the risk of withholding a potentially beneficial therapy in an
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Table 3 | Risk reclassification of lung cancer-specific mortal-
ity based on risk categories defined by chronological age and
CXR-Lung-Risk

CXR-Lung-Risk

<65 years 265 years - 275 years
<75 years
Chronological Age <65 years 24 (33.8%) 42(40.8%) 9 (45%)
>65 years 5(27.8%) 54 (42.2%) 40 (59.7%)

older, but physiologically fit patient®. Furthermore, the substitution of
chronological age with the biological age captured by CXR-Lung-Risk
in existing risk calculators/predictors may provide more accurate
decision support. For example, lung cancer prediction models (either
for selection of screening candidates or cancer risk prediction of
solitary pulmonary nodules) commonly include chronological age®,
and substitution with CXR-Lung-Risk may improve the utility and
accuracy of these clinical risk predictions and help for risk reclassifi-
cation beyond current methods.

Chest radiographs are the most common imaging test and are
especially common in persons at risk for lung disease’. Although most
chest radiographs do not show findings that require clinical interven-
tions, there is increasing evidence that chest radiographs carry addi-
tional prognostic information beyond traditional diagnostic findings
(e.g. lung consolidations or nodules). For example, in our previous work
we demonstrated that deep learning can identify heavy smokers at high
risk for incident lung cancer and that a deep learning biological chest
x-ray age predicts longevity beyond chronological age and independent
of baseline risk factors'*. CXR-Lung-Risk is a new model that allows for
identifying individuals at increased risk for mortality of various lung
diseases demonstrating that potentially relevant prognostic informa-
tion captured in a chest radiograph may go unreported. Implementing a
tool like CXR-Lung-Risk into the EMR or PACS to automatically extract
this currently unused information could help to increase the diagnostic
value of this imaging test. For example, only around 5% of eligible
Americans are screened for lung cancer*® ™. Here, the proposed model
could help to flag individuals at high risk to prompt risk discussion and
encourage entry intro screening programs. Furthermore, it has been
reported that approximately 70% of individuals with COPD are
underdiagnosed™ with the risk for increased morbidity and mortality. In
this context, CXR-Lung-Risk could be deployed to automatically notify
the treating physician to schedule a follow-up visit for the patient to
investigate possible causes and discuss potential interventions, such as
a full pulmonary function test and the use of bronchodilator. As no
human input is necessary, CXR-Lung-Risk could be used with minimal
disruption of current clinical workflows and automatically analyze the
latest radiograph of a patient at high speed and low additional cost”. As
such, CXR-Lung-Risk could serve as an early warning system to triage
patients into existing screening and chronic pulmonary disease path-
ways, and to both provide more accurate risk assessments for those
programs and increase adherence to guidelines-based therapies.

The following limitations of our study need to be considered.
First, the input to the model is a raw chest radiograph. It remains
unknown, which alterations and findings in the image are important
for the final prediction. This is a common drawback of deep learning
models that may limit the acceptance by physicians and patients to use
this information for clinical decision-making. However, association
analysis shows correlation with clinical risk factors (e.g. smoking, age,
prevalent hypertension) and traditional radiologic findings (e.g.
nodules, fibrosis, emphysema) suggesting that the model identifies
anatomical changes known to be correlated with increased risk. Sec-
ond, the majority of participants in all datasets (development and
testing) were Non-Hispanic White. Detailed analysis regarding gen-
eralizability of the model to other races and ethnic groups was not

possible in our datasets and needs to be investigated in future studies.
Third, testing CXR-Lung Risk in BLCS as a potential clinical use case
using existing chest radiographs obtained through routine care only
comprised a relatively small hospital cohort of lung cancer patients.
Whether there is a similar prognostic value for early detection/prog-
nosis of other lung diseases such as COPD or asthma or even broader
adoption remains to be seen. Fourth, the age range in PLCO was
55-74 years old, which will likely limit the value of the model in sub-
stantially younger individuals. Moreover, although CXR-Lung Risk
accurately stratified risk in lung cancer patients, it remains unknown
whether this improves clinical decision-making or treatment planning,.
This needs to be tested in future prospective trials. In addition, many
patients at increased risk for lung cancer or prevalent disease get other
imaging tests, including serial computed tomography. Whether spe-
cifically tailored models to estimate prognosis using this imaging data
needs to be investigated in additional studies. Further, in PLCO and
NLST there is a discrepancy between the relatively small increase in the
c indices in nested model comparison and the large hazard ratios,
especially in the high-risk groups (CXR-Lung-Risk >75 years), which is
likely explained by the significantly different number of individuals in
the different risk groups. Finally, PLCO chest radiographs were col-
lected from 1993-2001 and available as scanned films. Whether this has
an impact on model accuracy in more modern datasets was not sys-
tematically analyzed in the current study. However, independent
testing in BLCS, where the most recent radiographs were acquired in
2016, showed robust performance.

In conclusion, a deep learning model can estimate risk of lung
disease mortality from a chest radiograph beyond demographics,
including smoking status, cardiovascular risk factors and traditional
radiologic findings and may help to identify high-risk individuals in
screening and cancer populations.

Methods

All analyses performed in this study comply with relevant ethical reg-
ulations. Secondary use of the PLCO, NLST and BLCS cohorts has been
approved by the Mass General Brigham, Boston, Massachusetts insti-
tutional review board. All participants provided informed consent at
enrollment into the original study.

The CXR-Lung-Risk model was developed in a large multicenter
prospective cancer screening trial and independently tested in one
internal and two external, held-out datasets not seen during any part of
the development process. Results are reported for the three testing
data sets only. An overview of the study design is provided in Fig. 1.

Model development

The CXR-Lung-Risk model was developed using data from the Pros-
tate, Lung, Colorectal, Ovarian (PLCO) Cancer Screening Trial®*, as it
was the largest available dataset in the current study. PLCO was a
multicenter randomized controlled trial of chest radiography for
cancer screening in asymptomatic individuals aged 55-74 years
enrolled at 10 US sites from 1993 through 2001. Individuals in the
intervention armreceived a chest radiograph at enrollment and up to 3
annual follow-up radiographs. For model development, a random
sample of 80% (n =40,643) of individuals enrolled in the intervention
arm was used, including chest radiographs from all timepoints
(n=147,497). 20% of the training data was reserved for hyperpameter
tuning. For model development, each radiograph exam was used as an
independent sample; for testing, only baseline radiographs defined as
the initial radiograph obtained at the enrollment (TO) exam were used.
The only input to the proposed CXR-Lung-Risk model is a chest
radiograph image; the output is an estimated risk of 18-year lung dis-
ease mortality (defined below) expressed in years (e.g., CXR-Lung-Risk
of 75 years means an equal risk of lung disease-related death as the
average 75-year-old individual). Usually, risk probabilities are expres-
sed in percentages, which are difficult to grasp. Therefore, we decided
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to express CXR-Lung-Risk in years rather than a probability between O-
100%. In contrast to our previous work”, which was developed as a
single prediction model, CXR-Lung-Risk was built as an ensemble
model to reduce variance in the output®®*°. The ensemble consisted of
20 CNNs. The model architecture for each CNN was chosen randomly
from a set of architectures popular in medical image analysis (incep-
tionv4, resnet34, tiny*°"*?). Hyperparameters for each model were
randomly selected during training (Supplementary Table 2), as ran-
dom hyperparameters have been shown to improve performance in
ensemble learning by reducing correlation between models”. The
output of these 20 models was combined into a single prediction using
a LASSO regression model trained on the hyperparameter tuning
dataset. LASSO regression coefficients are given in Supplementary
Table 2. We found that 13 out of 20 models had a nonzero LASSO
regression coefficient and were included in the final ensemble. A
comparison of these 13 single models vs. the ensemble model is given
in Supplementary Fig. 11.

Instead of a binary target variable of lung-related mortality, we
defined age-adjusted labels reflecting the risk of lung disease mortality
based on prevalent risk factors for those that did not die of a lung-
related disease during follow-up. We posit that these labels are more
informative than assigning a “0” for all individuals that did not die,
regardless of their underlying risk profile. We define these age-
adjusted labels according to the following equation:

LR=CA+(E—-D)

where LR is the Lung-Risk label, CA is the current chronologic age, £ is
expected age-at-death based on US social security life tables*. D
corresponds to age-at-death based on A) actual, observed age at death
for those that died of a lung disease or lung cancer or B) an individual's
predicted age at death due to lung disease/lung cancer based on a
survival regression model trained using data from the control (no
imaging) arm of the PLCO trial (n=77,444) for those who did not die
(Supplementary Table 4). This regression model used prevalent risk
factors as input to estimate the age an individual would die of lung-
related disease. This model accurately estimated age at death due to
lung disease with a concordance index of 0.82 (95% CI [0.817-0.825])
for all lung disease mortality and 0.84 (95% CI [0.835-0.845]) for lung
cancer death. This approach was similar to our previous work in which
we trained a model to estimate a general biological chest x-ray age.
Cause of death was adjudicated by the trial based on death certificates
and the National Death Index. These Lung-Risk labels were only used
for training. The reported results in the testing datasets are all based
on the actual observed deaths during follow-up.

For PLCO and NLST participants, only the baseline radiograph was
used, which was acquired upright in posterior-anterior projection.
PLCO radiographs were provided as scanned films in.tif file format with
protected health information redacted using black pixels. PLCO
radiographs were converted to Portable Network Graphics (.png) for-
mat using ImageMagick v6.8.9-9. For NLST, all chest radiographs were
available in Digital Imaging and Communications in Medicine (DICOM)
format. Radiographs for BLCS patients were acquired through clinical
care and available in DICOM format from the hospital’s Picture
Archiving and Communications System. We converted NLST and BLCS
DICOM files to.tif using DCMTK v3.6.1 and then to.png using Image-
Magick to maintain consistency with the aforementioned PLCO
radiographs. To increase the sample size in BLCS, both posterior-
anterior or anterior-posterior radiographs were included if they were
taken up to 3 months prior to histologically confirmed lung cancer
diagnosis. For training, images were rescaled to 224 pixels on the
short-axis and randomly cropped to 224 x224 before input into the
model. This random cropping was done each time the image was fed to
the model as a form of data augmentation. Additional data augmen-
tations used for training included mixup data augmentation, up to 20

degrees of random rotation, up to 20% zoom in/out, and up to 40%
brightness/contrast adjustments.

The model was trained using a mean-squared error loss function
with the ADAM optimizer. The number of epochs for training was
selected uniformly at random between 40 and 70. This was indepen-
dently chosen for each of the 20 models. Training was done using an
Ubuntu Linux workstation with an AMD 3960x24-core CPU with 128
GB of system RAM, and a single NVIDIA RTX A6000 GPU with 48 GB of
GPU RAM. The model was developed using fastai v2.5.3, PyTorch v1.10,
and CUDA v11.2. The full source code and programming environment
are freely available at https://aim.hms.harvard.edu/cxr-lungrisk.

The final model was an ensemble of 20 models combined using a
LASSO regression. LASSO regression coefficients were fit using the
glmnet package in R, and hyperparameters for the LASSO were
selected based on the minimum mean-squared error in an internal 10-
fold cross-validation. LASSO regression coefficients for each of the 20
models are given in Supplementary Table 2 and the performance of
each of the 20 models in Supplementary Fig. 11.

Model testing: The CXR-Lung-Risk model was tested in three
independent test datasets not used during any part of model devel-
opment. All results are reported for the testing datasets only based on
the actual observed lung diseases mortality. The first testing dataset
comprised a random sample of 10,155 asymptomatic individuals from
PLCO aged 55-74 (20% of individuals; median follow-up=17.0 [IQR
14.8-19.0] years) not used for model development®. Annual ques-
tionnaires, communication with next of kin and the National Death
Index were used to determine mortality. Cause of death was defined
based on International Classification of Disease-9 (ICD) codes (Sup-
plementary Table 3) (clinical trial registration number: NCT00047385).
For model testing, only baseline radiographs were used.

The second testing dataset included 5,414 participants from the
chest radiograph arm of the National Lung Screening Trial (NLST)%.
NLST was a randomized controlled trial that enrolled heavy smokers
(=30 pack years) aged 55-74 years for lung cancer screening via chest
CT vs. chest radiograph at 21 US sites from 2002 through 2004. Each
participant had a baseline scan and up to 2 annual follow-up scans if no
lung cancer was detected. Median follow-up time was 11.9 [IQR
7.3-12.3] years. Mortality was assessed via annual questionnaires,
communication with next of kin and the National Death Index. Cause
of death was determined using ICD-9 codes (Supplementary Table 3)
(clinical trial registration number: NCT01696968). For this study, only
the baseline chest radiograph was used.

The third testing dataset included 407 patients from the Boston
Lung Cancer Study (BLCS), which is an ongoing multicenter observa-
tional epidemiologic cohort registry of patients with histologically
confirmed lung cancer. For this study, only patients with early-stage (I-
III) and a diagnosis between 2004-2016 were included. Median follow-
up was 3.4 [IQR 1.5-7.2] years. Death was verified by dedicated study
personnel via manual chart review. In contrast to PLCO and NLST,
cause of death was only collected for lung cancer but not for other lung
diseases. A consort diagram for all three study cohorts is provided in
Supplementary Fig. 12.

Clinical covariates, radiographs and traditional radiographic find-
ings: Baseline demographics and prevalent risk factors such as diabetes,
hypertension or smoking status are self-reported by trial participants in
PLCO* and NLST®. For BLCS patients, all clinical covariates were
extracted from the electronic medical record by dedicated study staff.
Unlike PLCO and NLST, pack-years were not available in BLCS for all
individuals and not included in the analysis. Traditional radiographic
findings including lung nodules, atelectasis, pleura and lung fibrosis,
COPD/emphysema, opacities, cardiac abnormalities, lymphadenopathy
and bone/chest wall lesions were only available for PLCO and NLST and
reported by centrally qualified radiologists for all participants.

Outcomes: The primary endpoint of this study was a composite of
lung disease mortality, including lung cancer, interstitial pulmonary
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disease, emphysema, and COPD; the secondary endpoint was lung
cancer-specific mortality. All cause-specific deaths were based on ICD-
9 codes provided in the PLCO* and NLST® trials (Supplementary
Table 3). For BLCS, endpoints were verified by manual chart review and
available for lung cancer-specific mortality only.

Statistical analysis: Continuous variables are presented as mean
t+standard deviation (SD) or median and interquartile range (IQR).
Categorical variables are reported as frequencies and percentages.
Baseline demographics were compared using the student’s t-test or
Kruskal-Wallis test for continuous variables, as appropriate. For cate-
gorical variables, the Chi-square test was conducted.

To investigate time to lung disease mortality and lung cancer-
specific mortality, Kaplan-Meier survival estimates and log-rank tests
were calculated. The association between CXR-Lung-Risk and time to
lung disease mortality as well as lung cancer-specific mortality was
assessed via univariable and multivariable Cox proportional hazards
regression analysis. Multivariable models in PLCO and NLST were
adjusted for the following covariates: age, sex, race, smoking status,
pack years, body mass index, prevalent diabetes mellitus, hyperten-
sion, history of stroke, myocardial infarction, and cancer. For BLCS
patients, the following covariate were available: age, sex, race, obesity,
smoking status, cancer stage (I-1ll), and treatment (surgery only vs.
adjuvant treatment). Additionally, in BLCS patients with available lung
function testing (n = 348; FEV (I) = forced expiratory volume in liters in
1second), lung age as proposed by Morris et al.* was calculated (lung
agewomen = 3.56*height - 40 (FEV1) - 77.28; lung ageen = 2.87*height -
31.25 (FEV1) - 39.375) and compared to CXR-Lung-Risk proposed in
this study. For all cohorts, sex-stratified analyses were performed. All
p values are two-sided and considered statistically significant if below
0.05. All statistical analyses were performed in R (version 3.6.1).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The original PLCO and NLST data cannot be distributed with this
publication due to our data use agreements but can be downloaded
upon request from the National Cancer Institute (PLCO: https://
biometry.nci.nih.gov/cdas/plco/; NLST: https://biometry.nci.nih.gov/
cdas/nlst/). The BLCS data are protected under the BLCS study pro-
tocol. Access to limited de-identified data can be requested through
the BLCS Trial Center for academic non-commercial research purposes
only and are subject to review of a project proposal that will be eval-
uated by a BLCS data access committee. Requests can be made
through BLCS webpage (https://www.hsph.harvard.edu/blcs/) or
directly by contacting Prof. David Christiani (dchris@hsph.harvar-
d.edu). Requests will be reviewed within two weeks. Source data are
provided with this paper including the CXR-Lung-Risk estimates gen-
erated in this study, which have been deposited on the AIM webpage
(https://aim.hms.harvard.edu/cxr-lungrisk) and are available for
download to replicate the statistical analysis. Source data are provided
with this paper.

Code availability

All the code of the deep learning system including the trained model
and the code of the statistical analyses is publicly available on the AIM
webpage: https://aim.hms.harvard.edu/cxr-lungrisk. Furthermore, we
embedded the deep learning model in an end-to-end pipeline includ-
ing image preprocessing and model inference that is freely available in
a Google Colab cloud-based notebook. This cloud-based instance
facilitates future validation studies and allows users with minimal
coding proficiency to process a large amount of CXR data without
having to install anything on their local node. In the notebook, we
describe all the steps of the processing, discuss the different models

composing the ensemble and their details, and provide examples. This
notebook along with R code to reproduce the statistical analyses can
also be found on the AIM webpage: https://aim.hms.harvard.edu/cxr-
lungrisk.
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