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Bifurcation behaviors shape how continuous
physical dynamics solves discrete Ising
optimization

JuntaoWang 1,2, Daniel Ebler1 , K. Y.MichaelWong 2, David ShuiWingHui1 &
Jie Sun 1

Simulating physical dynamics to solve hard combinatorial optimization has
proven effective for medium- to large-scale problems. The dynamics of such
systems is continuous, with no guarantee of finding optimal solutions of the
original discrete problem.We investigate the openquestionofwhen simulated
physical solvers solve discrete optimizations correctly, with a focus on
coherent Ising machines (CIMs). Having established the existence of an exact
mapping between CIM dynamics and discrete Ising optimization, we report
two fundamentally distinct bifurcation behaviors of the Ising dynamics at the
first bifurcation point: either all nodal states simultaneously deviate from zero
(synchronized bifurcation) or undergo a cascade of such deviations (retarded
bifurcation). For synchronized bifurcation, we prove that when the nodal
states are uniformly bounded away from the origin, they contain sufficient
information for exactly solving the Ising problem. When the exact mapping
conditions are violated, subsequent bifurcations become necessary and often
cause slow convergence. Inspired by those findings, we devise a trapping-and-
correction (TAC) technique to accelerate dynamics-based Ising solvers,
including CIMs and simulated bifurcation. TAC takes advantage of early
bifurcated “trapped nodes” which maintain their sign throughout the Ising
dynamics to reduce computation time effectively. Using problem instances
from open benchmark and random Ising models, we validate the superior
convergence and accuracy of TAC.

Quadratic unconstrained binary optimization problems (QUBOs) are
of great importance for a large variety of disciplines—encompassing
systematic drug design1, simulation of molecular dynamics2, protein
folding3,4, traffic flow optimization5, job scheduling6, and risk analyses
in finance7, among others. Solving QUBOs was shown to be NP-hard8,
limiting scalability of good solutions to the order of hundreds to
thousands of variables—even for approximate algorithms9–11.

Alternative approaches based on the encoding of problems into
the dynamics of physical systems have been proposed, drawing
inspiration from the Hopfield and Hopfield-Tank neural networks12–14

from the 1980’s, withmore general dynamics and controlmechanisms,
allowing for stronger scalability and convergence properties15–22. As
experimental realizations of so-called Ising machines deem
challenging18,23–26, the system dynamics have commonly been simu-
lated on conventional computers23,27–30. Such approach has proven
successful for medium- to large-scale optimizations of up to hundreds
of thousand variables19,28,31,32, and even lead to special-purpose chip
hardware implementations33–37.

Despite the reported performances, the simulated dynamics is
accompanied by a fundamental issue: the equations of motion of Ising
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machines are continuous (real-valued), while the QUBO problem is
discrete (binary). In particular, empirical observations as reported in
refs. 38,39 suggested an intriguing interplay between nonlinearity of
the dynamics (with a focus on coherent Ising machines (CIMs)) and
structure of the coupling network in determining the success of sol-
ving the discrete Ising problem. Generally, relaxations of integers to
reals often lead to suboptimal solutions11,40–42, due to a continuous
interpolation of the discrete optimization landscape. Since the land-
scape changes dynamically during the evolution, it is essential to
understand when Ising machines are able to identify correct solutions
of the QUBO38,39. These insights would lead to lower bounds of the
algorithm run-time, which can (1) prevent failure of the optimization
because of too short evolutions, and (2) serve as a stopping indicator
to avoid long execution times. Yet, such lower bounds have not been
reported and are generally unknown.

In this work, we address the very question of when an Ising
machine derived from continuous dynamics solves its corresponding
discrete Ising model. Many of the findings are based on analysis of the
simulated dynamics from the perspective of dynamical systems and
bifurcation theory. We show that exact mapping between an Ising
machine and the corresponding QUBO can only emerge when the
control parameter of the evolution crosses a critical threshold. We
prove sufficient conditions for exact solvability for the simulated
dynamics, and attribute the conditions to a synchronized bifurcation of
all nodal states. This scenario is found to impose lower bounds on the
magnitudes of the nodal variables. Unlike previously reported, we
show that individual nodal variables in Ising machines often do not
bifurcate synchronously, but rather undergo a sequential cascade of
instabilities. Such delayed bifurcation behavior constitutes a phe-
nomenon which we refer to as retarded bifurcation. We attribute such
retardations to the presence of swing nodes, which are subject to
geometrical frustrations in the Ising machine. Swing nodes are found
to oscillate in values around zero, potentially leading to unfeasible run-
times and suboptimal solutions. Importantly, we show that the number
of swing nodes in the state of the Ising machine at the first bifurcation
point constitutes a key indicator for the deviation from the exact
mapping threshold. Finally, we build upon these insights to design a
trapping-and-correction (TAC) approach based on defrustration and
stabilization mechanisms to accelerate convergence and enhance the
performances of simulated physical solvers.

Results
A newly emerging computational paradigm towards solving combi-
natorial optimization problems is based on integrating the problem
into the dynamics of physical systems. Binary optimization problems
can be represented as Ising Hamiltonians43,

HIsingðσÞ= �
X
i<j

Gijσiσj = � 1
2
σTGσ, ð1Þ

whose value is known as the Ising energy. Here σ∈ {−1, +1}n is the
vector ofn interacting spins σ1, σ2, . . . , σn andG represents a symmetric
coupling matrix. Configurations σ* which yield the minimum Ising
energy are known as the ground states, and the corresponding
HIsing(σ

*) is the energy of the ground state. It was shown thatmany NP-
complete and NP-hard problems can be cast in the formofminimizing
HIsing(σ) in Eq. (1) over all possible binary configurations σ44.

So-called Isingmachines integrate the Hamiltonian in Eq. (1) into a
continuous dynamical system describing the temporal evolution of a
network of coupled oscillators, such that by evolving towards its
ground states, Ising machines simultaneously minimize HIsing. Differ-
ent proposals of Ising machines include coherent Ising machines16,45,46

and quantum bifurcation machines17,25, among others18,47–49. The
dynamics of a physical Ising machine is commonly simulated on con-
ventional hardware. Generally, this leads to a characterization of the

dynamics by a set of coupled differential equations as follows,

dx
dt

� �
i
= Fiðx,pÞ= f iðxi,pÞ+

X
j

gijðxi,xjÞ, i= 1, 2,. . .,n, ð2Þ

where x = ðx1, . . . ,xnÞT 2 Rn, p is a control parameter, and Fðx;pÞ is the
corresponding vector field. Here, the equations of motion originate
from a continuous potential U(x, p) as −∇U(x, p) = F(x, p), and the
functions fi and gij implement the self and interactive couplings,
respectively. This work focuses on coherent Ising machines (CIM) as a
quantum-photonic implementation of physical Isingmachines16,27, and
we note that the derived results could be extended to other dynamics
characterized by the general form of Eq. (2). For instance, in a CIM the
state xi corresponds to the in-phase amplitude of the i-th photon pulse
whose dynamics is described by

f iðx,pÞ= ð�1 +p� x2Þx, gijðx,yÞ= ξGijy, ð3Þ

where p is the photon pump rate, Gij is the coupling strength between
pulses i and j, and ξ is a scaling factor. Typically the system is allowed to
endure a transient period after which the continuous values xi of the
photon amplitudes are converted to the binary states σi = sign(xi). By
setting p appropriately, it was shown that CIMs can successfully solve
certain intermediate to large scale QUBOs27.

Bifurcation analysis of CIM
Given the continuous dynamics of CIMs, it is not clear whether its time
evolution gives rise to the correct solutions of the discrete optimiza-
tion problem. Recently, insightful perspectives of this problem were
presented in ref. 38, shedding light on the intrinsic challenges caused
by the complex topological structure of the phase space of the CIM
dynamics and the interruptions in the adiabatic trajectories of fixed
points. Success of the CIM strongly depends on the mapping between
the continuous dynamics as in Eq. (2) and the discrete
Hamiltonian HIsing, and it is believed that the minimum of the con-
tinuous potential U(x) can be mapped to the ground state of HIsing(σ)
after binarization for certain control parameter values50 (see Fig. 1).

We investigate in the followingwhen CIMs are fundamentally able
to find a QUBO solution. Concretely, we show that when p is suffi-
ciently large, i.e., p> 1 + 1

2 1 + 3
ffiffiffi
3

p� �
maxl

P
j ∣ξGlj ∣, there exists a stable

state of the CIMdynamicswhosebinarization gives the ground state of
the Ising problem (see Supplementary Note 1 for a proof). Then, we
present a bifurcation analysis of the Ising dynamics. The results offer
fundamental insights for practical optimization, as they provide
mechanisms todetermine theminimumrun-timenecessary for solving
a QUBO. Bifurcations occur when the pump rate p is increased above
certain thresholds pi (i =0, 1, . . . ), at which the qualitative dynamical
behavior of the system is affected by instabilities51. Here, p0 denotes
the first bifurcation point, p1 the second, and so on. Furthermore, we
denote x* as any fixed point of Eqs. (2, 3) which satisfies

ð�1 +pÞx* � x*3
1 , . . . ,x

*3
n

� �T
+ ξGx* = 0: ð4Þ

The evolution of the fixed points x* with respect to the pump rate p can
be derived as

dx*

dp
= ð1� pÞI + 3diagðx*2

1 , . . . ,x
*2
n Þ � ξG

	 
�1
x*: ð5Þ

For fixed p, the stability of the equilibrium point x* is determined
by the Jacobian matrix Jðx*,pÞ :¼ ð�1 +pÞI � 3diagðx*2

1 , . . . ,x
*2
n Þ+ ξG

	 

.

Note that the trivial state x0 =0 is always an equilibrium state (a fixed
point) of the CIM. It is the unique solution until the first bifurcation
pointp = p0 atwhich the state x0 loses its stability, i.e., when the largest
eigenvalue of Jðx0,pÞ= ð�1 +pÞI + ξG½ � crosses zero. Thus the value p0
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can be computed as p0 = 1� ξλmaxðGÞ, where λmaxðGÞ is the largest
eigenvalue of the couplingmatrixG. The bifurcation direction dx0

dp atx0
is the eigenvector of J(x0, p0) corresponding to the zero eigenvalue,
denoted as vmax. We derive this result in more detail in Supplementary
Note 2 and show that the corresponding equilibrium states (propor-
tional to vmax) are indeed stable solutions. If the pump rate p is further
increased, subsequent bifurcations may occur at (both stable and
unstable) fixed points x* if Jðx*,p0Þ has zero eigenvalue, and the bifur-
cation direction will be determined by the kernel of Jðx*,p0Þ—here we
use p0 to denote the pump rate at a later bifurcation.

To elucidate the impact of the value of p on the ability of the Ising
machine to find the correct ground state ofHIsing, we consider random
instances of connected graphs consisting of n = 5 variables with ran-
dom symmetric coupling matrices G∈ {+1, 0, −1}n×n. In the following,
we usep* to denote theminimumpump rate punderwhich there exists
a local minimum x* of U(x, p) whose binarization yields the ground
state of the Ising problem (see Methods section for details of deter-
minations of p*). Note that sometimes the system may not strictly

undergo a bifurcation at p* but instead some nodal states cross over to
change its sign leading eventually to the optimal solution after binar-
ization (see Supplementary Fig. 3). As shown in Fig. 2, for most
instances, the pump rate p* beyond which the CIM yields the exact
ground state coincides with the first bifurcation point p0. On the other
hand, there exist outliers with p* > p0 for which higher pump rates are
necessary to trigger further bifurcations to achieve exact mapping.
Observations along this line have been presented in ref. 39 using
Sherrington-Kirkpatrick models as a special class of Ising problems.
The general working principle underlying such phenomena, however,
has remained unclear—preventing constructive usage of the the
bifurcation dynamics induced by non-linearity in the system. The finite
and non-vanishing gap between the outliers and p0 decreases for
smaller values of the coupling parameter ξ and increases otherwise.
Note, however, that the gap does not vanish: for outliers, p* > p0 will
hold also for small ξ . Consequently, the need for outliers to further
bifurcate towards exact mapping is robust against the choice of the
coupling parameter. These insights offer a direct connection between

Fig. 2 | Retarded versus synchronized bifurcation. The point of exact mapping p*

vs. the largest eigenvalue of the interaction matrix G of 1000 graphs sampled
randomly from all connected graphs with n = 5 nodes. Dashed lines represent the
bifurcation thresholds p0 = 1� ξλmaxðGÞ where non-zero stable equilibrium first
appears. While for the majority of the cases p* = p0, outliers for which p* > p0 do
occur (shown as symbols deviating above the lines). Two problem instances, one

with p* = p0 and one with p* > p0, are chosen and the problem structures and
bifurcationdynamics of the corresponding systemstatesx* are shown,with red and
blue couplings corresponding to Gij= +1 and −1, respectively. For p* = p0, all nodes
bifurcate jointly (synchronized bifurcation). For p* > p0, the graph of the outlier is
subject to geometrical frustration—in this particular case two further bifurcations
are necessary towards the solution (retarded bifurcation).

Fig. 1 | Mappings between the physical Ising machine and combinatorial
optimization. The Ising machine solves a combinatorial optimization problem by
embedding the discrete cost function into a physicalmodelwhosedynamics canbe
tuned by a control parameter p. At p = p* (solid line), exact mapping happens as the
global minimum of the embedded cost function (whose potential is denoted as
U(x, p) herein)maps to that of the discrete problemwhose cost function is denoted
by HIsing(σ), leading to the correct solution. For p < p* (dashed line), the mapping

does not coincide, such that an optimization of the embedded cost function typi-
cally fails to find the correct solution. The relations between optimality of the
solution found by the Ising machine, type of bifurcations exhibited by the system,
properties of the system state at the first bifurcation point, and advantages through
trapping-and-correction (TAC) approach presented in this work are illustrated in
Figs. 2–5.

Article https://doi.org/10.1038/s41467-023-37695-3

Nature Communications |         (2023) 14:2510 3



the nature of bifurcations in the CIM and the optimality of the Ising
machine for a given schedule.

To understand the relation between the the system state x1 /
vmax and the bifurcation type at p0, we analyze the evolution of
the global minima states. Figure 3a, b shows the evolution of
variable values of a problem instance with exact mapping at the
first bifurcation point (p* = p0), and of an outlier (p* > p0) (for more
details and further examples, see Supplementary Note 3). In the
case p* = p0, for the presented instance all variables of the CIM
jointly drift away from zero after the first bifurcation and main-
tain their sign for growing values of p. We call such bifurcation
synchronized. For outliers, some nodes remain close to or exactly
zero unless further bifurcations occur. The need of the variable
for further bifurcations at pump rates p1, p2, . . . is denoted as
retarded bifurcation.

The empirical observations made in Fig. 3a, b guide us
toward rigorous analytical results which we present in the fol-
lowing. Given the first non-trivial stable state x1 / vmax, we
quantify the degree of synchronization by

α2ðx1Þ=
xT
1

∣∣x1∣∣
σ1

∣∣σ1∣∣

� �2

, ð6Þ

wherewe denote σ1 = sign(x1). Note that α2ðx1Þ=α2ðvmaxÞ 2 ½0, 1� and if
the components of x1 are more centralized away from zero, the larger
the value of α2(x1). Then for any Ising Hamiltonian H(σ) (Eq. (1)), we
have the following theorem.

Theorem 1. Given a non-zero real symmetric matrix G with
diagonal entries equal to zero, defining an Ising Hamiltonian as
in Eq. (1). Let x1 = ðx1,1,x1,2, . . . ,x1,nÞT be the first non-trivial stable
state of CIM (Eqs. (2, 3))—which is proportional to the maximum
eigenvector of G, i.e., x1 / vmax. Furthermore, denote
ΔH = H1 − H0 as the energy gap between the energy H1 of the first
excited state (here referred to as states/configurations that yield
the second smallest Ising energy) and H0 of the ground state of
HIsing(σ), and let λmax and λmin be the maximum and minimum

eigenvalues of G. If

α2ðx1Þ>α2
c ðx1Þ= 1�

2ΔH
nðλmax � λminÞ

ð7Þ

then σ1 = sign(x1) attains the energy of ground state, i.e.

HIsingðσ1Þ<H1: ð8Þ

Proof. (A complete proof is presented in Supplementary Note 4.) □

Note that Theorem 1 implies two important findings: 1. if all nodes
of a system exhibit a synchronized bifurcation—meaning that the
magnitudes ∣x1,i∣,∀ i = 1, 2, . . . , n of all nodes are sufficiently large (see
Corollary 1 in Supplementary Note 4 and examples illustrated in
Fig. 3c) at the first bifurcation point p0 such that the sufficient condi-
tion of Theorem 1 is satisfied—then the mapping between the con-
tinuous dynamics and the original optimization problem is exact.
Further evolution of the CIM cannot improve the output. 2. If there
exist nodes close to zero, leading to a distribution with a zero com-
ponent in Fig. 3d, then the degree of synchronization is not large
enough and the mapping requires further evolution beyond the first
bifurcation to be exact.

Figure 3c, d shows the distribution of magnitudes ∣vmax ,i∣ of the
components i = 1, 2, . . . , n of themaximum eigenvectors vmax for 5000
random instances (n = 5 variables) with p* = p0 and p* > p0 respectively.
See Supplementary Note 5 for additional instances. We discuss these
two cases separately. (i) Instances with p* = p0. It can be seen that no
components are close to zero, corroborated by the observation that
88% of instances satisfy the sufficient condition in Theorem 1 and the
average degree of synchronization is 〈α2(x1)〉 = 0.90, compared to the
average threshold hα2

c ðx1Þi=0:80. Hence the resulting state sign(x1)
tends to yield the optimal solution to the problem. We also confirm
experimentally (Fig. 3e) that the sign of nodes with large ∣x1,i∣ are not
likely to change further with the increase of the pump rate p, and we
call such nodes trapped nodes. (ii) Instances with p* > p0. The dis-
tribution ofmagnitudes becomes bimodal: the components ∣x1,i∣ of the
system state constitute an additional peak in counts for values around
zero, with an average degree of synchronization 〈α2(x1)〉 =0.73,

Fig. 3 | Trappednodes and swingnodes that emergeduring Ising dynamics and
their impact on optimization. a, b Schematic illustrations of the evolution of the
state corresponding to a global minimum point x*(p) following Eq. (5) in Ising
problems for which (a) p* = p0 (exact mapping arises right after first bifurcation),
and (b) p* > p0 (outlier). Outliers are accompanied by swing nodes, which bifurcate
at higher pump rates (p1, . . . , p*) during the evolution (retarded bifurcations). In the
corresponding graphs blue(red) edges denote Gij= −1(+1), respectively. The nodes
are colored according to the sign andmagnitude of the steady-state components of
the CIM dynamics. c, dNormalized counts of themagnitudes of the components of

the maximum eigenvectors for models with (c) p* = p0 and (d) p* > p0, computed
from statistics of 1000 random instances with n = 5 variables. The brown curves are
the kernel density estimations of the probabilities. e The plot shows the probability
that a variable with magnitude proportional to ∣vmax ,i∣ at the first bifurcation
changes its sign during subsequent evolutions of the CIM, sampled from 100 fully
connected graphs with n = 100 variables, and edge weights picked at random from
a Gaussian distribution with zero mean and standard deviation 1=

ffiffiffi
n

p
. The inset

(similar to Fig. 2) visualizes the evolution of several nodes in a typical 100-node
graph with trapping and oscillations explicitly shown.
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compared to the average threshold hα2
c ðx1Þi =0:80. Here, 92% of

instances do not satisfy the sufficient condition in Theorem 1, and we
observe that there is no full synchronizationof all variable bifurcations.
Note that there are still 8% of instances satisfying the condition yet
they exhibit a retarded bifurcation, because although H(σ1) attains the
ground state energy, there exists an index j such that
ðσ1Þj = signðx1Þj =0. Hence, the binarization does not yield a valid Ising
state. We also observe that if there exists at least one variable which
does not bifurcate jointly after p0, then p* > p0 and further bifurcations
at larger values of p are necessary to fully determine the signs of those
variables, c.f. Fig. 3b, d. We call such variables swing nodes, as they are
observed to oscillate between negative and positive values around
origin until a bifurcation traps them (Fig. 3e).

The occurrence of swing nodes indicates the presence of frus-
tration in the system. Frustrations, which are known to generate mul-
tiplicity of local minima in combinatorial optimization, generally
make the problem hard and cause high algorithmic complexity52,53.
Consider the example in Fig. 3b. The two swing nodes are symmetric
with respect to the permutation of their indices, i.e., (z1, z2) = (+, −) and
(−, +) resulting in the same topological configuration. The degeneracy
of these two states causes the stationarity of (0, 0) at the bifurcation
point, and further increase of the pump rate is required to break the
symmetry. Furthermore, we analyzed an additional 1000 random
instances with n = 5 and found that whenever the first bifurcation state
contains a zero component, it belongs to at least one frustrated loop.
This constitutes a necessary condition for the occurrence of a swing
node. We caution that the condition is necessary but not sufficient.
Specifically, there are frustrated loops that do not result in
swing nodes.

Generally speaking, as shown in Theorem 1, in the absence of
retarded bifurcations, i.e., when degree of synchronization is suffi-
ciently large at the first bifurcation, binarization of the maximum
eigenvector yields the optimal solution. Since the maximum eigen-
vector can be computed to high numerical precision in polynomial
time, those problems are computationally easy. On the other hand,
when frustrations are present such that p* > p0, it is generally difficult
to classify the complexity of the problem, as the dynamics of the
optimizer add an own layer of complexity to the problem20. The
presence of retarded bifurcation and swing nodes become more
significant with growing problem size n, leading to increasing
deviations of the binarized first non-trivial state of the CIM from the
optimal solution (see Supplementary Note 6). Consequently,
instances typically get harder to solve with increasing size n. How-
ever, we observe that the ratio of swing nodes tends to saturate—thus
enabling to utilize the trapped nodes when searching for optimal
solutions.

Trapping-and-correction (TAC) to boost the performance of
Ising machines
For larger graphs, tracking the evolution of variablemagnitudes across
bifurcation points can be utilized as a key indicator for the mapping
precision between global minima of the continuous potential and the
discrete Ising ground states. Notice that such indicators also exist in
other physics-inspired Ising machines, such as simulated bifurcation
(SB) and its variants, including ballistic SB (bSB) and discrete SB
(dSB)19,28. Since the exact mapping point p* is generally unknown, the
pump rate has to slowly increase until all magnitudes are ϵ-far away
from zero. In practice, this poses three challenges: (i) Suboptimal
solutions. Without exact knowledge of p* there is no guarantee to stop
the evolution precisely when the system is in the ground state. If p < p*,
the fluctuations of swing nodes around zero assigns random values to
the variables; for p > p* the probability of finding the ground state by
the CIM dynamics decreases with increasing p as more local minima
emerge16; (ii) Long run-times. For retarded bifurcations in larger opti-
mization problems many bifurcations might be needed to decide all
swing nodes—often accompanied by unfeasible execution times; (iii)
Insufficiency of the heuristics. With growing problem size, variables
with small amplitudes are increasingly common (see Supplementary
Note 6). In such scenarios, setting a good cut-off ϵ becomes more
challenging as, in general, small amplitudes are also detected for
instances with p* = p0. Consequently, heuristic determination of the
cut-off becomes unreliable.

We now show how the above insights allow us to develop an
acceleration technique which improves the speed of convergence
when combined with dynamics-based Ising machines. This approach,
which we term trapping-and-correction (TAC), is visualized in Fig. 4
and outlined in the next paragraph with a full description. Additional
discussions are left to theMethods section and Supplementary Note 7.
For notational simplicity, when used jointly with CIMdynamics, we call
the resulting system TAC-CIM and similarly for other dynamics.

Here we use CIM and bSB19 (an improved version of SB which is
robust and can achieve better results) to demonstrate how the TAC
approach works. In TAC-CIM and TAC-bSB, the system is first evolved
according to the dynamical equations in Eq. (3) and stopped at any
arbitrary time t, with corresponding system state x(t). Then, nodes are
classified into trapped and swing nodes based on a cut-off threshold
ϵ= k∣∣xðtÞ∣∣= ffiffiffi

n
p

, with k being a tunable parameter. Trapped nodes,
whose amplitudes are larger than the cut-off, are set to bit values
according to their signs. Swing nodes, whose amplitudes are less than
the cut-off, are randomly sequentially assigned binary values based on
the interaction fields due to their neighbors. Then, every node is
individually stabilized by examining the change in energy of the global
state under bit flips. Note that this TAC approach is not restrictive to a

Fig. 4 | Schematic illustrationof the trapping-and-correction (TAC) approach. It utilizes convergence properties of the early bifurcated “trapped nodes” to enable lazy
updates and early stopping therefore effectively reduce computation time towards convergence of the Ising dynamics. See Supplementary Note 7 for details.
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particular form of dynamics, and can generally be used in other
continuous-dynamics based Ising machines by simply adapting Eq. (2)
while keeping the other parts the same.

Computational performance of the proposed TAC technique is
shown in Fig. 5 for CIM and bSB. Here, we consider the Ising for-
mulation of a Max-Cut problem g05_100.0 with n = 100 nodes taken
from the benchmark dataset Biq Mac Library54. We refer to the Meth-
ods section for details of the simulation and Supplementary Note 8–9
for additional problem instances and comparisons with SB and dSB.
Figure 5a, c illustrates the advantages of the TAC-CIM and TAC-bSB
over standard CIM and bSB, for different evolution (stopping) times t
of the dynamics. For standard CIM and bSB, Fig. 5b, d shows the size of
the set of trapped nodes V trapped = fi : ∣xiðtÞ∣> k∣∣xðtÞ∣∣=

ffiffiffi
n

p g, as well as
the squared correlation between the binarized values signðxiðtÞÞi2V trapped

and the corresponding ground state values ðσgs
i Þi2V trapped

, as a function
of the cut-off threshold k for different durations t of evolution.
The correlation serves as an indicator for the correctness of classifying
the nodes into trapped and swing. Small cut-offs lead to incorrect
trapping of swing nodes. The resulting binarized values show low
correlations to the ground state, and poor performance of the opti-
mization. Large values of k lead to a small number of trapped nodes
which have high correlation to the ground state. This can be under-
stood from the low probability of nodes with large amplitudes to
change signs after the first bifurcation point p0 (c.f. also Fig. 3e).
However, large cut-offs lead to classifying a large number of nodes as
swing, such that outputs are strongly decided by the stochastic sta-
bilization. In this case too little information of the ground state con-
figurations can be obtained from trapped nodes—which carry

important features of the CIM and bSB evolution. For the simulations
in this work the authors choose k =0.5 to find approximately a balance
between swing and trapped nodes. It can be seen that the proposed
TAC approach significantly improves CIM and bSB with faster con-
vergence and greater precision, by avoiding the need to perform full
updates at every step of the dynamical evolution. For the presented
instance, the top 5% of the 100 trials manage to identify the ground
state in less than half of the run time needed by standard CIM and bSB,
while for any stopping time TAC-CIM and TAC-bSB have advantages
over standard CIM and bSB.

To further validate general applicability of the proposed TAC
approach in accelerating convergence of algorithms beyond particular
dynamics, we conducted a number of additional numerical experi-
ments, to include most recent dynamics-based Ising machines such as
SB, bSB and dSB19,28. The size of test graphs are increased to n = 2000
to examine possible performance variation in larger problem instan-
ces. Remarkably, in almost all examples and graph sizes the addedTAC
approach appears to be highly effective in accelerating convergence,
regardless of the particular dynamical system (CIM, SB, or improved
versions of SB—see SupplementaryNote 9). This suggests the potential
broad applicability of the proposed TAC approach to complement and
generally improve the performanceof dynamics-based Isingmachines.

Discussion
The emerging computational paradigm of utilizing continuous physi-
cal dynamics for solving combinatorial optimization problems proves
to be a promising alternative to conventional algorithms. The ultimate
success of this approach relies on understanding when evolving such

Fig. 5 | Acceleratingdynamics-based Isingmachines through the trapping-and-
correction (TAC) technique. Comparison between Ising energies of (a) TAC-CIM
and standard CIM, (c) TAC-bSB and standard bSB. The mean (solid curves) and the
top 5% quantile (dashed curves) of Ising energies are illustrated at different times
for a Max-cut problem with n = 100 variables (with respect to 100 trials, random in
initialization and trapping order in TAC approach). The TAC-CIM and TAC-bSB
result in stopping dynamics at the designated time and executing the TAC
approach. The ground state is marked as “min” and depicted by solid straight lines.

The bottom panel illustrates the probability of identifying the ground state for
different times t during the evolution. For (b) CIM and (d) bSB, the number of
trapped nodes with ∣xiðtÞ∣> k∣∣x∣∣ðtÞ=

ffiffiffi
n

p
and the squared correlation of their

binarized values signðxiðtÞÞi2V trapped
with the corresponding ground state values

ðσgs
i Þi2V trapped

is shown as a function of the cut-off parameter k for different durations
t of evolution. The simulation in (a) and (c) used k =0.5 as the balance point
between trapped and swing nodes.
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continuous dynamics becomes equivalent to minimizing objectives
with discrete variables. In this work we investigate this open question
by analyzing the bifurcation dynamics of coherent Ising machines. We
find that the Ising dynamics at thefirst bifurcationpoint fundamentally
determines optimality of the continuous solution. At the first bifur-
cation, if all nodal states simultaneously change from zero to values
that are ϵ-away from zero (synchronized bifurcation) we prove that the
continuous dynamics solves the discrete optimization; on the other
hand, when there is a partial set of nodes whose states remain ϵ-close
to zero (retarded bifurcation) then further increase of the control
parameter is necessary for the continuous system to evolve towards
the desired discrete optimum. Such retardation in bifurcations con-
stitutes a previously unnoted phenomenon, which correlates with the
complexity of the problem and strongly impacts the performance of
the Ising machine. We attribute retarded bifurcations to frustrations
that are commonly inherent in the Hamiltonian, and necessitate the
presence of small-amplitude components in the maximum eigen-
vector of the couplingmatrix. The respective variables are called swing
nodes whose values oscillate around the origin. Consequently, further
bifurcations are necessary to determine the correct binary values of
the nodes. In order to iteratively eliminate swing nodes, we develop a
procedure that sequentially assigns binary values to swing nodes
according to their local interactions in the network. The proposed
trapping-and-correction (TAC) approach—drawing structural insights
from CIM dynamics—was found to be effective in a number of
dynamics-based Ising machines including CIM, SB, bSB and dSB, when
extended to larger systems, yielding increased probability of finding
ground states and reduced run-times. These results provide important
insights regarding the link between continuous physical dynamics and
discrete combinatorial optimization, and can potentially lead to
enhanced parameter control schemes for nonlinear and physics-
inspired optimization approaches.

Methods
Equivalence between QUBOs and Ising Hamiltonians
Given n binary variables fzigni= 1 2 f0, 1gn, a quadratic unconstrained
binary optimization (QUBO) can be formulated mathematically as55

min
z2f0,1gn

qðzÞ ¼def min
z2f0,1gn

Xn
i,j = 1;i≠j

Qijzizj +
Xn
i= 1

Qiizi ð9Þ

whereQij 2 R. The objective function q(z) is minimized over all binary
strings of length n, with a total of 2n possible choices. Many NP-
complete and NP-hard problems can be cast in the form of
Eq. (9)8,44,56,57. Equivalently, a simple coordinate transformation
σi≔ 2zi − 1 casts the objective function q(z) into an Ising Hamiltonian
HIsing of n interacting spins43

HIsingðσÞ= �
X
i<j

Gijσiσj �
Xn
i= 1

hiσi: ð10Þ

Here, σi∈ {−1, +1} is the i-th spin value and coefficient Gij denotes the
coupling strength between spins i and j. The single-spin terms hi can be
absorbed by introducing one auxiliary spin σn+1 and extending G by
one row and one column to incorporate hi. Minimizing the energy of
HIsing then solves the corresponding QUBO. The explicit form of
certain NP-complete problems as Ising Hamiltonians was derived
in ref. 44.

Determination of the exact mapping threshold
For the dynamics-based Ising machine Eq. (2), we define an exact
mapping threshold p* as the minimum p such that there exists a local
minimum x*

p of U(x, p) whose binarization leads to the ground state of
the Isingproblem. That is, letXp = fx∣Fðx,pÞ=0 and λmaxðJðx,pÞÞ<0g be
the set of all stable equilibrium states under pump rate p and denote

the ground state Ising energy as H*
Ising =minσ2f�1, + 1gnHIsingðσÞ.

Then p* = infpf9x 2 Xp, s:t:,HIsingðsignðxÞÞ=H*
Isingg.

The exact value of p* generally cannot be computed analyti-
cally, and requires numerical approximation methods. For the
examples shown in this study, wemanage to provide estimation for
small-scale graphs,where the ground state Ising energyH*

Ising canbe
computed through exhaustive search. Then, we use a bisection
search to approximately locate p*, starting with an initial interval
(pl, pr) where we typically choose pl = p0 ≤ p* and pr be a sufficiently
large number (to ensure that pr > p*). Middle point of the interval
pm = (pl + pr)/2 is examined, by using a large number of random
states followed by Newton’s method to obtain an approximation
X̂pm

and then checking each element x 2 X̂ pm
for the equation

HIsingðsignðxÞÞ=H*
Ising. If for any element this holds thenwe conclude

pm≥p* andupdate the right sideof the intervalpm← pr, otherwisewe
have pm < p* and we update the left side of the interval instead as
pl ← pr. This process continues until a pre-set resolution limit ϵ is
met: ∣pl − pr∣ < ϵ. The terminal value pm is then used as an approx-
imation of p*.

For the cases where only p* = p0 or p* > p0 needs to be decided,
such as the example in Supplementary Note 5, we simply use the
maximum eigenvector of G to determine X̂p0

= fx∣x / vmaxg and check
if HIsingðsignðvÞÞ=H*

Ising holds (if it holds, we conclude that p* = p0, and
otherwise p* > p0).

Simulation of the coherent Ising machines
The CIM is simulated by solving

dxi
dt

= �1 +pðtÞð Þ xi � x3
i + ξ

X
j

Gijxj, ð11Þ

using Eulermethod, the initial state is set as xi =A cos θi, where A = 10−3

and θi is uniformed sampled from [0, 2π) and the Euler time step size is
dt =0.05. The parameters are set as ξ = 1=λmaxðGÞ, where λmaxðGÞ is the
maximum eigenvalue of G, and the pump rate is linearly increased
from the first bifurcation threshold to a value above 1, i.e.,
pðtÞ=p0 +

t
τ 1:1ξλmaxðGÞ= 1:1 t

τ, where τ = 500 is the predefined max-
imum running time of the CIM.

Simulationof the simulated bifurcationmachine and its variants
The theory and dynamics of SB and its variants are summarized in
refs. 19, 28, here we review the SB dynamics in the following for
completeness. In particular, the SB dynamics is simulated by the
modified explicit symplectic Euler method, and the iteration rules are
given by28:

xðm+ 1Þ
i = xðmÞ

i +ΛyðmÞ
i

Δt
M

,

yðm+ 1Þ
i = yðmÞ

i � K xðm+ 1Þ
i

� �3
+ ðΛ� pÞxðm+ 1Þ

i

� �
Δt
M

,

xiðts + 1Þ= xðMÞ
i ,yiðts + 1Þ= yðMÞ

i + ξ
X
j

Gijx
ðMÞ
j Δt,

ð12Þ

wherem =0,…,M − 1, ts = sΔt, s = 0, 1,…, S, xð0Þi = xiðtsÞ, yð0Þi = yiðtsÞ, and
p = p(ts+1).

A variant of SB called bSB is simulated by the explicit symplectic
Euler method with the following updating rules19:

yiðts + 1Þ= yiðtsÞ+ ð�Λ +pðtsÞÞxiðtsÞ+ ξ
X
j

GijxjðtsÞ
" #

Δt,

xiðts + 1Þ= xiðtsÞ+Λyiðts + 1ÞΔt,
ð13Þ

and after the updates, if ∣xi∣ > 1, then xi and yi are set as sign(xi) and 0
respectively.
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Another variant of SB is called dSB. Compared to bSB, the dSB
discretizes the states in the couplings terms and its updating rules are
as follows19

yiðts + 1Þ= yiðtsÞ+ ð�Λ+pðtsÞÞxiðtsÞ+ ξ
X
j

GijsignðxjðtsÞÞ
" #

Δt,

xiðts + 1Þ= xiðtsÞ+Λyiðts + 1ÞΔt,
ð14Þ

and after the updates, the same as bSB, if ∣xi∣ > 1, then xi and yi are set as
sign(xi) and 0 respectively.

During the simulations, the settings of the parameters are as fol-
lows: For SB, K = 1 andM = 5; For SB, bSB, and dSB, Λ = 1, the time step

Δt =0.5, the scaling factor ξ =0:5=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ij J
2
ij=ðn� 1Þ

q
, where n is the

number of nodes, the scheduling of the pump rate pðtsÞ= s
S, and the

maximum iteration steps S = 1000. The initialization of the states are as
follows: For SB, xi(0) = 0, and yi(0) is uniformly sampled from range
[−0.1, 0.1]; For bSB and dSB, xi(0) and yi(0) are uniformed sampled
from range [−0.1, 0.1].

Trapping-and-correction approach
Wepropose a trapping-and-correction (TAC) approachwhich improves
the performance of standard CIM and bSB both in convergence time
and precision. The TAC approach consists of two main stages, defrus-
tration and stabilization. In the following we explain the local stability
criterion which is used for defrustration of the nodes, as well as stabi-
lization of the system configuration. We consider the energy difference
ΔHiwhen flipping one spin σi∈ {−1, 1} as σi 7!σ0

i = � σi. Denoting by σ(i)

the spin vector for which the i-th spin is to be flipped, and by σðiÞ0 the
resulting vector after the flip, the energy difference reads

ΔHi =H σðiÞ0
� �

� H σðiÞ� �
= ðσi � σ0

iÞ
Xn

j = 1,j≠i

Gijσj = 2σi

Xn
j = 1,j≠i

Gijσj, ð15Þ

where we have used the fact that the Ising problem can be written as
HIsingðσÞ= � 1

2σ
TGσ. Then, a configuration is stable if flipping a sign

increases the energy, i.e., ΔHi > 0, or equivalently

2σi

Xn
j = 1,j≠i

Gijσj >0: ð16Þ

From Eq. (16) it follows directly that a configuration is stable if the
sign(σi) = sign(yi), with yi =

Pn
j = 1,j≠i Gijσj and provided that other spins

are not destabilized consequently. The approach utilizes the fact that
stability is likely to increase when each swing node k is set to the value
sign(yk). The stability criterion is used both for the defrustration
of swing nodes (by assigning binary values according to Eq. (16)), as
well as the stabilization of the full configuration (see Supplemen-
tary Note 7).

Data availability
Two types of datasets are used in this work. The public data comes
from the Biq-Mac library54 which is an open-source dataset and is
available at https://biqmac.aau.at/biqmaclib.html. The synthetic data
are generated from random graph models, with the method and
parameters of generation fully described in the main text and Sup-
plementary Information.

Code availability
Methods and algorithms, including their complete steps and choice of
parameters are fully described in the main text and Supplementary
Information. Full set of codes that support thefindings of this study are
available from the corresponding authors upon request.
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