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The problem of selection bias in studies of
pre-mRNA splicing
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Here we demonstrate how selection bias in stu-
dies of pre-mRNA splicing can inadvertently lead
to inaccurate biological conclusions which
nevertheless appear statistically robust. We
argue that this may be a pervasive problem with
potentially significant consequences for
the field.

The problem
Selection bias, also sometimes referred to as sample bias or sample
selection bias, generally refers to a distortion (bias) of statistical testing
that results from the way that samples are collected (selection). While
this problemhas beenwell understood in clinical and social sciences for
quite some time1–3, its significance in molecular biology is less widely
appreciated. Work from Oshlack’s group4,5 provides perhaps the most
compelling demonstration of the issue of selection bias in molecular
biology, wherein they demonstrate its impact on RNA-seq experiments
where analyses of differential gene expression are coupled to analyses
of GO-term enrichment. Oshlack’s group highlights a major pitfall in
studies like this which is that not all transcripts are measured with the
same statistical power in a typical RNA-seq experiment: because longer
and more highly expressed transcripts are sampled more frequently
than are shorter and lower expressed transcripts, there is more statis-
tical power to identify long and/or highly expressed transcripts as being
differentially expressed. The result of this is a distortion in the statistics
that measure enrichment: the set of transcripts identified as differen-
tially expressed is dependent not only on their biological behavior but
on distinct properties that enhance their capacity for detection in
the experiment. Importantly, because splicing-informative reads are
rare within standard RNA-seq datasets6, the problem of selection bias
can be particularly problematic in studies involving pre-mRNA splicing.
We therefore aim to raise awareness of the problem of selection bias in
analyses of next-generation sequencing studies designed to understand
quantitative changes in pre-mRNA splicing.

Causes and consequences of selection bias
Todemonstrate both the problemof selection bias and the deleterious
consequencesof thisbias in studies of pre-mRNAsplicing,wedesigned
a simple experiment that examines changes in splicing in the back-
ground of a well-characterized genetic variant of a canonical spliceo-
somal component: the RNA helicase Prp2. Work from several groups
has established a role for Prp2 in rearranging the spliceosome prior to
the first catalytic step7–10, and as such a reasonable expectation is that
loss of Prp2 functionwould result in defective splicing for all (or nearly
all) expressed transcripts. Using a targeted sequencing approach
termed Multiplexed Primer Extension Sequencing, or MPE-seq6,11,

which massively enriches for splicing informative reads, we generated
rich datasets, equivalent to ~ an entire lane of NextSeq550 sequencing
for each of triplicate samples from a budding yeast strain harboring
the conditional prp2-1 allele and a matched wild-type strain. To
demonstrate the effect of sequencing depth on experimental out-
come,we then computationally downsampled this large experiment to
generate three smaller subsets of data, equivalent in an RNA-seq set-
ting to what could be considered high, medium, and low sized
experiments, or ~ 80, 40, and 20 million reads per replicate,
respectively.

To analyze these datasets, for each intron-containing gene in the
genome we calculated the fold change in abundance of reads corre-
sponding to both premature and mature isoforms and then assessed
these for differential expression using DESeq2 (Ref. 12). Of the 272
splicing events profiled in the full dataset, 261 demonstrated statisti-
cally significant differential splicing in the mutant relative to wildtype
(Fig. 1A). For the majority of these (211), both the premature and
mature versions of the transcript were detected as differentially
expressed, whereas a smaller number of transcripts displayed differ-
ential expression of only one of the two isoforms; presumably
reflecting different intrinsic properties of the rates of synthesis or
degradation of these transcripts13. Importantly, the absence of evi-
dence for differential expression of either splicing isoform for the
remaining 11 transcripts in this experiment cannot be interpreted as
evidence of an absence of an impact of the prp2-1 variant on these
transcripts. While such a biological conclusion might be true, it could
also be that the design of this experiment was flawed—from a biolo-
gical standpoint—perhaps because these transcripts were not actively
expressed under the chosen conditions. Equally plausible, however, is
the possibility that the experiment was technically flawed because
even at this high sequencing depth it lacked sufficient statistical power
to detect real changes in the splicing efficiency of these transcripts.

The consequences of decreased statistical power become readily
apparent when considering our analyses of the downsampled datasets
(Fig. 1B) wherein ever decreasing numbers of events were detected as
differentially expressed with statistical significance as the read depth
decreased. Whereas analysis of the full dataset demonstrated with
statistical significance thewidespread impact of prp2-1on the genome-
wide splicing outcome, in standard sized experiments many of these
splicing events lack the statistical power to be ‘selected’ within the
class of transcripts considered impacted by prp2-1: the selection bias
problem. Importantly, as Oshlak’s group previously demonstrated for
standard gene expression studies, loss of statistical power does not
occur evenly across the complement of genome-wide events being
monitored, but rather occurs as a function of intrinsic properties of
those targets whichmay ormay not be important in the context of the
biological problem being examined. For example, Fig. 1C shows a
comparison of the lengths of the introns that were identified as
impacted or not at each of the different experimental depths.Whereas
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no length difference was apparent between these classes at the High
and Middle sizes, in the Low dataset a strong and statistically sig-
nificant difference in the intron lengths was observed between the
classes. While this result might suggest that short introns are more

sensitized to loss of Prp2 function, the underlying data are more
consistent with this being a biologically meaningless result of the loss
of statistical power. As with most approaches for statistical testing,
DESeq2 considers two important properties of the data in determining
significance: the effect size, or difference in expression between the
experimental and control samples; and the variance associated with
the underlying measurements. For the relatively highly sampled
mature isoforms (Fig. 1d, left), the subset of introns identified as dif-
ferentially expressed are not characterized by higher read counts, but
rather by larger fold-changes. Small fold-changes in the expression of
thematuremRNA only surpass the significance threshold in the highly
sampled dataset where overall variance is decreased. By contrast, for
the relatively rare premature isoforms, the subset identified as differ-
entially expressed is biased towards those that are highly sampled:
even large fold-changes in differential expression fail to be deemed
statistically significant if read depth is low (where variance is naturally
higher).

Practical implications of selection bias
The above data demonstrate how selection bias has the potential to
impact splicing studies, and we argue that this problem is likely per-
vasive in thefield. To illustrate this, we consider here the data fromone
study which examined the role of the splicing factor HTATSF1, the
ortholog of yeast Cus214. As a core component of the U2 snRNP, and
building off of significant prior work demonstrating a role for Cus2 in
stabilizing a core structure of the U2 snRNA15–17, a reasonable expec-
tation is that loss of HTATSF1/Cus2 activity would lead to decreased
splicing efficiency across the complement of genome-wide substrates,
akin to our expectations and observations for loss of Prp2 function as
presented above (Fig. 1). In contrast, based on a knock-down experi-
ment in mouse embryonic stem cells, it was reported that HTATSF1
appeared to function as a regulator of intron retention specifically in
ribosomal proteins. While compelling statistical support was provided
for intron retention within 45 different transcripts (many of which are
involved in ribosome biogenesis and assembly), wewonderedwhether
these transcripts were indeed uniquely impacted by loss of HTATSF1,
or whether thesewere among the subset of transcripts for which there
was sufficient statistical power in the experiment to detect a change in
splicing efficiency. We therefore asked if the underlying data

Fig. 1 | Selection bias introduces false correlations at insufficient read depth.
Comparison of genome-wide splicing status in aprp2-1harboring strain relative to a
matched wild-type strain after a ten min. shift to the non-permissive temperature
(37 °C). A Heat map of fold change broken into categories of introns where both
mature and premature, only mature, only premature, and neither mature nor
premature supporting reads are significantly different between the Prp2 mutant
and wild type as measured by DESeq2 at a multiple hypothesis corrected value of
0.05. B Fold change in number of mature or premature supporting reads as a
function of expression between Prp2 mutant and wild type after downsampling to
library sizes of 800,000 (High) MPE-seq reads to 400,000 (Medium) and 200,000
(Low) reads as measured by DESeq2. Red points are statistically significantly dif-
ferent at a multiple hypothesis corrected value of 0.05. C Length of introns that
have (red) or do not have (black) significant difference in both premature and
mature supporting reads as a function of read depth. One-sided Mann–Whitney
test was performed to determine significance. D Fold change (upper) and count
total (lower) for mature and premature supporting reads of introns that are sig-
nificantly different in both mature and premature supporting counts at each
downsampling. Two-sided Mann–Whitney test was performed to determine
significance.
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suggested a bias in the subset of identified events by examining two
parameters which are expected to influence pre-mRNA detection:
expression level of the host transcript, and distance between the end
of the affected intron and the polyadenylation site for that transcript.
Ourmotivation for examining this second feature is thatmost RNA-seq
protocols, including the one employed in Corsini et al.14, utilize a
poly(A)+ enrichment step. Because splicing is coupled to
transcription18, the likelihood of a retained intron being detected
within a poly(A)+ pool of RNA is expected to be highest for those
introns located closest to the polyadenylation site, as thesewouldhave
the least amount of time for removal prior to polyadenylation. As
shown in Fig. 2, the events identified inCorsini et al.14 appear biased for
each of these properties such that they would be expected to have
much greater statistical power for detecting differential expression
thanmost of the other events in the genome. As such, while we do not
question the role of coordinated control of ribosome biogenesis, our
analysis suggests that the exact extent to which HTATSF1 controls
splicing and intron retention specifically in ribosomal proteins could
have been impacted by selection bias: an enhanced capacity to detect
changes in splicing of these transcripts rather than a specific defect in
their processing.

How can selection bias be mitigated?
Here we argue that selection bias not only can have deleterious impacts
on RNA-seq-based studies of pre-mRNA splicing, but in fact has had and
will continue to have such impacts unless and until knowledge of this
problem and its potential solutions becomes widely appreciated. While
this problem has been previously noted19, our hope here is to bring
renewed attention to this issue. Importantly, while this problem has
been carefully considered in the context of standard gene expression
studies4,5, a cursory examination of the literature suggests this problem
nevertheless continues to pervade current work. Whereas Oshlack
provided an elegant mathematical approach for mitigating the impacts
of selection bias in GO-term enrichment analyses, we unfortunately
offer no such solution here. While we hope that others might provide
tools tomitigate this problem in the future,we suggest that the simplest
solution to mitigate this problem is the use of approaches that either
enrich for, or otherwise increase the number of, splicing-informative
reads across the complement of genomic substrates11,20, thereby redu-
cing the differences in sampling across the datasets.

Importantly, while the work examined here involved short-read,
Illumina-based sequencing, we note that this is not a problem unique
to this platformbut rather reflects a fundamental statistical challenge
associated with analyzing datasets with small numbers of measured
events. As such, we expect that this problem will be even greater in
analyses of datasets from long-read sequencing platforms where the
number of reads per experiment is typicallymuch lower, and likewise
in single-cell experiments where the number of reads per cell is
dramatically reduced. Indeed, evidence of such bias in single-cell
experiments has been recently demonstrated21. Similarly, while many
software packages have been developed which enablemore sensitive
detection of splicing ‘hits’ within an experiment22–26, the problem of
selection bias is fundamentally an issue of how to handle those
events which are not identified as hits: those wherein the absence of
evidence cannot be interpreted as evidence of absence. We are
unaware of any software packages that are widely available today
that account for this problem but hope that such solutions will soon
arise. In the meantime, we conclude by noting that as users of these
technologies, whether that be as experimentalists generating and
analyzing such data, or as consumers evaluating the work of others, it
will be essential for all of us to consider the possibility that an
apparently statistically significant conclusion may not reflect a
meaningful biological property but instead may be the result of a
statistical aberration.

Methods
Cell growth. Wild-type cells and those harboring the prp2-1 allele were
streaked from glycerol stocks onto solid rich media (YPD) and grown
at the permissive temperature (25 °C) for three days. In triplicate,
single colonies were inoculated into 5mL of YPD and grown at 25 °C
with shaking at 200 rpm overnight. Cultures were back-diluted into
20mL of YPD to an OD600 of 0.05 and incubated at 25 °C with shaking
at 200 rpm. Upon reaching an OD600 of approximately 0.75, cultures
were transferred to a 37 °C shaking water bath (200 rpm) for 10min.
Cells were collected via vacuumfiltration andpelletswere immediately
flash-frozen in liquid nitrogen and stored at −80 °C.

MPE-seq library preparation. RNA was purified and MPE-seq libraries
were prepared as previously described6 with the exception that biotin-
11-dUTP was used in place of aminoallyl-dUTP during reverse

Fig. 2 | Selection bias in identified intron retention events. A Expression (mea-
sured in Fragments per Kilobase per Million Reads) of all introns versus those
identified as retained broken out by ribosomal protein genes (RPG) and non-
ribosomal protein genes (Non-RPG). B Distance from intron to poly-A Tail for all

introns versus those identified as retained, broken out by RPG and Non-RPG. Two-
sided Mann–Whitney test was performed to determine significance. For all box-
plots, the median value is represented by the center line, box limits represent the
25th and 75th quartiles, and whiskers are 1.5x the interquartile range.
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transcription such that no separate biotin coupling stepwasnecessary.
Instead, following hydroxide treatment an elution volumeof 50 µLwas
used during the zymo column clean-up which went immediately into
the first bead purification.

Downsampling. Using a custom script, each read was assigned a
random number from 0 to 1 and sorted based on their random num-
ber. The top 800,000, 400,000, and 200,000 were included in the
high, medium, and low datasets, respectively. Random number gen-
eration used a seed value of 1 to allow future reproducibility.

Alignment and quantification. The full and downsampled datasets
were processed as follows: Reads were trimmed of sequencing adap-
ters using fastp27 with the following parameters: --adapter_sequence
CTGTCTCTTATACACATCT --adapter_sequence_r2 CTGTCTCTTATA-
CACATCT. Trimmed reads were aligned to the R64-2-1 genome release
from SGD with hisat228 with the following parameters: --max-intronlen
2000 --no-unal and reads with MAPQ scores below 5 were removed
with samtools29. Unspliced and spliced counts were obtained with a
custom script based on HTSeq-count30. DESeq212 was used to assess
differential splicing.

Data processing. FPKM values for host genes and identified retained
introns were obtained from Corsini et al. (GEO GSM2535498 and
Table S2 therein, respectively)14. All mm9 UCSC introns were broken
into groups based on whether they were identified as significant and
whether they are ribosomal protein genes. Distances from the end of
each distinct intron (as determined by their chromosome, start,
and stop positions) and the end of the host transcript were calcu-
lated from genomic coordinates. In the case that an intron existed
within multiple transcript isoforms, the shortest isoform was
considered.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to this
article.

Data availability
All newly generated sequencing data are available through NCBI’s
Gene Expression Omnibus (GEO) at accession number GSE160046,
and the data previously reported14 obtained under accession number
GSM2535498.

Code availability
Code for basic analysis steps is available on GitHub (https://github.
com/zdwyer/Problem-of-Selection-Bias).
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