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Mapping the landscape of genetic
dependencies in chordoma

Tanaz Sharifnia 1,8 , Mathias J. Wawer 1,5,8, Amy Goodale1, Yenarae Lee1,
Mariya Kazachkova1,6, Joshua M. Dempster 1, Sandrine Muller1, Joan Levy2,7,
Daniel M. Freed2, Josh Sommer2, Jérémie Kalfon1, Francisca Vazquez1,
William C. Hahn 1,3, David E. Root 1, Paul A. Clemons 1 &
Stuart L. Schreiber 1,4

Identifying the spectrum of genes required for cancer cell survival can reveal
essential cancer circuitry and therapeutic targets, but such a map remains
incomplete for many cancer types. We apply genome-scale CRISPR-Cas9 loss-
of-function screens to map the landscape of selectively essential genes in
chordoma, a bone cancer with few validated targets. This approach confirms a
known chordoma dependency, TBXT (T; brachyury), and identifies a range of
additional dependencies, including PTPN11, ADAR, PRKRA, LUC7L2, SRRM2,
SLC2A1, SLC7A5, FANCM, and THAP1. CDK6, SOX9, and EGFR, genes previously
implicated in chordoma biology, are also recovered. We find genomic and
transcriptomic features that predict specific dependencies, including
interferon-stimulated gene expression, which correlates with ADAR depen-
dence and is elevated in chordoma. Validating the therapeutic relevance of
dependencies, small-molecule inhibitors of SHP2, encoded by PTPN11, have
potent preclinical efficacy against chordoma. Our results generate an emer-
ging map of chordoma dependencies to enable biological and therapeutic
hypotheses.

Elucidating the set of genes upon which cancer cell proliferation and
survival are especially reliant (the “dependencies” of cancer) can pro-
vide an important roadmap for the treatment and characterization of
cancer. Knowledge of these vulnerabilities can guide the choice of
cancer-selective drugs, reveal mechanisms of cancer cell initiation or
maintenance, and permit the classification of cancer subtypes or cell
states1. The observation that clinically relevant dependencies can be
predicted by somatic mutation or copy-number alteration of the same
gene (exemplifying the phenomenon of “oncogene addiction”) has
motivated large-scale efforts to sequence tumor genomes and thereby
facilitate cancer-dependency discovery2,3. However, identifying tract-
able therapeutic vulnerabilities using tumor genome sequencing has
been more challenging for cancer types that harbor relatively few

somatic mutations, when gene mutations that enhance fitness cannot
be readily distinguished from bystander mutations, or when altered
genes cannot be modulated with the existing arsenal of drugs.

Alongside efforts to identify somatically mutated cancer-
dependency genes, a growing number of tumor-intrinsic cancer
dependencies have been discovered via functional approaches whose
classification extends beyond that of canonical mutated oncogenes1,4.
These include dependencies reflecting synthetic lethal interactions5,6,
such as those occurring when the loss of onemember of a paralog pair
leads to increased reliance on the other member (“paralog
dependencies”)7,8, or those resulting from hemizygous copy-number
loss and/or reduced expression of the same gene (“CYCLOPS” genes)9;
dependencies arising from dysregulated or persistent expression of
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master regulatory genes that mediate normal lineage development
(“lineage-survival” dependencies)10; and dependencies unique to a
particular cancer cell state11. In this way, many cancer dependencies
can be classified as “non-oncogene” dependencies, whereby the
unique molecular features of the cancer cell confer a heightened
dependence on the normal cellular function of specific genes12.

Indeed, dependencies resulting from somatically mutated onco-
genes nowappear to represent only aminority of cancer dependencies
overall4. Notably, cancer types that harbor relatively few somatic
mutations, such as some pediatric cancers, do not necessarily have a
reduced number of genetic dependencies relative to cancer types with
a higher mutational burden13. Together, these observations suggest
the existence of a spectrum of cancer dependencies that may not be
discoverable via tumor genome sequencing, but may nevertheless
serve as effective therapeutic targets. Yet, for many cancer types, a
comprehensive map of differential dependencies from which such
targets could be nominated remains incomplete.

One such cancer type is chordoma, a primary bone cancer for
which there is a limited number of validated cancer targets and no
approved systemic therapy14. Genomic sequencing of chordoma
tumors has demonstrated that chordoma is a genomically quiet can-
cer: recurrent somatic events include amplifications ofTBXT (encoding
brachyury); homozygous deletion of CDKN2A; and mutations in PI3K
signaling genes, SWI/SNF complex genes, and LYST; but nearly half of
all sporadic chordoma cases do not harbor any known driver
mutation15,16. Furthermore, most somatic alterations that do exist are
not currently targetable15,16—limiting the ability to identify an appro-
priate targeted therapy in most patients using traditional genome-
guidedprecisionmedicine approaches.Nonetheless, chordoma tumor
cells may have distinct genomic or functional features that render
them especially dependent on the activities of specific genes. We
sought to identify vulnerabilities that are conferred by the unique
cellular circuitry of chordoma, with a view to revealing mechanism-
based approaches for the treatment of this disease.

To this end, here we applied genome-scale CRISPR-Cas9 loss-of-
function screens to map the landscape of selective dependencies in
chordoma. Previously, CRISPR-Cas9 screens in two chordomacell lines
had identified the developmental transcription factor T (brachyury),
renamed TBXT, to be the top selectively essential gene in chordoma,
relative to 125 non-chordoma cancer cell lines17. While TBXT had been
the only statistically significant dependency gene identified, we
hypothesized that this could be attributed to the small set of chor-
doma cell lines screened, and that the full range of tumor dependen-
cies in chordoma remained to be discovered.Moreover, TBXT encodes
a transcription factor that is currently considered challenging to drug,
further motivating a search for additional dependency genes.

In this study, by expanding the set of cell lines subjected to
genome-scale loss-of-function screening, we recovered TBXT and fur-
ther discovered a spectrum of additional chordoma dependency
genes. We demonstrated that targeting one such dependency in pre-
clinical models of chordoma resulted in profound antitumor efficacy,
providing a rationale for new clinical trials in chordoma. Together,
these findings generate an emergingmapof selectively essential genes
in chordoma, facilitating future studies that seek to understand the
unique tumor biology of this cancer type.

Results
Genome-scale CRISPR-Cas9 screens identify a spectrum of
selectively essential genes in chordoma
Tomap the landscape of genes essential for chordomacell viability, we
performed genome-scale pooled CRISPR-Cas9 loss-of-function
screens in two chordoma cell lines (JHC7, U-CH2), thereby doubling
the number of chordoma cell lines profiled using this approach17. The
chordoma cell lines used for screening collectively model both sacral
and clival chordoma tumors (Supplementary Table 1) and form a

distinct cluster by their gene-expression profiles relative to cell lines
derived from other tumor types (Supplementary Fig. 1). A library of
>74,000 single-guide RNAs (sgRNAs) targeting ~18,560 genes (Meth-
ods) was introduced via lentiviral transduction into stably Cas9-
expressing chordomacells. Cellswere grown in culture for 20–22 days,
after which sgRNAs were quantified from the genomic DNA (gDNA) of
surviving cells using massively parallel sequencing. SgRNAs that were
depleted from the cell population relative to the screening librarywere
inferred to target candidate essential genes. Gene dependency scores
were calculated using two measures: one quantifies the degree of
certainty that gene loss impacts cell viability and/or proliferation
(dependency probability score, ranging from zero to one), and the
other quantifies the magnitude of this impact (CERES gene effect
score, with a more negative value indicating higher dependency)
(Methods)18,19. To identify dependencies selective for chordoma, and
remove commonly essential genes, we took advantage of dependency
data generated using a large collection of non-chordoma cancer cell
lines as part of the Broad Institute Cancer Dependency Map project
(DepMap; https://depmap.org/portal/). Notably, the CRISPR-Cas9
screening methodology and sgRNA library we used to profile chor-
doma cell lines were the same as those used for the DepMap project,
permitting consistent data normalization and gene dependency scor-
ing across all cell lines. We thus compared gene dependency scores
derived from four chordoma cell lines (JHC7, U-CH2, UM-Chor1, and
MUG-Chor1) to those from 765 non-chordoma cancer cell lines that
were screened as part of the DepMap project18 to identify selectively
essential genes in chordoma (Fig. 1a).

Consistent with previous findings, the top selectively essential
gene, out of over 18,000 analyzed, was TBXT (Fig. 1b and Supple-
mentary Fig. 2)17. In addition to TBXT, this analysis identified a diverse
spectrumof selectively essential genes in chordoma, including PTPN11,
ADAR, PRKRA, LUC7L2, SRRM2, SLC2A1, SLC7A5, FANCM, AHR, ARNT,
HEATR3,UBIAD1, IER3IP1, PRKAR1A, ZEB2,DSCC1, andOTUD5 (Fig. 1b, c
and Supplementary Fig. 2). Genes previously implicated in chordoma
biology, including CDK6, SOX9, and EGFR, were also recovered20–22.
Conversely, a small number of genes was identified whose
gene dependency scores were of a greater magnitude in non-
chordoma than in chordoma cell lines, and these genes included
MED1, MRPS10, and DDX39B (Fig. 1b and Supplementary Fig. 2). We
note that while we focused our study on dependencies selective for
chordoma, hypothesizing that differential dependencies could be
exploited to develop targeted drugs with minimal toxicity,
gene dependency scores corresponding to all genes tested in chor-
doma are available in Supplementary Data 1, 2. In addition, we
deposited our screening data on chordoma cell lines in the DepMap
repository (https://doi.org/10.6084/m9.figshare.12280541.v4) to facil-
itate additional data exploration and analysis.

To classify and prioritize candidate essential genes in chordoma,
we first asked whether these genes could be grouped into shared
biological pathways or functions. Functionally related genes often
exhibit similar patterns of essentiality across cell lines23–25; thus, we
measured whether candidate dependency genes display correlated
patterns of essentiality across 769 cancer cell lines that had been
subjected to CRISPR-Cas9 loss-of-function screening (DepMap,
https://depmap.org/portal/; Fig. 2a). Using this approach, four groups
of functionally related genes emerged: (1) FANCM, SRRM2, ZEB2, and
DSCC1; (2)UBIAD1, PRKRA, andADAR; (3)AHR,ARNT, andTBXT; and (4)
PTPN11 and EGFR (Fig. 2a). Most similar were gene pairs encoding
proteins with known functional relationships: AHR and ARNT form a
transcriptionally active heterodimer26; FANCM and DSCC1 each have
roles in various DNA replication-related processes27,28; PTPN11 can act
as a positive effector of mitogenic signaling induced by the receptor
tyrosine kinase EGFR29; and ADAR and PRKRA regulate interferon
responses30. We note that the correlation between TBXT and ARNT
dependencies is driven by the chordoma cell lines (Supplementary
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Fig. 3) and thus may reflect the independent co-occurrence of two
dependencies in chordoma cells rather than a related biological
function of these two genes. Complementing the co-essentiality ana-
lysis, we also grouped dependency genes based on publicly available
protein-protein interaction annotations (Fig. 2b). This analysis yielded
a single cluster of genes comprising EGFR, PRKAR1A, PTPN11, SOX9,
ZEB2, SLC7A5, SLC2A1, ARNT, and AHR (Fig. 2b) and recovered known
strong connections forPTPN11/EGFR andAHR/ARNT. Several candidate
genes, includingOTUD5, CDK6, LUC7L2, IER3IP1, andHEATR3, were not
linked to other chordoma dependency genes following either of these
two approaches (Fig. 2a, b).

We applied this pathway analysis to select a diverse subset of
candidate dependency genes for validation and further functional
characterization. Genes were selected to represent both those func-
tionally connected to other chordoma dependency genes (PTPN11,
FANCM, ADAR, PRKRA, SOX9, SRRM2, SLC2A1, and SLC7A5), as well as
those with putatively unique effects (LUC7L2 and CDK6). We included
an additional gene for validation, THAP1, that is commonly essential
across all cancer cell lines, yet whose loss has a greater degree of
viability reduction in chordoma cell lines compared to non-chordoma
cell lines (Supplementary Fig. 2).

To validate the essentiality of a candidate dependency gene, Cas9-
expressing UM-Chor1 chordoma cells were transduced in parallel with
two independent sgRNAs targeting a candidate dependency gene and
a non-targeting control and assayed for cell viability (Fig. 2c). Con-
sistent with primary screening results, sgRNA-mediated gene sup-
pression of all candidate dependency genes tested led to impaired
chordoma cell proliferation (Fig. 2c). SgRNA-mediated gene editing
was confirmed for all validated genes via amplicon sequencing of
treated cells (Fig. 2c); and sgRNA-mediated protein suppression was
measured and confirmed for a subset of validated genes (Supple-
mentary Fig. 4). The high validation rate of the candidate dependency
genes tested demonstrates the reliability of the primary screening
analysis to identify bona fide chordoma dependency genes, which
likely extend beyond those chosen for functional follow-up.

Genomic and transcriptomic features that predict specific gene
dependencies
Identifying amolecular feature that is associatedwith a specific genetic
dependency can help classify tumors by their expected response to
targeted therapy and reveal the mechanisms underlying gene essen-
tiality. We thus explored genomic and transcriptomic features that
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Fig. 1 | Genome-scale CRISPR-Cas9 screens identify a spectrum of selectively
essential genes in chordoma. a Experimental workflow of genome-scale CRISPR-
Cas9 loss-of-function screens to identify selectively essential genes in chordoma.
b Selective essentiality analysis identifying chordoma dependency genes. Selec-
tivity is quantified by the log2 fold-change in mean dependency probability scores
between four chordoma and 765 non-chordoma cell lines (x-axis). The y-axis
depicts themedian dependencyprobability score for the chordoma cell lines. Gene
dependencies selective for chordoma/non-chordoma are indicated in blue/red (see

Methods for details). c Distribution of CERES gene effect scores for the indicated
genes across four chordoma cell lines (blue) and 765 non-chordoma cell lines (gray;
non-chordoma cell lines were profiled as part of the Broad Institute Cancer
DependencyMap). Lower CERES gene effect scores indicate higher dependency of
a cell line on a givengene.Genes are rankedbydecreasing selectivity for chordoma,
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and765non-chordoma cell lines. Sourcedata are providedas a SourceDatafile. See
also related Supplementary Data 1.
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predict specific gene dependencies discovered in our screens. Given
the limited power to identify such predictive features using chordoma
cell lines alone, we first queried over 700 cancer cell lines profiled
as part of the Cancer Cell Line Encyclopedia (CCLE)31 for their
gene-mutation, gene-copy-number, and gene-expression features. For
each chordoma dependency gene, we correlated its signature
of essentiality across all cancer cell lines in DepMap with these
genomic and transcriptomic profiling data. In addition to calculating
correlations, we performed a univariate linear regression for each

dependency–feature pair (full results for both analyses are available
at https://doi.org/10.6084/m9.figshare.21774746.v1). We then used
the resulting predictive features as a discovery set, validating their
presence in the chordoma cell lines.

This analysis recovered mutations in genes known to act in the
same pathway as specific dependency genes: decreased dependence
onCDK6 can be predicted by nonsense and splice-sitemutations in the
downstream target RB132; decreased dependence on PTPN11 can be
predicted by missense mutations in the downstream effectors BRAF,

0.5 1.0

PRKAR1A

ZEB2
PTPN11

UBIAD1 PRKRA

TBXT CDK6 OTUD5 SRRM2 ADAR HEATR3

IER3IP1 FANCM LUC7L2 DSCC1

AHR

SLC7A5

EGFR

ARNT
SLC2A1

SOX9

OTUD5SLC7A5

SRRM2

ADAR

ZEB2

EGFR

SOX9HEATR3IER3IP1

PRKAR1A

FANCM

LUC7L2

AHR
ARNT

TBXT

SLC2A1

DSCC1

UBIAD1

PTPN11PRKRA

CDK6

0.18

0.65

0.4

1

Gene dependency (probability score)

0.5 1.0

Gene dependency (probability score)

Correlation

Confidence score

a

b

sg-target gene-1

sg-target gene-2

sg-EGFP (ctl)

0

1

2

3

4

5

C
el

ln
um

be
r(

x1
05 )

SLC7A5SLC2A1ADAR

PTPN11 FANCM

Time (days)

SRRM2

PRKRA

Modified

Unmodified

0

50

100

Pe
rc

en
ta

ge
 o

f r
ea

ds

Region of 
amplicon

Treatment

c

   
sg

-1

sg
-2

sg
-c

tl

 s
g-

ct
l

   sg-1 sg-2

   
sg

-1

sg
-2

sg
-c

tl

 s
g-

ct
l

   sg-1 sg-2

   
sg

-1

sg
-2

sg
-c

tl

 s
g-

ct
l

   sg-1 sg-2

   
sg

-1

sg
-2

sg
-c

tl

 s
g-

ct
l

   sg-1 sg-2

   
sg

-1

sg
-2

sg
-c

tl

 s
g-

ct
l

   sg-1 sg-2

Region of 
amplicon

Treatment

   
sg

-1

sg
-2

sg
-c

tl

 s
g-

ct
l

   sg-1 sg-2

   
sg

-1

sg
-2

sg
-c

tl

 s
g-

ct
l

   sg-1 sg-2

0 5 10 0 5 10 0 5 10

0 5 10 0 5 10 0 5 10 0 5 10
0

1

2

3

4

5

0

50

100

C
el

ln
um

be
r(

x1
05 )

Pe
rc

en
ta

ge
 o

f r
ea

ds

****

********

****

****

****

****

CDK6SOX9 LUC7L2 THAP1

   
sg

-1

sg
-2

sg
-c

tl

 s
g-

ct
l

   sg-1 sg-2

   
sg

-1

sg
-2

sg
-c

tl

 s
g-

ct
l

   sg-1 sg-2
   

sg
-1

sg
-2

sg
-c

tl

 s
g-

ct
l

   sg-1 sg-2

   
sg

-1

sg
-2

sg
-c

tl

 s
g-

ct
l

   sg-1 sg-2

0 5 10 0 5 10 0 5 100 5 10
Time (days)

**** ******** ****

Time (days)

Region of 
amplicon

Treatment

C
el

ln
um

be
r(

x1
05 )

Pe
rc

en
ta

ge
 o

f r
ea

ds

0

1

2

3

4

5

0

50

100

Fig. 2 | Validation of candidate chordoma dependency genes. a Co-essentiality
network for selective chordomadependencygenes. Nodes: chordomadependency
genes, colored by dependency probability scores. Edges: Pearson correlation
coefficient ≥0.18 between dependency profiles for connected gene pairs, i.e.,
dependencyprobability scores across all 769 cancer cell lines; edgewidth scaledby
correlation coefficient. For clarity, we show all genes included in the analysis by
listing singletons (genes without connections exceeding our thresholds) below the
connected components of the network. b STRING protein-protein interaction
network for selective chordomadependencygenes. Nodes: chordomadependency
genes, colored by dependency probability scores. Edges: putative interactions with
a STRING confidence score ≥0.4; edge width scaled by confidence score. c (Top
rows) Proliferation of Cas9-expressing UM-Chor1 chordoma cell lines transduced
with one of two distinct sgRNAs targeting a candidate dependency gene or a non-
targeting sgRNA control. Points represent the mean ± s.d. (n = at least 3 biological
samples measured in parallel). ****P <0.0001, derived from a two-way analysis of

variance (ANOVA). P values for the test comparing sg-EGFP and sg-target gene-1 are
displayed and refer to the time × treatment interaction. Additional details of P
values and effect sizes are reported in Supplementary Data 7. Graphs with identical
sg-EGFP control curves reflect experiments performed in parallel on the same day.
(Bottom rows) Amplicon sequencing results confirm on-target editing following
sgRNA treatment. We quantified the percentage of modified (red) versus unmo-
dified (white) reads of the targeted genomic site following sgRNA treatment of UM-
Chor1-Cas9 cells (sg-EGFP non-targeting control or one of two distinct sgRNAs
targeting a candidate dependency gene). The small fraction of “modified” reads
observed for the sg-SLC7A5−2-targeted amplicon with sg-EGFP control treatment
originates from a residual amount of single-nucleotide variation wewere unable to
match to genomically defined off-target amplicons. However, their distribution
points to an additional off-target amplicon as the source (rather than true editing
events). Source data are provided as a Source Data file.
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NRAS, or KRAS4,33; and increased dependence on FANCM can be pre-
dicted by splice-site mutations in its functional and synthetic lethal
partner, BRCA134. (Fig. 3a).

We also found copy-number changes in several categories of
genes to be associated with specific gene dependencies (Fig. 3b).
These included copy-number changes in genes known to act in the
same pathway as the dependency gene, such as the previously repor-
ted correlation between lower copy number of CDKN2A/CDKN2B with
CDK4/6 dependency35; as well as the correlation between ADAR copy-
number alteration with PRKRA dependency. In the case of SRRM2,
copy-number changes correlate with dependency on the same gene
(SRRM2). Lastly, this analysis identified copy-number alteration in the
genetic paralog of a dependency gene: lower copy number of LUC7L is
predictive of LUC7L2 dependency (Fig. 3b).

As expected, correlations between gene dependency and copy-
number alterations were similarly reflected at the gene-expression
level: dependency on CDK6, PRKRA, SRRM2, and LUC7L2 each could be
predicted by gene-expression changes in CDKN2A/CDKN2B; ADAR;

SRRM2; and LUC7L, respectively (Fig. 3c).CDK6 dependency could also
be predicted by higher gene expression of RB1 and CDK6 (Fig. 3c). We
also observed high TBXT expression to predict dependence on TBXT.
Notably, this association is driven by chordoma cell lines: only a few
non-chordoma cell lines express TBXT, and none shows high TBXT
dependency (Supplementary Fig. 5). This analysis also identified
expression of interferon (IFN) genes to be correlatedwith dependency
on the RNA adenosine deaminase ADAR, consistent with the observa-
tion that high expression levels of interferon-stimulated genes (ISGs)
are a biomarker of ADAR dependency (Fig. 3c, Supplementary
Fig. 6)36,37.

Several of the correlated features identified using the set of over
700 cancer cell lines are present in individual chordoma cell lines
(Supplementary Data 3) and may have therapeutic relevance. For
example, U-CH2 and MUG-Chor1 chordoma cell lines each show bial-
lelic loss of CDKN2A, as well as highly selective dependence on CDK6
(Supplementary Data 3 and Fig. 1c). As somatic homozygous deletion
of CDKN2A is a recurrent feature of chordoma tumors15,16,38, these
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results suggest that patients whose tumors harbor CDKN2A loss may
benefit from inhibitors targeting CDK6. In addition to generating
therapeutic hypotheses, we also asked whether correlated features
could provide insight into the cellular circuitry of chordoma. As ISG
expression levels have notbeen characterized in chordoma,we further
investigated this feature in chordoma models.

Interferon-stimulated genes are overexpressed in chordoma
cells and further upregulated following ADAR gene suppression
Given the association of elevated ISG expression with ADAR depen-
dence, and chordoma cells’ selective dependence on ADAR relative to
non-chordoma cancer cell lines, we compared the expression of ISGs
in chordoma cells versus that of other cancer types using a previously
described 38-gene signature quantifying IFN pathway engagement
(“ISG core score”)37. Strikingly, chordoma cell lines have a higher
median ISG core score than any of the 29 cancer lineages represented

by at least two cell lines in the CCLE (Fig. 4a), suggesting high IFN
signaling in chordoma. We confirmed this result using two alternative
published IFN gene signatures (Supplementary Fig. 7)39, in addition to
the 38-gene signature described above.

In other cancer types, ADAR suppression in ADAR-dependent
cells triggers the production of type I IFNs and activation of
the nucleic acid sensor PKR, a mediator of IFN-dependent
growth arrest36,37,40. Consistent with these findings, IFN-alpha- and
IFN-gamma-response genes are the most enriched among upregu-
lated genes following sgRNA-mediated repression of ADAR in chor-
doma cells using both gene-set enrichment analysis (GSEA)41

(Supplementary Fig. 8a and Supplementary Data 4), as well as a
network-based enrichment method (GeLiNEA)42 (Supplementary
Fig. 8b, c). We observed the upregulation of specific IFNs and ISGs,
such as IRF7 and ISG15; as well as EIF2AK2, which encodes PKR (Fig. 4b
and Supplementary Data 5).
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Source data are provided as a Source Data file. See also related Supplemen-
tary Data 5.
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IRF7 is a key regulator of type I IFN gene expression: it activates
IFN-β expression and secretion, which in turn stimulates type I IFN
receptor to further amplify IRF7 expression via a positive feedback
loop43,44. We assayed IFN-β secretion induced by ADAR depletion by
measuring IFN-β levels in the conditioned media of sg-ADAR-treated
chordoma cells. Consistent with the observed upregulation of IRF7
expression, ADAR gene suppression induced secretion of IFN-β
(Fig. 4c). Furthermore, the conditioned media from ADAR-deficient
cells was sufficient to reduce proliferation of parental chordoma cells,
suggesting that paracrine mechanisms contribute to sg-ADAR-induced
lethality and can act independently ofADAR gene suppression (Fig. 4d).
Treatment of conditioned media with neutralizing antibodies specific
for either type I IFNs or IFN-β alone rescued this antiproliferative
phenotype (Fig. 4d). Consistentwith thesefindings, parental chordoma
cells are also sensitive to treatment with recombinant IFN-β (Supple-
mentary Fig. 9). Taken together, these results indicate that chronic ISG
expression is elevated in chordoma cells relative to other cancer types,
and that ADAR gene suppression further upregulates these genes and
induces the secretion of factors, such as IFN-β, which can reduce
chordoma cell viability in a non-cell autonomous fashion.

Inhibitors of SHP2, encoded by PTPN11, represent candidate
therapeutic agents in chordoma
In addition to providing insights into the cellular circuitry of chor-
doma, identifying a range of chordoma dependency genes may reveal
candidate therapeutic targets. Several chordoma dependency genes
identified in the primary screens, including PTPN11, EGFR, and CDK6,
encode proteins that are currently targetable with small-molecule
inhibitors. We investigated the immediate therapeutic relevance of
chordoma dependency genes by determining whether small-molecule
inhibitors targeting these proteins have antiproliferative activity in
chordoma cells. EGFR-inhibitor and CDK4/6-inhibitor sensitivity in
chordoma has been described previously20,21; thus, we focused on
inhibitors of Src homology-2 domain-containing phosphatase 2
(SHP2), theprotein encodedbyPTPN11. SHP2 is a tyrosinephosphatase
that promotes signal transduction downstream of receptor tyrosine
kinases to activate the RAS/mitogen-activated protein kinase (MAPK)
cascade, andhasadditional functions inmodulating tumor immunity33;
the recent development of selective, allosteric compounds targeting
SHP2 led us to investigate their therapeutic potential in chordoma45–48.

Six chordoma cell lines each were treated with allosteric com-
pounds targeting SHP2 (RMC-4550 or SHP099) and assayed for cell
viability (Fig. 5a, b). For comparison,wealso tested theBRAFV600E-mutant
A2058melanomacell line and theMDA-MB-468breast adenocarcinoma
cell line, which are reported to be insensitive and sensitive to SHP2
inhibition, respectively47, and which accordingly exhibit differential
dependence on PTPN11 gene suppression (Supplementary Fig. 10). All
cell lines were subjected to both 14-d colony formation and 6-day
multipoint concentration-response assays, the former of which better
distinguished the sensitivity of control cell lines (Fig. 5a, b).Weobserved
that five of the six chordoma cell lines tested were sensitive to SHP2
inhibition, to a degree exceeding that observed for the MDA-MB-468
reference cell line (Fig. 5a, b; area-under-curve (AUC) and half-maximal
effective concentration (EC50) values reported in Supplementary
Data 6). We confirmed on-target activity for SHP2 inhibitors by detect-
ing reduced phosphorylation of ERK 1/2 in sensitive cell lines, with RMC-
4550 exhibiting more potent on-target activity than SHP099 (Fig. 5c).

To test the efficacy of SHP2 inhibitors in vivo, a U-CH1-derived
xenograft mouse model of chordomawas treated with 10 or 30mg/kg
RMC-4550 or vehicle. The selected doses of RMC-4550 were deter-
mined to be capable of reducing phosphorylation of ERK 1/2 in the
tumors of treated animals (Supplementary Fig. 11). Consistent with
ex vivo findings, when dosed for 21 days, RMC-4550 inhibited tumor
growth compared to vehicle treatment (Fig. 5d and Supplementary
Fig. 12), with the 30mg/kg dose meeting a threshold of significance

(P = 0.044 for 30mg/kg; P = 0.060 for 10mg/kg). Alongside experi-
ments with the tool compound RMC-4550, we tested a clinical-stage
SHP2 inhibitor in this model to further evaluate the potential for
clinical translation of these findings. Consistent with the RMC-4550
study, statistically significant antitumor efficacy was achieved in the
U-CH1mousemodel treated with 20mg/kg of TNO155 (P = 1.27 × 10−6),
a clinical-stage SHP2 inhibitor with ex vivo anti-chordoma activity
comparable to that of RMC-4550 and SHP099 (Fig. 5d and Supple-
mentary Figs. 12, 13).

TNO155 was also tested in two patient-derived xenografts (PDX)
models, representing distinct patient populations of chordoma: CF539
was derived from a pediatric metastatic clival chordoma, and CF466
was derived from an adult metastatic lumbar chordoma. TNO155
treatment led to significant suppression or regression of chordoma
tumor proliferation in these models, with a good tolerability profile
(Fig. 5d and Supplementary Fig. 12, 14). Tumor growth suppression
induced by TNO155 treatment showed features of growth arrest, but
not apoptotic cell death (Supplementary Fig. 14). Together, these
findings using small-molecule perturbation of SHP2 further corrobo-
rate the essentiality of PTPN11 in various models of chordoma, and
thus nominate SHP2 inhibitors as a therapeutic approach for the
treatment of chordoma.

Discussion
Here we describe the emerging landscape of selective dependencies in
chordoma. This study recovered the most significant known depen-
dency gene in chordoma, TBXT, and further revealed a spectrum of
additional selectively essential genes in this cancer type. These genes
included several targetable or potentially targetable vulnerabilities that
would not otherwise be detected by tumor sequencing approaches.

We note that while we focused our study on selectively essential
genes, hypothesizing that these dependencies could be exploited to
target chordoma while minimizing toxicity to normal tissue, other
essential genes may warrant further exploration. For example, some
genes that are highly essential in but have lower selectivity scores for
chordoma, such as those encoding CDK7, CDK9, and GPX4—proteins
against which small-molecule inhibition was previously shown to have
antiproliferative effects in chordomamodels17 –may represent cancer
targets with potential relevance to diverse cancer types including
chordoma (Supplementary Fig. 15)49,50.

Collectively, the dependency genes identified herein can be clas-
sified into a broad range of biological functions. Canonical roles for
these genes include: differentiation and development (the develop-
mental transcription factors TBXT, SOX9, and ZEB2); proliferative sig-
naling (PTPN11 and EGFR); environmental sensing and metabolism (the
aryl hydrocarbon receptor AHR and its transcription partner ARNT, the
glucose transporter SLC2A1, the amino-acid transporter SLC7A5, the
cAMP signaling regulatory component PRKAR1A, and the cholesterol
metabolism regulator UBIAD1); cell-cycle progression (the cell cycle
cyclin-dependent kinase CDK6, a cell-cycle gene regulator THAP1, and
regulator of cell-cycle checkpoint activation and DNA replication
DSCC1)51,52; immune regulation (ADAR,PRKRA,PTPN11, and a suppressor
of the innate immune system OTUD5); RNA splicing (the U1 snRNP
subunit gene LUC7L2, and a pre-mRNA splicing co-activator SRRM2)53;
cellular transport (SLC2A1, SLC7A5, the ribosomal protein transport-
related gene HEATR3, and a regulator of endoplasmic reticulum and
secretory function IER3IP1)54,55; and DNA replication and repair (the
Fanconi anemia core complex component FANCM, and DSCC1) (Fig. 6).

We observed several instances of non-oncogene dependencies,
whereby the unique cellular features of the cancer cell confer a
heighteneddependence on the normal function of specific genes12. For
example, chordoma cells’ high intrinsic expression of ISGs appears to
underlie their dependence on the double-strand RNA (dsRNA)-editing
enzyme ADAR. It has been proposed that a chronic ISG state confers
dependenceonADARbecause it poises nucleic acid sensors like PKR to
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Fig. 5 | Inhibitors of SHP2, encodedbyPTPN11, represent candidate therapeutic
agents against chordoma. a Colony formation assays of chordoma and non-
chordoma (negative control A2058; positive control MDA-MB-468) cell lines trea-
tedwith indicated concentrations of RMC-4550 for 14 days.bViability of chordoma
and non-chordoma (negative control A2058; positive control MDA-MB-468) cell
lines treated with indicated concentrations of SHP2 inhibitors RMC-4550 and
SHP099 and assayed for cell viability after 6 days with CellTiter-Glo. Response data
were represented by a fitted curve to the mean fractional viability at each con-
centration relative to vehicle-treated cells; error bars represent the s.e.m. (n = 4
biological samples measured in parallel). c Immunoblot analysis of chordoma and
non-chordoma (negative control A2058; positive control MDA-MB-468) cell lines
treated with indicated concentrations of RMC-4550, SHP099, or DMSO for 2 h.

d Tumor proliferation in mice engrafted with chordoma cells (U-CH1 cell line-
derived xenograft, CF539 PDX, or CF466 PDX) and treated with a SHP2 inhibitor
(RMC-4550 or TNO155). Points represent the mean tumor volume ± s.e.m. (n = 4
(control) or 5 (compound) tumors for each arm of the U-CH1/RMC-4550 study;
n = 6 (compound) or 7 (control) tumors for each arm of the U-CH1/TNO155 study;
n = 6 (control) or 7 (compound) tumors for each arm of the CF539 study; n = 7
tumors for each arm of the CF466 study). n.s., not significant, *P <0.05,
****P <0.0001, derived from a two-way analysis of variance (ANOVA) with repeated
measures. P values for the time× treatment interaction (relative to the control
condition) are indicated. Additional details of P values and effect sizes are reported
in Supplementary Data 7. Source data are provided as a Source Data file. See also
related Supplementary Data 6.
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respond to the accumulation of endogenous immunogenic dsRNAs
that ADAR normally edits36,37,40. Further investigation using additional
models is needed to understand what triggers chronic ISG expression
in chordoma and whether this is a frequently occurring feature of
cancer. In other cancer types, the STING cytosolic DNA sensing path-
way has been implicated in IFN-induced ISG expression, suggesting a
link between chronic ISG expression and genomic instability37,56.
Notably, recent evidence suggests that chordoma tumors frequently
exhibit characteristics of defective homologous recombination DNA
repair and increased genomic instability57; and some chordoma
tumors harbor large numbers of clustered genomic rearrangements
consistent with the phenomenon of chromothripsis16,58, features each
of which is associated with the accumulation of immunostimulatory
DNA56,59. It remains to be determined whether these elements con-
tribute to chordoma cells’ high expression of ISGs and consequent
dependence on ADAR.

Another dependency gene whose essentiality correlates with a
specific cellular feature is LUC7L2. Here, dependency is correlatedwith
a lower copy number of a region containing the LUC7L2paralog LUC7L.
This interaction is suggestive of a paralog lethality, whereby the loss of
one member of a paralog pair is associated with increased reliance on
the othermember7,8. These findings are consistentwith that of a recent
report demonstrating cross-regulation and partial redundancy
between LUC7L2 and LUC7L60.

Additionally, two genes scoring in our screens (TBXT, SOX9) can
be classified as lineage-survival dependency genes: these transcription
factors mediate normal development of the embryonic notochord,
the cell type from which chordoma is hypothesized to originate61–63.
We also noted that three of the genes identified as chordoma

dependency genes (THAP1, SLC2A1, and PRKRA) are causative for
dystonia, a neurological condition characterized by involuntary mus-
cle contractions64. Further investigation is required to determine
whether these results indicate a related etiology and/or common cell
lineage from which chordoma and dystonia arise.

Lastly, our findings nominate an immediately actionable ther-
apeutic target, SHP2, for the treatment of chordoma. Previous work
has shown that cell lines dependent on PTPN11 aremost dependent on
EGFR47. Our screens in chordoma similarly demonstrate dependency
on both genes, but we noted that PTPN11 dependency scores are of a
greater magnitude than those of EGFR (Fig. 1b, c and Supplementary
Fig. 2). Further study is required to understand the mechanism
underlying PTPN11 dependency in chordoma; for example, it is possi-
ble that SHP2 inhibition attenuates signaling mediated by different
growth factor receptors, several of which can be activated con-
currently in chordoma65. First-generation SHP2 inhibitors like TNO155
are currently under clinical evaluation (e.g., ClinicalTrials.gov identi-
fier: NCT03114319); chordoma cells’ differential sensitivity to
SHP2 suppression relative to other cancer types supports testing these
inhibitors in chordoma patients.

Methods
This study complies with all relevant ethical regulations.

Cell lines and reagents
UM-Chor1, JHC7, MUG-Chor1, U-CH1, and U-CH2 chordoma cell lines
were obtained from the Chordoma Foundation. CH22 cells have been
described previously in ref. 66 and were obtained from the Chordoma
Foundation and Massachusetts General Hospital. MDA-MB-468 breast
adenocarcinoma and A2058 melanoma cell lines were obtained from
ATCC. UM-Chor1 cells were maintained in IMDM/RPMI (4:1) media +
10% fetal bovine serum (FBS) and 1X non-essential amino acids. JHC7
cellsweremaintained inDMEM/F12 (1:1) + 10%FBS.MUG-Chor1, U-CH1,
and U-CH2 cell lines were maintained in IMDM/RPMI (4:1) media + 10%
FBS. CH22 and MDA-MB-468 cells were maintained in RPMI media +
10% FBS. A2058 cells were maintained in DMEM media + 10% FBS. All
chordoma cell lines were maintained on collagen I-coated plates.

RMC-4550 and SHP099 were purchased from MedChemExpress.
TNO155 used for ex vivo studies was purchased from Selleck
Chemicals, and that used for in vivo studies was purchased from
MedChemExpress.

Genome-scale CRISPR-Cas9 screening
Genome-scale CRISPR-Cas9 screens using UM-Chor1 and MUG-Chor1
cell lines were performed previously17.

For U-CH2 and JHC7 cell lines, Cas9-expressing cells were gener-
ated as follows: each parental cell line was incubated with lentivirus
corresponding to the pLX_311-Cas9 plasmid (Addgene plasmid
#96924), encoding the Cas9 protein, in the presence of 4μg/mL
polybrene, dispensed in 12-well plates (1.5 × 106 cells/well), and spin-
infected at 2000 rpm for 2 h at 30 °C. After spin-infection, 2mL of
standard growth media was added to each well, and cells were incu-
bated at 37 °C overnight. The following day, for each cell line, cells
were trypsinized and expanded in selective media containing 2–3 µg/
mL blasticidin. Following selection for infected cells, Cas9 activity was
confirmed in each transduced cell line using a Cas9-activity assay that
has been described previously in ref. 67.

Genome-scale screens were performed using a library of 74,687
unique sgRNAs targeting ~18,560 genes (typically four sgRNAs per
gene) and 1000 non-targeting control sgRNAs (Broad Institute Avana
sgRNA library)18. U-CH2-Cas9 and JHC7-Cas9 cells were each incubated
with lentivirus corresponding to the pooled CRISPR library in the
presence of 4μg/mL polybrene, dispensed in 12-well plates (1.5 × 106

cells/well across 21 plates for U-CH2 and 24 plates for JHC7), and spin-
infected at 2000 rpm for 2 h at 30 °C. Lentiviruswas titered in each cell

 Currently targetable dependencies 

Differentiation and development
TBXT | SOX9 | ZEB2

Environmental sensing and metabolism
AHR | ARNT | SLC2A1 | SLC7A5 | PRKAR1A | UBIAD1

Cell-cycle progression
CDK6    | THAP1 | DSCC1

Immune regulation
ADAR | PRKRA | PTPN11    | OTUD5

RNA splicing
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Cellular transport
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DNA replication and repair
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Proliferative signaling
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Fig. 6 | Functional classification of chordoma dependency genes. Canonical
biological functions associatedwith chordomadependency genes. Genes encoding
proteins that are currently targetable are indicated.
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line to achieve a low MOI (<1), and infections were performed with a
sufficient number of cells to achieve a representation of >700 cells per
sgRNA per replicate after selection for infected cells. Following spin-
infection, 2mL of standard growth media was added to each well, and
cellswere incubated at 37 °Covernight. The next day, for each cell line,
cells were trypsinized, divided into three replicates, and expanded in
selective media containing puromycin (14 µg/mL for U-CH2 and 5 µg/
mL for JHC7) and blasticidin (3 µg/mL for U-CH2 and 1 µg/mL for JHC7).
Cells were grown in culture for 20days (U-CH2) or 22 days (JHC7) post-
infection, with carryover of 5 × 107 (U-CH2) or 4 × 107 (JHC7) cells at
each passage. Cells were grown in selective media until 8 days (JHC7)
or 13 days (U-CH2) post-infection, after which they were grown in
standard growth media. At 20 days (U-CH2) or 22 days (JHC7) post-
infection, cells were collected and stored at −20 °C in PBS until geno-
mic DNA isolation steps.

Genomic DNA was isolated from cell pellets using the NucleoSpin
Blood XL Kit (Macherey-Nagel). The sgRNA sequence was amplified by
PCR with sufficient gDNA to maintain representation, and then quan-
tified using massively parallel sequencing68,69. For each cell line, pri-
mary screening was performed once with three replicates.

Computational analysis software for genetic studies
Unless otherwise stated, all genetic-perturbation analyses were per-
formed in R (version 4.0.2) using the tidyverse package (version 1.3.0).

Analysis of genome-scale CRISPR-Cas9 screening data
The sgRNA library we used to screen the four chordoma cell lines
described in this study (Broad Institute Avana sgRNA library)18 has also
beenused to screen hundreds of non-chordoma cancer cell lines by the
Broad Institute Cancer Dependency Map (DepMap) project (https://
depmap.org/portal/). Thus, we were able to combine our data with the
DepMap data. Specifically, we combined read count data from four
chordoma cell lines (JHC7, U-CH2, UM-Chor1, and MUG-Chor1) with
those from 765 non-chordoma cancer cell lines. Readcount data from
all cell lines were normalized and subjected to quality control checks,
processed by CERES, and post-processed in the standard pipeline
described previously in ref. 19, resulting in the CERES gene effect and
dependencyprobability scoresused inour analysis. The combineddata
for all 769 chordomaandnon-chordoma cell lines used in this study are
available through the 20Q2 DepMap release (https://depmap.org/
portal/download/; https://doi.org/10.6084/m9.figshare.12280541.v4).

We favored CERES (to generate gene effect scores, from which
dependency probability scores were also derived) because it takes
advantage of screening data generated across a large collection of cell
lines to infer sgRNA activity18,19. Moreover, CERES corrects for gene-
independent lethality associated with CRISPR-Cas9 targeting of copy
number-amplified regions, a known confounder of CRISPR-Cas9
essentiality screens18.

We obtained genomic and transcriptomic data (gene-expression
values, copy-number variations, and mutations) for all non-chordoma
cell lines from the 20Q2 DepMap release. Genome and transcriptome
sequencing data for chordoma cell lines were provided by the Chor-
doma Foundation (available at http://www.cavatica.org/). Tran-
scriptomic data for chordoma cell lines were processed as described
below. Genomic data for chordoma cell lines were processed by and
shared through the DepMap portal (see DepMap release notes for
details; https://depmap.org), and are available from the 20Q2DepMap
release, except mutation calls for U-CH2, which are available
from the 22Q1 DepMap release (https://doi.org/10.6084/m9.figshare.
19139906.v1).

To identify selective dependencies in chordoma, we compared
gene dependency scores between the four chordoma lines and 765
non-chordoma cell lines using a linear model implemented in the R
package limma (version 3.44.3)70. We performed this differential
essentiality analysis for both CERES and dependency probability

scores. The difference in mean dependency between the chordoma
and non-chordoma lines was evaluated per gene as a log2 fold-change,
and associated P values werederived fromempirical-Bayes-moderated
t-statistics. Q values were computed using the Benjamini–Hochberg
method71.

Based on this analysis, selective dependencies were nominated
using both CERES and dependency probability score statistics. We
aimed to be inclusive in selecting dependency genes for validation.We,
therefore, started with stringent thresholds (P <0.01, absolute log2
fold-change >0.5 for both CERES gene effect and dependency prob-
ability scores), yielding three selective dependencies. We then relaxed
these thresholds to select the final set of 21 chordoma selective
dependencies: genes were considered selective if (1) their CERES dif-
ferentialP valuewas lower than0.02, (2) their absolute log2 fold-change
inCERES scores exceeded0.4, and (3) their absolute log2 fold-change in
dependency probability exceeded 0.3. We note that the P value
threshold is relatively robust to small changes. A threshold of P <0.05
would have nominated the same set of chordoma-selective depen-
dencies. In addition, genes selective for chordomaneeded to exceed an
averagedependencyprobability for chordomacell linesof0.5 andhave
a positive log2 fold-change (chordoma vs. non-chordoma). By contrast,
genes selective for other cancer types needed to have an average
dependency probability for chordoma cell lines equal to or lower than
0.5, with a negative log2 fold-change (chordoma vs. non-chordoma).

Lentiviral vectors used for screening validation and functional
characterization
To validate primary screening results, for each gene of interest, two
sgRNA sequences represented in the Broad Institute Avana sgRNA
library were selected and cloned into the lentiGuide-Puro plasmid
(Addgene #52963). The spacer sequence for sg-EGFP has been
described previously (“EGFP sgRNA 6”)72.

Spacer sequences for sgRNAs were as follows:

Target gene guide Spacer sequence

sg-ADAR−1 ACAATGGCCCCTCAAAAGCA

sg-ADAR−2 ACTCCAAAAGGCCACCCACA

sg-CDK6−1 AAGGCCCGCGACTTGAAGAA

sg-CDK6−2 CCAGCAGTACGAATGCGTGG

sg-EGFP GGTGAACCGCATCGAGCTGA

sg-FANCM−1 CCTTTCCTGAAGGGAACCAG

sg-FANCM−2 GCATAAGGCCTATAAAATGG

sg-LUC7L2−1 CCATGACCTGGCTTTAAGAG

sg-LUC7L2−2 GGATGAAGTAGAGAAAGCAC

sg-PRKRA−1 AGATGATAACAGCTAAGCCA

sg-PRKRA−2 TTCACCTTCAGAGTAACCGT

sg-PTPN11−1 GGAGGAACATGACATCGCGG

sg-PTPN11−2 GTGCAGATCCTACCTCTGAA

sg-SLC2A1−1 AGTGTTGTAGCCAAACTGCA

sg-SLC2A1−2 GGAGTTCTACAACCAGACAT

sg-SLC7A5−1 CGGAACATCACGCTGCTCAA

sg-SLC7A5−2 GATGCTGGCCGCCAAGAGCG

sg-SOX9−1 GCACCTGGCTGACCGCCTCG

sg-SOX9−2 GCTGGTACTTGTAATCCGGG

sg-SRRM2−1 GCAGGTCTCTCTCTTCACCA

sg-SRRM2−2 GCATGCCGAGAAACTTTGGT

sg-THAP1−1 GTGCAGTCCTGCTCCGCCTA

sg-THAP1−2 CCTCACTTGTGGAAAGAAAC

Lentivirus was produced by transfection of 293T packaging cells
with three plasmids (lentiGuide-Puro-sgRNA, psPAX2, and pMD2.G);
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and the Lipofectamine 2000 transfection reagent (Invitrogen). Media
was changed to standard growth media the following day, and virus-
containing supernatant was collected 3 days post-transfection.

Validation of genome-scale CRISPR-Cas9 screens
UM-Chor1-Cas9 cells were generated as described previously in ref. 17.
UM-Chor1-Cas9 cells were seeded at a density of 300,000 cells/well in
six-well collagen I-coated plates. The next day, media was replaced
withmedia containing lentivirus corresponding to the lentiGuide-Puro
plasmid (Addgene #52963), encoding the sgRNA of interest (sequen-
ces below), in the presence of 8 µg/mL polybrene. Cells were spin-
infected at 2000 rpm for 30min at 30 °C. Following spin-infection,
media was replaced with standard growth media and cells were incu-
bated at 37 °Covernight. The next day (at least 24 hpost-infection), the
media was replaced with selective media containing 1 µg/mL pur-
omycin. Following selection for infected cells, cells were seeded in 24-
well plates in media containing 1 µg/mL puromycin at a density of
30,000 cells/well (three replicates per timepoint) and counted at
indicated intervals over a 10-day period. Cell counts were obtained
with a Vi-CELL XR Cell Viability Analyzer (Beckman Coulter), using Vi-
CELL XR software (version 2.04; Beckman Coulter). Proliferation
experiments were done four times for guides targeting PTPN11, CDK6,
and SLC7A5; and twice for guides targeting all other genes, with minor
variations in time intervals used for counting. Statistical analyses were
performed with GraphPad Prism 9.

For immunoblotting to confirm sgRNA-mediated protein reduc-
tion, cells were transduced as above and selected cells were harvested
7 days post-transduction. Cell pellets were subjected to immunoblot-
ting as described below. The experiment was performed three times
for PTPN11; twice for SLC7A5, PRKRA, and LUC7L2; and once for
other genes.

For amplicon sequencing to confirm sgRNA-mediated genomic
editing, cells were transduced as above and selected cells were har-
vested 6 days post-transduction. Cell pellets were processed as
described below. The experiment was performed once.

Immunoblotting
Cell pellets were resuspended in lysis buffer (50mM Tris pH 7.4,
2.5mM EDTA pH8, 150mM NaCl, 1% Triton X-100, and 0.25% IGEPAL
CA-630) supplemented with protease inhibitors (Roche) and Phos-
phatase Inhibitor Mixtures I and II (Calbiochem). Lysates were incu-
batedon ice for >2min, thencentrifuged for 2min at 15,700× g. Protein
in the supernatants was quantified using a BCA Protein Assay Kit
(Pierce), normalized, reduced, and denatured. Protein samples were
resolved using Tris-Glycine gels (Novex), then resolved protein was
transferred to iBlot Transfer Stack nitrocellulose membranes (Novex).
Membranes were probed with primary antibodies at 4 °C overnight.
The antibodies against SHP2 (cloneD50F2, no. 3397, 1:1000), total Erk1/
2 (clone 3A7; no. 9107, 1:500), phospho-Erk1/2 (Thr202/Tyr204) (no.
9101, 1:500), CDK6 (cloneD4S8S, no. 13331, 1:500), PRKRA/PACT (clone
D9N6J; no. 13490; 1:1,000), SLC7A5/LAT1 (no. 5347, 1:1,000), cofilin
(clone D3F9, no. 5175; 1:10,000), and SOX9 (clone D8G8H, no. 82630,
1:1,000) were purchased fromCell Signaling Technology. The antibody
against LUC7L2 (no. PA5-62446, 1:1,000) was purchased from Invitro-
gen. Membranes were incubated with IRDye secondary antibodies
(1:10,000; LI-CORBiosciences), and immunoblot images were acquired
with the Odyssey Imaging System (LI-COR Biosciences), using Image
Studio software (version 2.0.38; LI-COR Biosciences).

Amplicon sequencing of sgRNA-mediated genomic edit sites
Genomic DNA was purified from cell pellets using the QIAamp DNA
Mini Kit (Qiagen). A 200–275 base pair region containing the relevant
sgRNA target sequence was PCR-amplified from genomic DNA using
the NEBNext High-Fidelity 2X PCR Master Mix (New England BioLabs)
in a 25 µL PCR reaction volume (primer sequences are provided in

Supplementary Table 2). PCR products were purified using the QIA-
quick PCR purification Kit (Qiagen).

Library preparation and sequencing were performed at the Dana-
Farber Cancer Institute Molecular Biology Core Facilities. cDNA
amplicons were fragmented to ~250 base pairs using Covaris adaptive
focused acoustics on theM220 platform. Illumina sequencing libraries
were prepared using Swift S2 Acel reagents on a Biomek i7 liquid
handling platform. Finished libraries were quantified by Qubit fluo-
rometer, Agilent TapeStation 2200, and RT-qPCR using the Kapa Bio-
systems library quantification kit according to the manufacturer’s
protocols. Uniquely indexed libraries were pooled in equimolar ratios
and sequenced on an Illumina MiSeq with paired-end 150-base
pair reads.

Amplicon sequencing was performed once.

Amplicon sequencing analysis
We evaluated the editing performance of sgRNAs from amplicon
sequencing data using CRISPResso2 (version 2.1.3)73 with default
parameters. Gene reference sequences were obtained from the NCBI
Nucleotide database using the R package rentrez (version 1.2.3) and
expected amplicon sequences were extracted with the matchProbe-
Pair function from the R package Biostrings (version 2.56.0). Potential
off-target genomic sequences were identified with NCBI BLAST
(https://blast.ncbi.nlm.nih.gov/Blast.cgi) andprovided toCRISPResso2
as alternate sequences to reduce artifactual reporting of editing.

Pathway analysis of chordoma dependency genes
Co-essentiality network. The network was generated using the R
package igraph (version 1.2.6). First, all selective chordoma depen-
dency genes were added as nodes. To draw edges between gene pairs,
we calculated the Pearson correlation coefficient between their
dependency probability score profiles (dependency probability scores
for all 769 cell lines). Gene pairs with a correlation of least 0.18 were
connected by an edge. We visualized the resulting network in Cytos-
cape (version 3.8.2), coloring nodes by dependency probability scores
and scaling edge width by Pearson correlation coefficients.

Protein–protein interaction network. We performed a multi-protein
search in STRING (version 11.5) (https://string-db.org/)74 with default
parameters, using HGNC symbols for all selective chordoma depen-
dency genes as input. The resulting network was exported and visua-
lized in Cytoscape (version 3.8.2), coloring nodes by dependency
probability scores and scaling edge width by STRING confidence
scores. Singletons, removed automatically during export from
STRING, were manually re-added in Cytoscape.

RNA-sequencing analysis of parental chordoma cells
Gene-expression levels of chordoma cell lines were quantified from
RNA-seq data using the DepMap RNA-seq pipeline (https://github.
com/broadinstitute/depmap_omics) on the Terra computing platform
(https://terra.bio/). Briefly, RNA-seq FASTQ files were aligned to the
hg38 reference genome (Ensembl; https://useast.ensembl.org/Homo_
sapiens/Info/Index) with STAR (version 2.5.3a)75. Gene- and transcript-
level expression was then quantified with RSEM (version 1.3.0)76 to
obtain transcript per million (TPM) values.

Uniform manifold approximation and projection (UMAP)
analysis
To generate two-dimensional UMAP embeddings, we used
log2(TPM+ 1) expression values for all genes whose coefficient of
variation exceeded 0.1 across all 1299 cell lines analyzed. The top 100
principal components of the resulting data set were then used as
input to the umap function of the umap R package (version 0.2.8.0)
with the following parameter settings: n_neighbors = 5, min_dist =
0.5, n_epochs = 500. Default settings were used for all other
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parameters. Cell lines without disease annotation, disease annota-
tions with only one cell line (teratoma and adrenal cancer), and the
disease annotation “Engineered” were omitted from the analysis.

Genomic and transcriptomic correlates of chordoma depen-
dency genes
For all chordoma dependency genes, we calculated Pearson correla-
tion coefficients between their CERES dependency profiles (CERES
scores for a given gene across all cell lines) and genome-wide (1) gene-
expression profiles (gene-level log2(TPM+ 1) values across all cell
lines), (2) copy-number profiles (gene copy number across all cell
lines), and (3) mutation profiles (gene mutations across all cell lines,
indicating the presence or absence of mutations as 1 and 0, respec-
tively). Furthermore, we performed univariate linear regressions, pre-
dictingCERESgene effect scores for each chordomadependencywhile
using each individual genomic/transcriptomic feature as a predictor.

For dependencies correlatedwith gene-copy-number changes, we
nominated potentially causal genes based on known biological con-
nections to the dependency gene. We further tested whether the
dependency also correlated with the copy number of genes sur-
rounding the nominated gene on the same chromosome. To do so, we
first selected all genes within windows ranging from 5 × 105 bp to
5 × 106 bp (step size: 5 × 105) around the nominated gene. The optimal
window was then determined using gene-set enrichment analysis41 via
the fgsea function from the synonymous R package77 (settings: eps = 0,
the default for all others). As input, we used (1) the gene sets obtained
from each window size and (2) the list of all gene-copy-number cor-
relates, ranked by their correlation with the dependency gene.

ISG expression in chordoma and non-chordoma cancer cell lines
A previously described procedure37 was followed using the ISG core
signature from the same study (ADAR, BST2, CASP1, CMPK2, CXCL10,
DDX60, DHX58, EIF2AK2, EPSTI1, GBP4, HERC6, IFI35, IFIH1, IFIT2, IFIT3,
IRF7, ISG15, ISG20, MX1, NMI, OASL, OGFR, PARP12, PARP14, PNPT1,
PSME2, RSAD2, RTP4, SAMD9L, SP110, STAT2, TDRD7, TRAFD1, TRIM14,
TRIM21, TRIM25, UBE2L6, and USP18). Briefly, mean absolute deviation
modified z-scores (ZMAD) were calculated for each gene, usingmedian
and mean absolute deviation for TPM values across all cell lines. The
ISG core score was then calculated as the mean ZMAD across all ISG
signature genes. Cell lines without disease annotation, disease anno-
tations with only one cell line (teratoma and adrenal cancer), and the
disease annotation “Engineered” were omitted from the analysis. We
repeated this procedurewith two additional interferon signatures from
the MSigDB hallmark collection39 (version 7.4) (http://www.gsea-
msigdb.org/gsea/msigdb/human/genesets.jsp?collection=H): the gene
sets HALLMARK_INTERFERON_ALPHA_RESPONSE (http://www.gsea-
msigdb.org/gsea/msigdb/human/geneset/HALLMARK_INTERFERON_
ALPHA_RESPONSE.html) and HALLMARK_INTERFERON_GAMMA_R-
ESPONSE (http://www.gsea-msigdb.org/gsea/msigdb/human/geneset/
HALLMARK_INTERFERON_GAMMA_RESPONSE.html).

RNA sequencing and analysis of sgRNA-treated cells
UM-Chor1-Cas9 cells were seeded at a density of 300,000 cells/well in
six-well collagen I-coated plates. Cells were transduced with lentivirus
and selected for infected cells as described in the Methods section
corresponding to CRISPR-Cas9 screening validation. Following selec-
tion for infected cells, selective growth media was replaced with
standard growth media. One day post-media-change (6 days post-
transduction), cellswere harvested. Total RNAwasextracted fromcells
using an RNeasy kit (Qiagen).

Library preparation, sequencing, and sequencing analysis were
performed at the Dana-Farber Cancer InstituteMolecular Biology Core
Facilities. Libraries were prepared using Roche KapamRNAHyperPrep
strand-specific sample preparation kits from 200ng of purified total
RNA according to the manufacturer’s protocol on a Beckman Coulter

Biomek i7. The finished dsDNA libraries were quantified by Qubit
fluorometer and Agilent TapeStation 4200. Uniquely dual indexed
librarieswerepooled in an equimolar ratio and shallowly sequencedon
an Illumina MiSeq to further evaluate library quality and pool balance.
The final pool was sequenced on an Illumina NovaSeq 6000, targeting
40 million 100-base pair read pairs per library.

Sequenced reads were aligned to the UCSC hg38 reference
genome assembly (http://genome.ucsc.edu/cgi-bin/hgGateway?db=
hg38), and gene counts were quantified using STAR (version
2.7.3a)75. RNA-seq analysis was performed using the VIPER Snakemake
pipeline78. Differential gene-expression testing was performed by
DESeq2 (version 1.22.1)79.

We performed gene-set enrichment analysis41 using the fgsea
function from the synonymous R package77 (settings: eps = 0, the
default for all others) on the MSigDB hallmark collection of gene sets
(version 7.4)39, with log2 fold-changes from DESeq2 as input.

We used GeLiNEA to quantify enrichment while taking biological
network information into account42. We ranGeLiNEA via theMolecular
Data Provider (MolePro) API (https://translator.broadinstitute.org/
molecular_data_provider/assets/lib/swagger-ui/index.html?url=/
molecular_data_provider/assets/openapi.json#/), using the MSigDB
hallmark collection of gene sets and the STRING interaction network
(version 10.5, Homo sapiens, including all available evidence types)74.
The source code for GeLiNEA can be obtained at https://github.com/
broadinstitute/GeLiNEA. The API calls were made using a MATLAB
script (2018b version), with the parallelization toolbox for parallelizing
the calls.

Rather than a ranked list, GeLiNEA requires a list of top-scoring
genes as input (in addition to a list of known gene sets). To account for
differences in list size, we considered all lists from 1 to 200 top-scoring
genes, with gene ranks determined by their adjusted P value from the
previously described DESeq2 differential-expression analysis. Results
were robust against list-size variation, indicating strong enrichment of
interferon gene sets among the most upregulated genes. Using a
MATLAB 2018b implementation, we then constructed curves charting
gene list size against the negative log10 of adjusted enrichment P
values, and ranked hallmark gene sets based on their normalized AUC,
calculated as follows:

AUC=
1

200*pmin
:

Z 200

g = 1
� log10padj gð Þ:dg ð1Þ

where pmin = limn!+1 �log10ðpadjÞ= � log100+ ε = 52, and ε equals
the inverse logarithm base 10 of the floating-point relative accuracy.

RNA sequencing was performed once.

IFN-β ELISA
UM-Chor1-Cas9 cells were seeded at a density of 300,000 cells/well in
six-well collagen I-coated plates. Cells were transduced with lentivirus
as described in the Methods section corresponding to CRISPR-Cas9
screening validation. Following selection for infected cells with media
containing 2 µg/mL puromycin, selective growth media was replaced
with standard growthmedia. At 1, 2, and 3 days post-media-change, an
aliquot of conditionedmediawas harvested fromcells and centrifuged
to remove any residual cells. The supernatant was assayed for IFN-β
levels using the VeriKine-HS™ Human IFN Beta Serum ELISA Kit (PBL
Assay Science), following “Protocol A” provided by the manufacturer.

Absorbance values of the ELISA were measured at 450nm with a
SpectraMax M5 microplate reader (Molecular Devices), using SoftMax
Pro software (version 5.4; Molecular Devices). To calculate IFN-β titers,
optical densities (ODs) for media alone samples were first subtracted
from the standard and sample ODs to eliminate background, and the
IFN-β concentration in the samples was determined from a standard
curve, fit with a sigmoidal, four-parameter logistic equation (GraphPad
Prism 9). Concentrations too low to be determined by the standard
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curve were set to zero. Statistical analyses were performed with
GraphPad Prism 9. The experiment was performed three times.

Computational analysis software for small-molecule sensitivity
studies
Computational analyses and visualizations for small-molecule studies
were performed in Excel from Microsoft 365 (version 2301 and pre-
decessors; Microsoft Corp.), Pipeline Pilot (version 18.1.0.1604; Biovia,
Corp.), or MATLAB 2018b (MathWorks, Inc.).

High-throughput small-molecule and IFN-β sensitivity studies
For small-molecule sensitivity studies, U-CH1, U-CH2, JHC7, MUG-
Chor1, UM-Chor1, CH22, MDA-MB-468, and A2058 cells were each
seeded overnight in 384-well BioCoat Collagen I (Corning) microtiter
plates at a density of 2000, 1600, 1600, 1800, 1200, 1200, 1200, and
1000 cells per well, respectively. The following day, compound or
DMSO was added to wells with a Tecan D300e digital dispenser
instrument (HP) using Tecan D300eCONTROL software (version 3.2.5;
HP). Each compound was tested using nine concentrations in quad-
ruplicate (four wells treated in parallel). Cell viability was assayed
6 days after compound addition with the CellTiter-Glo reagent (Pro-
mega). Luminescence values were acquired with an EnVision micro-
plate reader (PerkinElmer), using EnVisionManager software (versions
1.13.3009.1401 and 1.14.3049.528; PerkinElmer). Luminescence well
values were normalized to DMSO-treated wells by subtracting per-
plate average DMSO log2-luminescence values from the log2-lumines-
cence values of each treatment well.

For IFN-β sensitivity studies, UM-Chor1 cells were seeded over-
night in 384-well BioCoat Collagen I (Corning) microtiter plates at a
density of 1200 cells per well. The following day, recombinant IFN-β
(PBL Assay Science human IFN-beta 1a, #11415) or vehicle was added to
wells in quintuplicate (five wells treated in parallel). Cell viability was
assayed 6 days after IFN-β addition with the CellTiter-Glo reagent
(Promega). Luminescence values were acquired with an EnVision
microplate reader (PerkinElmer), using EnVision Manager software
(version 1.14.3049.528; PerkinElmer). Luminescence well values were
normalized to vehicle-treated wells by subtracting per-plate average
vehicle log2-luminescence values from the log2-luminescence values of
each treatment well.

Data pre-processing from instrument files through DMSO/vehicle
normalization was performed in Pipeline Pilot except for the experi-
ments depicted in Supplementary Figs. 9, 13, whichwere normalized in
Microsoft Excel andMATLAB; curve-fitting, numerical integration, and
subsequent analysis steps were performed in MATLAB. For all drug-
printer experiments, curves were fit using all data points as inputs to
curve-fitting and numerical integration. Curve fitting (to derive EC50

and other curve parameters) and numerical integration (to derive
AUC) were otherwise performed as described previously17.

SHP099 was tested five times in UM-Chor1 cells (including in the
experiment depicted in Supplementary Fig. 13), twice in JHC7, and
once in all other cell lines. RMC-4550 was tested four times in UM-
Chor1 (including in the experiment depicted in Supplementary Fig. 13),
twice in JHC7, and once in all other cell lines. TNO155 was tested twice
in UM-Chor1 cells. IFN-β was tested three times in UM-Chor1 cells.

Colony formation assays
U-CH1, U-CH2, JHC7, MUG-Chor1, UM-Chor1, CH22, MDA-MB-468, and
A2058 cells were seeded in six-well plates at a density of 70,000,
50,000, 80,000, 90,000, 18,000, 6,000, 15,000, and 2000 cells/well,
respectively. The following day, RMC-4550 or DMSO was added to
wells at a 1:1000 dilution. Cells were cultured in a compound- or
DMSO-containing media for a total of 14 days, with the compound- or
DMSO-containing media replenished at 7 days post-treatment. At the
experimental endpoint, compound- or DMSO-containing media was
aspirated, and cells were first washed with PBS, then fixed with 100%

methanol for 10min. Methanol was aspirated and cells were stained
with 0.5% crystal violet (Alfa Aesar) staining solution in 25% methanol
for 10min. The staining solutionwas aspirated and plates werewashed
with water and subsequently air dried. Each cell line was tested at least
four times, with minor variations in cell seeding densities.

Plates were imagedwith an Epson Perfection V550 Photo scanner.

Immunoblots of compound-treated cell lines
For immunoblots of SHP2-inhibitor-treated cell lines: for each cell line,
cells were seeded in a six-well plate at a density of 400,000 cells/well.
The following day, cells were treated with RMC-4550, SHP099, or
DMSO (1:1000 dilution in media) for 2 h before being harvested. Cell
pellets were lysed and processed for immunoblotting as described
above. The experiment was performed at least twice for UM-Chor1 and
JHC7, and once for all other cell lines.

PTPN11 dependency in MDA-MB-468 and A2058 cell lines
Data corresponding to PTPN11 log2(TPM+ 1) expression (21Q3 Public)
and PTPN11 gene effect by CRISPR (DepMap 21Q3 Public+Score,
Chronos) for 952 cancer cell lines were obtained from the DepMap
portal (https://depmap.org/portal/).

Conditioned media assays
UM-Chor1-Cas9 cells were seeded at a density of 300,000 cells/well in
six-well collagen I-coated plates. Cells were transduced with lentivirus
as described in the Methods section corresponding to CRISPR-Cas9
screening validation. Following selection for infected cells with media
containing 2 µg/mL puromycin, selective growth media was replaced
with standard growth media. Three days post-media-change, condi-
tioned media was harvested from cells and centrifuged to remove any
residual cells. The supernatant was used to replace the standard
growth media of UM-Chor1 cells previously seeded in 24-well plates
(seedingdensity of 30,000cells/well), according to the following three
experimental conditions performed in parallel: supernatant alone,
supernatant treated with neutralizing antibodies specific to type I IFNs
(PBL Assay Science human type 1 IFN neutralizing antibody mixture,
#39000; 1:50 dilution), or supernatant treated with neutralizing anti-
bodies specific to IFN-β (PBL Assay Science anti-human IFN-beta,
#31401; 1:100 dilution). Four replicate wells were treated per super-
natant condition. Cells were counted after 5 days of treatment with
conditioned media. Cell counts were obtained with a Vi-CELL XR Cell
Viability Analyzer (Beckman Coulter), using Vi-CELL XR software
(version 2.04; Beckman Coulter). Statistical analyses were performed
with GraphPad Prism 9. The experiment was performed three times,
with minor modifications to infection selection conditions.

In vivo xenograft studies
Animal experimentswereperformedatXenoSTART inSanAntonio, TX
in tumor-bearing mice under an institutional animal care and use
committee (IACUC)-approved protocol (#09-001, #10-001). Housing
conditions for the mice included a room temperature of 70–74 °F,
30–60% relative humidity, and 12-h light/dark cycles. Six- to twelve-
week-old female athymic nude mice (Charles River Laboratories) were
implanted subcutaneously with low-passage tumor fragments. When
tumors reached ~150–300mm3 (for efficacy studies) or ~300–500mm3

(for the pharmacodynamics study), animalsmatched by tumor volume
(TV) were randomly allocated into control and treatment groups, with
each group containing four to seven animals. RMC-4550 was for-
mulated in 2% hydroxypropyl methylcellulose E-50, 0.5% Tween-80 in
50mM sodium citrate buffer, pH 4.0. TNO155 was formulated in 0.5%
Tween-80, and 0.5%methylcellulose. Dosing began at day 0 and drugs
(or respective vehicles) were administered orally at the dose levels and
schedules noted in the main text. Animals were observed daily, and
weights and TVsweremeasured twice a week using an electronic scale
anddigital calipers, respectively. Tumordimensionswere converted to
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TV using the formula: TV (mm3) =width2 (mm)× length (mm) ×0.52.
The study endpoints were when the control group reached mean
TV = 1500mm3 or a specified time point. Any individual animal
reaching a tumor size >2.5 cm3 was subsequently removed from the
study, in accordance with the XenoSTART IACUC protocol. For mice
that reached the tumor volume endpoint before the study endpoint
(one vehicle-treatedmouse on day 25 of the CF539/TNO155 study), the
final TV measurement was carried over and plotted for the remainder
of the study, and body weight measurements were not plotted for this
mouse beyond this date. Statistical analyses were performed with
GraphPad Prism 9.

Immunoblotting of tumor tissue was performed by first homo-
genizing tumor fragments in lysis buffer (recipe described in the
Immunoblotting methods section) using the Precellys Evolution
instrument (Bertin Technologies) and the following protocol: 3 × 7500
rpm for 20 s, pausing for 15 s between rounds. Homogenized lysates
were subsequently centrifuged for 2min at 15,700 × g. Supernatants
were quantified and subjected to immunoblotting as described
in the Immunoblotting methods section. Immunoblots were per-
formed twice.

Immunohistochemical staining for Ki67 or cleaved caspase-3
expression
Terminal tumors were collected following the final dose and immedi-
ately formalin-fixed and then embedded in paraffin blocks. Histology
was performed by HistoWiz Inc. (http://www.histowiz.com/). Paraffin-
embedded samples were sectioned at 4μm, and immunohistochem-
istry was performed on a Bond Rx autostainer (Leica Biosystems) with
heat-mediated antigen retrieval using Epitope Retrieval Solution 1
(Leica Biosystems) for 20min. Samples were treated with rabbit
polyclonal Ki67 primary antibody (Abcam ab15580, 1:800 dilution) or
cleaved caspase-3 primary antibody (Cell Signaling Technology #9661,
1:300 dilution), followed by an anti-rabbit HRP conjugated polymer
system. Bond Polymer Refine Detection (Leica Biosystems) was used
according to themanufacturer’s protocol. After staining, sectionswere
dehydrated and film coverslipped using a TissueTek-Prisma and
Coverslipper (Sakura). Whole slide scanning (40x) was performed
on an Aperio AT2 (Leica Biosystems). Immunohistochemistry was
performed once.

Image analysis was carried out using Halo image analysis software
(version 3.4.2986.231; Indica Labs). Positive and negative cells were
identified using the Halo Multiplex IHC algorithm (version 3.4.1) by
first defining the settings for the hematoxylin counterstain to detect all
nuclei, followed by setting thresholds to detect Ki67 or cleaved
caspase-3 staining at weak, moderate, and strong intensities (Halo
threshold settings of 0.30, 0.45, 0.60, respectively for Ki67; and 0.22,
0.40, 0.55, respectively for cleaved caspase-3). The percentage of Ki67-
or cleaved caspase-3-positive cells reflects cumulative positive staining
(weak, moderate, or strong intensity). The H-score was calculated as a
weighted sum of the percentage of positive cells at each intensity,
using the following convention:weakpositive (× 1) +moderate positive
(×2) + strong positive (×3), giving a possible range of 0 to 300. Statis-
tical analyses were performed with GraphPad Prism 9.

Statistics and reproducibility
Sample sizes were determined on the basis of published findings17 that
had used similar sample sizes to detect a significant difference between
groups. The reproducibility of the experimental findings was verified by
performing some combination of the following: confirming an effect
across different cell lines or tumor samples, replicating findings with
independent experiments, using biological and technical replicates,
using multiple concentrations of a compound, using multiple sgRNAs
targeting a gene of interest, and confirming ex vivo results in different
mouse model systems. The number of times each experiment was
performed varied by experiment (ranging fromone to five times) and is

stated in the relevant Methods section. For the in vivo study using the
CF539model, onemouse in the vehicle groupdiedof anunknowncause
before the study endpoint andwas therefore excluded from the analysis
and figure. For the in vivo study using the U-CH1 model and TNO155
treatment, any data collected after the pre-established study endpoint
were excluded from the analysis and figure. Individual microtiter wells
not meeting routine quality control standards for proper cell seeding
(pertains to some DMSO-treated wells using U-CH1 cells in the experi-
ment depicted in Fig. 5b) were excluded from the analysis and figure.
For in vivo studies, when tumors reached ~150–300mm3 (for efficacy
studies) or ~300–500mm3 (for the pharmacodynamics study), animals
matched by tumor volume were randomly allocated into control and
treatment groups. Other studies were performed using a single popu-
lation of cells that was randomly allocated into experimental groups
before treatment. The investigators were not blinded to allocation
during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
CRISPR-Cas9 screening data for chordoma and non-chordoma cell
lines are available through the Broad Institute Cancer Dependency
Map 20Q2 release (https://depmap.org/portal/download/; https://doi.
org/10.6084/m9.figshare.12280541.v4). Gene dependency and selec-
tivity scores for chordoma cell lines (pertains to Fig. 1b and Supple-
mentary Figs. 2, 15) are provided in Supplementary Data 1, 2. Genomic
and transcriptomic correlates of selected dependency genes (pertains
to Fig. 3) are available at Figshare (https://doi.org/10.6084/m9.
figshare.21774746.v1). GSEA results (pertains to Supplementary
Fig. 8a) are provided in Supplementary Data 4. RNA-sequencing data
generated from sgRNA-treated cells (pertains to Fig. 4b) are publicly
available at Gene Expression Omnibus (GEO) under accession code
GSE226734 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE226734) and Supplementary Data 5. The hg38 reference genome
sequence and annotation are publicly available from the UCSC (http://
genome.ucsc.edu/cgi-bin/hgGateway?db=hg38) or Ensembl (https://
useast.ensembl.org/Homo_sapiens/Info/Index) genome browsers.
AUC and EC50 values resulting from small-molecule sensitivity analysis
(pertains to Fig. 5b) are provided in SupplementaryData 6. Sourcedata
are provided with this paper.
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