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Complexity of cortical wave patterns of the
wake mouse cortex

Yuqi Liang 1,9, Junhao Liang 1,9, Chenchen Song 2,9, Mianxin Liu 1,3,9,
Thomas Knöpfel 2,4,10 , Pulin Gong 5,6,10 & Changsong Zhou 1,7,8,10

Rich spatiotemporal dynamics of cortical activity, including complex and
diversewave patterns, have been identified during unconscious and conscious
brain states. Yet, how these activity patterns emerge across different levels of
wakefulness remain unclear. Here we study the evolution of wave patterns
utilizing data from high spatiotemporal resolution optical voltage imaging of
mice transitioning from barbiturate-induced anesthesia to wakefulness (N = 5)
and awakemice (N = 4). We find that, as the brain transitions into wakefulness,
there is a reduction in hemisphere-scale voltagewaves, and an increase in local
wave events and complexity. A neural mass model recapitulates the essential
cellular-level features and shows how the dynamical competition between
global and local spatiotemporal patterns and long-range connections can
explain the experimental observations. Thesemechanisms possibly endow the
awake cortex with enhanced integrative processing capabilities.

In the living brain, electrical activity is always present, also in the
absence of external stimuli. In early studies aimed at understanding
how perception and behavior emerges from neuronal activities,
spontaneous (“ongoing”) activity was treated like “irrelevant noise”
and removed by averaging over repeated trials1,2. However, the first
pioneering electroencephalography studies already recognized the
significanceof spontaneous neuronal activities and its relation to brain
states3.More recently, a largebodyof evidencesupported the idea that
a signature of recovery from general anesthesia to wakefulness or
conscious states is an increasing complexity of cortical spontaneous
activities4,5. These studies have mainly focused on the temporal
dynamics in terms of correlated spontaneous activity across brain
regions. For instance, it has been shown that physiologically reversible
unconscious states such as sleep and anesthesia in humans and ani-
mals are characterized by decreased long-range correlations com-
pared to conscious states5–7. However, the widely considered zero-lag

correlations can only reveal the synchronization of brain activities
while ignoring the complex neural dynamics unfolding both in space
and in time that are associatedwith the propagation and processing of
neuronal information.

Accumulating evidence showed that spontaneous cortical
activity8,9 as well as evoked activity9–13 exhibit rich spatiotemporal
patterns organized as traveling waves. Phase velocity fields (PVF)
analysis, amethod adapted from turbulencephysics14, is able to extract
different types of wave patterns and quantify their features. Traveling
waves can have different forms, including planar traveling waves12,15,
spiral waves that rotate around a central point8, source and sink pat-
terns that expand fromor contract to a point14,16, and saddle patterns14.
These findings raise several fundamental questions: How are these
spatiotemporal wave patterns affected by the general brain states (e.g.
the anesthetized and awake states)? Which properties of these waves
can be used as neural correlates of the recovery process from
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anesthesia towakefulness?Whichdynamicalmechanisms underlie this
process?

To address these questions, here we use mesoscopic high spatial
coverage voltage imaging approach to monitor cortex-wide activity,
which currently has only been achieved in mice. We then use the
advanced PVF wave analysis method on mesoscopic voltage imaging
data of the mouse cortex as the mice transitioned from barbiturate-
induced anesthesia to wakefulness. We find that, when recovering
from anesthesia to wakefulness, wave directions are less homogenous,
and wave speeds are overall decreased while speeds of large waves are
increased. We identify typical wave patterns including large-scale tra-
veling waves, standing waves and complex local wave patterns like
sources, sinks, and saddles at smaller spatial scales17. The principal
modes of whole cortex-scale waves, defined as the singular value
decomposition (SVD) modes of the PVFs, are similar in the anesthe-
tized and wakeful states, but the awake cortex exhibited a smaller
proportion of these principal modes and more local wave patterns
with complex dynamics.

To explain these observations, we further develop a neural mass
model that incorporates the key actions of barbiturates on the kinetics
of chemical synapses18,19 and the coupling strength of gap junctions20.
We demonstrate that our model can reproduce the increased com-
plexity of wave patterns that accompany approaching wakefulness as
found in our experimental data. By performing dynamical stability
analysis, we find that the strong competition between global and local
activity states underlies the emergence of spatiotemporal complexity
during the transition from anesthesia to wakefulness. In addition, we
use the model to predict that long-range connections more efficiently
transfer neural activities and information between cortical areas in the
wakeful state. Together, our combined experimental and modeling

studies reveal the essential features of spatiotemporal brain dynamics
characteristics for wakefulness, and the dynamical mechanisms
underlying these features.

Results
Characteristics of population activity waves depend on the level
of wakefulness
Weusedmesoscopic optical imaging ofmice expressing a genetically
encoded voltage indicator in cortical pyramidal neurons, to access
spontaneous population voltage activity across both hemispheres of
the dorsal cortex. In one set of experiments (N = 5 mice), imaging
began as the mice underwent light anesthesia induced by a bolus
injection of pentobarbiturate, and continued until the mice woke up
as indicated by occasional spontaneous coordinated whisker and
body movements (SI Video 1 and 2). We termed the latter condition
as “post woken”. Another data set (N = 4 mice) was obtained from
mice that were well habituated to the imaging conditions and that
had been free of anesthesia for at least 3 days prior to the imaging
session (SI Video 3). We termed this experimental condition as
“fully awake”.

In all three conditions, we observed amaximum frequency power
of the cortex-wide population voltage activity at around 2Hz corre-
sponding to delta waves (1–4Hz power on average contributes 70.2%
(anesthetized), 67.2% (postwoken), and 67.5% (fully awake)) (Fig. 1a, N:
anesthetized = 5 mice, post woken = 5 mice, fully awake = 4 mice).
Time-resolved power spectra indicated slow non-rhythmic waves of
activity occurring at 1-4Hz in both the anesthetized and post woken
states (Fig. 1b). Frequency power is a classical measure of neuronal
activity but it should also be noted that variation of periodic compo-
nent of the power spectra on top of the aperiodic background with

Fig. 1 | Wakefulness alters cortical voltage activity patterns. a Power spectrum
of the average cortex-wide voltage activity at different brain states (mean+SEM.
SEM is indicatedby the shading.N: anesthetized= 5 trials, postwoken= 5 trials, fully
awake sample number = 19 trials). b Time-resolved power spectrum of voltage
signals at different brain states. Voltage data taken from the positionmarkedby the
blue spot in c. Warmer color represents higher power. c Location of three arbitrary
spots on the cortexmask. The background represents the voltage amplitude at one
random time point; colorbar same as d. d Example voltage activity along an

arbitrarily chosen frontal-posterior line on the left hemisphere as indicated in
c (circles on dashed line). e Voltage activity from three representative locations
indicated in c. The black trace is the cortex-wide spatially averaged voltage signal.
f Examples of phase velocity fields at selected time points. The arrow orientation
indicatewavepropagationdirection and arrow length indicatespropagation speed.
All data presented here are comparison between anesthetized, post woken and
fully awake states from a representative mouse.
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brain states has been previously observed21. We observed spatio-
temporal patterns in the voltage maps (Fig. 1c, d), with activity waves
that exhibited larger oscillation amplitudes during the anesthetized
state (Fig. 1e).We then characterized these patterns using PVF analysis.
We detected continuous and complex wave propagation in all brain
states (see Methods), but the wave patterns in the anesthetized state
were more coherent (Fig. 1f). We then further quantitatively char-
acterized these observed differences in the wave patterns.

We first quantified the propagation direction and speed of the
detected waves. The voltage waves propagated in preferred directions
in all three brain state conditions, but the wave directions showed a
broader distribution in the post woken and fully awake states than in
the anesthetized condition (Watson-Wheeler test, W(4) = 7.111e5,
p <0.001, for both comparisons. N = 32385963 for each condition)
(Fig. 2a). The wave propagation speed distributions are also state-
dependent (Friedman’s test, chi-square(1)=1.268e6, p <0.001, Ken-
dall’s W=0.495, 95% confidence intervals = [0.495,0.495] for anesthe-
tized and post woken and chi-square statistic(1)=3.497e6, p <0.001,
Kendall’s W=0.504, 95% confidence intervals = [0.504,0.505] for
anesthetized and fully awake. N = 35616483 for each condition) with a

larger contribution of faster waves in the post woken and fully awake
states than in the anesthetized condition (Fig. 2b). From anesthetized
to post woken, the average speed of PVF decreased (Fig. 2c, one-sided
Wilcoxon signed rank test, W = 15, p =0.0312, Hedges’ g = 1.230, 95%
confidence intervals = [0.818, 3.928]) even though the average propa-
gation speed (20-40mm/s) of largewaves increased (Fig. 2c inset, one-
sidedWilcoxon signed rank test, W=0, p =0.0312, Hedges’ g = −2.026,
95% confidence intervals = [−6.014, −1.151]) for all mice analyzed (N = 5
mice for both conditions). The trends remain largely consistent when
comparing anesthetized mice with the set of fully awake mice but
without reaching statistical significance (on average speed: one-sided
Wilcoxon rank sum test, U = 29, p =0.2063, Hedges’ g = 0.965, 95%
confidence intervals = [0.029, 3.986]; on large wave speed: one-sided
Wilcoxon rank sum test, U = 18, p = 0.0556, Hedges’ g = −0.877, 95%
confidence intervals = [−5.660, 0.189]. N = 4 mice for fully awake). The
presence of large waves with faster speed is consistent with the bumps
around 20–30mm/s in the speed distributions in Fig. 2b derived from
PVF. The average propagation speed of these large waves is consistent
with those found in earlier studies22,23. However, we did find that those
localized complex wave patterns have much slower phase velocities

Fig. 2 | Wakefulness alters the direction and speed of the waves. a Angle his-
togram of wave propagation directions for each hemisphere over one 3-min trial
from a representative mouse at different brain states. b Distribution of the
instantaneous wave propagation speed over the trials in a. c Average speed of PVFs
at different brain states. Inset: Average speed of large waves. d Homogeneity of

wave direction at different brain states. e Heterogeneity of wave speed at different
brain states. a-b: from one representative mouse. c-e: each datapoint represents
onemouse (anesthetized (AN) and post woken state (PW): 5 mice, fully awake state
(FA): 4 mice; gray line connects data from the samemouse). For c, d and e, data are
presented as mean values + /− SEM, SEM is indicated by error bars.
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(distribution peaked around 3mm/s; Fig. 2b). The apparent slow
average PVF speed of these local waves is, in part, due to the fact that
phase singularities at the center of the complex waves are character-
ized as zero speed by nature. Another factor likely limiting the phase
propagation of localized complexwaves are the constrains imposedby
their surrounding activity patterns.

Next, we used homogeneity tomeasure the coherence in thewave
direction.We consistently found a decrease (statistically significant for
anesthetized vs post woken, one-sided Wilcoxon signed rank test,
W = 15, p =0.0312, Hedges’ g = 1.378, 95% confidence intervals =
[0.900, 3.747]; not reaching statistical significance for anesthetized vs
fully awake, one-sided Wilcoxon rank sum test, U = 31, p = 0.0952,
Hedges’ g =0.961, 95% confidence intervals = [0.200, 2.660]. N = 5
mice for anesthetized and post woken, N = 4 mice for fully awake) in
homogeneity from anesthetized to post woken and fully awake states,
indicating that wave propagation directions are more disordered in
the post woken and fully awake states (Fig. 2d). Heterogeneity mea-
surements, which reflect speed variance, slightly increased with the
transition to the awake states (Fig. 2e, anesthetized vs postwoken, one-
sidedWilcoxon signed rank test, W=0, p = 0.0312, Hedges’ g = −2.065,
95% confidence intervals = [−5.384, −1.680]; anesthetized vs fully
awake, one-sided Wilcoxon rank sum test, U = 15, p =0.0079, Hedges’
g = −2.178, 95% confidence intervals = [−6.644, −1.542]. N = 5 mice for
anesthetized and post woken, N = 4 mice for fully awake).

Principal components of phase velocity fields
We evaluated how the spatiotemporal features of the activity waves
changed with brain state by determining the SVD of the phase
velocity fields. The standard principal SVD modes obtained from all
mice and states represent the typical wave propagation trajectories
(Fig. 3a, N = 5 mice for anesthetized and post woken (5 trials per
condition),N = 4mice for fully awake (19 trials)). Mode 1 represents a
large-scale propagating wave across the dorsal cortex (both hemi-
spheres), and its contribution to the overall PVF variance decreased
sharply from the anesthetized to the post woken state (Fig. 3b). This
is consistent with the notion that large-scale brain dynamics is low
dimensional in the anesthetized state24 and is dominated by the first
mode. The top 5 modes together occupied a large portion of PVF
variance during the anaesthetized state (average 48.1%) but con-
tributed much less to the awake state (post woken average 22.3%,
fully awake average 30.2%) (Fig. 3b, anaesthetized vs post woken
one-sided Wilcoxon signed rank test, W = 15, p = 0.0313, Hedges’
g = −2.026, 95% confidence intervals = [1.6361,4.8926], anaes-
thetized vs fully awake, one-sided Wilcoxon rank sum test, U = 100,
p = 0.0043, Hedges’ g = 1.589, 95% confidence intervals = [0.611,
3.381], N = 5 trials each for anesthetized and post woken, N = 19 trials
for fully awake). This increased contribution of other smaller modes
in the awake states indicate increased wave complexity, suggesting
that the wave patterns become more localized and diverse,

consistent with our earlier observations from amplitude patterns
and PVF patterns (Fig. 1d-f).

A change of wave patterns with the transition to wakefulness
Next, we classified the detected wave patterns into plane wave,
standing wave, source, sink and saddle waves (see Methods; Fig. 4a). A
plane wave indicates coherent large-scale propagation, while a stand-
ingwave indicates an almost synchronous non-propagating large-scale
activity. Source, sink and saddle waves typically occupy small areas,
hence are referred to as local wave patterns (Supplementary Fig. 1).
The effects of filtering on the complex wave detection are explored in
Supplementary Fig. 2. We also calculated the curl and the divergence
based on the PVF to complementarily illustrate the wave patterns
(Supplementary Fig. 3).

Source, sink and saddle patterns can co-exist on the same PVF
frame17. If none of these wave patterns were detected in a given frame,
we defined such a frame as unclassified. With the transition into the
wakeful state, we observed that the number of sources, sinks and
saddles largely increased, while plane waves and standing waves
decreased (Fig. 4b,N = 5mice for anesthetized and post woken (5 trials
per condition), N = 4 mice for fully awake (19 trials)).

The increase in the occurrence probability of local wave patterns
can be caused by an increase in either the duration or the number of
wave patterns, or both. During anesthesia, large-scale coherent pat-
terns like plane waves and standing waves typically sustained for
longer time than the complex localwave patterns, but the frequencyof
their occurrence remained low across states (Fig. 5a, b). The number of
total wave patterns detected in post woken and fully awake conditions
increase by a factor of 1.4–2.3 as compared to the anesthetized states
(Fig. 5c), while the occurrence of plane waves and standing waves
decreases with transition into wakefulness (Fig. 5b). In the fully awake
sessions, we observed phases with lowered heartbeat frequency,
reduced facial movements and reduced occurrence of complex local
waves (Supplementary Fig. 4) and interpreted these periods as tran-
sient transitions into a sleepiness state from a state of alertness.

Neural mass model of wave dynamics
Our experimental data demonstrated that the transition to wakeful-
ness is associated with more local wave patterns and with increased
complexity (Figs. 1–5). We then used a neural mass model to elucidate
the possible neural mechanisms of these changes in the wave
dynamics.

The model represents a cortical sheet with coupling between
cortical tissue voxels (see Methods). Each cortical voxel contains local
excitatory and inhibitory neuron populations that interact through
chemical synapses with AMPA and GABAa receptors and electrical
synapses (gap junctions). We modeled the effect of barbiturate anes-
thesia on AMPA and GABAa receptors and gap junctions19,25,26, with an
overall effect of increased inhibition that can lead to a reduction of

Fig. 3 | Principal modes of the phase velocity fields and their contributions
under three states. a Top 5 modes obtained by the singular value decomposition
of all phase velocity fields (SVD variance of mode 1: 16.5%, mode 2: 9.8%, mode 3:
5.4%, mode 4: 4.2%, mode 5: 3.9%; Top 5 modes total: 39.8%, each vector for each

second pixel shown). b Variance distribution of the top 15 modes at different brain
states (mean + /−SEM, SEM is indicated by error bars, anesthetized N = 5 trials,
postwoken N = 5 trials, fully awake = 19 trials).
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local circuit excitability (i.e. more difficult to be excited by excitatory
synaptic drive). We modeled the dynamics of population neuronal
membrane potential by neural field equations with diffusion operator,
which effectively captures the strong near-neighbor connections of
canonical cortical circuits. The coupling between cortical voxels
results from currents through gap junctions and chemical synaptic
receptors.

We first considered only the local coupling without long-range
synaptic connections, and tested whether themodel can account for
the features observed in the wave pattern transitions in the experi-
mental data. We replicated the same analysis as in the experimental
data while changing the parameter controlling the degree of anes-
thetic effect (i.e., parameter p in Eq. (10) in Methods). With deeper
anesthesia, activity waves typically have larger sizes and longer
propagating distances (Fig. 6a), which are consistent with smaller
wave number/larger wavelength (Supplementary Fig. 7). The aver-
age speed of PVFs decreased during the transition from anesthe-
tized to wakeful states (Fig. 6b). Our simulation also showed an
overall increased heterogeneity (Fig. 6c) and decreased homo-
geneity (Fig. 6d) of the PVFs through transitioning from the anes-
thetized to wakeful states. Further, the number of complex local
waves increasedwith a reduction of the barbiturate effect (Fig. 6f, g),
similar to the trend we observed in the experimental data as mice
transitioned from anesthetized towards awake state. However, the
average duration of these complex waves was relatively stable
(Fig. 6e), which is also similar to the observation in our experimental
data (Fig. 5a). Thus, our numerical simulation results based on a
minimalistic model reproduce the key dynamic features during the
transition from anesthetized to awake state.

To obtain a deeper theoretical understanding of these brain state-
dependent dynamicalmechanisms,weperformed a linear perturbation-
based stability analysis (see Supplementary, Figs. 5, 6), involving Hopf
instability (i.e., the tendency of global neural state oscillations) and
Turing instability (i.e., the tendency of the formation of static locally
distributed spatial patterns). We made two observations. First, in the
anesthetized state, Hopf instability dominates Turing instability, hence
more large-scale propagating waves would naturally emerge in this
state. Second, in the wakeful state, there is a strong competition
betweenHopf and Turing instabilities, which induces a superposition of
local spatial patterns and global state oscillations, causing smaller and
more localized wave patterns. Theoretical analysis also provided an
explanation for the reduction of the average wave speed (Mann-Kendall

test, Z = −2.6301, p=0.0085), while large waves increased in propaga-
tion speed (Mann-Kendall test, Z = 2.6301, p=0.0085; Fig. 6b inset).

When considering only the interactions between adjacent pixels,
an increase of neural excitability is sufficient to change wave patterns
similar to observations in vivo during the transition into wakeful state.
However, the physiological awake state is also characterized by spe-
cific patterns of inter-area correlations (including anti-correlations),
such as the canonical resting-state functional connectivity27,28. These
patterns are shaped by inter-area structural connections between
cortical areas. We therefore explored the effect of adding inter-area
connections on the emergence of wave patterns in our neural mass
model. In an ideal case of a noise-free systemwith only one weak inter-
area connection, we observed that the wave activities can transmit
through the inter-area connection only in the awake state, whereas the
lower excitability in the anesthetized state does not support the
transmission through the inter-area connection (Supplemen-
tary Fig. 8).

To examine this feature in a more biologically plausible scenario,
we then constructed unidirectional region-to-region connections, with
theprojections randomlydistributedbetweenpairsof voxels fromtwo
regions of equal sizes (both 30 × 30). We simulated spontaneous
cortical activity with the presence of noise, and used signal coherence
to quantify the information transfer between two cortical regions29,30

(see Methods). Our model suggested that lower frequency bands have
higher coherence, which is caused by large coherent waves, while
higher frequency bands have lower coherence which reflects that the
disordered local waves dominated the overall dynamics.When the two
regions have weak inter-area connections, the activities of the two
regions show greater coherence in the anesthetized state in the fre-
quency band examined (0.5–12 Hz as in the data; Fig. 7a). However, if
the inter-area connections are strengthened, the coherence at the
wakeful state increased (Fig. 7a).

To test this prediction derived from our model, we applied the
corresponding analysis to our experimental data.We first selected two
pairs of cortical regions with similar area sizes and distances but dif-
ferent connection strengths (weak inter-area connection: fromSSp-bfd
toRSPagl; strong inter-area connection: fromSSp-bfd toMop; selected
according to connection strengths provided by the Allen Mouse Brain
Atlas31), and used the experimental data from these pairs of regions at
different brain states to compute the activity coherence. Consistent
with the model results, the activity coherence between regions with
strong inter-area connections is larger than the coherence between

Fig. 4 | Classification anddetectionof specificwave patterns at the cortex-wide
scale. a Examples of wave patterns: plane wave, standing wave, source, sink and
saddle. The background color represents the voltage amplitude. b Time course of

the wave patterns from example trials under anesthetized (left), post woken
(middle) and fully awake (right) state. Color bar shows the number of waves at the
time of a snapshot.
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regions with weak inter-area connection (Fig. 7b). Comparing with the
anesthetized state, coherence under the awake state is discernibly
increased (Fig. 7b). For statistical analysis we selected six additional
pairs of regions (Supplementary Table 1) provided by the Allen Mouse
Brain Atlas31, and computed the signal coherence on the experimental
data from these regions (N = 5 mice).

From our above observations, we also noted that coherence is
differentially affected by the presence of inter-area connections at
different frequency ranges. Therefore, we further examined activity
coherence of the model at different frequency bands (0.5–4Hz,
4–8Hz, 8–12 Hz) corresponding to delta, theta, and alpha brainwave
bands respectively (Fig. 7c). In the absence of inter-area connections,
there is little coherence at either anesthetized or awake states, indi-
cating that wave propagation is mediated by successive neighboring
connections and, hence, cannot transfer information effectively and
rapidly between two distant regions (Fig. 7c). As the strengths of the
inter-area connections increase, the coherence under the awake state
increased (two-sided Wilcoxon signed rank test, 0.5-4Hz: W= 1,
p = 6.14e-51, Hedges’ g = −2.132, 95% Confidence Interval =
[−2.298,−1.998], 4-8Hz: W= 76, p = 1.31e-50, Hedges’ g = −1.844, 95%
Confidence Interval = [−1.999,−1.713], 8–12 Hz: W= 13, p = 6.93e-51,
Hedges’ g = −2.132, 95% Confidence Interval = [−2.301,−1.986], N = 300
trials) whereas the coherence under the anesthetized state does not
show an increase (Fig. 7c). This confirms that the inter-area connec-
tions play less significant role in the anesthetized state due to lower
local excitability in the circuits.

Similar analysis on the experimental data confirmed that the
average coherence increased with the strength of inter-area connec-
tions at both states, but more prominently in the awake than the
anesthetized state (Fig. 7d). This is consistent with the idea that inter-
area projections play important roles in corticocortical information
transmission in the wakeful than in the anesthetized state.

Discussion
Identifying neural signatures underlying the absence or presence of
conscious wakefulness is a long-standing problems in science32. In this
study, by combining empirical observation and modeling, we have

found a set of signatures for the transition from anesthetized to
wakeful states in mice based on travelling waves in the cortex -
including the increased spatiotemporal complexities of localizedwave
patterns - and outlined the possible underlying mechanism of these
neural signatures. These signatures have far more complex spatio-
temporal dynamics than expected by conventional views of temporal
correlations4,5 or attractors33, and may have implications for under-
standing conscious processes of brain functions.

Our analysis of spatiotemporal wave-based signatures reconcile
and extend key previous findings on the transition process from
anesthetized to awake states4,5,33. We found that, during the anesthe-
tized state, cortical dynamics are dominated by cortex-wide traveling
waves. These globalwavesmainlypropagate along the fronto-lateral to
parietal-medial direction, largely constrained by the underlying
structural network connectivity and anatomical gradients17. Cortex-
wide waves give rise to positive correlations between activities among
cortical areas. Our finding is thus consistent with the recent observa-
tions that following a loss of conscious wakefulness, coordinated brain
activity is largely restricted to positive interareal correlations4, but our
findings also exceed these observations by showing that global waves
cause such correlations.

With the transition to wakefulness, the proportion of large-scale
waves decreases, and wave patterns become more localized and
diverse. These increased spatiotemporal complexities of brain
dynamics are generally consistent with the idea that there is a higher
prevalence of a complex configuration of interareal interactions dur-
ing conscious states, as quantified by temporal correlations4,5. How-
ever, by also taking space into account, our study has revealed a more
comprehensive and reliable set of signatures of wakefulness, such as
the increased speed of large waves and heterogeneity, and coexisting
localized wave patterns. Wave patterns can naturally communicate
information due to their propagation property13,34. The increased large
wave speeds during the wakeful state can thus speed up wave-based
communications between different brain areas, facilitating an efficient
cortex-wide coordination. Furthermore, it has been proposed that
interactions of localized neural waves can carry out a type of collision-
based dynamical computation34. Our findings of multiple, coexisting

Fig. 5 | Spatiotemporal dynamics of wave patterns. a Boxplots for average
duration of the different wave patterns at different brain state conditions.
b Proportion of the different wave patterns at different brain state conditions.
c Normalized total detected pattern numbers at different brain states. AN: anes-
thetized, PW: post woken and FA: fully awake. For AN, total pattern numbers for
each trial are normalized to themean total pattern number across trials at AN state.

For PW and FA, total pattern numbers for each trial are normalized to the total
pattern number of the corresponding AN state. a and c: for boxplots, center line
indicates the median, lower and upper limits of the box indicate the 25% and 75%
percentiles, and whiskers give the maximum and minimum values. Outliers are
indicated with “+”. Dots aside the boxplots are showing data from anesthetized
N = 5 trials, post woken N = 5 trials, fully awake N = 19 trials for a and N = 10 for c.
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localized wave patterns and their interactions during the wakeful state
thus suggest that theymight enable suchdynamical computation tobe
implemented in a fundamentally distributed and parallel manner. In
the future, it would be interesting to studywhether and how this wave-
based distributed dynamical computation underlies cognitive func-
tions with specific conscious experience.

The presence of localized wave and global wave modes found in
our study is also consistent with theories, which propose that the
conscious state possesses both global integration and a rich, complex
repertoire of local functional states35. In our framework of wakefulness
states, the global waves are ideal for implementing this global inte-
gration due to their relatively large sizes and large-scale propagations
across the whole cortex. Further, these waves might enable the global
“ignition” of a widespread network of regions; such an ignition has
been proposed to be essential for conscious processing36. On the other
hand, in our framework, each of the localized wave patterns is the
neural substrate for exploring or sampling a rich repertoire of func-
tional brain configuration states through its variable and hetero-
geneous dynamics37. Finally, it is worth noting that as demonstrated in
our study, global and localized waves may strike a right balance in
terms of their occurrence rates for efficiently balancing both

integration and segregation, which is another requirement of con-
scious states35.

Limitedby the practical resolutions in either spaceor time, human
studies using EEG and fMRI often characterize neural spatiotemporal
activities with temporal variability (e.g., entropy measure of com-
plexity) or correlation (e.g., functional connectivity). It has been
observed that increased entropy and decreased functional con-
nectivity are associated with the emergence of consciousness from
sleeping to wakeful state in humans38–40. A comparison between heal-
thy wakeful human subjects and patients with disorders of con-
sciousness further suggested that conscious cognition could be
associated with long-distance coordination and high modularity in
functional connectivity5. The current study suggests that these
observations in humans could potentially be understood under the
travelling wave framework, as the relative dominance of local events
couldcause increased entropywhile reduced globalwaves could result
in decreased functional connectivity. However, caution should be
exercised when generalizing the results from mice to humans41.

To understand the circuit-level mechanism behind the state
transition, we used a neural mass model. The model highlights how
increased excitability (of both excitatory and inhibitory neurons) in the

Fig. 6 | State-induced changes of wave patterns in neural mass model.
a Examples of simulated wave patterns. Color indicates the value of voxel voltage.
Upper: anesthetized state (model parameter p=0:5). Lower: awake state (model
parameter p =0).b-g, Spatiotemporal properties during waking up. Brain states 1-6
correspond to parameter p =0:5, 0:4, 0:3, 0:2, 0:1, 0 in our model simulation, from
anesthetized (state 1) to wakefulness (state 6). Error bar = SEM; N = 10 trials. b The
average speed of waves. Inset: analytical prediction (see SI) of the overall and large-
scale wave speeds fromanesthetized towakefulness states. Note the increase in the
speed of large waves (inset) but decrease in the overall wave speed with the

transition into wakefulness (see Supplementary Information). c Heterogeneity of
the wave speeds. d Homogeneity of the wave directions. e Boxplots for average
duration of the different wave patterns. f Boxplots for average number of wave
patterns every second. For boxplots, center line indicates the median value, lower
and upper limits of the box indicate the 25% and 75% percentiles, and whiskers give
the maximum and minimum values. Outliers are indicated with “+”. N = 10 trials.
gTheprobability of the number of local complexwaves (source, sink and saddle) in
each frame.
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wakeful state can empower long-range connections to initiate addi-
tional waves. Despite this increase in wave initializations, network
stability is preserved due to their destructive interference. The model
includes synaptic and cellular effects of barbiturate anesthesia, but we
shall note that in the real cortex and under physiological conditions,
increased excitability during the conscious state are likely to be
facilitated by endogenous neurostimulators such as acetylcholine and
amines42,43.

The higher excitability state empowers both local processing
and efficient signal transmission through long-range connectome.
Our linear stability analysis showed that the transition from a
dominance of Hopf instability in the anesthetized state to a strong

interaction between Hopf and Turing instabilities in the awake state
caused the increased speed of large-scale traveling waves and the
decreased speed of overall wave patterns. Besides the dynamical
stability property due to the interaction of local excitability and
neighboring coupling, the complex long-range connections in the
cortical connectome make additional contributions to the emer-
gence of complex wave patterns, especially prominent in the
wakeful cortical state. Both effects further enhance and balance
local and distributive processing. Thus, higher excitable states
during wakefulness allow a more efficient propagation, processing
and integration of information, in order to facilitate higher cognitive
process and executive outputs.

Fig. 7 | Long-range connections enhanced the coherence both in anesthetized
and awake state. a Activity coherence between two cortical regions with weak and
strong long-range connections in the anesthetized and awake states in the model
simulation (mean + SEM. SEM is indicated by the shading. Both N = 100 trials).
b Same as a, for experimental data (mean + SEM. SEM is indicated by the shading.
Anesthetized state N = 5 trials, post woken state = 5 trials). c Boxplots for activity
coherence at different frequency bands between weakly (group of connection
strength = 0, 5, 10) and strongly (group of connection strength = 20, 25, 30) con-
nected cortical regions in the anesthetized and awake states in the model simula-
tion. For boxplots, the center line indicates the median, the lower and upper limits
of the box indicate the 25% and 75% percentiles, and the whiskers give the max-
imum and minimum values. Outliers are indicated with “+”. Both N = 300 trials.

Two-sided Wilcoxon signed rank test was applied, resulting in 0.5–4Hz: W= 1,
p = 6.14e-51, Hedges’ g = −2.132, 95% Confidence Interval = [−2.298,−1.998], 4–8Hz:
W= 76, p = 1.31e-50, Hedges’ g = −1.844, 95% Confidence Interval = [−1.999,−1.713],
8-12 Hz: W = 13, p = 6.93e-51, Hedges’ g = −2.132, 95% Confidence Interval =
[−2.301,−1.986], *p <0.05, **p <0.01, ***p <0.001. d Same as c, for experimental
data (anesthetized state N = 5 trials, post woken state N = 5 trials). Two-sided Wil-
coxon signed rank test was applied, resulting in 0.5-4Hz: W = 104, p =0.0103,
Hedges’ g = −0.707, 95% Confidence Interval = [−1.410,−0.282] and W= 111,
p =0.0020, Hedges’ g = −1.069, 95% Confidence Interval = [−2.090,−0.526], 4-8Hz:
W= 106,p =0.0067,Hedges’g = −0.902, 95%Confidence Interval = [−1.793,−0.333],
8-12 Hz: W = 103, p =0.0125, Hedges’ g = −0.776, 95% Confidence Interval =
[−1.548,−0.184]. *p <0.05, **p <0.01.
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Methods
Ethical statement
All experimental procedures were performed at Imperial College
London UK in accordance with the United Kingdom Animal Scientific
Procedures Act (1986), under Home Office Personal and Project
Licenses following appropriate ethical review by Imperial College
London Animal Welfare Ethical Review Body and Home Office.

GEVI-based optical voltage imaging
We used CaMK2A-tTA;tetO-chiVSFP transgenic mice44 that express the
genetically encoded voltage indicator chimeric VSFP Butterfly45 in
pyramidal neurons across all cortical layers. We used the epi-
fluorescence imaging approach that restricts optical access and signal
detection to the superficial cortical layers (layers 1-3). Mesoscopic
transcranial voltage imaging datasets were acquired following pre-
viously described methods44,46–48. Briefly, adult mice (aged 2-3 months
of either sex) underwent isoflurane surgical anesthesia, and were
implanted with a transcranial cortex-wide window on a thinned but
otherwise fully intact skull and a head-fixation plate. After at least one-
week post-operative recovery, animals were habituated to the dual-
emission wide field epifluorescence macroscope used for image
acquisition. Images were acquired with two synchronized CMOS
cameras, using a high power halogen lamp for fluorescence excitation
(Moritex, BrainVision) and the following optics (Semrock): mCitrine
(donor) excitation 500/24, mCitrine emission FF01-542/27, mKate2
emission BLP01-594R-25, excitation beam splitter 515LP, and detection
beam splitter 580LP. Spontaneous population membrane voltage
fluctuations of pyramidal neurons were monitored as the ratio of
changes of gain-equalized47

fluorescence intensities at the two fluor-
escence emission wavelength bands.

Datasetswere acquired over cortex-wide two-hemispherefields of
view at 150Hz acquisition frame rate and 29 um × 29 um spatial
resolution. During the imaging sessions (several trials of 180 s duration
each), mice were initially anesthetized (induced by a bolus injection of
30mg/kg pentobarbital sodium), and then allowed to recover over a
state of sedation to wakefulness. Heart rate was used to monitor the
state of the animal during this progression.Weconsidered abrain state
with the absolute lack of spontaneous limb andwhiskermovements as
“anesthetized”. We analyzed trials over five mice (Mouse 1-4 are males
and Mouse 5 is female), and each mouse provided several trials from
anesthetized condition to awake condition (mouse 1: eighteen trials;
mouse 2: seven trials; mouse 3: three trials; mouse 4: three trials;
mouse 5: six trials). We used one trial as “anesthetized” and one trial as
“post woken” from each recovery mouse imaging experiments. Thus,
we have a total of 5 trials for anesthetized and 5 trials for post woken
for analysis. In addition, four mice were analyzed in the fully awake
state (mouse 1: ten trials, mouse 6: seven trials, mouse 7: one trial,
mouse 8: one trial). Each trial recorded spontaneous voltage activity
for 180 s continuously.

Behavioral monitoring
To monitor facial expression and forelimb movements, an additional
camera equipped with a f25mm lens was frame-synchronized with the
brain imaging cameras andwas directed towards themouse’s face. The
scene was illuminated by infrared light (850 nm) to avoid interference
with voltage imaging using the blue-redwavelengths range (<700 nm).

Data preprocessing
We extracted the voltage signal from raw fluorescence signals23,44,47,
and applied 2-times coarse graining using bi-cubic interpolation
(weighted average of pixels in the nearest 4-by-4 neighborhood;
function resize, MATLAB, Mathworks Inc, USA) to obtain a 44 × 52
matrix to reduce the spatial noise before computing the phase velocity
fields. Then, we applied 0.5-12 Hz (including delta, theta and alpha
brainwave bands) bandpass filtering on the data (Chebyshev Type II,

function filtfilt, MATLAB, Mathworks Inc, USA). Periods with large
temporalfluctuations (amplitude > 3 standarddeviation) of thefiltered
voltage signals averaged over the field of view were defined as move-
ment artifacts andwere excluded from further analysis. Registration of
the cortex-wide voltage imaging data into the Allen Mouse Brain atlas
was performed as previously described31.

To measure the behavioral states of the animals, we adapted the
motion energy (ME) method49 to analyze the facial expression movies
synchronized to the brain imaging data. ME quantifies the amount of
movements at a specific location of the image as the absolute intensity
of the differences between the consecutive time points (frames) of the
same pixel. We used the spatial average of the ME sequences to
quantify overall motion.

Phase velocity field
The phase velocity field (PVF) analysis used to characterize the cortex-
wide spatiotemporal voltage patterns is adapted from physical the-
ories of turbulence9,14. Briefly, thismethod is based on the assumptions
that the contours (isolines) of the phase of brain oscillations move
monotonically spatiotemporally.We used generalized phase50 to avoid
phase distortions on narrow band filter and extract appropriate phase.
We first used the single-sided Fourier transform on the wideband fil-
tered 0.5-12 Hz signal and computed phase derivatives as finite dif-
ferences. We then numerically detected complex riding cycles which
capture the generalized phase of the largest fluctuation on each pixel
ϕ x,y,tð Þ. By solving the corresponding Euler–Lagrange equations,
phase velocity vφ x,y,tð Þ= ðu x,y,tð Þ,v x,y,tð ÞÞ can be calculated from the
phases ϕ51. Processing for the above methods can be found in the
toolbox NeuroPatt [https://github.com/BrainDynamicsUSYD/
NeuroPattToolbox]9.

Order parameters of wave speed and direction
We introduced an order parameter �vφ to characterize the collective
motion of the wave patterns:

�vφ tð Þ= 1
Nv0ðtÞ

∣
X
x,y

vφðx,y,tÞ∣ ð1Þ

where N is the number of vectors in the analysis window, v0 is the
average magnitude of the velocity over all pixels, and vφ is the phase
velocity vφðx,y,tÞ. The homogeneity �vφ ranges from 0 to 1, with 1
representing the case where the velocity vectors are in parallel.

To quantify the heterogeneity of wave pattern dynamics, we
introduced an index as in52:

H =
1
T

XT
t = 1

1
μðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nt

Xi=N
i = 1

½viðtÞ � μðtÞ�2
 !vuut ð2Þ

whereT is the total time andNt is the number of vectors in the analysis
window at time t, viðtÞ is the speed (length) of phase velocity vector i at
time t, μðtÞ is the mean vector speed at time t. If H =0, all vectors have
the same length, which indicates that the waves propagate at the same
speed. A larger heterogeneity means a larger variance of the wave
propagation speeds across space.

Speed of large waves
We defined large waves as the positive period of the spatial average
voltage oscillation, if the peak amplitude is higher than 1×10−3 ΔR/R.
The voltagemaps of largewaveswere additionally spatiallyfiltered (2D
Gaussian, σ = 232 µm). For each pixel recruited during a large wave, we
computed the time of peak amplitude. For two neighboring pixels, the
spatial distancedividedby thepeak timedifferencecorresponds to the
wave speed. Thus, for each map of peak time, we computed the local
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spatial gradient for each pixel, and determined the propagation speed
as the median of these gradients.

Identification of wave patterns
We identified wave patterns based on previous methods14 with some
modifications. Plane waves were defined by periods when homo-
geneity �vφ tð Þ≥ 0.85 within each cortical hemisphere inside the data
acquisition field of view. Variation of the threshold values between 0.8
and 0.9 did not substantially change the results.

Standing waves were defined as periods with no apparent wave
velocity (i.e. propagation) over an entire hemisphere within the data
acquisition field of view. The criterion is that an average magnitude of
the velocity fields is 2 SD below the mean value across the analyzed
time period.

Organizing around the critical points, local complex wave pat-
ternswere identified by the intersections of twobilinearly interpolated
null clines of the phase velocity field. Pattern types (source, sink or
saddle) were further classified by the eigenvalues of the Jacobian
matrix at the corners of the four pixels around the critical point14,17:

J =
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

 !
ð3Þ

Based on the trace (τ) and determinant (4) of the Jacobianmatrix,
potential source (unstable point, τ>0), sink (stable point,τ<0) and
saddle (4<0) patterns were determined14,17. Two additional criteria
must be satisfied for source and sink patterns17: 1) the angle between
two nearby vectors should be less than α�2π=Nv. α is a parameter to
adjust the threshold, here we used α = 1:2. Nv is the number of vectors
around a circle with a certain radius; 2) the angle between diagonal
vectors should be less than β�2π, β is also a parameter to adjust the
threshold, here we used β=0:3. We counted each unstable ‘node’
(both eigenvalues are real and of the same sign) or ‘focus’ (eigenvalues
are complex-conjugate) as a source event, and stable ‘node’ or ‘focus’
as a sink event. That is, we do not distinguish ‘node’ from ‘focus’when
considering source and sink. We defined the center location of every
source, sink and saddle pattern as the singularity point of PVF with
near-zero velocity.We defined the duration of these complex waves as
the number of time steps that the same location is occupied by the
same singularity. For each pixel and for each wave pattern type, we
calculated theprobability of patternemergenceas the cumulative time
that the pattern existed.

To validate our method for detecting sources, sinks and saddles
(local waves), we compared the probability of local waves detected in
the real data and the shuffled data as a function of the detection
threshold. Shuffling was performed by randomization of the phase of
the Fourier components of raw voltage signals, thus preserving the
power spectrum on each pixel and random shuffling of pixel indices.
This detection thresholdwas defined as a pair of values (d, r) whered is
the lifetime duration (number of time steps) of the same local wave
pattern, and r is the minimum radius (number of pixels from the sin-
gularity) of the local wave pattern. The probability at detection
threshold (d, r) is defined as the number of local wave patterns with
detection threshold (d, r) divided by the number of localwave patterns
with detection threshold (1, 1). The detection threshold (2, 3) was
chosen for the experimental analysis based on the 95% confidence that
the detected waves are not due to randomness (Supplementary Fig. 1).

Singular value decomposition of wave patterns
To identify the principal components of the wave patterns, we applied
singular value decomposition to all phase velocity fields
vφ x,y,tð Þ= ðu x,y,tð Þ,v x,y,tð ÞÞ9. Every frame of the imaging data had a
matrix of phase velocity field vectors, from which we derived a matrix
w containing ðu x,y,tð Þ,v x,y,tð ÞÞ. The singular value decomposition can

be defined as:

w=T
X

R* ð4Þ

whereT andR are unitarymatrices, * denotes the conjugate transpose,
and ∑ is a diagonal matrix of the singular values σ. The k-th spatial
mode, defined by the velocity field in the k-th column of R, has a
proportion of the overall variance given by σ2

k=
P
i
σ2
i . Then we pro-

jected the instantaneous representative PVFs on the principal modes
to obtain:

M=w=R ð5Þ

where M is the weight matrix of every principal mode contributed to
the PVFs. From this we can obtain the projection variance of the m-th
spatial mode on the n-th PVFs thatM2

m,n=
P
i
M2

i,n.

Neural mass model
The neural network model that we used for understanding the tran-
sition of wave patterns is a minor modification of the model proposed
by Steyn-Ross et al.53. Unlike their originalmodel, which only considers
the effect of anesthesia on GABAa synaptic receptors, wemodeled the
effect of anesthesia on both AMPA receptors, GABAa receptors, and
gap junctions, which is a more biologically realistic scenario. We
modeled a cortical area of size L2 = 1 cm2 (similar in size to the mouse
cortical field of view of our imaging experiments) and composed of
N ×N = 100× 100 lattices, where each lattice, with the size 100 µm2

represented a tissue volume element (voxel) that can be regarded as a
cortical column. For simplicity, we adopted a periodic boundary in the
simulation. The excitatory (E) and inhibitory (I) membrane potentials
at the column in position ðx,yÞ at time t, Ve x,y,tð Þ,Vi x,y,tð Þ, obey the
dynamic equations

τe
dVe x,y,tð Þ

dt =Vrest
e � Ve + Vrev

e � Ve

� �
geΦe + Vrev

i � Ve

� �
giΦi +De∇

2Ve,

τi
dV i x,y,tð Þ

dt =Vrest
i � Vi + Vrev

e � Vi

� �
geΦe + Vrev

i � Vi

� �
giΦi +Di∇

2Vi,

(
ð6Þ

where the excitatorymembrane timeconstant, the restingpotential and
the reversal potential are τe =40ms, Vrest

e = � 62:5mV and Vrev
e =0mV,

respectively. The inhibitory membrane time constant, the resting
potential and the reversal potential are τi =40ms, Vrest

i = � 64mV and
Vrev

i = � 70mV, respectively. The E and I gap junction diffusion-
coupling strengths54 are De =Di × 10

�2 and Di =0:07mm2=ms. The
synaptic strengths are ge =0:156 and gi =0:875.

The synaptic conductance Φe,Φi are rate-driven response with
alpha function form. They obey the equations

τEd
d
dt + 1

� �2
Φe x,y,tð Þ=Ncc

e Φe x,y,tð Þ+Nlocal
e Qe Ve

� �
+ Isc +a

ffiffiffiffiffi
Isc

p
ξe x,y,tð Þ,

τId
d
dt + 1

� �2
Φi x,y,tð Þ=Nlocal

i Qi V i

� �
:

8<
:

ð7Þ

The E and I synaptic decay times are τEd = 5ms, τId = 20ms. Both E
and I conductances are driven by the local mean E and I firing rates
Qe Ve

� �
,Qi Vi

� �
, which are modeled by commonly used sigmoid func-

tions

Qb Vb

� �
=

Qmax
b

1 + expðπðθb � VbÞ=ð
ffiffiffi
3

p
σbÞÞ

,b= e,i ð8Þ

The parameters in the sigmoid functions are maximum firing rates
Qmax

e =0:03=ms,Qmax
i =0:06=ms, thresholdvoltagesθe =θi = � 58:5mV

and standard deviations σe =3mV, σi = 5mV.
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Apart from the local source, excitatory conductance is also driven
by corticocortical current flux ϕe, modeled by the wave equation55

r
v
d
dt

+ 1
� �2

ϕe x,y,tð Þ=Qe Ve

� �
+ r2∇2ϕe, ð9Þ

where the axonal conduction velocity is v=0:056mm=ms and the
characteristic length scale for corticocortical axonal connectivity is
r =0:1mm. The axonal connection numbers of corticocortical E con-
nection, local E connection and local I connection in Eq. (7) are set as
Ncc

e = 200, Nlocal
e =85, and Nlocal

i = 120 respectively. Finally, the noisy
subcortical inputs (e.g. from thalamus) to excitatory conductance are
also included and the strength is Isc =0:018=ms with a= 5:2 being the
scale factor of noise strength. fξeðx,y,tÞg are modeled as independent
Gaussian white noise with zero mean and unit variance. The above
model represents the wakeful state.

In the model, we considered three effects of barbiturates on
excitatory synaptic receptors (such as AMPA receptor), inhibitory
receptors (such as GABAa receptor)26 and gap junctions25. First, bar-
biturates can prolong the decay time of the inhibitory post-synaptic
potential while maintaining the height of the peak18. Second, barbitu-
rates can decrease the peak of the excitatory post-synaptic potential
without affecting its decay time19. Third, barbiturates can block gap
junction coupling20. Taking together, we can introduce three scale
factors Δλi ≥0,Δλe ≥0,ΔλD ≥0 to rescale the parameters in the model
such that

τId ! ð1 +ΔλipÞτId
gi ! ð1 +ΔλipÞgi

(
, ge ! 1� Δλep

� �
ge,

De ! 1� ΔλDp
� �

De

Di ! 1� ΔλDp
� �

Di

(
, ð10Þ

which represent the anesthetic effects on the inhibitory synapse,
excitatory synapse and gap junction respectively. We used a common
modulating parameter p, where a larger parameter p value indicates
stronger anesthetic effect. Here, the parameters Δλi =0:08, Δλe =0:01,
ΔλD =0:4286 reflect the relative difference of the effects26,54. To com-
pare the results of recovery from anesthesia to wakefulness, we
simulated the cases of 6 parameters where p ranges between 0.5 and 0
in decreasing steps of 0.1, corresponding to states 1~6 in Fig. 6. The-
oretical analysis of the dynamical states and parameter regions are
shown in SI (Supplementary Fig. 5).

Long-range connections play an important role in the cortical
network30,56. To further study the effect of long-range connections in
different anesthetic states, an additional term ϕLR

e ðx,y,tÞ is introduced
into the right-hand-side of the first equation of Eq. (7) as follows,

ϕLR
e x,y,tð Þ=

X
μQe i2,j2,t � T 1,2

� �
δxi1

δyj1
: ð11Þ

Each term in the summation in Eq. (11) represents the effect of a
long-range link from site ði2,j2Þ to site ði1,j1Þ with strength μ. δ is the
Kronecker delta function, such that δxi1

δyj1
= 1 if and only if x = i1,y= j1.

T 1,2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i1 � i2
� �2 + j1 � j2

� �2q
=v is the transmission delay53, which is

proportional to the distance between the two sites.

Numerical simulations were implemented by a forward difference
method with a time step dt =0:4ms and the Laplacian operator in Eqs.
(7) and (9) was computed by a five-points central formula. For simu-
lating the dynamics without long-range connections, for each para-
meter setting, we simulated the model for 60 s for random initial
condition. The simulation outcome for each set of parameters was
obtained by averaging across 10 independent trials. For simulating the
dynamics with long-range connections where we studied the regional
signal coherence, we simulated the model for 500 s for random initial
condition and the results were obtained from 100 independent trials,
as the coherence measure showed strong variation across trials.

For the analysis of the modelling results, the voltage maps
Ve x,y,tð Þ were bandpass filtered (0.5-12 Hz). Similar to processing the
voltage maps of the experimental data, we used the detection
threshold (2, 3) to exclude local wave patterns which may represent
non-organized activity.

Coherence
We usedMagnitude-Squared Coherence to estimate the correlation as
a measure of similarity in the activity between two locations. The
magnitude-squared coherence is a function of the power spectral
densities, Pxxðf Þ and Pyyðf Þ, and the cross power spectral density,
Pxyðf Þ, of x and y:

Cxy fð Þ= ∣Pxyðf Þ∣2
Pxxðf ÞPyyðf Þ

ð12Þ

With the values of C ranging between 0 and 1, indicating how well
x corresponds to y at each frequency. A larger value of coherence
reflects higher correlation between x and y.

Statistical analysis
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. The experiments were not rando-
mized. The Investigators were not blinded to allocation during
experiments and outcome assessment. The name and type (one-sided
or two-sided) of the statistical test, the N value for each statistical
analysis, the comparisons of interest are stated together with the
results. All applied tests are nonparametric and thus no assumption is
required on the data distribution.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The experimental and simulation data generated in this study are
available on Zenodo [https://doi.org/10.5281/zenodo.7574791].

Code availability
All code for performing the analyses in this study are available onGithub
[https://github.com/MianxinLiu/Complexity-of-cortical-wave-patterns-
of-the-mouse-cortex], and Zenodo [https://doi.org/10.5281/zenodo.
7497560]. Code for phase velocity field calculations can be found in
the toolbox NeuroPatt [https://github.com/BrainDynamicsUSYD/
NeuroPattToolbox].
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