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Extracting quantitative information about highly scattering surfaces from an
imaging system is challenging because the phase of the scattered light
undergoes multiple folds upon propagation, resulting in complex speckle
patterns. One specific application is the drying of wet powders in the phar-
maceutical industry, where quantifying the particle size distribution (PSD) is of
particular interest. A non-invasive and real-time monitoring probe in the dry-
ing process is required, but there is no suitable candidate for this purpose. In
this report, we develop a theoretical relationship from the PSD to the speckle
image and describe a physics-enhanced autocorrelation-based estimator
(PEACE)machine learning algorithm for speckle analysis tomeasure the PSDof
a powder surface. This method solves both the forward and inverse problems
together and enjoys increased interpretability, since the machine learning
approximator is regularized by the physical law.

Speckle results from the propagation of a wavefront whose phase has
been strongly modulated by spatially variant features across a surface
(or volume), so the speckle is an encoding of spatial patterns on the
rough surface. As long as the morphology statistics are invariant, it is
straightforward to relate statistical moments of the surface to the
statisticalmoments of the speckle1–3. The laser speckle pattern has long
been used to characterize surface roughness3–12. However, themethod
typically works only when the surface height fluctuation (equivalently,
typical particle size) is smaller than or comparable to the light
wavelength3, limiting its application to surfaces encountered in many
industrial processes, such as pharmaceuticals manufacturing. Elec-
tronic Speckle Pattern Interferometry (ESPI) can measure the surface
motion distribution even at nanometer scales, but it is a two-step
measurement with a reference beam, inhibiting real-time monitoring

and lacking absolute height information13–15. Laser speckle contrast
imaging is qualitative and does not yield quantitative surface
roughness16. Interferometric particle imaging canmeasure the particle
size and shape, but it only works for a single particle or sparsely dis-
tributed particles17–19.

Recent advances in Machine Learning have been successful in
imaging through scattering media20–25 and speckle suppression26–31.
However, in both cases, the speckle pattern is treated as an unwanted
disturbance. Extracting the scattering media information from the
speckle has also been pursued qualitatively: for example, the classifi-
cation of materials according to the scattered speckle patterns5–8. The
main difficulty preventing further quantitative speckle analysis is the
sensitivity of the phase signal to surface randomness, which hinders
neural networks’ ability to identify other underlying dynamics.
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Quantitative granularity characterization is desired in many
applications32–34, particularly the powder drying process in the phar-
maceutical industry, during which the wet solid (“cake”) is converted
into a powder consisting of particles with the requisite size distribution.
These powders are subsequently employed with other ingredients to
form solid oral dosage forms such as tablets and capsules. However,
agglomeration, deagglomeration, and crystal breakage are all likely
during the drying process. Occurrence of hard agglomerates could
influence content uniformity and functionality in the final drug product,
e.g., if the active ingredient concentration becomes too high. Even
though the parameters of the drying processes are generally well-con-
trolled, the evolution of the particle sizes during agitation is not fully
predictable. Thus, it is crucial to monitor particle sizes quantitatively in
real-time and correct for abnormal size changes through feedback
control on process parameters (e.g., temperature, agitation speed).

No real-time online monitoring methods exist presently, to our
knowledge, that can detect early on and prevent such abnormal par-
ticle size changes for wet powder drying. Since the cake surfaces clo-
sely meet the Lambertian assumption35,36, imaging by a standard
camera from a distance compatible with the manufacturing setting
(~0.2–0.5m away from the powder) does not provide sufficient con-
trast or spatial resolution to extract the surface PSD. Machine vision to
analyze the appearance of the cake surface and detect agglomerates is
generally limited due to the same reason37. Imaging with cameras
in situ relies on particle sparsity, which only works for solid suspen-
sions rather than wet powder38–40. Moreover, this method is invasive,
so there is a risk of the powder obscuring the viewing field and ren-
dering the imaging operation impossible. Instead, manufacturers
commonly rely on trained personnel to visually observe the mixing—
but this can be subjective. Lastly, it is possible to extract a sample from
the cake at fixed time intervals and pass it through a particle size
analyzer instrument. However, this method is invasive and slow and,
thus, not suitable for industrial use.

In this work, we propose a physics-enhanced autocorrelation-
based estimator (PEACE) to extract the PSD of a powder surface from
its laser speckle as shown in Fig. 1. With the help of the free-space
propagation equations, we relate the ensemble-averaged spatial-

integral autocorrelation function to the statistics of powder surface,
i.e., the PSD. This relationship becomes the forward model for the
estimator, yet it is inevitably incomplete. For example, particles may
overlap along the longitudinal direction, which should not be intro-
duced in the explicit model lest it becomes exceedingly complicated.
Similarly, our experimental approach includes a finite spatial integral
and temporal averaging of several frames, which are subject to sensor
uncertainties in the model. Another limitation is that collecting suffi-
cient experimental data to compensate for these uncertainties is pro-
hibitively expensive.

We use PEACE to compensate for these uncertainties in the for-
ward model. As shown in Fig. 1b, a small neural network called “gen-
erator” is combinedwith the forwardmodel to form thefinalmap from
the PSDs to the experimentally collected autocorrelation images. In
this way, starting from a modest amount of experimental data we can
create a much larger synthetic (simulated) dataset. Finally, a deep
neural network (DNN) called “estimator” is trained by the synthetic
dataset to learn the inversemapping from the speckle autocorrelation
to the PSD. The estimator is overparameterized but generalizes well,
confirming recent theoretical developments41. This method solves
both the forward and inverse problems together, improving the
machine learning model’s generalization ability and interpretability.
For example, the explicit forward model allows us to estimate bounds
on our prediction ability. We note that the terms “generator” and
“estimator” may be reminiscent of the generator and discriminator in
Generative Adversarial Networks (GANs)42 yet our approach is sig-
nificantly different in that we do not employ adversarial training.

Here, we show that our method overcomes these limitations by
providing a real-time, non-invasive, far-field optical probe (as shown in
Fig. 1a) to monitor particle size distributions quantitatively. Especially
for densely concentrated wet powders, this method is the first in-line
measurement, and it is easily deployable in the industrial instrument.

Results
Forward model—speckle and particle statistics
With the help of the physics model, we derive the expression of the
forward operator H in the “Methods” section and in Supplementary

Fig. 1 | Overview of the speckle probe and the PEACE algorithm. a A sketch of
our speckle probe. We collect the scattered light from the scattering media—
powder in our case—with a monochromatic CCD camera. The Machine Learning-
based analysis can extract the quantitative surface information, the PSD, from the
speckle statistics. b PEACE training loop. The forward operator comes from the
physics model. A small “generator” with a physics-picture-inspired structure is

trained by a modest amount of the experimental data. The forward operator and
the trained generator produce a much larger synthetic dataset. This synthetic
dataset trains the DNN “estimator” to learn the mapping from the measured
speckle autocorrelation to the particle size distribution (PSD). The ‘generator’ only
contains 2.8k parameters, while the estimator has 377k parameters.
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Section 3.

A uð Þ� �
=H p rð Þð Þ= 1

C
4sin2 Du

2

� �

D2u2
∣
Z

p rð Þ sin ruð Þ
u

dr∣
2

ð1Þ

where Ah i denotes the ensemble average autocorrelation of
the speckle pattern, p rð Þ is the PSD in terms of number of
particles, D is the beam spot diameter which is much larger than
the particle size r in our range of interest (50–1000 μm), and

C = ∣
R
p rð Þrdr∣2 is the normalization factor. Therefore, the main

ring-shape feature is dominated by
4sin2 Du

2ð Þ
D2u2 , and the side-lobe

intensities are modulated by ∣
R
p rð Þ sin ruð Þ

u dr∣
2
. We design the

progression of a typical experiment based on this forward
operator as shown in Fig. 2.

Figure 2a shows two sample sets with different particle sizes
imaged through a regular microscope. Figure 2b are photos collected

Fig. 2 | KCl powder results with sizes (i) ~106–180 μm and (ii) ~425–500 μm.
a Microscope and b commercial camera photos for two samples. c Raw speckle
images collected by the CCD camera. d These four spatially integrated auto-
correlation images are collected on the same sample with different particle posi-
tions. e The upper half image shows the averaged 1000 autocorrelation frames
from themeasurement. Since the particle position is ergodic, the temporal average
equals the ensemble average of the autocorrelation image. The lower half image

shows the calculation result from the forward operator. f The ground truth particle
size distribution (PSD) and the corresponding estimator prediction are plotted
together. g Cross-section plots of the averaged autocorrelations in e for different
samples with ascending PSDs. The positions of the high-order lobes are marked.
We raise the autocorrelation to the power of one-eighth to enhance the sidelobes’
visibility.
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by a commercial camera, with broadband and spatially incoherent
illumination. The contrast and resolution are too coarse to resolve the
particles, not displaying any discernible features that could be attrib-
uted to particle size. Figure 2c shows their raw speckle images col-
lected from the CCD camera. Figure 2d shows the respective speckle
autocorrelation patterns, which are subsequently averaged as shown
in Fig. 2e. The calculation results in Fig. 2e are passed to a two-stage
neural network consisting of the generator and the estimator. The
generator corrects the physical model for uncertainties, such as
overlapping particles that would be very hard to model analytically.
The estimator receives its input from either the generator or the
measured results (shown in Fig. 2e) and produces the cumulative
distribution of the particle sizes. By one more differentiation step, we
obtain the final estimate of the PSD as a vector of powder concentra-
tions vs. particle size. Figure 2f shows one typical test result from a
particle distribution never shown during the neural network’s training
stage, as computed by the combined generator-estimator algorithm.
This estimated PSD can be compared with the ground truth PSD that
we established using a commercial particle size analyzer, the “Mas-
tersizer” (details in Supplementary Section 2). The complete details of
this process are in the Supplementary Sections 3 and 4. Figure 2g
shows cross-sections of the averaged autocorrelation for different
sample particle sizes. The intensities of the first and second-order
lobes monotonically decrease with ascending PSDs. The higher-order
lobes are merged into the background fluctuations for the large par-
ticle size sample, while for the small particle size sample the lobes are
clearly resolvable.

Test results and model visualization for PEACE
We also conducted a thorough analysis of the generalization ability of
the algorithm, shown in Fig. 3. This experimental test dataset was
disjoint fromthe trainingdata.Thefirst column is the calculation result
for the measured PSD from the forward model. The second column
shows the image produced by the generator, while the third column
shows the corresponding ground truth, i.e., the experimental averaged
autocorrelation. These images are averaged from 200 autocorrelation
images, different from the 1000 frames averaged one in Fig. 2e.
Reducing the number of averaging frames sacrifices the signal-to-noise
ratio but speeds up the data collection time for each prediction. There
is still a slight mismatch between the generated image and the mea-
sured image in the surrounding area. These noise shape features are
the residual from the ensemble average because the image is averaged
with a finite number of frames only. Since they are away from the
region of interest (later discussed in Fig. 4e), this deviation will not
affect the performance of the estimator. The predictions and the
ground truths measured from the particle size analyzer are plotted
together in columns 4 and 5. The cumulative distribution follows from
a clear physical definition of the size distribution for the non-spherical
particles, such as the cubic-shaped KCl particles shown in Fig. 2a.More
details about the cumulative distribution are included in Supplemen-
tary Section 4.

We use two methods to visualize our estimator. The first is plot-
ting the output of each stage (the estimator’s detailed structure is in
Supplementary Section 4). As shown in Fig. 4a–d, the first stage output
deemphasizes the zero-order peak and differentiates the side region.

Fig. 3 | Generator and estimator prediction results with the experimental test
dataset. The results of 10 test sample sets are plotted. The first and second col-
umns show the output from the forward operator H and the generator G,
respectively. The measured 200 frames averaged autocorrelations are plotted in

the third column. The prediction (marked as orange) from the estimator F and
ground truth (marked as red) of the cumulative distributions and the corre-
sponding PSDs are plotted together in columns 4 and 5.
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The second stage enhances the differentiation in the side area. The last
two stages decode the information and extract the features.

The other method is the Gradient-weighted Class Activation
Mapping (GradCAM)43. Thismethodvisualizes the regions of input that
are “important” for predictions. The results for different samples are
plotted in Fig. 4e. For small-size samples, the attention is spread over
the high-order lobes. For the big-size samples, the attention is con-
centrated on the second-order lobes since the higher-order lobes are
no longer distinguishable. The attention for all plots avoids the central
peak region, which is consistent with our theory.

Time-lapse PSD monitoring in the drying process
To validate the real-time monitoring applicability of our method, we
carried out a time-lapse PSD measurement of an entire filter drying
process44. The detailed information of our dryer is included in Sup-
plementary Section 1. This demo process operated on 280 g of KCl
powder with a mixed solvent (water 40 g/Ethanol 60 g). Throughout

the process, we maintained conditions of temperature 26 °C, pressure
−720mbar and agitation speed4 rpm. Figure 5b shows the PSDmap vs.
time. The sampling period of the PSDmeasurement was 15 s, including
the data collection time for 200 frames and the computation time. The
computer used for thismeasurementwas an Intel XeonW2245CPU, 64
GB RAM, and NVIDIA Quadro RTX 5000 GPU with 64 GB VRAM.

For the duration of 5 to 25min since the beginning of the process,
we observed a gradual size increase compared to the original PSD.
Since no crystallization or crystal growth could take place during
drying, we think soft agglomeration instead occurred. From 25 to
40min, the PSDgradually decreased to the original distribution, which
is indicative of deagglomeration. At the far end (>75mins), crystal
breakage45 caused the size distribution to decrease slightly compared
to the original. PSD curves sampled at different times are plotted in
Fig. 5a, together with Mastersizer results serving as ground truth for
the beginning and ending time. They match well and the slight crystal
breakage is clearly resolved for both Mastersizer and speckle

Fig. 4 | Network visualization of the estimator F. a The output of the first stage
with 8 filters. b The output of the second stage with 16 filters. c The output of the
third stage with 32 filters. d The output of the fourth stage with 64 filters.

eGradCAM results for different sample sets. The input images are plotted together
with the “importance” maps which consist of the flame shape features.
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predictions. The PSD curve shifts toward the right from the start time
to 26.1min, and then decreases backwards to the original position as
plotted for the next 59.2min. We did not measure the PSD with the
Mastersizer when the powder was wet because in this process soft
agglomerates were too fragile to allow any mechanical contact. This is
one of the advantages of our non-invasive measurement compared to
the traditional way with the Mastersizer. Figure 5c are camera photos,
taken with an iPhone 11, corresponding to the marked times in (a) and
(b) for reference. (i) and (iv) are dry powders, while the (ii) and (iii) are
wet powder images. It is hard to distinguish different sizes from
macroscopic textures.

Discussion
We have decoded the size information in the speckle pattern quanti-
tatively with the help of the physics-enhanced autocorrelation-based
estimator (PEACE). The data flow goes through a sequence of two
neural networks, the generator and estimator, both informed by the
law that we discovered relating the PSD to autocorrelation side lobes.
Physics is involved in this method in four aspects. (1) The theoretical
model guides the preprocessing of the raw speckle image, which is the
ensemble-averaged autocorrelation (Supplementary Section 3). (2)
The forward operator joins the PEACE training loop explicitly. (3) The
generator’s structure is inspired by the physics picture, resulting in
high performance with only a few parameters, which is crucial for
avoiding overfitting (Supplementary Section 4). (4) The output of the
estimator is the cumulative size distribution, which is applicable to
different particle shapes. Test results on needle shapematerials, along
with a theoretical discussion of the relationship between non-spherical
particles and cumulative distributions are included in Supplementary
Section 4.

One advantage of this physics-informed strategy is interpret-
ability. The activationmap results match our forward model very well,
which means the size information is stored in the side lobes, and that

enables an evaluation of the performance of the neural network in
addition to the loss metric. For example, we want the generator’s
output to better match the ground truth at the 2nd–5th lobes region.
The center and the surrounding area are not very important. It is also
possible to estimate the bound of the prediction ability from the for-
ward model. Based on our theory, we even know how to push the
prediction range into other regions of interest by tuning the para-
meters of the optical system. This is further discussed in Supplemen-
tary Section 5.

Our estimator fails to predict the double-peak shape PSD in a
stress test with the synthetic data, yet it is able to estimate the
appearance of large particles from the continuous monitoring—which
is the most important for process control. This observation can be
explained with the forward model; the results and explanation of the
stress test are in Supplementary Section 6. This PEACE method is well
suited for the extension to other contexts, including processes in the
pharmaceutical industry such as blending and milling.

Methods
Optics apparatus
Our far-field optical probe can easily combine with an agitated
filter dryer (AFD) typical of those used in the pharmaceutical industry.
The wet solid is sealed in the dryer and the laser beam is delivered
through a glass window. Figure S2a is a picture of the optics apparatus
as we implemented it. For safety, the entire beam path except the
output port facing the window is enclosed in an optical cage
and optical tubes to prevent scattered light from escaping. This
structure is compact, portable and, therefore, easy to transfer among
different dryer systems without realignment. An agitator placed along
the axis of the container impels the sample at a rotation speed of
4 rpm. The laser operates at 532 nm wavelength, and it is fairly
easy to replace the source with a different wavelength, if desired.
The angle of incidence on the surface is chosen to be approximately

Fig. 5 | Time-lapse PSDmeasurement in the drying process. aMeasured PSDs at
a few selected time points corresponding to the dashed red line marks in (b). The
dashed line plots are theMastersizer measurements serving as ground truth at the
beginning and the end of the process. b Time-lapse PSD map during the drying

process. We observed soft agglomeration occurring from 5 to 25min, and deag-
glomeration from25 to 40min. cCorresponding cameraphotos at the timeswhere
the PSDs were sampled in (a). These photos were taken from the same optical
window as the laser beam using a commercial iPhone 11.
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10°, so as to avoid specular back-reflection from the window onto the
camera.

The optical beam path is shown in Fig. S2b. The laser beam is
expanded to 4.8mm with a beam expander in the telescope config-
uration, consisting of lenses L1 (focal length 25mm) and L2 (30mm).
The beam is initially polarized in the direction parallel to the plane
shown in the diagram, and so it is reflected by the polarizing beam
splitter (PBS) to reach the sample inside the dryer through the glass
window. Passage twice through the quarter-wave plate rotates the
outgoing polarization direction from parallel to perpendicular so that
the scattered light from thepotassiumchloride (KCl) powder sample is
now transmitted through the PBS and propagates vertically upwards.
The wave plate is also tilted by approximately 10 degrees for the same
reason as the beam, to minimize specular back-reflection. Lens L3
(250mm) concentrates the scattered light so that the CCD (model
ZWO ASI183MM Pro) may capture an angular range as extensively as
possible. More information about our apparatus can be found in
Supplementary Section 1.

Theoretical derivation of the Forward Model
The theory of the forward problem is established to link from a par-
ticular particle distribution to the raw speckle. The formulation of the
forward problem is necessarily stochastic, treating the PSD as a
probability density function which, in turn, determines the ensemble
autocorrelation function of the raw speckle. The sketch for the initial
simple analytical model is shown in Fig. S2c. We assume that only
particles can scatter the light. Without loss of generality, the reflec-
tivity is set to 1. In other words, the sketch considers the particles as a
thin optical mask, which we denote as aðxÞ.

We interpret the particle radius ri as a randomvariable distributed
according to the PSD p rð Þ: The particle location xi is also a random
variable uniformly distributed across the object plane. HðxÞ describes
the surface height resulting from the randomly placed particles. The
corresponding phase of the scattered light is wðxÞ= expðj 2πλ HðxÞÞ. In
the Fourier plane of L3, the electric field EðxÞ is

EðxÞ=
Z

ej
2π
λf 3

xξSðξÞdξ , ð2Þ

where

S xð Þ=a xð Þw xð Þ, ð3Þ

and f3 is the focal length of L3. The intensity collected by the CCD
camera is

I xð Þ= ∣E xð Þ∣2 =
Z Z

e j 2πλf 3
x ξ1�ξ2ð ÞS ξ1

� �
S* ξ2
� �

dξ1dξ2: ð4Þ

We now define the spatial-integral autocorrelation of the speckle
image as

A u0ð Þ=
Z

I xð ÞI x +u0ð Þdx: ð5Þ

This equation may be rewritten in the form

A uð Þ= ∣
X

i

sinðriuÞ
u

ej2πxiu∣
2

: ð6Þ

Here, u= u0
λf 3

, i is the index of the ith particle, and ri and xi are the
radius and the position for the ith particle, respectively. The full deri-
vation leading from (5) to (6) is in Supplementary Section 3, equations
(M1)–(M14). If a sufficient number of particles find themselves within

the field of view, then Eq. (6) can be reformulated as

A uð Þ= ∣
Z

drp rð Þ sin ruð Þ
u

X
i
ej2πxiu∣

2

: ð7Þ

This expressioncorresponds to the images in Fig. 2d. The granular
feature results from the term

P
ie

j2πxiu rather thanmeasurement noise.
The position information is encoded in this summation term. Since the
particle coordinate x is immaterial, we may eliminate it by ensemble-
averaging the autocorrelation A uð Þ. Starting from Eq. (7), A uð Þ� �

becomes

A uð Þ� �
=
4sin2 Du

2

� �

D2u2
∣
Z

p rð Þ sin ruð Þ
u

dr∣
2

: ð8Þ

The details are in the Supplementary Section 3. In (8), �h i denotes
the ensemble average and D is the beam spot diameter. This average
operation cannot suppress the granular feature directly, but our phy-

sics model reveals that the
P

ie
j2πxiu term is averaged into the 4sin2ðDu2 Þ

D2u2

term, which is irrelevant to the specific position distribution and only
depends on the beam spot size. In this way, we change the stochastic
expression (6) into a deterministic expression (8) for a given PSD,
which ensures that the supervised learning is able to capture the cor-
rect map from the calculation result to the experimental result.
Equation (8) is an intuitive yet approximate forward model between
the raw speckle images and the PSD p rð Þ through the averaged speckle
autocorrelation function A uð Þ� �

.

Data availability
All processed data in this study have been deposited in the Harvard
Dataverse under accession https://dataverse.harvard.edu/dataset.
xhtml?persistentId=doi:10.7910/DVN/FZUG9V. The raw data are too
big to upload into the public repository, please contact the author to
request them.Lineplots in Figs. 2 and 5 areprovided in the SourceData
file. Source data are provided with this paper.

Code availability
The entire original code has been deposited at https://github.com/
qhzhang95/PEACE_Speckle and is publicly available (https://doi.org/
10.5281/zenodo.7497506).
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