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Photocatalytic CO2 reduction with aminoan-
thraquinone organic dyes

Qinqin Lei1,2, Huiqing Yuan1,2, Jiehao Du1, Mei Ming1, Shuang Yang1, Ya Chen1,
Jingxiang Lei1 & Zhiji Han 1

The direct utilization of solar energy to convert CO2 into renewable chemicals
remains a challenge.Oneessential difficulty is the development of efficient and
inexpensive light-absorbers. Here we show a series of aminoanthraquinone
organic dyes to promote the efficiency for visible light-drivenCO2 reduction to
CO when coupled with an Fe porphyrin catalyst. Importantly, high turnover
numbers can be obtained for both the photosensitizer and the catalyst, which
has not been achieved in current light-driven systems. Structure-function
study performed with substituents having distinct electronic effects reveals
that the built-in donor-acceptor property of the photosensitizer significantly
promotes the photocatalytic activity. We anticipate this study gives insight
into the continued development of advanced photocatalysts for solar energy
conversion.

Light-driven reduction of CO2 into value-added chemicals represents a
sustainable way for the direct utilization of solar energy and conver-
sion of greenhouse gas1–3. In an artificial photosynthetic (AP) scheme, a
photosensitizer (PS) harvests the sunlight and transfers the energetic
electron to a catalytic centerwhich reducesCO2

4–6. In thepast decades,
both homogeneous and heterogeneous AP systems have been inves-
tigated extensively for photocatalytic CO2 reduction

7,8. However, the
activity of current systems is still low for practical use. A frequent
challenge is the development of highly active PSs that promote light-
driven redox reactions. For the rational design of catalytic systems,
molecular approaches have shown great advantages in unraveling
factors that govern photocatalytic reactions. In this context, we report
here a class of highly active organic PSs in preciousmetal-free systems
for photocatalytic CO2 reduction.

Noble-metal-based PSs have demonstrated high activity in pho-
tocatalytic CO2 reduction

6,9–19. Their long-lived excited states facilitate
electron transfer from the excited state of the PS (PS*) to the catalyst in
an oxidative quenching pathway. To provide a potentially widespread
implementation, accelerating progress has been made in the devel-
opment of inexpensive PSs to perform the same catalytic reaction20.
Recently, PSs based on first-row transition metals such as Cu21–24 and
Zn25 have been studied for light-driven CO2 reduction, with turnover
numbers (TONs) of 40–1566.

Due to being readily available in nature and because they are
synthetically easy to functionalize, organic PSs are promising alter-
native light-absorbers for photocatalytic CO2 reduction

26–28. However,
there are only a few reported organic PSs functioning in the visible
region, and these systems usually have to perform with high PS con-
centrations due to their relatively low activity29–43. For example,
9-cyanoanthracene has been reported to give a turnover frequency
(TOF) of ~0.015 h−1 (vs. PS) in a noble-metal-free system using
Fe–tetraphenylporphyrin as the catalyst (TOFFe ~1.5 h−1)29. Acriflavine
was found to exhibit a TONPS of 5, when employed with a Co dipyridyl
catalyst30. Purpurin, reported by Lau, Robert, and Chen groups, has
shownactivity for the reduction of CO2 to COwith a series of Co, Fe, Ni
polypyridyl, and Fe porphyrin catalysts31–33, achieving an optimal
TONPS of 1300

31. Later, Robert et al. found that a phenoxazine-based
organic PS promotes the reduction of CO2 to CO and CH4 with a total
TONPS of ~2 in 102 h34. 2,4,5,6-tetrakis(carbazole-9-yl)-1,3-dicyano-
benzene studied by Chao et al. gives a TONPS up to 1196 in CO gen-
erationusingmono– andbis–terpydrine Fe catalysts35–37. EosinY,which
was originally reported in photocatalytic H2 production by the Eisen-
berg group38–40, is also an active PS for CO2 reduction to formate when
using Ni pyridylthiolate catalysts, although it performs with con-
siderably lower activity (TONPS = 28) than that of the catalyst
(TONNi = 14,000)41. Because achieving high activity for both the PS and
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the catalyst would be beneficial for developing versatile photocatalytic
systems and applications in other relevant studies such as photoelec-
trochemical and supramolecular photocatalytic systems, this difficulty
has led to assembling complicated molecular architectures with pre-
cious metals44–49.

Several methods have been studied for improving the photo-
catalytic activity of organic PSs28. For example, the introduction of a
heavy atom (such as Br or I) or a heteroatom (such as S or Se) to the
xanthene-based dye has been found to facilitate intersystem crossing
to generate a longer-lived 3ππ* state, leading to improved activity in
photocatalytic H2 production38,50. Tuning the electron donors and
acceptors in organic dyes help increasing the power conversion effi-
ciencies of dye-sensitized solar cells51,52. We recently demonstrated
that the coordinationof polyhydroxy-anthraquinones to a redoxactive
Cu center effectively enhanced the photocatalytic activity in both
proton and CO2 reductions22,53. In the present study, we report the
application of simple yetmore active aminoanthraquinoneorganic PSs
1–6 (Fig. 1) for visible light-driven reduction of CO2 to CO. Different
from previous systems, high TONs for both the PS and the catalyst can
be realized. In addition, the systems contain no preciousmetal and use
commercially available organic PSs. The photochemical steps and
mechanism for CO2 reduction have been studied in detail. Our
structure-function study shows that the donor–π–acceptor design of
the anthraquinone (AQ) unit through controlling electron substituents
facilitates faster reductive quenching of the PS* and results in a much
higher catalytic rate for CO2 reduction.

Results and discussion
Absorption, emission, and electrochemistry of PSs
1–6 display strong electronic absorption across the visible region in
dimethylformamide (DMF). The maximum absorption bands ranging
from 478 to 592 nm can be largely tuned by altering the substituents
on the anthraquinone moiety (Fig. 2). The molar absorption coeffi-
cients (0.68–1.58 × 104M−1 cm−1) were calculated from the linear rela-
tionship between the absorbance and the concentration (Table 1 and
Supplementary Figs. 1–6). Upon irradiation with 365 nm light, these
PSs produce intense red fluorescence at the 600–700nm region with
lifetimes (τ0) of 0.66–1.02 nanoseconds (Table 1 and Supplemen-
tary Fig. 7).

To further examine the organic dyes as potential PSs for photo-
catalytic reactions, electrochemical measurements were conducted
(Table 1). Cyclic voltammograms (CVs) of 1–6 show two reduction
events (Supplementary Fig. 9), with both reversible waves for 1–5,
whereas for PS 6, a reversible and a second quasi-reversible reduction
peaks were observed. The exact reduction potentials were measured
by square wave voltammetry (SWV) (Table 1 and Supplementary
Fig. 10). The photophysical and redox properties of the aminoan-
thraquinone dyes (Table 1 and Supplementary Table 1) thus suggest
they serve as promising PSs for photocatalytic CO2 reduction.

Photocatalytic CO2 reduction
The activity of CO2 reduction by PSs 1–6was studied in CO2-saturated
DMF solutions under irradiationwith awhite light-emittingdiode (LED,
λ > 400nm, 100mW/cm2). FeTDHPP (Fig. 1) was used as the CO2

reduction catalyst, for the reason that it has been demonstrated to
provide high activity in photocatalytic systems from our previous
study22. 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH)
was used as the sacrificial donor to replace the oxidative half-reaction
in the AP scheme. The gaseous products in the headspace were
quantified in real time by gas chromatography (GC) equipped with a
thermal conductivity detector (TCD) and a flame ionization
detector (FID).

Figure 3a and Table 1 display the photocatalytic results of 1–6
under the same conditions (20 μM PS, 0.6μM FeTDHPP, 60mM BIH).
The yield rate of CO is shown in Supplementary Table 2. In the series of
experiments, CO is observed as themajor product and the production
of H2 is significantly suppressed. PSs 1–5, with amino and hydroxyl
substituents on the AQ, exhibit generally high selectivity of CO (>99%),
whereas PS 6 which contains a strongly acidic sulfonyl group gives a
slightly lower selectivity of 98.5% ± 0.6%. Importantly, varying the
functional groups on the AQ ring results in very different TONs of CO.
The systems with the amino-substituted AQs (1–3) show TONFe of
2395–3551 in 48 h. Under the same conditions but with an OH-
substituted aminoanthraquinone (4), a considerably higher TON of
8360 ± 449 was obtained. The activity of the system can be further
improved by including a heavy atom Br as the substituent at the
2–position (5), achieving a TON of 21,616 ± 2351 and a TOF of
4028 ± 669moleCO/h permole of catalyst. However, changing theOH
group to a sulfonyl one (6)markedly decreases the light-driven activity
(TON=907 ± 154).

To investigate the optimal activity of the PS, photocatalytic
experiments were performed at high concentrations of FeTDHPP
(20μM) and BIH (60mM) (Table 1), where the activity is controlled by
the [PS] (Supplementary Figs. 11–13). The PS 1 shows a TONCO (vs. PS) of
2011 ± 257 in 72 h. TheNH2- or SO3H- substituted ones result in decrease
in activity (TON=482 ± 76 for 2, 1523 ± 126 for 3, 1183 ± 78 for 6). Con-
sistent with the results described above, the PSs 4 and 5 give much
higher activity in the series, with TONs of 2849 ± 161 and 6012 ± 606,
respectively.

The high activity of the PS and the catalyst, although obtained at
different catalytic conditions, suggests that it may be possible to rea-
lize high activity for both the PS and the catalyst in one photocatalytic
system. Indeed, when the experiment was performed under the same
concentration of 5 and FeTDHPP (Fig. 3b and Supplementary Table 3),
the system achieves a TON as high as 4978 ± 326 and a quantum effi-
ciency of 11.1% ± 0.9% at 450 nm (based on two photons per CO),
underscoring that both the light-harvesting and the CO2 reducing
processes are efficient in catalysis. The exceptional light-driven activity
of the study is in contrast to those reported for other noblemetal-free
systems which usually show very different activity for the PS and the
catalyst (Supplementary Table 4).

To study factors that influenced the light-driven stability, each
component was added to the system when the rate of CO production
was substantially decreased (Supplementary Fig. 14). AlthoughBIHwas
nearly consumed in the conditions, addition of BIH to the system did
not resume the activity (Supplementary Fig. 14a), which suggests
decomposition of either the PS or the catalyst. When a mixture of PS
and BIH was added, only ~5% activity was recovered (Supplementary
Fig. 14d), indicating thatmost of the catalyst has decomposed. Indeed,
with the addition of catalyst and BIH, CO production continued with a
~50% increase (Supplementary Fig. 14f). However, even though all
three components were added, a similar level (~60%) of recovery was
observed (Supplementary Fig. 14g), which is presumably due to light
competition between the decomposed species and the added PS.
These results thus indicate that the Fe porphyrin catalyst undergoes aFig. 1 | Structure diagram. Structures of PSs 1–6 and FeTDHPP in the study.
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faster decomposition than the anthraquinone dye in the catalytic
system.

The nature of the system was investigated. To confirm the
homogeneity of the system, dynamic light scattering (DLS) and Hg-
poisoning experiments were conducted. DLS results indicate there is
no presence of nanoparticles in the pre- and post- catalytic systems
(Supplementary Fig. 15). An excess amount of metallic Hg0 in the sys-
tem does not result in a significant change of the activity (Supple-
mentary Fig. 16), which rules out the possibility that the activity of CO2

reduction is contributed from amalgam-forming metal impurities. In
addition, isotopic labeling experiments performed under an atmo-
sphere of 13CO2 show exclusive 13CO as the product (Supplementary
Fig. 17). These pieces of evidence are consistent with a homogeneous
CO2 reduction system in the study.

Mechanism of CO2 reduction
In a multi-component system, reductive quenching (electron
transfer from the electron donor to the PS*) and oxidative
quenching (electron transfer from the PS* to the catalyst) are two
major photochemical pathways affecting the overall light-driven
catalytic rate. Because aminoanthraquinone undergoes excited-
state intramolecular proton transfer (ESIPT)54, changing proton
concentration may affect the fluorescence spectra during quench-
ing experiments. In fact, we observed that the addition of BIH
(which is slightly basic) to PSs 4 and 5 resulted in uneven quenching
of the fluorescence at different wavelengths and that the fluores-
cence quenching rate constants (kq) were calculated to be higher
than the diffusion-controlled limit in DMF (Supplementary Figs. 18
and 19). Since the fluorescence lifetimes of the ESIPT tautomers
have been reported to be identical54, we determined the kq values by
measuring the change of fluorescence lifetime in the presence of
BIH. The reductive fluorescence quenching of 1–6 was found to be
fast near the diffusion-controlled limit (>109 M−1 s−1) (Table 1 and
Supplementary Fig. 20). Because of significant overlap in both the
absorption and the emission spectra of the PSs and the Fe catalyst
(Supplementary Fig. 21), the oxidative quenching rate constants
could not be obtained accurately. Based on the UV–vis and 1H NMR
spectra (Supplementary Figs. 22–29), there is no reaction between
the PS and quenchers (BIH and FeTDHPP) at their ground states,
which rules out a static quenching pathway. These results along
with the fact that amuch higher concentration of BIH (>3000 times)
than that of the FeTDHPP in CO2 reduction, suggests the system
proceeds with a reductive quenching pathway (Fig. 4). However,
since the triplet quantum yields of PSs 1 and 3 have been reported to
be 3% and <0.1% in methanol respectively55, it should be noted that
reductive quenching occurring through 3PS* is another plausible
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Fig. 2 | UV–vis spectra. Normalized absorption spectra of PSs 1–6 in DMF. Source
data are provided as a Source Data file.
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photochemical pathway, especially for the heavy-atom containing
compound 5. In fact, reductive quenching has been reported as the
most common mechanism in other organic dye-containing
systems28,29,31,34,37. Thus, the reductive rate and the reduction
power of the reduced PS are two critical factors influencing the
light-driven electron-transfer process in such photocatalytic
reactions.

The light-driven redox process of the AQ-based dyes has been a
subject of great interest in photochemistry56–60, however, due to the
various intermediates in reductions and protonations, the reaction
mechanism is still under debate. Because AQ generates a similar
intermediate at ~400 nm as PSs 1–6 during photolysis (Supple-
mentary Figs. 30–36), the light-driven process of AQ was investi-
gated to gain useful mechanistic information. UV–vis spectra reveal
that photolysis of AQ in the presence of BIH in DMF quickly gen-
erates a species at 560 nm in 1min (Fig. 5a). Since it is clear neither
the 1 electron reduced AQ (545 nm) nor the 2 electron reduction
product AQ2− (622 nm) gives a goodmatch56, this species is assigned
to an e−/H+ product AQH•. In fact, a semiquinone at 570 nm has been
detected in an osmium triad61,62. An AQ− species can be observed
unambiguously from a reaction with NaBH4 (Supplementary
Fig. 37). It is not surprising that the AQ− 56 undergoes a fast

protonation by BIH+ to produce the AQH•. Upon continued irra-
diation, an intermediate at ~520 nm is observed (Fig. 5a), which is
consistent with the generation of an AQH−56. A further protonation
of the AQH− species to generate a 10-hydroxyanthrone (AQH2) is
expected to take place based on 1H NMR spectra (Supplementary
Fig. 38). The UV–vis spectra also shows another absorption peak at
~407 nm (Fig. 5a), which is similar to a proposed AQH2 intermediate
at 407 nm from an AQ-containing pentad complex reported by
Wenger et al.59.

Robert et al. have shown that CO2 reduction by FeTDHPP occurs
at an Fe(0) oxidation state at −1.55 V vs. SCE16,63,64. However, our elec-
trochemical studies reveal much positive reduction potentials for the
PS− and PS2− species (Table 1), indicating that electron-transfer from
these reduced species including their protonated forms PSH and PSH2

(presumably with more positive potentials)65,66 to the catalyst is unfa-
vorable. The generation of the Fe(0) must arise from a more reduced
PS. Indeed, the AQH2 species generated from subsequent reductions
and protonations gives a relatively long-lived (17.3 ns) fluorescence
(Supplementary Figs. 39 and 40), which can be quickly quenched by
BIH (Supplementary Fig. 41). Moreover, the AQH2 moiety in a pentad
system has been reported to be highly fluorescent with a long lifetime
of 4.7μs59. Thus, a plausible photochemical pathway involves
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Fig. 4 | Proposed mechanism of light-driven CO2 reduction. a Light-driven redox steps of the PS; b CO2 reduction mechanism under >400nm light irradiation; c CO2

reduction mechanism under >550nm light irradiation.
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reduction of the Fe catalyst by a PSH2
− photoproduct, which can be

generated from excitation of the PSH2 followed by reductive
quenching (Fig. 4).

The intermediate generated from AQ at ~400 nm starts to
appear at 15 min and continue to increase in 2 h during photolysis
(Fig. 5b), which is commonly observed with PSs 1–6 during CO2

reduction (Supplementary Figs. 31–36). Although this intermediate
exhibits a similar absorption feature as the AQH2, a much slower
generation of the species than that for the AQH• suggests it is not an
AQH2. Furthermore, we observed fast generation of CO and an Fe(I)
species by adding 0.25 equiv of FeTDHPP (with respect to PS) to the
406 nm species generated from light irradiation of a mixture of 5
and BIH (Supplementary Fig. 42). In the experiments, an average of
0.34 equiv of CO (vs. PS) was obtained, which is close to the theo-
retical maximum yield (0.33 equiv) based on the proposed
mechanism in Fig. 4. In a control experiment before generating the
406 nm species, no COwas detected (Supplementary Fig. 43). Based
on these results, this photoproduct at ~400 nm is tentatively
assigned to a PSH2

−.
To examine the reduction power of PSH2

−, in situ electrochemical
measurements were conducted for the light-driven systems. SWV
experiments with the photochemically generated species at ~400nm
show the appearance of new reduction waves at potentials more
negative than −1.90 V vs. SCE for PSs 1–6 (Supplementary Fig. 44).
Hence, electron-transfer from the PSH2

− to the FeTDHPP that leads to
production of the required Fe(0) intermediate for CO2 reduction is
thermodynamically feasible.

Additional experiments were conducted to investigate reductions
of the Fe catalyst. In the photocatalytic experiments with white LED
(λ > 400 nm), UV–vis spectra suggest that the Fe(III) compound
(416 nm) is completely converted to an Fe(II) species (432 nm) within
3min and then to an Fe(I) species (420nm) which continues to
decrease during CO2 reduction (Fig. 6a and Supplementary Fig. 45).
This observation is consistent with a previously reported mechanism
by Robert et al.4,67. Because both the PSH2

− and the BI• (−1.60 V vs. SCE
in DMF)22 are potential reductants in generating the Fe(I) and Fe(0)
intermediates, it is crucial to understand the role of BIH in the system.
In a photocatalytic experiment with 10mM [BIH], the total amount of
CO generated is near the theoretical maximum yield of BIH (Supple-
mentary Fig. 46), which indicates BIH donates two electrons in CO2

reduction. The first electron-transfer process is usually fromBIH to the
excited state of PS, which has been well-studied68. However, the actual
mechanism by which the second electron of the sacrificial donor
transfers from the significantly more reducing BI• to either the excited
PS, or an Fe(II), or an Fe(I), remains uncertain.

To study this further, photocatalytic CO2 reduction was con-
ducted under a xenon light source equipped with a 550 nm cut-off
filter to shut down the pathway involving the PSH2

−. In this case, there
is no PSH2

− observed from the UV–vis spectra (Supplementary Fig. 47),
and CO production is considerably slower (TON=6 in 5 h). The major
catalytic species detected corresponds to the Fe(II), while the Fe(I)
intermediate is present in a notably less amount compared with that
generated under the λ > 400 nm light (Fig. 6b and Supplementary
Figs. 47 and 48). Similar results are observed in experiments
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performed under 450nm and 525 nm LED light with similar photon
numbers (Supplementary Figs. 49 and 50). Meanwhile, the production
of CO under 525 nm LED light (TON= 1.4 in 8 h) is also lower than that
under the 450nm LED light (TON= 344 in 8 h). Furthermore, irradiat-
ing a mixture of BIH and FeTDHPP gave almost no Fe(I) and only the
Fe(II) was detected (Supplementary Fig. 51). These results are all con-
sistent with the fact that although the BI• can reduce Fe(II) and Fe(I) to
the Fe(0) intermediate, these are much slower processes compared
with the ones using PSH2

− as the reductant. Thus, BI• is likely respon-
sible for the reduction of PSH2* in a photochemical step, while the
resulting PSH2

− proceeds in reducing the Fe(II) or Fe(I) (Fig. 4).
The observation of the PSH2

− species by UV–vis during CO pro-
duction suggests that the formation of PSH2

− may be rate-limiting in
catalysis. Interestingly, we found that the TOF of CO production and
the first reductive quenching kq of PSs 1–6 follows a generally linear
trend, in which a faster quenching rate is observed with a higher TOF
(Fig. 7). However, further evidence is necessary to identify the sub-
stituent effect on the photo-conversion of PSH2 to PSH2

− in CO2

reduction. In addition, no CO was detected from a system using AQ as
the PS although an AQH2

− species was observed (Supplementary
Fig. 30), which indicates the functional groups of 1–6 play important
roles in promoting the generation of the PSH2

−. Based on the electro-
chemical data of 1–6 and 1-amino-2-methylanthraquinone (Table 1 and
Supplementary Figs. 9 and 10), the −NH2 group acts as an electron-
donating group while the −OH group is electron-withdrawing on AQ.
These distinct electronic groups may essentially create an internal
donor-acceptor property by de-symmetrizing the organic molecule,
which facilitates electron-transfer of the dye. Consistent with the
proposal, introducing –NH2 to the 1–position of AQ (PS 1) greatly
promotes photocatalytic CO2 reduction, while having an additional
–NH2 group at the 4–position (PS 3) results in a decrease of activity.
Furthermore, the higher activity of 4 and 5 may be attributed to the
reverse electronic effects of the –OH and –Br groups as compared to
the –NH2. For PS 6, although sulfonyl is also electron-withdrawing, its
activity of CO2 reduction is considerably lower than that of 1–5. This is
presumably due to that the acidic sulfonyl group promotes the
transfer of proton to the catalyst thus enhancing H2 generation.
Indeed, the selectivity for H2 of 6 is the highest in our study (Table 1).
Although this selectivity (1.5%) is low compared with that of CO
(98.5%), the intermediates generated from the H2 pathway may sig-
nificantly alter the reaction mechanism by introducing extra energy
barriers in CO2 reduction

4.
In summary, this paper describes the application of a series of

simple organic light absorbers, based on naturally abundant anthra-
quinone dyes, in promoting visible light-driven CO2 reduction. Unlike

previously reported systems, high activity for both the PS and the
catalyst has been demonstrated in our study. The mechanistic study
suggests that the hydroxyanthrone forms of PS (PSH2 and PSH2

−),
generated from reductive quenching, are important intermediates in
the light-driven catalytic steps. The most active PS was found by
employing both electron-donating and withdrawing groups on the
anthraquinone. Thus, this work presents a class of inexpensive dyes to
access high activity in CO2 reduction and provides understanding for
improving other light-driven and light-electricity-driven systems for
practical applications, such as water splitting, solar cell, and organic
synthesis.

Methods
Materials
Compound 1 (97%) and compound 3 (>97%) were purchased from
Aladdin. Compound 2was purchased from Sigma-Aldrich. Compound
4 (96%) was purchased from Alfa Aesar. Compound 5 (97%) was pur-
chased from BIDE. Compound 6 (98%) was purchased fromMacklin. 1-
Amino-2-methylanthraquinone (>90%) was purchased from Shanghai
Xian Ding Biotechnology Co. Ltd. (Shanghai, China). Compound 1 was
recrystallized twice from hot acetone. Compound 4was recrystallized
twice from a mixture of hot acetone and acetonitrile. 1-Amino-2-
methylanthraquinonewas recrystallized twice fromhot ethanol until it
is pure according to the 1H NMR spectrum. Other solvents and che-
micals are commercially purchased and used as obtained without
further purification. BIH was prepared based on a method from the
literature69.

Synthesis of FeTDHPP
FeTDHPP was prepared from a modified method of the literature64. A
solutionof2′,6′-dimethoxybenzaldehyde (1.0 g, 6.02mmol) andpyrrole
(0.419mL, 602mmol) inCHCl3 (600mL)wasdegassedbyN2 for at least
20min. BF3·OEt2 (0.228mL, 0.87mmol) was added drop by drop via a
syringe. After the solution was stirred at room temperature under N2 in
the dark for 1.5 h, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)
(1.02 g, 4.51mmol) was added. Themixturewas stirred for an additional
1.5 h at reflux. After cooling to room temperature, the mixture was
added with 1mL of triethylamine to neutralize the excessive acid. Then
the solvent was removed, and the resulting black solid was purified by
column chromatography (silica gel, CH2Cl2) affording 5, 10, 15, 20-tet-
rakis(2′, 6′-dimethoxyphenyl)-21H,23H-porphyrin as a purple powder
(290mg, 23%). 1H NMR (400MHz, CDCl3): δ 8.67 (s, 8H), 7.68 (t,
J=8.4Hz, 4H), 6.98 (d, J=8.4Hz, 8H), 3.50 (s, 24H), −2.50 (s, 2H). HRMS
(m/z): [M+H]+ calcd for C52H47N4O8 855.33884; found, 855.33582. To a
solution of 5, 10, 15, 20-tetrakis(2′,6′-dimethoxyphenyl)-21H,23H-por-
phyrin (200mg, 0.235mmol) in dry CH2Cl2 (10mL) was added with
BBr3 (1.0mL, 10.38mmol) at 0 °CunderN2. The resulting green solution
was allowed to stir for 24 h at room temperature. Then 4.0mL of water
was added at 0 °C and the mixture was stirred for 40min. A saturated
NaHCO3 solution was added until the pH of the aqueous layer was
around 7. Ethyl acetate (20mL) was added to the suspension. The
organic layer was separated, washed twicewithwater (20mL), and then
driedover anhydrousNa2SO4. The solventwas removedand the residue
was purified by column chromatography (silica gel, 2:1 ethyl acetate/
dichloromethane) to yield 5, 10, 15, 20-tetrakis(2′,6′-dihydroxyphenyl)-
21H,23H-porphyrin as a purple powder (150mg, 87%). 1H NMR
(400MHz, MeOD): δ 8.92 (s, 8H), 7.50 (t, J=8.2Hz, 4H), 6.84 (d,
J=8.2Hz, 8H). HRMS (m/z): [M+H]+ calcd for C44H31N4O8 743.21364;
found, 743.21204. FeTDHPP was prepared by heating a dry methanol
solution containing 5, 10, 15, 20-tetrakis(2′,6′-dihydroxyphenyl)-
21H,23H-porphyrin (100mg, 0.135mmol), FeCl2·4H2O (270mg,
1.35mmol), and 2,6-lutidine (39μL, 0.335mmol) at 50 °C for 3 h under
N2. After the solvent was removed, the resulting brown solid was dis-
solved in ethyl acetate (40mL), added with 1.2M HCl (40mL), and
stirred for 1 h. The organic layer was separated and washed several
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Fig. 7 | Relationship of TOF and kq. Plot of the initial rates of CO generation with
respect to the reductive quenching rate constants of PSs 1–6. The dotted line is
shown for viewing convenience. Error bars denote standard deviations, based on at
least three separated runs. Source data are provided as a Source Data file.
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timeswith saturatedNaCl solution until the pHwas neutral. The organic
solvent was removed and the crude product was purified by column
chromatography (silica gel, ethyl acetate) to give FeTDHPP as a brown
solid (100mg, 89%). HRMS (m/z): [M-Cl]+ calcd for C44H28FeN4O8

796.12511; found, 796.12343.

Characterization
1H NMR and 13C NMR spectra were recorded at a Bruker advance III
400-MHz NMR instrument (Supplementary Figs. 52–65). UV–vis
spectra were recorded on a Thermo Scientific GENESYS 50 UV–visible
spectrophotometer. The FT–IR spectra were recorded using a Nicolet/
Nexus-670 FT–IR spectrometer (ATR mode) (Supplementary Fig. 66).
HRMS spectra were obtained on a Thermo Fisher Scientific Orbitrap Q
Exactive ion trapmass and Thermo Fisher Scientific LTQOrbitrap Elite
(Supplementary Figs. 67–72). Dynamic light-scattering experiments
were tested with a Brookhaven Elite Sizer zata-potential and a particle-
size analyzer. GC/MS experiments were performed with an Agilent
7890A-5975C instrument.

Fluorescence quenching rate constant determination
A PS in DMF was degassed by N2 or CO2 for 15min in a sealed quartz
cuvette with a septum cap. Different from other PSs, the absorption
spectrum of PS 5 changes slightly under N2 when BIH was added
(Supplementary Fig. 22). Therefore, the fluorescence quenching
experiments for PS 5were carried out under CO2 and those for the rest
of the PSs were performed under N2. An identical excited-state lifetime
for the PS was found either under N2 or CO2 (Supplementary Fig. 73).
During the experiments, different concentrations of BIHwere added to
the solution of PS under N2 or CO2. The steady-state fluorescence for
solution samples was measured by Duetta fluorescence and absor-
bance spectrometer. The excited-state lifetime of the photosensitizer
wasmeasured with an FLS 980 fluorescence spectrometer (Edinburgh
instruments), in which a picosecond pulsed diode laser (λ = 472 and
406.2 nm) (Edinburgh instruments EPL-470)was used as the excitation
source. The λmax of emission for each photosensitizer is selected as the
emission wavelength. The instrumental response function (IRF) of the
instrument was measured using silicon oxide (30% in H2O) (Supple-
mentary Fig. 74). The kq was calculated by the Stern–Volmer equation:

I0=I or τ0=τ = 1 + kq × τ0 × ½Q� ð1Þ

where I0 and I represent the fluorescence intensity of the photo-
sensitizer in the absence and presence of a quencher; τ0 and τ is the
lifetime of the photosensitizer in the absence and presence of the
quencher; kq is the quenching rate constant; [Q] is the concentration of
the quencher BIH.

Electrochemical measurements
Electrochemical studies were performed using a CHI-760E electro-
chemical analyzer using a single-compartment cell with a glassy carbon
working electrode (3.0mm in diameter), a platinum auxiliary elec-
trode, and a SCE reference electrode. The electrolyte solution was
0.1M tetrabutyl hexafluoroammonium phosphate in DMF. The solu-
tion was purged with N2 or CO2 for at least 30min before measure-
ment. All potentials reported in this study were referred to SCE.

Photocatalytic CO2 reduction
Photocatalytic experiments were conducted in a closed scintillation
vial with rubber plug and magnetic stirring. The headspace of the vial
was 51.8mL. A reaction mixture (5.0mL) was bubbled with CO2 for
25min and then irradiated with a LED light setup (λ > 400 nm, or
λ = 450nm, or λ = 525 nm, PCX-50 C, Beijing Perfectlight Technology
Co., Ltd.) or a 300W Xe lamp (PLS-SXE-300, Beijing Perfect light)
equipped with a 550nm cut-off filter. The gaseous products were
analyzed by Shimadzu GC–2014 gas chromatography equipped with a

Shimadzu Molecular Sieve 13 × 80/100 3.2 × 2.1mm×3.0m and a
Porapak N 3.2 × 2.1mm× 2.0m columns. A thermal conductivity
detector (TCD) was used to detect H2 and a flame ionization detector
(FID) with a methanizer was used to detect CO and other hydro-
carbons. Nitrogen was used as the carrier gas. The oven temperature
was kept at 60 °C. The TCD detector and injection port were kept at
100 °C and 200 °C, respectively. Specifically, systems containing
60mM BIH (0.3mmol, 67.2mg), 0.6μM FeTDHPP (0.003μmol,
2.5μg) and 20μM PS (0.1μmol, 22.3μg 1; 23.8μg 2; 23.8μg 3; 23.9μg
4; 31.8μg 5; and 38.2μg 6) were used for the calculation of TONFe,
TOFFe and SelCO. Systems containing 60mMBIH (0.3mmol, 67.2mg),
20μMFeTDHPP (0.1μmol, 83.2μg) and 5μMPS (0.025μmol, 5.6μg 1;
6.0μg 2; 6.0μg 3; 6.0μg 4; 8.0μg 5; and 9.6μg 6) were used for the
calculation of the yield of CO and TONPS.

Quantum yield of CO production
The experimentswere carriedout undermonochromic light of 450nm
obtained using a blue LED light setup (λ = 450nm, PCX-50C, Beijing
Perfectlight Technology Co., Ltd.). The blank was a DMF solution
containing 60mM BIH and 20μM FeTDHPP. Systems containing
60mM BIH (0.3mmol, 67.2mg), 20μM FeTDHPP (0.1μmol, 83.2μg)
and 20μM PS (0.1μmol, 22.3μg 1; 23.8μg 2; 23.8μg 3; 23.9μg 4;
31.8μg 5; and 38.2μg 6) were used for the calculation of the quantum
yields. The difference between the power (P) of light passing through
the blank and through the sample containing the photosensitizer was
measured by a FZ-A Power meter (Beijing Normal University Optical
Instrument Company). The quantum yield (Φ) was calculated after 1 h
irradiation according to the following equation:

Φ=
2 ×nðCOÞ×NA

PSt × λ
hc

ð2Þ

where n (CO) is the number of CO molecules produced, NA is the
Avogadro constant (6.02 × 1023mol−1), S is the incident irradiation area
(6.33 cm2), t is the irradiation time (in second), λ is the incident
wavelength (450nm), h is the Plank constant (6.626 × 10−34 J s), and c is
the speed of light (3.0 × 108m s−1).

Fluorescence quantum yield
Fluorescence quantum yields of PSs (listed in Table 1) were calculated
according to a literature method50. A PS was dissolved in DMF and
bubbled with N2 for at least 10min in a quartz cuvette (10-mm path
length). Rhodamine 6G (R6G) was used as a standard sample. UV–vis
spectra (Supplementary Fig. 75) weremeasuredwith ThermoScientific
GENESYS 50 UV–visible spectrophotometer and emission spectra
(Supplementary Fig. 76) were acquired on a Duetta fluorescence and
absorbance spectrometer. The absorption of photosensitizers were
adjusted to the same as that of R6G at λ = 480 nm. The fluorescence
quantum efficiency was calculated as follow:

Φx = Φst
Absst
Absx

� �
η2
x

η2
st

� �
AreaEmx

AreaEmst

� �
ð3Þ

where Φst is the fluorescence quantum yield of R6G (Φst = 0.95 in
EtOH); η is the refractive index of solvent (ηEtOH = 1.3611,
ηDMF = 1.4300); AreaEm is the emission integral area of the photo-
sensitizer or R6G.

Statistics and reproducibility
The statistical analysis is based on the original data without randomi-
zation and blind treatment. In order to ensure the reproducibility of
the data, key experiments were conducted at least three separated
runs with freshly prepared solutions on different days.
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Data availability
The data that support the findings of this study are available from the
corresponding author on reasonable request. Source data are pro-
vided with this paper.
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