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ASGARD is A Single-cell Guided Pipeline to
Aid Repurposing of Drugs

Bing He1, Yao Xiao1, Haodong Liang2, Qianhui Huang1, Yuheng Du1, Yijun Li 1,
David Garmire3, Duxin Sun4 & Lana X. Garmire1

Single-cell RNA sequencing technology has enabled in-depth analysis of
intercellular heterogeneity in various diseases. However, its full potential for
precision medicine has yet to be reached. Towards this, we propose A Single-
cell Guided Pipeline toAidRepurposingofDrugs (ASGARD) that defines a drug
score to recommend drugs by considering all cell clusters to address the
intercellular heterogeneity within each patient. ASGARD shows significantly
better average accuracy on single-drug therapy compared to two bulk-cell-
based drug repurposing methods. We also demonstrated that it performs
considerably better than other cell cluster-level predicting methods. In addi-
tion, we validate ASGARD using the drug response prediction method
TRANSACT with Triple-Negative-Breast-Cancer patient samples. We find that
many top-ranked drugs are either approved by the Food and Drug Adminis-
tration or in clinical trials treating corresponding diseases. In conclusion,
ASGARD is a promising drug repurposing recommendation tool guided by
single-cell RNA-seq for personalizedmedicine. ASGARD is free for educational
use at https://github.com/lanagarmire/ASGARD.

Heterogeneity, ormore specifically, the diverse cell populationswithin
the diseased tissue, is the leading cause of treatment failure for many
complex diseases, such as cancers1, Alzheimer’s disease2, stroke3, and
coronavirus disease 2019 (COVID-19)4, etc., as well as a major obstacle
to successful precision medicine5–7. Recent significant advances in
single-cell technologies, especially the single-cell RNA sequencing
(scRNA-seq) technology, have enabled the analysis of intercellular
heterogeneity at a very fine resolution8,9 and helped us to have many
breakthroughs in understanding diseasemechanisms10, such as breast
cancer11, liver cancer12 and COVID-1913. However, its full potential for
precision medicine has not been fulfilled14,15.

Drug repurposing (also known as drug reposition, reprofiling, or
re-tasking) is a strategy to identify new drug uses outside the scope of
its original medical approval or investigation16. So far, few drug
repurposing methods have been developed to utilize the highly valu-
able information contained in scRNA-seq data. The pipeline by

Alakwaa identifies significantly differentiated genes (DEGs) for a spe-
cific group of cells, then predicts candidate drugs for DEGs using the
ConnectivityMap LinkedUser Environment (CLUE) platform, followed
by prioritizing these drugs using a comprehensive ranking score
system17. This pipeline identified didanosine as a potential treatment
for COVID-19 using scRNA-seq data17. Another pipeline by Guo et al.
uses a simple combination of Seurat18, a tool for scRNA-seq analysis,
and CLUE to identify 281 FDA-approved drugs that can potentially be
effective for treating COVID-1919. In general, the above pipelines pre-
dict drugs for each cell cluster within the patient. However, in het-
erogeneous diseases caused by multiple types of cells, efficient drugs
should be able to address multiple cell clusters20. Neither of these
pipelinesmentioned above can predict drugs formultiple cell clusters,
limiting their utility in the era of precision medicine.

Herewe propose A Single-cell Guided Pipeline toAidRepurposing
of Drugs (ASGARD) to overcome the issue above. ASGARD defines a
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drug score to predict drugs for multiple diseased cell clusters within
each patient. The benchmarking results show that the performance of
ASGARD on single drugs is more accurate and robust than other
pipelines handling bulk and single-cell RNA-Seq data. We tested
ASGARD on multiple cancer scRNA-Seq datasets, including patient-
Derived Xenografts (PDXs) models for advanced metastatic breast
cancers, Pre-T acute lymphoblastic leukemia patients, and primary
tumors of Triple-Negative-Breast-Cancer (TNBC) patients. Addition-
ally, with the ongoing worldwide COVID-19 pandemic, we applied
ASGARD to scRNA-seq data from severe COVID-19 patients and pre-
dicted potential therapies to reduce deaths of severe COVID-19
patients.

Results
Summary of a Single-cell Guided Pipeline to Aid Repurposing
of Drugs
Using scRNA-seq data, ASGARD repurposes drugs for disease by fully
accounting for the cellular heterogeneity of patients (Fig. 1, Formula 1
in “Methods” section). In ASGARD, every cell cluster in the diseased
sample is paired to that in the normal (or control) sample, according to
“anchor” genes that are consistently expressed between diseased and
normal cells. It then imports differentially expressed (DE) genes
(adjusted P-value < 0.05) between the paired diseased and normal
clusters in the scRNA-seq data, as determined by a DE detection
methodat theuser’s choice. These individual clusters canbeoptionally
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Fig. 1 | Theworkflowof theASGARDdrug repurposingpipeline.Theworkflowof
the ASGARD pipeline. Diseased and normal cells are paired according to “anchor”
genes that are expressed consistently between the two types of cells. The differ-
entially expressed (DE) genes are identified between diseased and normal cells,
either within a cluster or within a cell type. Using the consistent DE genes as the

input, potential drugs that significantly reverse the pattern of DE genes are iden-
tified, using the Kolmogorov–Smirnov (K-S) test with Benjamini–Hochberg (BH)
false discovery rate (FDR) adjustment. Next ASGARD estimates and ranks the drug
scores for single drugs, by targeting specific cell cluster(s) or all cell clusters.
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annotated to specific cell types. To identify drugs for each single
cluster (cell type), then ASGARD uses these consistently differentially
expressed genes as inputs to identify drugs that can significantly
(single-cluster FDR<0.05) reverse their expression levels in the L1000
drug response dataset21. To identify drugs for multiple clusters,
ASGARD defines a drug score (Formula 1 in “Methods” section) to
evaluate the drug efficacy across multiple cell clusters selected by the
user. The drug score estimates drug efficacy by taking into account the
cell type proportion, the significance of reversing the differential gene
expression pattern (single-cluster FDR) by the drug treatment in each
selected cell cluster, and the ratio of significantly deregulated genes
(adjusted P-value < 0.05) that the drug treatment can reverse in each
selected cell cluster. Finally, ASGARD uses the drug score to rank and
choose drugs for the disease.

We evaluated the power of the drug score by comparing ASGARD
with traditional bulk-cell-based repurposing methods and single-cell-
based repurposing methods using multiple independent scRNA-seq
datasets, including PDX models from advanced metastatic triple-
negative breast cancer (TNBC)11, an acute lymphoblastic leukemia
dataset22, and coronavirus disease 2019 (COVID-19) datasets13,23 (see
“Methods” section).

Comparing ASGARD to bulk-cell based repurposing methods
Before comparing ASGARD to bulk-cell-based repurposing methods,
we first evaluated several external differential expression (DE) meth-
ods, on three datasets from three diseases: advancedmetastatic breast
cancer11,24, acute lymphoblastic leukemia22, and coronavirus disease
201913,23 (see “Methods” section). We selected Limma25, Seurat18,
DESeq226, and edgeR27 for DE methods, given that they were top-
rankedmethods in a benchmark study of confronting false discoveries

in single-cell differential expression28. We conducted systematic
comparison of these methods under different modes (Fig. 2). For
Limma, we compared three modes: empirical Bayes without trend
(Bayes), empirical Bayes approach prior trend (trend), and precision
weights (voom)25. For Seurat, we compared three different DE tests:
Wilcoxon rank-sum test (Wilcox), t-test, and logistic regression (LR).
ForDESeq2, we compared theWald test (Wald) and the likelihood ratio
test (LRT). For edgeR, we compared the likelihood ratio test (LRT) and
the quasi-likelihood F-test (QLF). We identified DE genes using the
above methods for each cell cluster as the inputs of ASGARD for drug
repurposing. The subsequent drug prediction accuracies by ASGARD
are determined by the receiver operating characteristic curves (ROCs)
and the areas under the ROC curves (AUCs), using FDA-approved
drugs and candidate drugs validated in advanced clinical trials as
positive data (see “Methods” section).

The systematic comparison is shown in Supplementary Fig. 1, and
the results from each method under the best-performing mode are
shown in Fig. 2a. The Limma (Bayes) method yields the best AUC in all
three datasets ranging from (0.90-0.92), significantly (P-value < 0.05,
Student’s t test) better thanotherDEmethods. Seurat (Wilcox test) and
edgeR perform similarly overall, where edgeR has slightly higher AUC
(0.83–0.86) than Seurat (0.80–8.86). DEseq2 on the other hand, tends
to generate some of the lowest AUCs in comparison. Therefore, we
used DE results from the Limma-Bayes package for the following
analysis, while keeping other DE methods as options for the inputs to
ASGARD.

To compare ASGARDwith those drug repurposingmethods using
bulk RNA-Seq samples, we summarized scRNA-seq data into pseudo-
bulk RNA-Seq data. We then applied bulk methods CLUE29 and
DrInsight30 to the pseudo-bulk RNA-Seq query data and compared
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Fig. 2 | Comparing ASGARD to bulk-cell-based repurposing methods. The
receiver operating characteristic (ROC) curves and area under curve (AUC) scores
of the ASGARD, on advanced metastatic breast cancer, acute lymphoblastic leu-
kemia, and coronavirus disease 2019 (COVID-19), respectively. a Comparison
among different DE analysis methods Limma (red), DESeq2 (light blue), Seurat

(green), and edgeR (blue) using the best-performing mode in each. b Comparison
of ASGARD (red) and bulk-sample based drug repurposing methods: CLUE (blue),
andDrInsight (green), using the same threediseases as in a. The single-cell RNA-Seq
data were aggregated to pseudo-bulk RNA-Seq data as the input of the bulk-sample
based methods. Source data are provided as a Source Data file.
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their results with ASGARD’s on predicting both drugs and compounds
(Fig. 2b). We used the same scRNA-seq data from the same three
datasets above. Since CLUE and DrInsight predict both drugs and
compounds, we added compounds validated in animal models to the
true positive dataset for the AUC evaluation of drug/compound pre-
dictions. As a result, the AUCs obtained from ASGARD on drugs and
compounds (Fig. 2b) are slightly different from those on drugs only
(Fig. 2a). On the breast cancer dataset, ASGARD yields an overall AUC
of 0.92, much better than CLUE and DrInsight, with values of 0.74 and
0.81, respectively. On precursor T cell acute lymphoblastic leukemia
data, ASGARD yields an AUC of 0.95 in drug/compound repurposing
for leukemia patients, while CLUE andDrInsight achieveworse average
AUCs of 0.82 and 0.73, respectively. For the COVID-19 datasets,
ASGARD shows an AUC of 0.88 in drug/compound repurposing, while
CLUE andDrInsight have lower AUCs of 0.85 and0.73, respectively, for
the same patients (Fig. 2b). In summary, by paying attention to het-
erogeneity at single-cell levels, ASGARD shows much better drug
repurposing predictability than methods that rely on bulk samples.

Comparing ASGARD to other single-cell-based repurposing
methods
We also compared single drug prediction using ASGARD with two
other pipelines developed by Alakwaa et al.17,19 and Guo et al.17,19, which
were reported to handle scRNA-Seq data. Note that ASGARD offers
more functionalities than those two methods. Alakwaa’ and Guo’
pipelines can only repurpose drug/compounds for every cluster, but
not on a multi-cluster level. On the other hand, ASGARD can compute
both the single-cluster-level drug significance and the multi-cluster
drug score (Formula 1 in “Methods” section). The above section shows
that the ASGARD multi-cluster drug score shows AUCs of 0.92, 0.95,
and 0.88 for breast cancer, leukemia, and COVID-19, respectively
(Fig. 2b). For a fair comparison, we further tested the single-cluster-
level drug prediction accuracies of these three methods (Fig. 3 and
Supplementary Fig. 2). Even at the single-cluster-level, ASGARD still
shows the best AUCs on every individual cluster from breast cancer,
leukemia, andCOVID-19datasets (Fig. 3).On the8 clustersof thebreast
cancer dataset, ASGARD yields an averaged AUC of 0.83 (0.80–0.86),
significantly better (P-value = 0.0028, Student’s t test) than Alakwaa’
and Guo’ pipelines, with averaged AUC values of 0.76 (0.68–0.83) and
0.54 (0.47–0.56) respectively (Fig. 3a and Supplementary Fig. 2). On
the 4 clusters of precursor T cell acute lymphoblastic leukemia data,
ASGARD has an averaged AUC of 0.81 (0.76–0.85), again significantly
better (P-value < 0.001, Student’s t test) than Alakwaa’ and Guo’ pipe-
lines,with averagedAUCvalues of 0.51 (0.49-0.56) and0.52 (0.49-0.55)
respectively (Fig. 3b and Supplementary Fig. 2). Similar trends exist in
the neutrophile, NK, T cell and monocytes that have increased cell
proportions in the decreased severe vs. cured severe COVID-19
patients. While ASGARD achieves average AUCs of 0.82 (0.77–0.88),
Alakwaa’ and Guo’ methods have reduced average AUCs of 0.72
(0.63–0.80), and 0.58 (0.55–0.62; Fig. 3c and Supplementary Fig. 2).
These results support the conclusion that ASGARD predicts drugs
more accurately than Alakwaa’ and Guo’ pipelines.

Additionally, given that sample size, cell population similarity, and
proportion of disease cells impact significantly on differential gene
analysis31, we further performed robustness assessments of the three
pipelines across different sizes of single-cell populations, different
differential levels of single-cell populations, and different proportions
of diseased cells using simulation data based on “GSE123926” and
“GSE113197” dataset (see “Methods” section). The AUCs of the three
single-cell drug repurposing pipelines on the simulation data show
that ASGARD, as well as the other two pipelines, have very robust
performance across different sizes of single-cell populations (Supple-
mentary Fig. 3A), different degrees of DE between disease and normal
conditions (Supplementary Fig. 3B), and different proportions of dis-
ease cells among the scRNA-Seq data (Supplementary Fig. 3C).

We demonstrate that ASGARD is a promising drug recommen-
dation pipeline through computational and clinical validation. In the
following sections, we further illustrate the results of ASGARD applied
to breast cancer, leukemia, and COVID-19, respectively.

Drug repurposing for breast cancers
We collected scRNA-seq data from 24,741 epithelial cells of advanced
metastatic breast cancer Patient-Derived Xenografts (PDXs) models11

and 16,998 epithelial cells from normal breast tissues24. After pre-
processing, all cancer cells and 16,954 normal cells were paired and
clustered into 8 populations (Supplementary Fig. 4A). Cluster 1 (C1) is
the largest one covering 33.68% of cells, while cluster 8 (C8) is the
smallest one accounting for only 1.8% of cells (Supplementary Fig. 4A).
The differentially expressed genes (adjusted P-value < 0.05, cancer vs
normal) in the clusters are significantly enriched in 10 well-known
breast cancer-related pathways, including apoptosis, cell cycle, estro-
gen signaling, IL− 17 signaling, neurotrophin signaling, NF − kappa B
signaling, NOD − like receptor signaling, p53 signaling, PI3K −Akt sig-
naling and TNF signaling pathways (Supplementary Fig. 4B). Cluster 7
(C7) has the largest number of 7 significant pathways, while C1 and C6
each have only 1 significant pathway.

We first applied ASGARD for multi-cluster drug repurposing pre-
diction and predicted 11 drugs (FDR <0.05 and overall drug score
>0.99 quantiles) for advanced metastatic breast cancer (Supplemen-
tary Fig. 4C and Supplementary Data 1). Fostamatinib is the top 1 drug
candidate (Supplementary Fig. 4C). It is a tyrosine kinase inhibitor
medication approved for the treatment of chronic immune
thrombocytopenia32. Colchicine, the second-best candidate, is an
alkaloid approved for treating the inflammatory symptoms of familial
Mediterranean fever33. Both fostamatinib and colchicine have shown
antitumor and anti-metastasis effects in animal models of breast
cancer34,35. Moreover, the 4th candidate fulvestrant, and 7th candidate
neratinib have been approved by the Food and Drug Administration
(FDA) for breast cancer treatment36,37.

To explore the potential molecular mechanisms of the top 2
candidates, we next investigated the target genes and pathways of
fostamatinib and colchicine across the eight cell clusters (Supple-
mentary Fig. 4D). Fostamatinib and colchicine both target all the sig-
nificant pathways in each cluster. Fostamatinib and colchicine are
complementary in targeting genes of these pathways. Among the 143
target genes from these significant pathways, only 29 target genes are
shared by fostamatinib and colchicine (Supplementary Fig. 4D). The
fostamatinib and colchicine also show biologically synergistic target-
ing of multiple genes on the same significant pathways. For example,
fostamatinib inhibits Cyclin D1 (CCND1) to produce G1 arrest in the
p53 signaling pathway, while colchicine inhibits Cyclin-dependent
kinase 1 (CDK1) to produce G2 arrest in the p53 signaling pathway and
cell cycle pathway38 (Supplementary Fig. 4D). Additionally, the drug
scores of top drug candidates vary from one PDX model to another
(Supplementary Fig. 4D), demonstrating that ASGARD is a forward-
looking precision medicine strategy in silico.

To evaluate the reliability of ASGARD on breast cancer patient
data, we downloaded four Triple Negative Breast Cancer (TNBC)
samples along with four controls from the “GSE161529” dataset39, in
order to compare with the drug prediction results from the PDX
models of TNBC described earlier. After the preprocessing procedure
by Seurat, the TNBC samples contain an average of 5580 cells. We
aligned all 8 samples, paired the cases vs. controls, and clustered them
into 6 groups: B-cell, endothelial cell, epithelial cell, macrophage, T
cell, and tissue stem cell (Fig. 4a). Epithelial cells are the largest group
covering 45.98% of cells on average, while endothelial cells are the
smallest group as expected, accounting for only 1.152% of total cells
(Fig. 4a). ASGARDpredicted 13 drugswith significant FDR p-values in at
least one of the four TNBC patients (Fig. 4b). For comparison, we also
performed drug predictions on the 2 PDX models of TNBC patients,
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using the same procedures (Supplementary Fig. 4c). Of great interest,
four of the most significant drugs from TNBC patients overlap with
those predicted by the two PDX samples. These drugs are mebenda-
zole, crizotinib, neratinib, and vinblastine (Fig. 4b). Both neratinib and
vinblastine have been proven by the FDA for the treatment of breast
cancer40,41. Mebendazole is a well-known anti-helminthic drug with
wide clinical use. It has been reported to have anti-cancer properties in
preclinical studies and has been in many clinical trial studies for
treating various cancers, including liver, lung cancers, and glioma42.

Crizotinib is a receptor tyrosine kinase inhibitor showing tumor-
reducing effects in vitro and in vivo43,44. It is now in a phase 2 clinical
trial for treating patients with TNBC (ClinicalTrials.gov Identifier:
NCT03620643).

To show quantitatively that ASGARD prediction on the TNBC
samples is valuable, wenext conducted two additional sets of analyses.
First, we compared its results with those using TRANSACT45, another
computational method to calculate drug sensitivity. Since the
TRANSACT can only predict drugs existing in the GDSC dataset46, thus

a
Br

ea
st

 C
an

ce
r

Le
uk

em
ia

C
O

VI
D

19

b

c

Fig. 3 | Comparing ASGARD to other single-cell-based repurposing methods.
The receiver operating characteristic (ROC) curves and area under curve (AUC)
scores of the ASGARD (red) and other published pipelines: Alakwaa’s pipeline
(green) and Guo’s pipeline (blue). The results of drug/compound repurposing are
shown on every cell cluster of the metastatic breast cancer dataset (a), every cell

cluster of the acute lymphoblastic leukemia dataset (b) and 4 clusters with
increased cell proportions in the decreased severe vs cured severe COVID-19
patients (c). The proportion of each single-cell cluster is shown in the brackets
above each plot. Source data are provided as a Source Data file.
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we can only compare the subset of drugs predicted by ASGARD in the
GDSC dataset. As shown in Fig. 4c, ASGARD and TRANSACT results are
well correlated. As ASGARD’s drug score increases, the drug sensitivity
in TRANSACT also increases. Second, we investigate the effect of the
tumor microenvironment on the drug scores. Thus, we did in silico
drop-one-out experiment, which excluded one cell type at a time.
Among all cell types in the tumormicroenvironment, T cell leads to the

most drastic drug score changes, as well as the most variable drug
score changes among different drugs (Fig. 4d). Moreover, the drug
score changes also differ among the four TNBC patients, showing the
sensitivity of ASGARD in personalized drug prediction.

To explore the potential molecular mechanisms of the top drug
candidate, we next investigated the target genes and pathways of
mebendazole across the six cell clusters (Fig. 4e, f). mebendazole
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targets many important genes and pathways in TNBC, such as signal
transducer and activator of transcription 1 (STAT1) in Toll-like receptor
signaling pathway, Vascular Cell Adhesion Molecule 1 (VCAM1) in NF-
kappa B signaling pathway, Matrix Metallopeptidase 14 (MMP14) in
TNF signalingpathway, signal transducer and activatorof transcription
2 (STAT2) in NOD-like receptor signaling pathway, cyclin-dependent
kinase inhibitor 1 A (CDKN1A) in PI3K-Akt signaling pathway, etc. These
targeted genes and pathways are essential for the proliferation,
migration, and invasion of TNBC cells47,48, and were suggested as
therapeutic drug targets for TNBC in previous studies49,50.

Drug repurposing for precursor T cell acute lymphoblastic leu-
kemia (Pre-T ALL)
We further applied ASGARD to the collected scRNA-seq data from 2
Pre-T ALL patients and three normal healthy controls22. ASGARD
identifies eight types of cells (Fig. 5a), in which T cells are further
clustered into four sub-populations (Fig. 5b). Cluster 1 (C1) is the lar-
gest one, covering 47.29% of cells, while cluster 4 (C4) is the smallest,
accounting for only 2.11% of cells (Fig. 5b). The differentially expressed
genes (adjusted P-value < 0.05, Pre-T ALL vs. normal) in the T cell
clusters are significantly enriched in 6 pathways, including apoptosis,

Fig. 4 | Drug repurposing in triple-negative breast cancer (TNBC) patient
samples. aUMAPplots of single-cell data from four TNBCpatient samples and four
control samples from the same study. b The overall drug scores combining all
TNBC samples as well as drug scores in each TNBC sample, among the top-ranked
significant single drugs (FDR <0.05). Gray color indicates a lack of significance for a
particular drug in an individual. The four drugs in the red boxes overlapped with
the top drugs predicted by ASGARD using PDX models of TNBC patients.
c Comparison between TRANSACT drug sensitivity and ASGARD drug score. Data
are presented as mean values ± /SD. n = 4 biologically independent samples.
d Heatmap of the drug score changes in the cell-type-specific drop-one-out
experiment, where each cell type in the tumor microenvironment is removed at a

time. e Pathway enrichment analysis (TNBC vs. normal) for each cell cluster. P-
values were determined by two-sided Fisher’s exact test and were adjusted by BH
FDR. f The top drug candidate mebendazole, its target genes, pathways, and
single-cell clusters. Orange node: up-regulated gene (logFC>1 and adjusted
P-value <0.05). Blue node: down-regulated gene (logFC< −1 and adjusted
P-value <0.05). Orange solid edge: drug stimulates gene expression. Blue solid
edge: drug inhibits gene expression. The width of the edge is proportional to the
strength of the drug effect. Gray dotted edge: gene belonging to a pathway. Gray
backward slash: pathway significant in a cell cluster. P-values were determined by
two-sided Fisher’s exact test and were adjusted by BH FDR. Source data are pro-
vided as a Source Data file.
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Fig. 5 | Drug repurposing for precursor T cell acute lymphoblastic leukemia
(Pre-T ALL). a UMAP plots of all cells from 3 normal controls and 2 Pre-T ALL
samples. b UMAP plots of T cell clusters from normal controls and Pre-T ALL
samples. cPathwayenrichment analysis (leukemiavs normal) for eachTcell cluster.
P-values were determined by two-sided Fisher’s exact test and were adjusted by BH
FDR.d The overall drug score and drug score in each Pre-T ALL patient, among top-

ranked significant drugs (FDR <0.05). Drug approved for leukemia treatment by
the FDA is tretinoin. e The drug candidate tretinoin, its target genes, pathways, and
single-cell clusters. All labels and their annotations are the same as Fig. 4f. P-values
were determined by two-sided Fisher’s exact test and were adjusted by BH FDR.
Source data are provided as a Source Data file.
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cell cycle, cGMP−PKG signaling, NF − kappa B signaling, p53 signaling,
and T cell receptor signaling pathways (Fig. 5c).

Among the predicted drugs by ASGARD, the first candidate, tre-
tinoin, has been approved for the treatment of leukemia51 (Fig. 5d and
Supplementary Data 2). Tretinoin is a vitamin A derivative. We further
explored the potential molecular mechanisms of the FDA-approved
top1 candidate tretinoin. Tretinoin targets many leukemia-related
genes and all the significant pathways in the 4T cell clusters, including:
the regulatorMDM4 in the p53 signaling pathway, cyclin D3 (CCND3) in
cell cycle and p53 signaling pathways, G protein subunit alpha q
(GNAQ) and phospholipase C beta 1 (PLCB1) in the cGMP−PKG signal-
ing pathway, Fos protooncogene (FOS) and p21 (RAC1) activated
kinase 2 (PAK2) in the T cell receptor signaling pathway, spectrin alpha
non-erythrocytic 1 (SPTAN1) in the apoptosis pathway, and zeta chain
of T cell receptor-associated protein kinase 70 (ZAP70) in apoptosis
and NF − kappa B signaling pathways (Fig. 5e). All these genes and
pathways were previously shown to have significance in the patho-
genesis of Pre-T ALL52–54. The drug target genes and pathways in the T
cell clusters explain why ASGARD predicts tretinoin for leukemia and
how tretinoin treats leukemia.

Drug repurposing for severe patients with coronavirus disease
2019 (COVID-19)
The immune response activated by the SARS-CoV-2 virus infection is a
double-edged sword. It protects the human body from viral infection.
But the deregulated immune response in severe COVID-19 patients
damages the alveolar to cause respiratory failure that kills the
patients55,56. To find drugs that may help to reduce the mortality of
severe COVID-19, we collected scRNA-seq data from the bronch-
oalveolar lavage fluid (BALF) of 15 severeCOVID-19 patients13,23. Among
them, 11 patients were cured (cured severe patient), while four died
(deceased severe patient) afterward. To identify immune cells that
correlate with the death of severe patients, we compared the scRNA-
seq data between deceased severe and cured severe patients. In total,
there are seven types of cells, including six types of immune cells and
epithelial cell types (Fig. 6a), in theBALF samples collected fromsevere
COVID-19 patients. Monocyte is the largest T cell population in both
deceased and cured severe COVID-19 patients (Fig. 6b). The popula-
tion of neutrophil, NK cell, T cell, andmonocyte increased in deceased
severe COVID patients compared to the cured ones, suggesting the
important role of these four types of cells in COVID-19-related
death57–60 (Fig. 6b). The differentially expressed genes (adjusted P-
value < 0.05, deceased severe vs cured severe) in the four types of cells
are significantly enriched (adjusted P-value < 0.05) in 8 pathways,
including chemokine signaling, coronavirus disease−COVID − 19,
IL − 17 signaling, JAK − STAT signaling, NF − kappa B signaling, T cell
receptor signaling, TNF signaling and Toll−like receptor signaling
pathways (Fig. 6c). Coronavirus disease−COVID − 19 pathway is the
most significant pathway in these cells, as expected. Chemokine sig-
naling, NF − kappa B signaling, TNF signaling, and Toll−like receptor
signaling pathways are the most widely enriched pathways in all four
types of cells. T cell receptor signaling pathway is only enriched in
T cells.

We identified the differential gene expression profiles of the four
cell types, including neutrophil, NK cell, T cell, and monocyte, by
comparing decreased severe patients to cured severe ones. Then we
put the differential gene expression profiles to ASGARD to identify
drug candidates using the multi-cluster drug score. Among the pre-
dicted drugs, rescinnamine (2nd) and enalapril (4th) caught our
attention (Fig. 6d, Supplementary Data 3). Both rescinnamine and
enalapril are angiotensin-converting enzyme (ACE) inhibitors.
Angiotensin-converting enzyme2 (ACE2)mediates the SARS-CoV-2 cell
entry. It’s interesting to see rescinnamine and enalapril are predicted
by ASGARD for treating severe COVID-19. So, we further explored their
target genes and pathways in the four cell types. Rescinnamine and

enalapril sharemost of the key genes on all the significant pathways in
monocyte, NK cell, neutrophil, and T cell, respectively (Fig. 6e). In
monocyte, rescinnamine and enalapril share 47 key target genes,
including Janus Kinase 1 (JAK1), Janus Kinase 2 (JAK2), C-C Motif Che-
mokine Ligand 2 (CCL2), C-C Motif Chemokine Ligand 4 (CCL4), and
C-C Motif Chemokine Ligand 8 (CCL8), and all the 7 significant path-
ways. In NK cells, rescinnamine and enalapril share 35 key target genes
from 6 significant pathways, such as JAK1, Janus Kinase 3 (JAK3), CCL4,
tumor necrosis factor (TNF), and Signal Transducer and Activator of
Transcription 2 (STAT2). In neutrophils, rescinnamine and enalapril
share 16 key target genes, such as CCL2, CCL8, C-X-CMotif Chemokine
Ligand 8 (CXCL8) and C-X-CMotif Chemokine Ligand 10 (CXCL10), and
all the 5 significant pathways. In T cell, rescinnamine and enalapril
share 30 key target genes, such as CCL2, CCL8, C-X-CMotif Chemokine
Ligand 9 (CXCL9), JAK3, TNF, and Lymphocyte Cytosolic Protein 2
(LCP2), and all the 6 significant pathways of T cell. The shared target
genes and pathways in corresponding cells were previously shown
related to death from COVID-1957–60.

Discussion
This study presents a Single-cell Guided pipeline toAidRepurposing of
Drugs (ASGARD) as a new generation of personalized drug recom-
mendation system. To evaluate the accuracy of ASGARD in single drug
repurposing, we compared ASGARD to other repurposing methods
that utilize bulk cell RNA-Seq (CLUE and DrInsight) or single-cell RNA-
Seq data (Alakwaa’s and Guo’s) on a variety of diseases, including
breast cancer, leukemia, and COVID-19. ASGARD performs much bet-
ter than all these methods in predicting drugs/compounds (Figs. 2, 3,
Supplementary Fig. 2). The performance of ASGARD is also robust
across different sizes and proportions of cell populations, as well as
differential expression levels (Supplementary Fig. 3). Moreover, we
highlight that ASGARD defines a drug score to summarize drug effi-
ciency across multiple selected cell clusters. These important func-
tions are missing in other simpler single-cell RNA-Seq drug reposition
pipelines by Alakwaa and Guo. Both Alakwaa’ and Luo’s pipelines use
the CLUE platform, a cloud-based platform developed by the LINCS
Center for signature-gene based drug ranking61. Additionally, Luo’s
method uses log fold change as the additional threshold to filter the
gene query. ASGARD on each cluster is related to DrInsight, a con-
cordantly expressed genes (CEG) based, enhanced drug repurposing
method compared to other signature-based searching methods30. It
uses order statistics to directly measure the concordance (e.g. inverse
association) between the disease data and drug-perturbed data and
identifies concordantly expressed genes (CEGs). CEGS are used as
features to further formulate an outlier sum statistic for drug selection,
rather than the connectivity score (usually −90) based cut-off for drug
selection. The CEG and outlier sum statistic contribute to higher per-
formance in ASGARD.

ASGARD achieves drug ranking for the disease/patient by a drug
score that evaluates the treatment efficacy across theuser-selected cell
clusters (Formula 1 in “Methods” section). The prediction using the
multi-cluster drug score showsa significantly (P-value < 0.05, Student’s
t test) better AUC than the prediction based on individual clusters
(Figs. 2 and 3). It suggests that targeting an individual cell cluster is not
sufficient for successful drug prediction. Instead, targeting multiple
essential diseased cell clusters is a more appropriate strategy for drug
prediction. On the other hand, it is not ideal to propose drug repur-
posing using bulk RNA-seq, amixture of all cells, as done by traditional
methods (e.g. CLUE and DrInsight). Significant heterogeneity exists in
different T cell populations; not all these cells play equal roles in the
diseases62,63, reflected by different gene expression responses to drug
treatment64. ASGARD can distinguishmore important T cell types from
others and repurpose drugs accordingly, explaining why ASGARD has
significantly (P-value < 0.05, Student’s t test) better AUC performance
than traditional bulk methods (Fig. 2b). Moreover, ASGARD also
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Fig. 6 | Drug repurposing for reducing mortality of severe COVID-19 patients.
a Single-cell populations of bronchoalveolar immune cells in 11 cured and four
deceased severe COVID-19 patients, respectively. b The proportions of cell type in
(left) and log10 transformed fold changes in deceased over the cured state (right)
of the single-cell populations in a. c Pathway enrichment analysis (deceased severe
vs. cured severe) for neutrophil, NK cell, T cell, and monocyte, respectively.
P-values were determined by two-sided Fisher’s exact test and were adjusted by BH

FDR. d The drug scores in the four deceased severe COVID-19 patients and all four
patients among top-ranked significant drugs (FDR<0.05). e The drug candidate
rescinnamine and enalapril, their target genes and pathways in the monocyte, NK
cell, T cell, and neutrophil, respectively, from severe COVID-19 patients. All labels
and their annotations are the same as in Fig. 4f. P-values were determined by two-
sided Fisher’s exact test and were adjusted by BH FDR. Source data are provided as
a Source Data file.
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demonstrates variations in drug scores across different patients
(Figs. 4b, 5d, and 6d). This result stresses that personalized therapy is
necessary for the best therapeutic effect, and utilizing single-cell
sequencing information may help to achieve that.

Sparsity and heterogeneity are two major challenges in analyzing
single-cell data, and usually cause false discoveries of differentially
expressed genes65. Previous benchmark study showed that Seurat18,
DESeq226, edgeR27, and Limma25 are among the top methods in dis-
covering differentially expressed genes using single-cell data28. We
here compared the effect of these methods and different para-
meterization on the downstream drug repurposing, using AUCmetric.
AUC performance still varies with methods for single-cell differential
expression (Fig. 2a, Limma (Bayes) method showed the best average
AUC performance compared to all other three methods. Within the
Limma method, approaches that model mean-variance with the
empirical Bayes approach (Limma Bayes and Limma trend) showed
better AUCs than that with the precision weights approach (Limma
voom). Similar observations were observed in some of the compar-
isons in a benchmark study of single-cell differential expression28. The
empirical Bayes approach is usually more powerful than the precision
weights approachwhen the library sizes are not quite variable between
samples66. Seurat, a method widely used in single-cell studies, has the
2nd best AUCs in general. In particular, the default mode of Wilcoxon
rank-sum test in Seurat has a slightly better average AUC than the t-test
and logistic regression (LR) modes. Our comparison revealed that DE
methods should be carefully selected according to the status of the
dataset to achieve the best performance. Accordingly, ASGARD was
designed as a flexible framework supporting various methods for
single-cell differential gene expression analysis.

We chose breast cancer or leukemia datasets to illustrate the
utilities of ASGARD, given the relative abundance of prior drug
knowledge. FDAhas approvedmanydrugspredictedbyASGARD, such
as neratinib and vinblastine for treating breast cancer36,37 (Fig. 4b and
Supplementary Fig. 4c), and tretinoin for treating leukemia51 (Fig. 5d).
Vinblastine and neratinib were predicted for breast cancer in both
TNBC patient and PDX datasets. Vinblastine is a vinca alkaloid that has
been used in the treatment of metastatic breast cancer since the early
1980s. The regimen of vinblastine/mitomycin is an effective salvage
regimen and an excellent first-line chemotherapeutic treatment for
women with metastatic breast cancer41. Neratinib is a protein kinase
inhibitor that was approved in July 2017 as an extended adjuvant
therapy in breast cancer37. Recently, a randomized phase III clinical
trial of 621 patients from 28 countries showed neratinib significantly
improved the progression-free survival of patients with advanced
breast cancer67. Tretinoin, also known as all-trans-retinoic acid (ATRA),
is the first candidate predicted by ASGARD for leukemia. Tretinoin
targets all significant pathways, such as p53 signaling, cell cycle, and
apoptosis pathways, for each diseased cell cluster in leukemia patients
(Fig. 5e). These pathways play important roles in the survival of leu-
kemia patients54. Consistent with our prediction, tretinoin was
approved by the FDA to induce remission in patients with acute
leukemia51. Tretinoin significantly improves the survival of acute
leukemia68. Tretinoin with chemotherapy has become the standard
treatment for acute leukemia, resulting in cure rates exceeding 80%69.
The successful prediction of FDA-approved drugs supports the relia-
bility of ASGARD.

Beyond the above described FDA-approved cases, ASGARD also
predicts candidate drugs for breast cancer and leukemia.Crizotinib is a
candidate from both TNBC patient and PDX model data (Fig. 4b and
Supplementary Fig. 4c). Crizotinib is a receptor tyrosine kinase inhi-
bitor that inhibits the growth, migration, and invasion of breast cancer
cells in preclinical studies43,44. A case report showed the TNBC patient
harboring the ALK fusion mutation had a dramatic response to crizo-
tinib treatment69. It is also in a phase 2 clinical trial for treating patients
with TNBC (ClinicalTrials.gov Identifier: NCT03620643). For leukemia,

ASGARD predicts Vorinostat, a histone deacetylase (HDAC) inhibitor,
as one of the candidate drugs. Vorinostat was approved by FDR for
treating patients with progressive, persistent, or recurrent cutaneous
T- cell lymphoma70. It induces cell apoptosis in one T cell leukemia cell
line in vitro71, and improves the outcome of acute T cell lymphoblastic
leukemia in animal models72. The results of a recent clinical trial
(ClinicalTrials.gov Identifier: NCT04467931) show vorinostat is a pro-
mising candidate drug for T cell acute lymphoblastic leukemia73.

Since ASGARD repurposes candidate drugs to reverse “diseased”
cells to “normal” cells, it’s important to set proper controls according
to the aimof the study. The best controls are arguably from the normal
tissues of the same patients, and the next best ones are from the
patients without such a disease but matched on other major con-
founders. Although consortiums such as Human Cell Atlas aim to
obtain normal tissues from clinically healthy samples, it may not be
easy to obtain normal samples for some diseases. Under such sce-
narios, samples from the very early stage of the disease or controls
from tissues with the most relevant origin could be substitutes, until
the data from the normal tissues are available. Additionally, a recent
report has proposed using a deep-learning based approach to identify
the best reference control tissue, an attractive strategy that relies
much less onprior-assumptions74. Additionally, ASGARDbuilt the drug
reference using drug responses data from LINCS L1000 project21,
whichwere collected from 98 cell lines.We divided the drug reference
into several tissue specific drug references according to the tissue
origin of the cell lines. It’s highly recommended to select tissue specific
drug references when using ASGARD. For example, for drug repur-
posing in breast cancer, it is best to use drug responses collected from
breast cell lines. If there is not a proper cell-type specific reference for
the target disease, it might be worth identifying the cell line whose
base-line gene expression profiles are most similar to “control” sam-
ples, after adjusting for systematic differences between cell line vs.
primary tissues (e.g. using transfer learning).

Altogether, this study shows clear evidence thatASGARDdefines a
single-cell-based reliable drug score for repurposing confident drugs,
which were approved or in clinical trials for breast cancer, leukemia,
andCOVID-19, respectively. It also provides new applications for drugs
that warrant further clinical studies. In all, ASGARD is a single-cell
guided pipeline with significant potential to recommend
repurposeful drugs.

Methods
Single-cell RNA sequencing (scRNA-seq) data
We obtained multiple scRNA-seq datasets from the Gene Expression
Omnibus (GEO) database. ScRNA-seq data of cells from 4 Triple-
Negative-Breast-Cancer (TNBC) patients and 4 healthy controls are
from “GSE161529”. Epithelial cells from Patient-Derived Xenografts
(PDXs)models of 2 patientswith advancedmetastatic TNBCs and adult
human breast epithelial cells from3 healthy women are fromGEOwith
accession numbers “GSE123926”11 and “GSE113197”24, respectively.
Another scRNA-seq pediatric bone marrow mononuclear cells
(PBMMC) dataset from 2 Pre-T acute lymphoblastic leukemia patients
and three healthy controls is from GEO with accession number
“GSE132509”22. The last set of scRNA-seq datasets are single cells from
the bronchoalveolar lavage fluid (BALF) of 15 severe COVID-19 patients
(4 deceased and 11 cured) from GEO with accession numbers
“GSE145926”13 and “GSE158055”23.

Processing of scRNA-seq data
ASGARD accepts processed scRNA-seq data from the Seurat package18.
In this study, genes identified in fewer than three cells are removed
from the dataset. We used the same criteria as in their original studies
to filter cells11,13,24. Preprocessing steps remove the following cells from
the dataset: (1) epithelial cells from breast cancer PDXs and healthy
breast tissues with fewer than 200 unique genes, (2) PBMC cells from
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leukemia patients and healthy controls with fewer than 200 unique
genes, and (3) BALF cells from COVID-19 patients with fewer than 200
unique genes, more than 6000 unique genes or have a proportion of
mitochondrial genes larger than 10%13. For consistency, cells from
TNBC patients with fewer than 200 unique genes are also removed
from the dataset39. We used cell cycle marker genes and linear trans-
formation to scale the expression of each gene and remove the effects
of the cell cycle on gene expression.

Cell pairwise correspondences
ASGARD suggests using functions from Seurat for cell pairwise cor-
respondences. In this study, gene counts for each cell were divided by
the total counts for that cell andmultiplied by a scaling factor (default
is set to 10,000). The count matrix was then transformed by log
2(count+1) in R. To identify gene variance across cells, we first fitted a
line to the relationship of log(variance) and log(mean) using local
polynomial regression (loess). Then we standardized the feature
values using the observed mean and expected variance (given by the
fitted line). Gene variance was then calculated on the standardized
values. We used the 2000 genes with the highest standardized var-
iance for downstream analysis. Then we identified the K-nearest
neighbors (KNNs) between disease and normal cells based on the L2-
normalized canonical correlation vectors (CCV). Finally, we built up
the pairwise cell correspondences by identifying mutual nearest
neighbors18.

Cell clustering and annotation
We applied principal component analysis (PCA) from Seurat on the
scaled data to perform the linear dimensional reduction. Thenweused
a graph-based clustering approach18. In this approach, we first con-
structed a KNN graph based on the euclidean distance in PCA space
and refined the edge weights between any two cell pairs using Jaccard
similarity. Then we applied the Louvain algorithm of modularity opti-
mization to iteratively group cell pairs together. We further ran non-
linear dimensional reduction (UMAP) to place similar cells within the
graph-based clusters determined above together in low-dimensional
space. To annotate clusters of cells, we ran an automatic annotation of
single cells based on similarity to the referenced single-cell panel using
the SingleR package75. We used the dominant cell type (>50% cells) as
the cell type of the cluster.

Drug repurposing
ASGARD supports importing differentially expressed genes calculated
from multiple external methods, including Limma25, Seurat (Wilcoxon
Rank-Sum test)18, DESeq226, and edgeR27. The differentially expressed
gene list in disease is transformed into a gene rank list. ASGARD uses
21,304drugs/compoundswith response gene expression profiles in 98
cell lines from the LINCS L1000 project21. A differential gene expres-
sion list in response to drug treatment is also transformed into a gene
rank list. ASGARD further identifies potential candidate drugs that
yield reversed gene expression patterns from those of diseased vs.
normal cells, using theDrInsight package30 (version: 0.1.1). Specifically,
it identifies consistently differentially expressed genes, which are up-
regulated in cells fromdiseased tissue but down-regulated in cells with
drug treatment, or down-regulated in cells from diseased tissue but
up-regulated in cells with drug treatment. It then calculates the outlier-
sum (OS) statistic76, representing the effect of reversed differential
genepattern by the drug treatment. TheKolmogorov–Smirnov test (K-
S test) is then applied to the OS statistic, to show the significance level
of one drug treatment relative to the background of all other drugs in
the dataset. The reference drug dataset contains gene rank lists of
591,697 drug/compound treatments from the LINCS L1000 data, as
mentioned above. The Benjamini-Hochberg procedure is used to
adjust P-values from the K-S test to control False Discovery Rate (FDR)
of multiple hypothesis testing77.

Drug evaluation
ASGARD defines a drug score at the individual patient level (Formula
1), which calculates the drug efficacy across all single-cell clusters in a
given patient’s scRNA-Seq data. The drug score estimates drug efficacy
using the cell type proportion, the significance of reversed differential
gene expression pattern (FDR), and the ratio of reversed significantly
deregulated genes over disease-related (or selected) single-cell clus-
ters. The drug score is estimated by the following formula:

Drug score=
Xn

k = 1

NumðCellÞk
NumðTotal:CellÞ * � logFDRk

10

� �
*
NumðReversedGeneÞk
NumðDiseasedGeneÞk

� �
ð1Þ

In this formula, k is a particular single-cell cluster, n represents all
disease-related (or selected) single-cell clusters, NumðCellÞk

NumðTotal:CellÞ repre-
sents cellular proportion of the cluster k in all diseased cells,� logFDRk

10
represents the significance of reversed differential gene pattern in the
cluster k by drug treatment, and NumðReversedGeneÞk

NumðDiseasedGeneÞk represents the ratioof
reversed disease-related genes by drug treatment. Specifically,
NumðTotal:CellÞ is the total number of cells in the sample and
NumðCellÞk is the number of cells in the cluster k. FDRk is the drug’s
FDR-adjusted p-value (significance of reversed differential gene pat-
tern) for cluster k.NumðDiseasedGenesÞk is the number of significantly
deregulated genes in a cluster k, while NumðReversedGenesÞk is the
number of significantly deregulated genes in a cluster k that can be
reversed by the drug. To allow a comparison of drug efficacy across
patients, ASGARDalso provides a standardized drug score, whichhas a
scale of 0 to 1 (Formula 2).

Standardized Drug Score = 1� RankðDrugÞ
Total NumðDrugÞ ð2Þ

Besides the drug score, ASGARD further provides Fisher’s com-
bined P-value78 over the originalP value of every cluster. The combined
p-value is calculated as the right-tail probability Px2 2nð ÞðT > tÞ, where
t = � 2

Pn
i = 1log

Pi
10. The BH FDR is used to adjust Fisher’s combined P-

value. The adjusted Fisher’s combined P-value (FDR) is independent of
the drug score. The FDR and drug score can be used together or
independently for drug selection. By default, ASGARD uses the drug
score for drug selection. Drugs with a higher value of drug score are
supposed to have better therapeutic effects than those with a
lower value.

Benchmarking ASGARD
We use the receiver operating characteristic curves (ROCs) and the
areas under the ROC curves (AUCs) to compare the performance of
ASGARDwith those of the other twopipelines, aswell as bulkmethods.
Since these pipelines/methods report both drugs and compounds, we
let ASGARD report both drugs and compounds in the comparisons
with other pipelines/methods. ROCs and AUCs are calculated for each
pipeline using the pROC package79. In ROC and AUC estimation, we
regarded FDA-approved drugs and compounds used in advanced
clinical trials or have been proven effective in animal models as posi-
tive cases (Supplementary Data 4), and all other drugs as negative
cases. To identify drugs and compounds used in advanced clinical
trials or have been proven effective in animal models, we used three
databases that are ClinicalTrials.gov, PubMed, and PubChem, and all
the drugs and compounds we found are listed in Supplemen-
tary Data 4.

We determined the need to assess the robustness of the three
pipelines on different (1) sizes, (2) similarities, and (3) unbalances of
single-cell populations. For (1), the Bootstrapping method in R80 gen-
erated simulationdata of different sizes by randomlydrawing the same
number of disease and normal cells from “GSE123926” and
“GSE113197”. For (2), additional simulation data are generated by
adjusting the differential gene expression levels from 20% to 90% of
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the original differential levels of the single-cell cluster, based on
“GSE123926” and “GSE113197”. For (3), simulation data is generated by
randomly drawing 5000 cells with diseased cell proportions ranging
from 20% to 90%, thereby yielding unbalanced populations.

Drug score analysis
To examine the impact of each cell type on a drug score, we conducted
in silico drop-one-out experiments, excluding one cell type from the
scRNA-Seq data at a time. The difference between the new drug score
and the original drug score is then calculated to reflect the contribu-
tion of each cell type to the drug prediction.

To validate ASGARD, we compared it with another drug response
prediction method TRANSACT81, on the TNBC dataset (“GSE161529”).
Since TRANSACT is a method working on bulk gene expression data,
we took the mean expression value of each gene across all cells as the
pseudo-bulk expression value of that gene. To fit TRANSACT with the
dataset we used, we changed two parameters, number_pc[‘target’] and
n_pv, to 3 andmaintained all other parameters at the same value as the
authors’ original report81.

Statistics
All data are presented as mean ± standard deviation (SD), except
otherwise stated. P-values are adjustedwith Benjamini–Hochberg (BH)
false discovery rate (FDR). Differences were considered significant
when adjusted P-value < 0.05. The test used is mentioned in the figure
legend.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
ScRNA-Seq data are available in Gene Expression Omnibus (Accession
number: “GSE161529”, “GSE123926”, “GSE113197”, “GSE132509”,
“GSE158055”, and “GSE145926”). Phase I LINCS L1000 data are avail-
able in Gene Expression Omnibus (Accession number: “GSE92742”).
Phase II LINCS L1000 data are available in Gene Expression Omnibus
(Accession number “GSE70138”). All other relevant data supporting
the key findings of this study are available within the article and
its Supplementary Information files or from the corresponding author
upon reasonable request. Source data are provided with this paper.

Code availability
ASGARD is available as an R package on GitHub (https://github.com/
lanagarmire/ASGARD)82 under the PolyForm Noncommercial License.
The scripts used in this study are available on GitHub (https://github.
com/lanagarmire/Single-cell-drug-repositioning)83.
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