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Microearthquake and seismic tomography studies are commonly used
to apprehend melt accumulation, melt migration and submarine
eruptions at mid-ocean ridges. Koulakov et al.' observe deep micro-
seismicity, accompanied by an increase in P-wave velocities (Vp),
decrease in S-wave velocities (Vs), leading to high Vp/Vs ratios at
0-13 km below the seafloor at the Gakkel Ridge, which they interpret
to be due to the presence of melt in the mantle. However, the presence
of melt in the mantle will decrease, not increase, the P-wave velocity.
The reanalysis of the picked arrival times indicates that the high Vp/Vs
ratios obtained by Koulakov et al." result from misidentification of
seismic phases, and hence their interpretation of a low degree of
melting in the mantle is questionable.

Seismic velocities (compressional P-wave and shear S-wave
(Vp, Vs)) can be used to determine rock types in the Earth and to
help understand different physical and chemical processes within the
Earth. In the recently published paper, Koulakov et al.' use micro-
earthquake data to determine the Vp and Vs beneath axial volcanoes of
the ultraslow-spreading Gakkel Ridge at 85°E. They find an increase in
P-wave velocities and a decrease in S-wave velocities from the seafloor
down to 13 km depth, leading to high Vp/Vs ratios, which they interpret
to be caused by fluid-saturated fractured rocks from the seafloor down
to 5 km depth, and by a stable magma reservoir at 5-13 km. However,
when cracks are saturated with fluids in the crust, both Vp and Vs
would be reduced but Vp/Vs ratio would increase as Vs decreases more
than Vp*® due to the presence of fluids. In the mantle, high Vp/Vs ratios
can be due to either the presence of melt!, or a high degree of
serpentinization®®, or fractured mantle rocks with fluid-filled veins’.
However, in all these cases, both Vp and Vs would be reduced®*,
contrary to the high Vp and low Vs anomalies observed by Koulakov
et al.’. Koulakov et al.! argue that the high Vp and low Vs anomalies are
commonly observed beneath volcanoes on land, which are interpreted
to be due to the presence of magma, however, such an interpretation
cannot be valid in the oceanic domain, especially in the mantle,
because the Vp of mantle peridotite (-8 km/s) is much higher than the
Vp of melt or other fluids (H,0, CO,) (1.0-3.5 km/s)’ or frozen gabbroic
sills (7 km/s)®, and therefore, the effective Vp of a composite rock
would always be less than the surrounding mantle rocks.
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To demonstrate that the increase of P-wave velocity in the pre-
sence of fluid in the mantle is nonphysical, we used a differential
effective medium theory* to compute the mantle Vp and Vs with dif-
ferent aspect ratios and velocities for ellipsoidal melt inclusions
(Fig. 1a, b). In the starting one-dimensional (ID) velocity model of
Koulakov et al.!, the mantle Vp and Vs at 10 km depth are 7.42 and
4.29 km/s, respectively (Fig. 1a, b) which become Vp =7.87 km/s (+6%)
and Vs=4.03 km/s (—6%)" after the inversion (Fig. 1a, b). If we assume
that the mantle Vs decrease (—0.26 km/s) is due to spherical melt
inclusions (aspect ratio r=1), a maximum of -7.0% of melt fraction
would be required to explain this decrease (Fig. 1a). For higher aspect
ratios (r=2-100), the amount of melt would be much less, ranging
from ~0.2 to 6% (Fig. 1a). Assuming various aspect ratios (r =1-100), an
increase in mantle Vp (+0.45 km/s) would require a melt fraction of
9.4-24.2% but Vp of the melt inclusion has to be 10-100 km/s (Fig. 1b),
which is nonphysical, and hence the high Vp anomaly at 10 km depth
observed by Koulakov et al.' cannot be due to the presence of melt.

We also analyzed the reliability of the picked P- and S-wave pha-
ses. The seismic stations were deployed on the ice floes’. As S-waves
cannot travel in the water, the Vs tomographic model was obtained
using sP-wave phases', which are S-waves converted to P-waves on the
sea bottom. Assuming that both the P-wave and sP-waves have the
same ray paths, their time differences (ts—-¢p) would be only caused by
different Vp and Vs in the subsurface, which is the basic principle in
the inversion method used by Koulakov et al.". We counted time dif-
ferences on each station (Fig. 1c), and found that 80% of the time
differences are less than 2.5s (Fig. 1c). The hypocentral distance (D)
could be approximated using a simple equation’:

VpVs

D(km) = (ts - tp) m

@

In the starting 1D model", Vp increases from 4.8 km/s at 1.7 km to
7.8 km/s at 30 km depth with a Vp/Vs ratio of 1.73; therefore, V';{Vlfs
would be 6.5-10.6, resulting in D of 16.25-26.5 km assuming a time
difference of 2.5s. The estimated epicentral distances would be

<20 km, which is too small for the large (-70 km x 40 km) deployed
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Fig. 1| Analyses of the inverted velocities and picked phases by Koulakov et al.’.
a Variation in the S-wave velocity versus the percentage of melt inclusions* in the
mantle at 10 km depth. The original Vs in the mantle is assumed to be 4.29 km/s.
The different dashed colored lines indicate various aspect ratios (r) ranging from 1
to 100, representing the shape of ellipsoid melt inclusion (see inset red ellipse)*.
r=1 corresponds to spherical inclusions and r=100 represents thin films. The red
patch indicates the estimated melt fraction (-0.2-7%) based on a decrease of
0.26 km/s in the S-wave velocity. b P-wave velocity as a function for melt (rock)
fraction assuming an initial Vp of 7.4 km/s in the mantle, with different P-wave
velocities of the melt inclusions varying from 1 to 100 km/s (see legend) for
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different aspect ratios (r=1, solid lines; r =100, dashed lines). For an increase of
0.45 km/s in the P-wave velocity, P-wave velocities of melt inclusion vary from 10 to
100 km/s and the melt fraction would be 9.4-24.2%. ¢ Histograms show the time
differences between S- and P-wave phases on each station from Koulakov et al.". The
gray columns show the cumulative percentage. d Modified Wadati diagram using
the method from ref.'°. The green dots indicate the time differences of P-wave
phases (Pi-Pj) versus those of S-wave phases (Si-$j) of each station pair (i, /) for each
event'’. The dashed black line indicates the estimated Vp/Vs ratio using the full
dataset from Koulakov et al., ~1.14. The dashed magenta lines mark the different
Vp/Vs ratios.

network’. In this case, the resolved area in the tomography (25-30 km)*
is mostly constrained by the earthquakes from short distances, redu-
cing the reliability of deep structures due to the lack of large-offset
ray paths.

In addition, we plot the modified Wadati diagram (Fig. 1d) using
the station-pair time difference computation’:

D,
tSi - tSj +Atwater —_Vs— [T; - Q (2)
tPi - tPj + Atu/ater %’7 - %7 Vs

where for a station pair (i and ), At qr is the travel time difference in
the water, ¢p; 5 and ts;s are travel times for P- and S-waves, respec-
tively, and (Di, Dj) are the hypocentral distances. In the study area, the
bathymetric data show that water depth differences at all stations will
be less than 1km (At,,qr < 0.7 s), which will not influence Vp/Vs ratios
substantially (Fig. 1d). Our obtained Wadati diagram (Fig. 1d) shows
that the Vp/Vs ratio is ~1.14, much lower than that in the normal oceanic
crust and mantle (1.7-2.0), which is evident when time differences are
>4 s. We suggest that the picked sP-waves are actually PsP-waves, the
main P-waves that have traveled in the crust and mantle, converted to

S-waves at the basement-sediment interface, traveled in the low-
velocity unconsolidated sediments as S-waves, and then converted to
P-waves at the sediment-water interface. The picked sP-waves on
stations G8530-G8533 have much smaller amplitudes than those on
other stations (G8510-G8513; G8520-G8523) (See Supplementary Fig.
S1 from Koulakov et al.'), and we suggest that this discrepancy is likely
due to the erroneous identification of S-wave phases. A low S-wave
velocity of ~200 m/s in the sediments will result in a delay of 0.5s per
100 m of sediment thickness™. Only a 500-m-thick unconsolidated
sediment layer can result in an S-wave delay of 2.5 s. As a consequence,
the small time differences (sP-P) (<2.5s) (Fig. 1c) are possible due to
large S-wave delays in the unconsolidated sediment layer'™". Although
no seismic data are available directly above the volcano, seismic
reflection/refraction results™* and sidescan data® from other parts of
the Gakkel Ridge reveal thick sediments in the axial valley, suggesting
that the S-wave delays could indeed have been caused by the presence
of thick sediments. As a result, the earthquake hypocenter locations
and the tomographic velocity models would be erroneous, and
therefore the Koulakov et al.' proposal of the presence of volatiles-
rich magma reservoir beneath the volcanoes, the low-degree mantle
melting and degassing in the mantle would not be valid.
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Data availability

All data generated and analyzed during this study are included in this
published article. Source data underlying Fig. 1 are provided as a
Source Data file. Source Data are provided with this paper.

Code availability
The code to reproduce Fig. 1 may be available upon request to the
corresponding author.
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