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Robust odor identification in novel olfactory
environments in mice

Yan Li1, Mitchell Swerdloff1, Tianyu She 1, Asiyah Rahman1, Naveen Sharma1,
Reema Shah1, Michael Castellano1, Daniel Mogel1, Jason Wu1, Asim Ahmed1,
James San Miguel1, Jared Cohn1, Nikesh Shah1, Raddy L. Ramos1 &
Gonzalo H. Otazu 1

Relevant odors signaling food, mates, or predators can be masked by unpre-
dictable mixtures of less relevant background odors. Here, we developed a
mouse behavioral paradigm to test the role played by the novelty of the
background odors. During the task, mice identified target odors in previously
learned background odors and were challenged by catch trials with novel
background odors, a task similar to visual CAPTCHA. Female wild-type (WT)
mice could accurately identify known targets in novel background odors. WT
mice performance was higher than linear classifiers and the nearest neighbor
classifier trained using olfactory bulb glomerular activation patterns. Perfor-
mancewasmore consistentwith an odor deconvolutionmethod.We also used
our task to investigate the performance of female Cntnap2-/- mice, which show
someautism-like behaviors.Cntnap2-/-mice hadglomerular activationpatterns
similar to WT mice and matched WT mice target detection for known back-
ground odors. However, Cntnap2-/- mice performance fell almost to chance
levels in the presence of novel backgrounds. Our findings suggest that mice
use a robust algorithm for detecting odors in novel environments and this
computation is impaired in Cntnap2-/- mice.

Wild-type (WT) mice in their natural environment need to identify
target odors in the presence of novel background odors. Odorants
activate olfactory receptors expressed in the olfactory epithelium.
These receptor neurons project to specific glomeruli in the olfactory
bulb. Glomerular activation is processed by the olfactory bulb circuitry
and is conveyed by mitral and tufted cells to different brain areas1–3.
Neural representations of odor mixtures with different weak targets
but the same strong background odor could be dominated by the
background odor4, resulting in a similar neural representation. The
olfactory bulb circuitry can separate similar patterns5; however, mix-
tures that include novel background odors do not have previously
learned associations, and mice need to generalize to produce an
appropriate action—a function that is affected in Autism Spectrum
Disorders (ASD). Novel odors produce larger mitral cell activation

compared to familiar odors6 suggesting that novel background odors
might be particularly effective at masking target odors of interest.

WT mice can be trained over hundreds of trials to detect target
odors in the presence of familiar background odors7. However, we do
not know if WT mice can generalize and successfully recognize a
known target odor on the first presentation with a novel background
odor, nor what algorithm WT mice might employ.

Here we have developed a novel behavioral paradigm to study
odor identification in novel backgrounds in the Cntnap2−/− mouse
model of autism. In the first part, we characterize the behavioral
strategy used byWTmice to identify target odors in novel background
odors. In the second part, we compare behavioral performance with
previously proposed algorithms of odor identification using intrinsic
imaging of the olfactory bulb. In the thirdpart, weanalyze the behavior
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of the Cntnap2−/− mouse model of autism in odor recognition in the
presence of novel backgrounds.

Results
Odor identification in novel backgrounds (olfactory CAPTCHA)
in WT mice
In order to test responses to novel background odors, we used the
olfactory equivalent of the visual CAPTCHA8 employed for human
verification tasks, which also serves as a benchmark for testing
recognition algorithms9. CAPTCHA requires a user to identify letters
(known targets) superimposed on distracting stimuli (novel back-
grounds). Mice exposed to a novel background as part of an olfactory
CAPTCHA task have to identify the target odors present permitting
direct evaluation of olfactory function. In contrast, it is not straight-
forward to evaluate the olfactory function of animals freely exploring
novel background odors10,11 because there is no task assigned. We
hypothesized thatWTmice will be able to identify known odors in the
presence of novel background odors since this situation mimics what
they experience in the wild and that a mouse model of autism will not
becauseCAPTCHA requires generalization and robust responses in the
presence of novelty, which are affected in ASD.

Mixtures of target and background odors were divided into a
training set and a test set (see Fig. 1A). Water-deprived mice were
trained with the training set and their performance was evaluated with
the test set. The training set consisted of 16 mixtures of 3 odors, 1
target odor that solely determined reward availability (4 possible
odors), 1 contextual background odor (4 possible odors), and 1 fixed
background, (s)-(−)-limonene. Both (s)-(−)-limonene and the con-
textual background odors were presented at a higher concentration
(0.1% of saturated vapor) than the target odors (0.025%). The con-
textual background odors and the (s)-(−)-limonene were the known
background odors.

The test set also consisted ofmixtures of three odors that included
the same target odors and contextual background odors, but the (s)-
(−)-limonene was replaced by one of 11 possible novel background
odors, which were also presented at a higher concentration (0.1%). We
used a go/no-go design (see Fig. 1B), with two of the target odors
indicating the presence of a water reward upon licking the water tube
with odors delivered using an automated serial air-dilution odor
machine12. The differences in performance between the training set and
the test set can be solely ascribed to the novel background odor
because both sets include the same mixtures of target and contextual
background odors.

We chose a relatively complex training set (eight go mixtures and
eight no-gomixtures) to promote generalization.We chose a go/no-go
licking task because it is relatively easy forWTmice to learn13 and it can
also be learned by the Cntnap2−/− mousemodel of autism14. We did not
use odors that are known to trigger innate responses15–17 because we
wanted to study a general mechanism for target detection that did not
rely on specialized selective odor receptors.

Detection of weakly activated glomeruli using intrinsic imaging
We built a triple serial air-dilution odor machine (see Supplementary
Fig. 1 for an odor machine schematic) to deliver odors at low con-
centrations in a reliable manner (see the “Methods” section and Sup-
plementary Fig. 2). We used intrinsic optical imaging (see Fig. 1C, D) to
quantify the pattern of glomerular activation of the target and back-
ground odors at the same concentrations used during the behavior.
Intrinsic imaging18 was performed infivenaiveWTmice thatwere awake
butpassively exposed to9 spulseodors.Wequantified theodorevoked
responses as z-scores using the 5 s air interval preceding the odor pre-
sentation as baseline. The average odor response was calculated as the
mean value, averaged over repeats, of the z-score during a 7 s window
that started 2 s after odor onset. ROIs were drawn over glomeruli with
detectable negative values on their calculated z-score response for at

least one of the presented odors (see Fig. 1E, F). Nearby ROI (center
distance < 50 µm) responded to different sets of odors consistent with
ROI signals originating from different glomeruli (see Supplementary
Note 1: Physical characteristics of drawn ROIs). We recorded from
155 ± 38.1 ROI (mean ± s.d.) per mouse (775 glomeruli total).

We could detect odor-evoked responses on individual odor pre-
sentations using intrinsic imaging (see Fig. 1G, H) as previously
shown18. The imaged z-score response of an individual glomerulus
changed from trial to trial. These variations in the imaged z-score
reflect both real variations in the glomerular responses as well as
imaging noise in the intrinsic signal. Variable glomerular responses
could potentially affect odor recognition in mice whereas the imaging
noise mostly affects our experimental capability to detect glomer-
uli that were weakly activated by an odor. Imaging noise can be
reduced by averaging over multiple odor repeats whereas the mice
need to make decisions based on single odor presentations.

To quantify these two variability sources, we plotted the standard
deviation of the trial by trial glomerular responses against the average
glomerular response (see Fig. 1I). The standard deviation increasedwith
larger average responses, consistent with a previous report using glo-
merular calcium imaging19 that showed that the standard deviation σ
was proportional to μ, the average glomerular response, with the pro-
portionality constant given by the coefficient of variation (CV). This
model would predict zero variation for a glomerulus that was not
activated by an odor. However, there was a measurable variance σ2

noise

in the intrinsic glomerular response even in the absence of an average
odor evoked response which originated from the imaging noise. Using
the data from 2684 ROI-odor pairs from 3 WT mice, we estimated the
coefficient of variation CV and the σ2

noise by fitting the function
σ2 μð Þ= σ2

noise +CV
2
μ2. The estimated coefficient of variation (CV) was

0.34 (95% CI: 0.30–0.37) which is similar to the value of 0.37 ± 0.07
(mean ± SD) estimated using calcium imaging in anesthetized mice19.
This coefficient of variation includes both uncorrelated fluctuations of
individual glomerular responses as well as fluctuations that are corre-
lated across the whole glomerular population. WT mice performance
might be mostly limited by the uncorrelated variability because, by
having access to all set of glomeruli, mice could compensate for the
correlated fluctuation of the whole population19. Therefore, we calcu-
lated a coefficient of variation CVuncorr for the uncorrelated fluctuations
(see Supplementary Fig. 3) after subtracting the population response
fluctuations. CVuncorr was 0.25 (95% CI: 0.23–0.27) which is larger than
the CVuncorr of anesthetized animals (0.099 ±0.019, mean ± SD). In
contrast to anesthetized mice where the correlated variability domi-
nated, in awake mice correlated variability was less dominant.

The estimated trial-to-trial variability associated with the imaging
noise σnoise was 1.59 (95% CI: 1.51–1.66). In order to determine a
threshold for glomeruli activation thatwas reliably different fromzero,
we averaged the odor-evoked responses over n trials resulting in a
standard error of the mean of the glomerular activation of σnoise=

ffiffiffi
n

p
.

We used at least n = 16 trials so the standard error of the mean was
<0.42. Glomeruli-odor responses that had an average z score of −0.42
or larger were set to zero. This threshold was smaller than the
responsive ROI–odor responses (−1.37 ± 1.17 z-score, mean ± s.d.,
n = 6477 ROI–odor pairs, 5 WT mice).

To test whether low levels of intrinsic glomerular activation pro-
pagated to structures downstream from the glomeruli, we performed
fluorescent and intrinsic imaging in a Thy1-GCamP6F mouse20 that
expresses GCamp6F in the mitral and tufted cells. This mouse line
permits the measurement of the output signal from the olfactory
bulb21. Glomeruli identified with intrinsic imaging colocalized to glo-
meruli identified using the fluorescence signal (see Supplementary
Fig. 4). Even relatively small deflections in intrinsic signals in the indi-
vidual glomerulus in response to odors (z-scores between 0 and −0.3)
were correlated with statistically significant increases in fluorescent
signal in the output of the bulb. This confirmed that our threshold of
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−0.42 in z-score conservatively identified glomerular responses that
activated olfactory bulb output neurons.

Glomeruli activated by target odors were also activated by
background odors
We imaged responses to the four targets and the 16 background odors
at the concentrations used for behavioral measurement from 5 WT

mice with 155 ± 38.1 (mean± s.d.) ROIs recorded per animal (775 ROIs
total). The four target odors induced activity that exceeded our
detection threshold in a smaller fraction of the available glomeruli per
animal (29.5%± 2.0%,mean± s.d. n = 4 odors × 5mice = 20 animal odor
pairs, see Fig. 1J) compared to the four contextual background odors
(43.5% ± 6.2%, mean ± s.d. n = 20 animal odor pairs, p =0.005, t-test)
and the 11 novel background odors (46.1% ± 8.8%, mean ± s.d., n = 55
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animal odor pairs, p =0.0029, t-test). The four target odors had also
lower levels of average glomerular activation per animal (−0.32 ±0.07
z score, mean± s.d. n = 20 animal odor pairs, see Fig. 1K) compared to
the four contextual background odors (−0.70 ±0.25 z score, mean ±
s.d., n = 20 animal odor pairs. p =0.025, t-test) and the 11 novel back-
ground odors (−0.63 ±0.25 z score, n = 55 animal odor pairs, mean ±
s.d., p =0.0168, t-test).

For the test set, (s)-(−)-limonene was replaced by one of the 11
novel background odors. (S)-(−)-limonene activated 37% of the glo-
meruli and this fractionwas not significantly different from the 11 novel
background odors (p = 0.35, t-test). (S)-(−)-limonene average glo-
merular activation level was −0.41 z-score and it was also not sig-
nificantly different from the average activation level of the 11 novel
background odors (p =0.36, t-test).

Target detection in background depends on the overlap between
the background and the target7. We assessed the overlap between the
targets and the backgrounds by determining the fraction of the sig-
nificantly activatedglomeruli for a target odor thatwas also significantly
activated by a background odor. A large fraction of the glomeruli that
responded to a target also responded to individual contextual back-
grounds (47.8 ± 8.3%, mean ± s.d., 16 target–background combina-
tions), with 85.6 ± 3.4% (mean ± s.d., 4 target odors) of the target
responding glomeruli also responding to at least one of the contextual
background odors. A large fraction of the target responding glomeruli
also responded to individual novel background odors (51.4 ± 10.6%, 44
target-background combinations), with 96.9 ± 2.1% (mean ± s.d., four
target odors) of the target activated glomeruli responding to at least
one of the novel background odors. Almost all the glomeruli that
responded to the targets (99.4 ± 6%, mean ± s.d., 4 targets) would also
respond to at least oneof the contextual or novel backgroundodor. The
large overlap between the target representation and the background
representation suggests a relatively difficult task caused by the
background odors.

Background odors increased the similarity between odor
mixtures
In order to estimate the difficulty of target identification without any
background odors, we calculated the similarity between the go target
odors and the no-go target odors. We defined the similarity as the dot
product between normalized glomerular patterns. A value of 1 indi-
cates that the shapes of glomerular activation produced by a pair of
odors were the same, whereas a value of zero indicates that the pat-
terns were orthogonal. In order to simulate an instantiation of glo-
merular response to individual odor presentation, we added a level of
noise proportional to that glomerular average activation level, that is

si,j tð Þ= si,j + si,jCVσ ð1Þ

where si,j tð Þ is the z-score response of the ith glomerulus to jth odor at
odor presentation t, �si,j is the average z-score odor response, σ is a

random gaussian variable from a distribution of mean 0 and variance
equal to 1, and CV is the coefficient of variation. We measured the
average glomerular response of the targets from 5 WT mice (775 glo-
meruli, see Fig. 1L,M).We simulated 100 instantiations of each average
target odor response pair (500 instantiations total in 5WTmice) using
CV=CVuncorr = 0:25. The similarity between the two go-target odors
was 0.51 ± 0.17 (mean ± s.d, correlation from 500 instantiation pairs)
and0.60 ± 0.08 between the twono-go target odors. The go and no-go
target odors were different, with a lower similarity of 0.37 ± 0.08
(mean± s.d., correlation from 500 instantiation pairs). The relative
difference in glomerular patterns between the go-target odors and the
no-go target odors would suggest that these stimuli could be
easily discriminated by WT mice.

The large glomerular activation of the background odors and the
large overlap between the target and background odors increased the
similarity between the go and no-gomixtures, compared to the go and
no-go targets without backgrounds. In order to compute the similarity
between the mixtures that included the background odors, we recor-
ded glomerular responses from the training set and test set mixtures.
We performed 32 recording sessions from 6 WT mice (161.3 ± 39.8
glomeruli per session, mean±s.d, 5163 glomeruli) where we recorded
training set mixtures that included (s)-(−)-limonene and the corre-
sponding mixtures that were part of the test set, where (s)-(−)-limo-
nene was replaced by one of the 10 novel background odors. We
simulated 100 instantiations of each odor mixture response. We cal-
culated the similarities between mixtures that were composed of the
same background odors but differed only on the target odor.

The similarity between the go mixtures (same valence) with
standard backgrounds was 0.70 ± 0.13 (mean ± s.d., correlation from
7200 instantiation pairs, see Fig. 1N, O) and 0.70 ±0.11 (mean ± s.d.,
correlation from 7200 instantiation pairs) for the no-go mixtures. The
similarity between go and no-go mixtures (different valence) with
standard backgrounds was high, 0.69 ±0.13. In the case of mixtures
that included novel background odors, the similarity between the go
mixtures (same valence) was 0.75 ± 0.11 (mean ± s.d., correlation from
7200 instantiation pairs) and0.75 ± 0.09 (mean ± s.d., correlation from
7200 instantiation pairs) for the no-go mixtures. The similarity
between the go mixtures and the no-go mixtures (different valence,
see Fig. 1P, Q) with novel background odors was relatively high
(0.73 ± 0.12). The background odors increased the glomerular repre-
sentation similarity of the mixtures that the animals needed to dis-
criminate but within the range of previously used stimuli in rodent
tasks22–24. The presence of background odors also increases the per-
ceptual similarity between the mixtures25 potentially increasing the
task difficulty.

Single glomeruli could not reliably identify targets in novel
backgrounds
Which strategies could mice use to identify target odors in novel
background odors? Single olfactory receptors can determine

Fig. 1 | Glomerular responses of odors used for behavioral testing. A Stimuli
used during training consisted ofmixtures of three odors: a contextual background
odor, (s)-(−)-limonene, and a target background odor. Test stimuli were identical
except that (s)-(−)-limonenewas replaced by one out of 11 novel background odors.
Test set trials were separated by 4–6 training set trials. B Head-fixed mice got
rewarded with water for licking after the go target odor onset. C Intrinsic optical
imaging was used to measure glomerular activation in response to odors used
during the behavior. Minimal projection of the average z-score image. Activated
glomeruli appeared as reductions in reflectance.DAverage images of the z-score of
activated glomeruli for the odors used in the behavior at the concentrations used
with the test set. EMinimal projection of the odor responses to all presented odors.
Yellow contours are the drawn ROIs. F Brain surface illuminated with white light.
Drawn ROIs were located away from major blood vessels. G Single trial responses
for individual odors. H Average z-score indicating the periods that were used to

quantify the odor response. The air baseline period is also indicated aswell as the z-
score threshold (−0.46) used to detect glomerular responses. I Average odor
response versus trial-to-trial variability. Trial-to-trial variabilitywas the combination
of a component that scaled with the average odor response plus a constant. Purple
line indicates mean fitted trial-to-trial variability and dotted lines are the 95%
confidence intervals. J Average fraction of glomeruli activated by odors. The error
bars are 95%confidence interval, n = 775ROI. Symbols correspond to individualWT
mice. K Average z-score response to an odor. Error bars are s.e.m., n = 775 ROI.
L Example of the average glomerular response of one WT mouse to the two go-
target odors and the twono-go target odors.MSimilaritymatrix between the target
odors.N–P Examples of the odor responses for aWTmouse to the 16mixtures used
in the training set (N) and to the 16 test set mixtures where the novel background
odor was hexanal (P). O–Q Average similarity matrix from 6 WT mice.
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mouse behavior in response to certain odors17. A very simple
strategy is to identify the individual glomerulus that best dis-
criminates the go-stimuli from the no-go stimuli from the training
set and to use that best glomerulus when a mixture with a novel
background odor is present. This strategy is appropriate if the
glomeruli that are good discriminators for the training set are also
good discriminators for the test set. We analyzed glomerular

responses from the training set and test set mixtures (32 recording
sessions from 6 WT mice).

We quantified the discriminability between go stimuli and no-
go stimuli of a single ROI using the area under response operating
curve (auROC) calculated for both the training set and the test set.
However, the best ROI for the training set did not perform as well
for the test set (see Fig. 2A, B for an example). There was only a weak
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correlation between howwell a single glomerulus activity separated
the go mixtures from the no-go mixtures for the training set and
how well it separated them in the test set. The linear correlation
between the auROC for the test set and the auROC for the training
set was low albeit significant (32 recording sessions from 6 animals,
5163 glomeruli, r = 0.23, p < 1e−6, Pearson linear coefficient,
see Fig. 2C).

To determine the performance of an individual glomerulus
strategy on the test set, we identified the glomerulus that was the best
discriminator between the go mixtures and the no-go mixtures from
the training set for each recording day. We calculated the discrimin-
ability as abs(auROC −0.5)+0.5. The discriminability is 1 if a glomerulus
perfectly discriminates the go stimuli from the no-go stimuli and it has
a value of 0.5 if a glomerulus does not distinguish them. For the best-
discriminating glomerulus, we also determined the optimal threshold
to distinguishbetween the go-stimuli from the no-go stimuli by finding
the tangent to the ROC curve to a line with a slope of 45° (see Fig. 2D).
Both the auROC and the optimal threshold were calculated using the
function perfcurve from Matlab R2017b. We applied the optimal
threshold to the responses of the optimal glomeruli to the test set that
included the novel background odor (see Fig. 2E). We generated 100
instantiations of the activations of each glomerulus using Eq. (1). We
used a value of CV =0.34 that included both the correlated and the
uncorrelated variability because we are looking at individual glo-
merular responses and there is no mechanism to subtract the corre-
lated variability without information from other glomeruli.

The best glomeruli of each recording day produced a perfor-
mance for the training set of 87.9 ± 1.4% (mean ± s.e.m., n = 32
recording sessions, 6 animals) that was significantly different from the
chance level of 0.5(p = 6.9e−23, n = 32 recording sessions, t-test).
However, the performances of these optimal glomeruli were much
lower for novel background odors (53.0 ± 5.1%, mean ± s.e.m., 32
recording sessions, 6 WT mice, see Fig. 2F) and they were not sig-
nificantly different from chance level (p = 0.55, n = 32 recording ses-
sions, t-test). In our task, a single glomerulus could not be used to
detect targets in the presence of novel background odors.

Linear classifiers and nearest neighbor classifier could identify
target odors in novel background odors
Themouse olfactory systemcould combine information frommultiple
glomeruli and implement simple supervised algorithms using the
feedforward connections between the olfactory bulb and its targets,
including the olfactory tubercle, anterior olfactory nucleus, and piri-
form cortex26. These supervised algorithms can be trained to classify
mixtures of background odors and target odors. Linear classifiers are
simple algorithms, which can be implemented by a single output
neuron19 that receives glomerular activation as input and have been
previously shown tomatch the performance ofWTmice7 in identifying
target odors in known background odors19. The synaptic weights are
adjusted, based on training examples, to detect the presence of the
target odors. After training, the output neuron responds to all mix-
tures that include a go-target odor.

We used our imaging data for the training and test set from 32
recording sessions from 6 WT mice. We trained two types of linear
classifiers: SVM and logistic regression models (see Fig. 3A, B). The
logistic regression model produces a better fit for the training data,
whereas the SVM is less prone to outliers as it focusesmost on the data
points that are closer to the separation boundary between the go-
stimuli and the no-go stimuli. We trained the algorithms with the
average glomerular responses of the training set and evaluated using
100 instantiations of each of the glomerular responses to the test set
using Eq. (1) with CV=CVuncorr = 0:25. The logistic regression model
generalized to novel background odors with a performance that was
significantly better than chance (see Fig. 3C, D, 70.1 ± 2.5%, p = 3.3e−9,
t-test). The SVM also generalized to a similar level for the novel back-
ground odors (see Fig. 3E, F, 70.1 ± 2.2%, mean± s.e.m, with p = 1.02e
−9, t-test).

The expansion in the number of neurons between the olfactory
bulb and the piriform cortex could be used to implement the nearest
neighbor classifier (NNC)27. The NNC determined which of the average
glomerular responses of the training set mixtures was the best match
to an instantiation of the test set mixture created using Eq. (1) (see
Fig. 3G). The classification was considered a success if both the best-
match mixture and the observed mixture had the same valence (go or
no-go) for the target odor.We trained theNNCusing the same imaging
data as used for the linear classifiers. Although the NNC is not a linear
classifier, NNC performance for the novel background odors was also
very similar to the linear classifiers and it was also significantly higher
than the chance level (see Fig. 3H, 70.8 ± 2.9%, p = 3.3e−9, t-test). The
performance of the linear classifiers and the NNC were robust to
changes in the z-score used as threshold (see Supplementary Note 2:
Changes in odor-evoked z-score detection threshold did not affect
algorithms performance and Supplementary Fig. 6). Our results show
that odor identification in novel environments is a relatively complex
behavior that could be solved using information from multiple
glomeruli.

Plateau performance was achieved with a small fraction of the
glomeruli
Individual glomeruli that separated the go stimuli from the no-go sti-
muli from the training set did not generalize to mixtures where the
targets were embedded with novel background odors. The linear
classifiers and the NNC could generalize to a performance of 70% by
combining the information from different glomeruli. We wondered
what was the minimal number of glomeruli necessary for successful
generalization for these algorithms.

To determine how the performance of the linear classifiers
changed as we reduced the number of glomeruli used, we used a
sparseness constraint. The regularization constant λ determines the
number of glomeruli that are assigned a non-zero weight in the clas-
sifier (see Fig. 4A–D). Larger values of λ produced solutions that used
fewer glomeruli. We tested 21 values of λ between 0 (all available
glomeruli included) and 1 (few glomeruli included). The performance
of the SVM classifier increased as more glomeruli were included and

Fig. 2 | Odor responses from individual glomeruli could not identify target
odors in novel environments. A Example of the average glomerular responses (as
z-scores) of a WT mouse to the training set (16 mixtures) and responses to the test
set with γ-terpinene as the novel background. The vertical line marks the ROI that
best discriminated between the go mixtures from the no-go mixtures from the
training set calculated using the auROC. B AuROC for the training set and the test
set for all the ROIs of the example marking the position of the best ROI for the
training set. C AuROC for the training set plotted against the auROC for the test set
calculated from 32 recording sessions from 6 animals using real mixtures (5163
glomeruli). The value of r corresponds to the Pearson linear correlation.D ROC for
the best glomerulus calculated from the training set for the above example. The
circle indicates the optimal threshold to differentiate between the gomixtures and

the no-gomixtures from the training set. E Example of the z-score responses of the
best ROI, determined by the training set, to the 16 mixtures of the training set and
the 16mixtures of the test set. Each row represents the z-score of the best ROI for a
given combination of target odor and contextual background odor from the
training set (blue square) or the test set (red square). The blue vertical line repre-
sents the optimal threshold (z-score = −0.018) calculated from the training set.
Z-score responses that exceed this threshold corresponded to no-go stimuli and
responses below the threshold corresponded to go-stimuli. The performance for
the test setwas determined by the fraction of test set responses thatwere correctly
discriminated by this threshold. F Performance of the best glomerulus for the
training set and the test set for 6 WT mice, 32 recording sessions. Error bars
represent the standard error of the mean. p-values were calculated using a t-test.
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reached a peak value of 73.7 ± 2.2% (mean ± s.e.m., n = 32 sessions) at a
value of λ =0.25, which corresponded to an average number of only
24.5 ± 2.2 glomeruli. The peak performance was not significantly dif-
ferent (p = 0.23, t-test) from the performance using the full set of
available glomeruli (70.1 ± 2.2%, 161.3 ± 39.8 glomeruli, mean± s.d., 32
recording sessions). The logistic regression model had a similar
behavior as the SVM model, increasing the performance with more

glomeruli and reaching a peak performance (73.1 ± 2.2%) at λ =0.1 with
36.3 ± 2.9 glomeruli (see Fig. 4F). The performance was not different
from the performance using the whole set of available glomeruli
(p = 0.33, t-test, 70.1 ± 2.5%, 32 recording sessions).

We also systematically reduced the number of glomeruli used to
calculate the NNC by increasing the discriminability threshold for the
selection of the included glomeruli. The selectivity was based only on
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the responses to the training set and was calculated using the above
formula abs(auROC −0.5)+0.5 (see Fig. 4E). We tested 10 discrimin-
ability threshold values between 0.5 (all glomeruli included) and 1
(only glomeruli that perfectly discriminate the training set included).
The nearest neighbor classifier (see Fig. 4F) had a similar response as
the linear classifiers with performance increasing with more included
glomeruli, reaching a peak performance of 78.0 ± 2.4% at selectivity =
0.625, which corresponded to 27.1 ± 3.6 glomeruli. The peak perfor-
mance was not significantly different from the performance that
included all the glomeruli (70.8 ± 2.9%, p =0.0571, t-test, 32 sessions).
Thus, linear classifiers and the NNC reached a plateau in performance
with few glomeruli.

WT mice could identify target odors among novel back-
ground odors
Four head-fixed, water-deprived WT mice were trained to detect the
presenceof target odors andwere rewardedwithwater if they licked in
response to the target go-odors (hits). If they licked before the target
go-odors appeared (early licks) or if they licked in response to no-go
target odors (false alarms), odor delivery was stopped and the mice
were given a time-out. Mice were trained for ~9 days (see training
protocol) to detect targets among known backgrounds. Once animals
displayed consistent performance at the final concentration (>80%
correct for more than 50 trials), trials with novel background odors
were introduced. Presentation of the novel background odor and the
contextual background odor preceded the onset of the target odor by
0.75 s and 1.5 s respectively (see Supplementary Fig. 7 for a detailed
description of task timing). This asynchronous odor presentation
emulates a situation where the animal is in a novel environment when
the target appears. We used a long inter-trial interval (30.4 ± 3.3 s,
mean± s.d.) to avoid receptor adaptation effects and to permit the
airflow to clean the odor delivery system.

WT mice performance for known background odors was high
(87.4%, n = 1563 trials), and it was significantly higher than the 50%
chance level (p = 1.24e−215, binomial test). The identity of the con-
textual background odors had a very small effect on performancewith
the lowest performance being 84.6% for ethyl butyrate and the highest
performance being 88.9% for isoamyl acetate. Therewas little variation
in the performance for the individual go-target odors: 93.9% for iso-
propyl butyrate and 93.0% for propyl butyrate. There was also not
much variation in the performance for the individual no-go target
odors: 84.6% for ethyl propionate and 78.5% for isobutyl propionate.
WTmice almost never failed to detect the go targets (only 0.7% of the
trials were misses), as previously described in other go/no-go beha-
vioral tasks7,28.

The trials with different novel background odors were separated
by five or six trials with known background odors. These trials with
known background odors were included to maintain the animal’s
motivationwith aneasier task and to keep reinforcing the target odors.
Each trial of a novel background odor was separated by another trial
with the same background odor by ~25min. To prevent learning of the

novel background odors, each novel background odor was presented,
atmost, four times per day on two separate days, giving amaximumof
eight trials per novel background odor per animal.

WT mice were able to identify targets in the presence of novel
backgroundodors athigher than chance levels (76.9%,n = 334 trials for
the novel background trials, p = 3.08e−24, binomial test, see Fig. 5A).
Interestingly, when the novel background odors were used, WT mice
had an increase in the number of misses to 5% (17/334 of trials, see
Fig. 5B) from 0.7% with known background odors, which was sig-
nificant (p = 2e−6, Fisher exact test adjusted using the Bonferroni
correction) suggesting increased difficulty in detecting the target odor
in novel backgrounds compared to known backgrounds.WTmice also
significantly increased the number of early licks for novel backgrounds
(from 3.9% of 1563 trials to 7.7% of 334 trials, p =0.011, Fisher exact test
adjusted using the Bonferroni correction). The fraction of false alarms
was not significantly changed (10.1% of 334 trials for novel back-
grounds, 7.9% of 1563 trials for known background odors, p =0.57,
Fisher exact test adjusted using the Bonferroni correction).

WT mice were able to identify target odors among novel back-
ground odors, even on the first presentation (see Fig. 5C), with a per-
formance at 79% (p = 6.4e−5, binomial test, n = 44 trials, 4 animals).
There was no systematic increase in performance as the animals
familiarized themselves with a novel background odor, and there was
no significant positive linear correlation between a background odor
presentation number and performance (r = −0.48, p =0.22, Pearson
linear correlation, n = 8). To directly test whether familiarity with the
novel backgroundodors increasedperformance,we trained adifferent
cohort of five WT mice in the same task (see Supplementary Note 3:
Familiarity with background odor did not increase target recognition
in novel backgrounds forWTmice). This newcohorthadbeen exposed
to 5 of the 11 novel background odors in their home cages for 30min
over 6 days beforebehavioral training started. Theperformanceof this
cohort in the novel background task in response to the previously
exposed 5 odors was 79.6 % (211 trials), which was not significantly
different (p = 0.89, Fisher exact test) from the original group perfor-
mance on these odors (78.8%, 132 trials, 4 animals). Both exposures to
the same novel background odor during the task and longer exposure
times outside the task context did not produce systematic perfor-
mance increases, indicating that WT mice employed a robust algo-
rithm that didnot requireprevious knowledgeof the backgroundodor
to detect target odors.

WT recognized the novel background odors after a single
presentation
We wanted to determine how quickly the WT mice familiarized
themselves with a novel background odor by measuring the sniffing
response.Mice respond to novel odorsby increasing their sniff rate29–31

as well as orienting their nostrils to the location of the novel odor32.We
monitored non-invasively animal sniffing during the olfactory
CAPTCHA task using a flow sensor attached to the odor delivery tube33

(see Fig. 5D, E). Animals had a base sniff rate of 2.18 ± 0.03 sniffs

Fig. 3 | Linear classifiers and NNC could identify odors in novel environments.
A Example of the average glomerular responses of a WT mouse to the 16 mixtures
of the training set and responses to 16mixtures of the test set with 4-methylanisole
as the novel background. B Estimatedweights of SVMwith linear kernel and logistic
linear classifiers trained using the training set for the example. C Output produced
bymultiplying theweightswiof the logistic linear classifier and adding the constant
bias term w0 with the glomeruli activation. Each row represents the output pro-
duced by a given combination of target odor and contextual background odor
from the training set (blue squares) or the test set (red squares). Correct perfor-
manceconsisted of positive responses for go stimuli andnegative responses forno-
go stimuli. D Performance of the logistic regressor calculated on data from 6 WT
mice, 32 recording sessions on the test set, with the performanceof each recording
day using 100 instantiations of each of the responses of the test set using Eq. (1).

Error bars are s.e.m. andp-valueswere calculatedusing a two-tailed t-test.E Sameas
C but using the SVM weights. F Performance of the SVM for the data from 6 WT
mice, 32 recording sessions. Data are presented as mean values ± s.e.m. and p-
values were calculated using a two-tailed t-test. G Example of a matrix of dot pro-
ducts between the 16 training set mixtures and the 16 test set mixtures used for
calculating the NNC. Each target odor appeared mixed with each of the four con-
textual background odors. For eachmixture in the test set, the red squares indicate
the location of the most similar mixture from the training set. If the valence (go or
no-go) of the target odor in the test mixture matched the valence of the most
similar mixture (Nearest Neighbor), the trial was considered correct. H The per-
formance of the NNC for novel background odors for 6 WT mice, 32 recording
sessions. Data are presented as mean values ± s.e.m. and p-values were calculated
using a two-tailed t-test.
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per second (mean± s.e.m., n = 1563 trials, 4 animals) just before the
onset of the odors. As the contextual background arrived, the sniff rate
increased to 3.02 ±0.05 sniffs per second (n = 1563 trials, 4 animals)
and it further increased with the onset of (s)-(−)-limonene to
3.93 ±0.06 sniffs per second (n = 1563 trials, 4 animals). After the onset
of the target, the sniff rate further increased to 4.23 ± 0.05 sniffs
per second. On the first presentation of the novel background odors,

the sniff rate in the first second following the onset of the novel
background odor increased compared to the preceding trials with
known background odor (1.65 ± 0.40 extra sniffs per second, mean ±
s.e.m., 44 trials, 4 animals, p =0.0007 Bonferroni corrected t-test)
indicating that the novel odors were perceived as a novel. Interest-
ingly, as previously shown for single odors29,30,32, average sniff rates for
novel odors dropped to rates similar to known background trials

10 s

1 s

D Training set mixture Test set mixture

0 0.75 1.5 3 4

2

4

6

Time from stimulus onset (s)

Sn
iff

s 
pe

r s
ec

on
d 

Novel,1st time  (44 trials)
Known(1563 trials)0

8

Presentation number

In
cr

ea
se

 in
 s

ni
ffs

 
pe

r s
ec

on
d

E F
Day 1 Day 2

**p=0.0007

n.s n.s n.s n.s n.s n.s n.s

n.s, p>0.1

1 2 3 4 6 7 8 9
-1

0

1

2

3

4

Pe
rfo

rm
an

ce

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8
Presentation number

Day 1 Day 2
** 6.4e-5

44 trials

**

C

Pe
rfo

rm
an

ce

0.5

0.6

0.7

0.8

0.9

1.0
Novel 

Backgrounds
(334 trials)

Known  
Backgrounds 
(1563 trials)

<1e-6
<1e-6

A

4 WT mice

Novel
Known

Fr
ac

tio
n 

of
 tr

ia
ls

B 0.3

0.1

0.2

0

p=0.57 p=2e-6 p=0.01

Article https://doi.org/10.1038/s41467-023-36346-x

Nature Communications |          (2023) 14:673 10



(p > 0.1, Bonferroni corrected t-test) on further exposures, indicating
that the animals recognized the novel background odor (see Fig. 5F).
This was quite remarkable, because the novel background odors were
presented with different targets and contextual background odors,
and subsequent presentations of the same novel background odor
were separated by at least 25min.

We also quantified an animal’s familiarity with the novel odors
using the number of sniffs that it took from target onset to a correct
lick response. During the known background trials, the animals took
2.44 ± 0.05 sniffs (718 responses). Animals took a larger number of
sniffs (3.46 ±0.64, 13 responses) on the first exposure to a novel
background and it was significantly higher than the number of sniffs
taken for known backgrounds (Bonferroni corrected t-test, p =0.0374,
see Supplementary Fig. 8). Consistent with increasing familiarity after
the first exposure and reduction of exploratory behavior, the number
of sniffs before licking fell after the first presentation of a novel odor to
a value that was similar to the number of sniffs in the presence of
known backgrounds (Bonferroni corrected t-test, p >0.5). WT mice
increased their sniff rate and number of sniffs in the presence of novel
odors but this increase disappeared after a single exposure. Surpris-
ingly, there was no increase in performance even when WT mice
recognized the novel background odor, suggesting that knowledge of
the background odor, demonstrated through their sniff rate, was not
necessary for target recognition.

Synchronous presentation of the target and backgrounds
increased baseline sniff rates
In the first set of experiments, the target odor appeared0.75 s after the
onset of the novel background odor. Unsupervised algorithms34 can
use differences in the temporal profile between the background odor
and target odor to segment them. These differences could also be
onset delays35 between the target and the background30. In order to
directly test the contribution of this asynchrony in the onset between
novel background and target for target identification, we trained a
different group of five WT mice in a condition where the target and
background odors were presented synchronously (synchronous case),
rather than the target odor appearing after the novel background odor
(asynchronous case, see Fig. 6). This synchronous odor presentation
emulates a situation where the animal is suddenly presented with a
mixture that includes a novel odor. One mouse’s performance on
known background odors was close (75.4 ± 1%), but did not reach our
threshold of 80% for the performance of known background odors on
none of the sessions with novel background odors and was excluded
from further analysis. For the known background odors, WT mice in
the synchronous case performed significantly higher than the chance
level (88.5%, n = 1191 trials, p = 4e−176, binomial test, 4 animals). The
identity of the contextual background odor resulted in only small
variations in performance, with the lowest performance for the con-
textual background being 86.5% for ethyl valerate and the highest one

Fig. 5 | WT mice successfully solved olfactory CAPTCHA (asynchronous case)
and explored novel background odors. A Group performance of four WT mice
for known (1563 trials) and novel (334 trials) background odors. IndividualWTmice
performances are represented by black symbols. p-values were calculated using a
two-tailed binomial test and error bars are the 95% confidence interval. B Fraction
of trials of types of errors with the 95% confidence interval for known and novel
background odors. p-values were calculated using a two-tailed Fisher exact test
adjusted using the Bonferroni correction. C Performances with the 95% confidence
interval for the novel background odor as a function of the novel background odor
presentation (8 presentation total over 2 days). Symbols represent individual ani-
mals. p-value was calculated for the first presentation to determine whether the

performance was different from 50% (chance) using a two-tailed binomial test.
D Example respiratory signal with inserts for standard odor presentation (left) and
novel odor presentation (right). EMean± s.e.m. respiration signal for fourWTmice
for the first presentation of novel background odors compared to the presentation
of the interleaved trials with standard background odors. F Mean± s.e.m. of the
increase in sniff rate for novel odor compared to the preceding trial with (s)-
(−)-limonene as a function of the novel background odor presentation number (8
presentations total over 2 days), n = 44 trials per presentation. p-values were cal-
culated using the Bonferroni-corrected two-tailed t-test. Symbols represent aver-
age increases of individual WT mice.
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Fig. 6 | WT mice successfully solved olfactory CAPTCHA (synchronous case).
A Stimuli were the same as in the asynchronous case but the target appear only
50ms after the onset of the background odors. B Group performance of four WT
mice for known and novel background odors in the synchronous case. Error bars
are the 95% confidence interval (n = 277 trials for novel backgrounds and n = 1191
trials for known backgrounds) and symbols are the performance of individual WT
mice. p-values were calculated using the binomial test.C Fraction of types of errors
and 95% confidence interval for known and novel background odors. p-values were
calculated using the Fisher exact test adjusted using the Bonferroni correction.

D Mean ± s.e.m. respiration signal for four WT mice. E Performance and 95% con-
fidence interval for the novel background odor as a function of the presentation
number. P-value was calculated for the first presentation to determine whether the
performance was different from 50% (chance) using a binomial test, n = 44 trials.
FMean ± s.e.m. of the increase in sniff rate for novel background odor compared to
thepreceding trial with (s)-(−)-limonene asa functionof thenovel backgroundodor
presentation number, n = 39 trials. p-values were calculated using the Bonferroni
corrected t-test. Symbols represent average increases of individual WT mice.
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being 91.8% for ethyl caproate. There was not much variation in the
performance for the individual go-target odors: 92.0% for isopropyl
butyrate and 86.2% for propyl butyrate. There was also not much
variation in the performance for the individual no-go target odors:
91.2% for ethyl propionate and 84.4% for isobutyl propionate.

In the synchronous odor presentation, the target odor started at
the stimulus onset, making it easier to be missed by the animals com-
pared to the asynchronous case where the target started 1.5 s after
stimulus onset. Compared to the asynchronous case, there was a small
but significant increase in thenumberofmisses in the synchronous case
compared to the fraction ofmisses in the asynchronous case (fromonly
0.7% (12/1563) to 3.9% (46/1191), p = 2.1e−8, Fisher exact test, see
Fig. 6C). WT mice increased their baseline sniffing during synchronous
odor presentation compared to the asynchronous case suggesting an
enhanced level of alertness in order not tomiss the target. The base rate
of sniffing before odor onset was higher for WT mice that were doing
the synchronous task (2.62 ±0.04 sniffs per second, n = 1191 trials, n =4
animals) compared to WT mice doing the asynchronous task
(2.18 ±0.03, n = 1563 trials, p =6.9e−19, t-test, n =4 WT mice). These
differenceswere not due to differences in animal batches. The sameWT
mice that did the synchronous task had also significantly lower baseline
sniff rates (2.07 ±0.04 sniffs per second, n = 1209, n = 4WTmice) when
they were performing the asynchronous task with known background
odors during their training process, compared to when they performed
the synchronous task (p = 5.99e−23, t-test). The synchronous task seems
to require an increased baseline attention level given the unpredictable
appearance of the target.

Once odors started, the increase in sniff rates was smaller in the
synchronous case compared to the asynchronous case as animalswere
already at a higher baseline sniff level (see Fig. 6D). The increase in sniff
rate with respect to baseline during the presentation of the target for
WT mice performing the synchronous behavior (0.59 ±0.050 extra
sniffs per second, 1191 trials) was significantly smaller than the increase
seen in WT mice performing the asynchronous behavior (2.06 ±0.05
extra sniffs per second, 1563 trials, 4 animals, p = 3.31e−85, t-test).

WT mice could detect targets with synchronous presentation
with novel background odors
WTmicewere able to identify the target odors with the synchronously
presentednovel backgroundodors at higher thanchance levels (77.2%,
n = 277 trials, 4 animals, p = 7.4e−21, binomial test, see Fig. 4B). Similar
to the asynchronous case, theWTmicehad a significant increase of not
licking for the go-stimulus (misses) with novel backgrounds compared
to mixtures with known backgrounds (13.3%, 37/277 trials of novel
background trials, versus 3.8%, 46 of 1191 trials of known background
odors, Bonferroni corrected Fisher exact test, p = 1.2e−7, see Fig. 6C).
The total performance for the synchronous presentation (77.2%,
n = 277 trials, 4 animals)was almost identical (Fisher exact test, p >0.9)
to the asynchronous case performance of the previous group of 4 WT
mice (76.9%). WT mice also identified the target odors among novel
backgrounds at higher than chance levels (74.3%, 39 trials, p =0.001,
binomial test), even on the first presentation of a novel background
odor (see Fig. 6E). Thus, the difference in the temporal profile between
the novel background odor and the target odor did not contribute
significantly to the performance of our task.

WT mice during the synchronous task also reacted to the first
presentation of a novel background odor by increasing their sniff rate
in the first second following the onset of the stimulus (1.15 ± 0.42 extra
sniffs per second, mean± s.e.m., 39 trials, 4 animals, p =0.038 Bon-
ferroni corrected single tailed t-test) with respect to the sameperiod in
the known background odor (see Fig. 6D). Although this increase in
sniff rate in response to novel odors was higher in the asynchronous
case (1.65 ± 0.4 extra sniffs per second) compared to the synchronous
case (1.15 ± 0.42 extra sniffs per second), the difference was not sig-
nificant (p =0.39, t-test). The increased sniff rate in response to a novel

background (see Fig. 6F) also adapted after a single presentation to a
value that was not significantly different from the sniffing to known
backgrounds (p >0.5, Bonferroni corrected single-tailed t-test). Ani-
mals took 2.69 ± 0.07 sniffs (519 trials, 4 animals) before licking for the
go odor (hit) for known backgrounds. The number of extra sniffs
before a correct lick response was significantly increased (see Sup-
plementary Fig. 9, p =0.02, Bonferroni-corrected t-test) only for the
second odor presentation (4.6 ± 0.9 sniffs, n = 6 trials) for novel
background odors and it was not significantly different from the
known background odor number of extra sniffs for the other pre-
sentations (p >0.5, Bonferroni corrected t-test). There was also no
significant correlation between the odor presentation number and the
performance of the WT mice (r = −0.02, Pearson linear correlation,
n = 8, p =0.95); hence, as with the asynchronous case, there was no
improvement in performance with further exposures to a novel
background odor.

We wondered whether rapid sniff rates would correlate with
increased performance as described for other olfactory tasks36. When
animals increased their sniff rates, inhalations become shorter31. Brief
inhalations correlated with higher performance only on novel back-
ground odors, suggesting that rapid inhalation-induced adaptation30

might contribute to odor identification in novel environments (see
Supplementary Note 4: Briefer inhalation widths were correlated with
increased WT mice performance in novel environments and Supple-
mentary Fig. 10); however, the similar performance for the synchro-
nous and asynchronous case showed that temporal desynchronization
between background and target is not the only mechanism used in
odor identification in novel olfactory environments.

Classifiers that included more glomeruli had higher correlation
with animal behavior
Linear classifiers and nearest neighbor classifiers could identify odors
in novel environments at similar levels that approached WT mice
performance. Classifiers that used a small fraction of the available
glomeruli reached a performance similar to classifiers that used all
available glomeruli. To determine which of the models was a better
descriptor of the actual performance of the WT mice, we compared
WTmice performance on individual novel background odors with the
performance of the different classifiers as we varied the number of
glomeruli used.

We used the imaging data from 32 recording sessions from 6 WT
mice, where we used training set and test set mixtures. To determine
the response of a classifier to an individual novel background odor on
each recording day, we created 100 instantiations of each mixture of
the training set and the test set using Eq. (1) using CV=CVuncorr = 0:25.
For the linear classifiers, we calculated a classifier that separated the go
stimuli from the no-go stimuli from the training set. Then, we applied
that classifier to the test set and determined the fraction of trials that
were correctly classified. We used a similar procedure as the one used
for the linear classifiers to calculate theNNCperformance of individual
novel background odors. To determine the performance of a novel
background odor, we averaged the responses to all the imaging ses-
sions that used that novel background odor as part of the test set. We
plotted the performance of a classifier against the behavioral perfor-
mance of the two groups of animals that used the asynchronous odor
presentation (4 WT mice) and synchronous odor presentation (4 WT
mice). We calculated the linear correlation (r) between a classifier
performance and the WT behavioral performance. To calculate the
distribution of correlation values (r) for each classifier, we performed a
Montecarlo simulation where we repeated the above procedure
500 times.

When using all the available glomeruli, the nearest neighbor clas-
sifierwasmore correlated (0.58 ±0.01,mean ± s.d., 500 simulations, see
Supplementary Fig. 11A–C) with the performance of the animal com-
pared to the SVM (0.35 ± 0.02, mean ± s.d., 500 simulations, p< 1e−6,
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t-test) and logistic classifier (0.39 ±0.02, mean ± s.d., 500 simulations,
p < 1e−6, t-test). These differences in correlation with animal behavior
were statistically significant, although the average performances of
these algorithms were very similar (see Fig. 4F).

The performance of the classifiers reached a plateau using
27.1 ± 3.6 glomeruli for the NNC, 24.5 ± 2.2 glomeruli for the SVM
classifier, and 36.3 ± 2.9 for the logistic regressor (mean± s.e.m.). We
wondered whether a classifier’s correlation with behavior would also
reach a plateau performance with fewer glomeruli included. As above,
we varied the number of glomeruli used by the NNC by changing the
minimal selectivity for the training set of the glomeruli used in the
similarity calculation. For the linear classifiers, we reduced the number
of glomeruli used by increasing the value of the regularization
constant λ.

For all the classifiers, the correlation between the classifier per-
formance and the animal behavior monotonically decreased as we
reduced the number of glomeruli included, although the classifier
performance was maintained (see Supplementary Fig. 11D–G). The
correlation with behavior for the NNC became significantly reduced
with respect to the one calculated using the full set of glomeruli when
the number of glomeruli dropped below 88 glomeruli (p < 1e−6, t-test,
n = 500 simulations). There was also a monotonic reduction in the
correlation between the SVM and the logistic regressor as the number
of glomeruli used is reduced. Although the NNC performance reached
a plateau after 27.1 ± 3.6 glomeruli for our behavior, correlation with
behavior increased with more glomeruli being included suggesting
that WT mice employ a large fraction of glomeruli when making
decisions in our task.

WT mice performance was less sensitive to diversity of training
data than the NNC
NNC requires a training set that includes an appropriate match to a
new mixture; otherwise, the NNC performance might decrease (see
Fig. 7A). To confirm this, we reduced thediversity of training examples,
from 16 training mixtures (4 contextual background odors x 4 target
odors) to 8 mixtures resulting in a reduced training set. The combi-
nations of contextual backgrounds and target odors were different
between the reduced training set and the reduced test set (see Fig. 7B).
Each contextual background odor was presentedwith a target go odor
and a target no-go odor to avoid creating biases for the contextual
background odors. The reduced test set consisted of 88 testing mix-
tures (down from 176mixtures) that included the 11 novel background
odors. The reduced set task became harder not only because of the
presence of a novel background odor but also because the known
contextual background and target were a novel combination that was
not presented together in the reduced training set. We tested the
classifiers using the imaging data of animals exposed to real mixtures
(32 recording sessions, 6 WT animals). As expected, the performance
of the NNC decreased significantly (p = 3.5e−04, t-test, see Fig. 7C)
from 70.8 ± 2.9% (mean± s.e.m.) when trained with the full set to
53.3 ± 3.7% (mean± s.e.m.) when trained with the restricted set.

The performance of the linear classifiers also decreased when
trained with the restricted set. The logistic regression classifier per-
formance dropped from 70.1 ± 2.5% (mean± s.e.m.) when trained with
the full set to 56.2 ± 4.0% (mean ± s.e.m., p =0.0045, t-test) when
trained with the reduced set. The SVM classifier performance dropped
from 70.1 ± 2.2% (mean ± s.e.m.) when trained with the full set to
55.8 ± 4.0% (mean ± s.e.m., p =0.003, t-test). In fact, the performances
of the three classifiers when trained with the reduced set were not
significantly different from the chance level of 50% (p =0.38 for NN;
p =0.16 for SVM; p =0.14 for logistic, t-test). If WT mice employed
these algorithms, their performance shoulddrop to chance levels if the
diversity of the training data is limited.

In order to test whether WTmice would be able to identify target
odors when reducing the diversity of the training set, we trained a new

batch of three WT mice using the restricted training set with the
asynchronous presentation of the odors. The WT mice performance
on novel backgrounds with the restricted test set was 74.1% (228 trials)
and it was significantly different from chance level (p = 3.00e−14,
binomial test). The performance was not significantly different
(p = 0.48, Fisher exact test) from the previous group of animals trained
with the full set of training mixtures (76.9%, 334 trials, 4 WT mice,
asynchronous task). Thus,WTmice could use less diverse training data
compared to the NNC or the linear classifiers without having their
performance affected.

A sparse deconvolution algorithm had better performance than
NNC and linear classifier for reduced training data
NNCand linear classifiers could notmatch thebehavior of theWTmice
when the diversity of training exampleswas reduced.Onepossibleway
to improve the performance respect of the NNC and the linear classi-
fiers would be to use sparse deconvolution algorithms which have
been proposed as being implemented by the nervous system37–40.
These deconvolution algorithms store the glomerular patterns pro-
duced by all odors known to an animal in a dictionary. The algorithms
decompose an observed signal into contributions selected from this
dictionary, while minimizing the number of odors used, permitting
generalization to multiple combinations of dictionary odors. These
algorithms are more complex than NNC and linear classifiers. How-
ever, these sparse deconvolution algorithms offer the advantage over
the NNC and linear classifiers that once an animal learns a dictionary,
the animal can apply it for multiple combinations of odors, whereas
the NNC and linear classifiers performance depends on the diversity of
the training examples.

To determine whether deconvolution algorithms could account
for the performance of the WT mice in the presence of novel back-
ground odors that are not part of the dictionary of odors used, we
performed simulations using the Lasso (least absolute shrinkage and
selection operator)41, a standard sparse representation algorithm. The
Lasso finds the combination of elements of a dictionary that could
reconstruct the observed pattern of glomerular activation in the least-
square error sense. The reconstruction produced by the Lasso mini-
mizes the sum of the absolute value (or L1 norm) contribution of the
dictionary elements weighted by a regularization constant λ that is:

Cost =
Xn
i = 1

si �
Xm
j = 1

cjdi,j

 !2

+ λ
Xm
j = 1

∣cj ∣ ð2Þ

wheren is the number of glomeruli,m is the number of elements in the
dictionary, si is the observed activation of the ith glomerulus, di,j is the
ith glomerular activation of the jth dictionary element, cj is the con-
centration estimated and λ is the sparseness constrain.

We tested the Lasso by presenting it with glomerular activations
using artificial mixtures (see Fig. 7D, E for an example). We used
the imaging data from 5 individual WT mice (775 glomeruli). For each
mouse, we tested the Lasso with the reduced test set that included 88
odor mixtures with novel background odors.

When presented with a mixture of target odor, contextual back-
groundodor, andnovel backgroundodor, the Lassoestimated anodor
concentration for eachdictionary element. The Lassoestimated a large
concentration for the target odor and the contextual backgroundodor
that were in the mixture. Because the novel background odors were
not part of the dictionary, they were represented by concentrations
distributed over multiple dictionary elements. To convert the odor
concentration vector produced by the Lasso into a go/no-go readout
that could be evaluated as correct or incorrect, we compared the
values of the estimated odor concentration vector assigned to the go
odors with the values assigned for the no-go odors. If the maximum of
the values assigned to the two go odors was larger/smaller than the
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maximum of the values assigned to the two no-go odors, we con-
sidered that the Lasso produced a go/no-go readout. If the Lasso
readout (go or no-go) matched the label of the target odor present in
the input mixture, the Lasso readout was considered correct. The
performance of an animal for a given dictionary size was calculated as
the average performance over 30 randomly generated dictionaries of
each dictionary size.

The average Lasso performance over the 5 WT animals was
93.2 ± 0.9% on the reduced test set (mean± s.d., 10 dictionary sizes
from 100 to 1000 elements, see Fig. 7F). Lasso algorithms performed
significantly better than NNC and the linear classifiers when these
other algorithms were trained with the reduced training set and tested
on the reduced test set. For each imaged WT mice (5 WT mice) and
each dictionary size, the Lasso produced significantly better perfor-
mance than theNNC (68.2 ± 1.4%,mean± s.e.m., p < 8e−4, paired t-test,
n = 5), the linear SVM (73.9 ± 2.5%, p <0.0037) and logistic regression

(77.7 ± 1.1%, p <0.0104). Sparse deconvolutionmethods outperformed
NNC and linear methods and are a potential strategy for WT mice
to use for target discrimination in the presence of novel
background odors.

Cntnap2−/− mice glomerular responses had higher trial-to-trial
variability compared to WT mice
We tested the Cntnap2−/− mouse model of autism42 (JAX Stock No.
017482) because Cntnap2−/− mice have either equal43 or better44 per-
formance than WT mice in simple olfactory tasks, suggesting a func-
tional olfactory system. Nevertheless, CNTNAP2 is expressed in
olfactory receptor neurons11 and its absence might reduce neural
excitability, affecting glomerular representations. Neurons in the
olfactory bulb of Cntnap2−/− mice have reduced odor-evoked respon-
ses and increased trial-to-trial variability45. Therefore, we compared
the amplitude and the variability of the odor-evoked responses.
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Fig. 7 | Robust performance ofWTmice with reduced training set. ANNC and a
linear classifier can misclassify a test set sample when the number of training
mixtures is reduced. B Combinations of contextual background odors and target
odors for the reduced training and test set. C Average performance (±s.e.m.) for
linear classifiers and NNC (32 recording sessions 6 WT mice, 161.3 ± 39.8 glom
per session). Comparison of algorithm performances using different training sets
was done using a two-tailed t-test, with n = 32 recording sessions. Group perfor-
mance and 95% confidence intervals for amouse behavior. The group performance
of a new cohort of three WT mice that were also trained with the reduced training
set and testedwith the reduced test set in the asynchronous task (n = 228 trials) was
compared to the fourWTmice that had trainedwith the full set andwere evaluated
with the full set (n = 334 trials). The p-value was calculated using the Fisher exact
test. D–F Sparse representation algorithm, Lasso, identifies the odors present in a
mixture. D Representation of 20 possible odors used to create odor mixtures. The
yellow squares mark the odors selected for an example mixture consisting of a go

target odor, a contextual background odor, and a novel background odor.
EConcentrations assignedby the Lasso. The dictionary included9 known elements
and 491 randomly generated elements. Bars correspond to the estimated con-
centrations of the 9 known elements. Stems correspond to estimated concentra-
tions for the randomly generated dictionary elements. The maximum of the
estimated concentration was larger for the two targets go odors compared to the
two target no-go odors. F Performance of the Lasso calculated for different sizes of
dictionaries was compared to the performances of the NNC, SVM, and logistic
regression. Individual symbols represent average performances for the 5 WTmice.
Error bars represent the 10-90% percentiles of the 13200 simulations performed
per dictionary size for the Lasso and the SVM, logistic regression, and NNC. Sig-
nificance was calculated using a two-tailed t-test and comparing the average per-
formance per animal between the NNC, SVM, and logistic regression against the
Lasso performance for different dictionary sizes.
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We measured intrinsic image responses to the 20 target and
background odors at the concentrations used for behavioral mea-
surement in 643 glomeruli recorded from 5 awake Cntnap2−/− mice
with 128.6 ± 19.3 glomeruli (mean ± s.d.) recorded per session (see
Fig. 8A for an example). Glomerular activation patterns looked similar
to the glomerular activation patterns in WT mice and glomerular
responses were observed on individual odor presentations (see
Fig. 8B). However, the trial-to-trial variability was higher for Cntnap2−/−

compared toWTmice (see Fig. 8C). The variability in the absence of an

odor response (σnoise) was 1.83 (95% CI: 1.76–1.89) which was
slightly higher than σnoise in WT (1.59 with 95% CI: 1.51–1.66).
Therefore, the threshold for considering a z-score response was set at
σnoise=

ffiffiffi
n

p
=0.46, that is average ROI-odor responses that were larger

than −0.46 were set to zero. Cntnap2−/− mice also had trial-to-trial
variations that were correlated across glomeruli, similar to WT mice.
After subtracting that correlated variability, Cntnap2−/− mice had an
uncorrelated variability CVuncorr of 0.44 (95% CI: 0.42–0.47) that was
larger than the value of 0.25 (95% CI: 0.23–0.27) of the awakeWTmice
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(see Supplementary Fig. 12). The higher uncorrelated trial to trial
variability in Cntnap2−/− mice compared to WT mice could potentially
affect Cntnap2−/− mice performance in odor identification in novel
background odors.

The amplitude and structure of odor similarities of Cntnap2−/−

mice were similar to WT mice
We wondered whether the Cntnap2−/− mice odor-evoked activity was
weaker thanWTmice activity.We compared the average activity of the
glomerular activation per odor betweenWT (5 animals, 775 glomeruli)
and Cntnap2−/− mice (5 animals, 643 glomeruli). Cntnap2−/− mice aver-
age glomerular responses were not systematically weaker than theWT
responses (p =0.50, binomial test, 20 odors, see Fig. 8D, F) nor did the
odors activate a smaller fraction of the glomeruli (p =0.11, binomial
test, 20 odors, see Fig. 8E, G). In fact, odors that produced strong
glomerular activation patterns in the WT mice also produced strong
glomerular activation patterns in the Cntnap2−/− mice. There was a
significant linear correlation (r = 0.66, p = 0.0013, Pearson linear
coefficient) between the average glomerular response for a given odor
between WT mice and Cntnap2−/− mice. The fraction of glomeruli that

responded to a given odor and exceeded the detection threshold (z-
score = −0.46 forCntnap2−/−mice and z-score = −0.42 forWTmice)was
also linearly correlated between WT mice and Cntnap2−/− mice
(r =0.80, p = 1e−5). The average glomerular activity produced by an
individual odor in theWTmicewas not significantly different from the
activity in the Cntnap2−/− mice (p >0.13, for all 20 odors, t-test). The
fraction of glomeruli that responded to a given odor was also not
significantly different between the Cntnap2−/− mice and the WT mice
(p > 0.11, for all 20 odors, t-test). Thus, Cntnap2−/− mice glomerular
responses were not systematically weaker than WT mice glomerular
responses.

Odor pairs whose glomerular activation patterns were similar in
the WT mice were also similar in the Cntnap2−/− mice and odor pairs
that had different glomerular activation patterns in the WT mice were
also different in the Cntnap2−/− mice. We quantified the similarity
between pairs of glomerular patterns as the normalized dot product
between average z-scores produced by an odor. We used all the glo-
meruli recorded for each genotype to create a large vector to calculate
the normalized dot product (775 glomeruli from 5 WT mice, 643 glo-
meruli from 5 Cntnap2−/− mice, see Fig. 9A). The matrix of odor
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Fig. 9 | Pairs of odors that evoked similar activity patterns in WT mice also
evoked similar patterns in Cntnap2−/− mice. A Patterns of glomerular activation
using all available ROI per genotype for 4 example odors. Isoamyl acetate and ethyl
benzoylacetate produced different patterns of glomerular activation in WT and
Cntnap2−/−micewhereas 2–3 pentanedione and acetal produced similar glomerular
activation patterns in both WT and Cntnap2−/− mice. B Odor similarity matrices for
Cntnap2−/− mice andWTmice were calculated using all available ROI per genotype.
C Similarity between 190 odor pairs calculated using all the WT mice glomerular
responses versus similarity between odors calculated using all the Cntnap2−/− mice
glomerular responses.D Patterns of glomerular activation using ROI from example
individual animals of each genotype. E Odor similarity matrices for the example
Cntnap2−/− mouse and WT mouse. F Similarity between 190 odor pairs calculated
using the example WT mouse data against the similarity from the example

Cntnap2−/− mouse. G Distribution of linear correlation coefficients of odor simila-
rities (r) for pairs of animals of the same genotype (WT vs. WT, 10 animal pairs and
Cntnap2−/− vs. Cntnap2−/− 10 animal pairs) and for pairs of animals of different
genotypes (WT vs. Cntnap2−/−, 25 animal pairs). Error bars represent the mean±
s.e.m. Comparison between correlation coefficients was done using a two-tailed t-
test.H Performance (mean± s.e.m.) of SVM, logistic, and NNC classifiers calculated
using Cntnap2-/- and WT mice glomerular activation data for target detection in
novel environments trainedwith the full training set and testedwith the full training
set. Symbols represent average performance per animal. Performances were
compared using a two-tailed t-test, with n = 50 mice-odor pairs per genotype.
I Performance (mean ± s.e.m.) of the Lasso using Cntnap2−/− and WT mice glo-
merular data for the reduced test set using different sizes of dictionaries. Sig-
nificance was calculated using a two-tailed t-test, with n = 5 mice per genotype.
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similarities was comparable across the two phenotypes (see Fig. 9B).
We calculated the Pearson linear correlation between odor similarities
for the 190 odor pairs in WT mice and Cntnap2−/− mice. There was a
strong correlation (r = 0.80, p < 1e−6, see Fig. 9C) between the odor
similarities in WT mice and odor similarities in Cntnap2−/− mice. The
similarities among the standard background odors considered sepa-
rately (four contextual backgrounds and (s)-(−)-limonene) were also
significantly correlated across genotypes (r = 0.71, p = 0.02,
n = 10 similarity comparisons) as well as the similarities among the 11
novel background odors (r = 0.36, p = 0.007, n = 55 similarity
comparisons).

The linear correlation between odor similarity patterns was also
significant when comparing glomerular activation patterns from indi-
vidual animals across genotypes. We compared the odor similarities
pattern in 5 WT mice and 5 Cntnap2−/− mice, resulting in 25 compar-
isons across the two genotypes (see Fig. 9D–F for an example of odor
similarity correlation between a WT and a Cntnap2−/− mouse). All 25
comparison’s across genotypes produced positive significant linear
correlations (p <0.014, see Fig. 9G). The average odor similarity cor-
relation across the two genotypes was 0.49 ± 0.03 (mean ± s.e.m.,
n = 25 pairs of WT-Cntnap2−/− mice) which was not significantly differ-
ent (p =0.14, t-test) to the average odor similarity correlation within
the same genotype (0.51 ± 0.04, mean± s.e.m., 10 pairs of WT–WT
comparisons and 10 pairs of Cntnap2−/−–Cntnap2−/− comparisons).
Average glomerular activation patterns in Cntnap2−/− mice were not
significantly suppressed compared to WT mice and odors produced
similar average patterns in Cntnap2−/− and WT mice.

Increased trial-to-trial variability in glomerular activity in
Cntnap2−/− did not significantly reduce performance of
algorithms
Although average glomerular responses in theCntnap2−/− andWTmice
were similar, algorithms performing odor detection in novel environ-
ments could still be affected by the increased trial-to-trial variability
in Cntnap2−/− mice (CVuncorr = 0.44) compared to WT mice
(CVuncorr = 0.25). We created artificial mixtures using the imaging data
from Cntnap2−/− mice (5 mice, 643 ROI) and simulated the increased
variability using a coefficient of variation of CVuncorr = 0.44 and the
threshold of glomerular activation of Cntnap2−/− mice of −0.46. We
trained the SVM, logistic regression, and NNC using the full set of
training examples (16 mixtures) and tested them on the 160 mixtures
that included 10novel backgroundodors.We compared theCntnap2−/−

mice performance of the classifiers with the performance obtained
from the data from WT mice (5 mice, 775 ROI). We performed the
analysis on each individual animal and pooled the average perfor-
mance for each odor resulting in 50 performances (5 animals*10 novel
background odors= 50 animal–odor pairs). The performance of the
algorithms using Cntnap2−/− mice data was not significantly different
from the algorithms that used WT mice data (see Fig. 9H). Using
Cntnap2−/− mice glomerular imaging data, the performance of the SVM
was 83.5 ± 1.1% (mean± s.e.m.) which was not significantly different
from WT mice glomerular imaging data (81.1 ± 1.2%, mean ± s.e.m.,
p =0.11, t-test). Using Cntnap2−/− glomerular imaging data, the perfor-
mance of the logistic regression was 84.2 ± 1.3% which was not sig-
nificantly different from the performance calculated using WT mice
glomerular imaging data (83.0 ± 1.2%, mean± s.e.m., p = 0.81, t-test).
The performanceof theNNCusingCntnap2−/− glomerular imagingdata
was 86.2 ± 1.1% (mean± s.e.m.) which was not significantly different
from the WT glomerular imaging data (85.3 ± 2.2%, mean ± s.e.m.,
p =0.69, t-test). We also tested the performance of the algorithms
using our dataset of real odor mixtures collected from 6 WT mice (32
recording sessions, 5163 ROI), but simulated with the larger trial-to-
trial odor-evoked variability (CVuncorr = 0.44) measured in the
Cntnap2−/− glomerular imaging data (see Supplementary Note 5:
Increased trial-to-trial variability did not affect NNC and linear

classifiers and Supplementary Fig. 14A–C). We also used the threshold
of glomerular activation of −0.46 that we identified for the Cntnap2−/−

mice. There was also no significant difference (p >0.4, t-test, n = 32
recording sessions) in the performance of the high-variability regime
(Cntnap2−/− like) compared to the reduced variability regime (WT-like).
The performance of the algorithms on odor identification in novel
environments was only significantly affected by larger values of
CVuncorr (CVuncorr > 0.85 for SVM and logistic and CVuncorr > 1.05 for
NNC, see Supplementary Fig. 14D–F) compared to the variability in
Cntnap2−/− mice (CVuncorr = 0.44).

WT mice performance was unaffected by reductions in the
diversity of training examples which is more consistent with WT mice
performing a sparse deconvolution algorithm like the Lasso than the
NNCor linear classifiers.Wewonderedwhether the Lassoperformance
on the reduced test set could be affected when using the glomerular
activation patterns of Cntnap2−/− mice. We simulated the Lasso as
described above using the glomerular data from the 5 Cntnap2−/− mice
with their increased trial-to-trial variability (CVuncorr = 0.44). The per-
formance of the Lasso using Cntnap2−/− mice imaging data in the
reduced test set was 92.6 ± 0.5% (mean ± s.d.,10 tested sizes of dic-
tionary between 100 and 1000 elements) and it was very similar to the
performance calculated for the WT mice (93.2 ± 0.9%, see Fig. 9I). For
each dictionary size, we compared the performance of the Lasso using
the 5 WT mice imaging data with the 5 Cntnap2−/− mice. The perfor-
mances were not significantly different for any of the dictionary sizes
tested (p >0.5, t-test).

The similarity in magnitude and shape of the odor-evoked glo-
merular responses between Cntnap2−/− and WT mice suggests similar
behavioral performancemight be observed in odor detection in novel
environments. Although odor-evoked responses are more variable in
Cntnap2−/− mice, the performance of the NNC, linear classifiers, and a
sparse deconvolution algorithm were similar to WT mice.

Odor detection in Cntnap2−/− mouse model of autism was
selectively affected in novel background odors
We trained four Cntnap2−/− mice using the restricted training set with
the asynchronous presentation of the odors. The Cntnap2−/− mice
performance on the standard background odors, just before the pre-
sentation of the novel odors started, was 85.5% (220 trials, 4 Cntnap2−/−

mice) and it was not significantly different (p =0.75, Fisher exact test)
from the performance of the WT mice that also trained with the
restricted training set (87.1%, 140 trials, 3 WT mice, see Fig. 10A).
However, when tested with the restricted test set with novel back-
ground odors, the Cntnap2−/−miceperformance dropped to 61.1% (283
trials, see Fig. 10B), which was significantly lower (p =0.002, Fisher
exact test) than the performance of WT mice (74.1%, 228 trials).
Although glomerular activation patterns and odor target recognition
in known background odors were very similar between Cntnap2−/− and
WTmice, odor identification performance in novel background odors
was lower in Cntnap2−/− mice.

Training with background odor reduced target detection defi-
cits in Cntnap2−/− mice
Although previous work in WT mice has shown that the difficulty of
target identification in the background was determined by the glo-
merular representation7, we hypothesized that the novelty of the
background was an additional crucial factor that affected the cap-
ability of Cntnap2−/− mice to detect the target odors. Therefore,
removing the novelty of a background odor should produce a sig-
nificant improvement in target identification for a background odor
that Cntnap2−/− mice struggled with when it was a novel background
odor. To test this hypothesis, we trained a newgroup of two Cntnap2−/−

mice and three WT mice but instead of using the original training set
that included (s)-(−)-limonene, the mice trained with 8 odor mixtures
from the reduced test set that included butyl propionate, which was
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one of the original 11 novel background odors. Glomerular responses
for butyl propionate were similar between Cntnap2−/− mice and WT
mice (see Supplementary Fig. 15). The training of the Cntnap2-/- mice
and WT mice proceeded until they performed at least 150 trials at
>80% performance at the second to last background concentration of
0.038%, which took a similar amount of training days (Cntnap2−/−mice,
15 ± 1.4 sessions, mean± s.d.; WT mice,15.6 ± 1.5 sessions, mean ± s.d.).
Performance was evaluated at the final background concentration
of 0.1% which is the concentration used when testing novel
background odors.

Olfactory training substantially increased the performance on
butyl propionate background in Cntnap2−/− mice. The performance of

the Cntnap2−/− mice when butyl propionate was novel was 53.8% (26
trials, 4 Cntnap2−/− mice). However, when butyl propionate was used
during training, the performance significantly increased to 80.5% (365
trials, 2 Cntnap2−/− mice, p = 0.004, Fisher exact test, see Fig. 10C). On
the other hand, the olfactory training using butyl propionate did not
produce a significant increase in the performance of theWTmice. The
performance of the WT mice when butyl propionate was used as a
novel background odor was 84.2% (19 trials, 3 mice). However, when
butyl propionate was used during training, the performance
only increased to 86.3% (614 trials, 3 mice). This increase was not
significant (p =0.74, Fisher exact test). Our results demonstrate
that Cntnap2−/− mice deficits were not determined exclusively by
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the glomerular responses but were affected by the novelty of the
background odor.

Cntnap2−/− mice odor learning rate was similar to WT mice
Although the training protocol for the Cntnap2−/− mice was similar to
theWTmice, we wondered whether their olfactory learning rates were
slower as shown for spatial memory tasks46. We were also expecting
slower learning in Cntnap2−/− mice because, at different stages of the
training process, both the target odor and the background odors were
novel to the animal. Both WT mice and Cntnap2−/− mice successfully
learned to discriminate between isobutyl propionate (0.34%, no-go
stimulus) and isopropyl butyrate (0.34%, go-stimulus) on the first day.
This learning includes olfactory discrimination but also non-olfactory
related behaviors like learning to lick the water tube as well as the
structure of the task. To directly measure the odor learning capability,
we analyzed the second session (day 3), when the mice learned to
discriminate between ethyl propionate (0.34%, no-go stimulus) and
propyl butyrate (0.34%, go-stimulus) after having already learned the
motor aspects of the task. Similar performance was reached for both
genotypes after 100 trials (87.6% for 6 Cntnap2−/− mice with 211 trials,
82.8% for 6WT, 239 trials, p =0.18, Fisher exact test, trials between 100
and 170, see Fig. 10D). We also compared the learning rate between
both genotypes using the normalized integration value which has
higher values for faster learning47. There was no difference in nor-
malized integration value (Cntnap2−/−: 0.78 ± 0.05, WT: 0.72 ± 0.03,
p =0.35, t-test). Thus, the Cntnap2−/− mice learning rates for the target
odors were similar to the WT mice.

Interestingly, when target odors were presented for the first time
together with low-concentration background odors (0.025% of vapor
saturation), Cntnap2−/− mice quickly learned to identify the no-go tar-
get odors (isobutyl propionate and ethyl propionate, 0.025% of satu-
rated vapor) from the go target odors (isopropyl butyrate and propyl
butyrate, 0.025% of saturated vapor). In fact, Cntnap2−/− mice perfor-
mance plateaued after 100 trials at a significantly higher level than the
WTmice (Cntnap2−/−:83.3%, 301 trials; WT: 74.0%, 204 trials, p =0.0131,
Fisher exact test, see Fig. 10E). Cntnap2−/− mice were not slower than
WT mice in learning to identify target odors in the presence of back-
ground odors as quantified by the normalized integration value
(Cntnap2−/−: 0.75 ± 0.02, mean± s.e.m., n = 6 animals, WT: 0.66 ±0.03,
n = 6 animals, p =0.276, t-test).

We also analyzed the learning rates whenmice were first exposed
to the training backgrounds at the final concentration (0.1% vapor
pressure). Performance of both the Cntnap2−/− mice (6 animals) and
WT mice (6 animals) reached a plateau after 100 trials. The perfor-
mance in the plateau phase (trials between 100 and 170, see Fig. 10F)
was similar between both genotypes (87.6% for Cntnap2−/− mice with
211 trials, 79.4% for WT, 355 trials, p >0.9, Fisher exact test). There was
no difference in normalized integration value (Cntnap2−/−: 0.71 ± 0.03,
mean± s.e.m., WT: 0.73 ± 0.03, p =0.85, t-test). Cntnap2−/− mice olfac-
tory deficits with novel background odor were only evident when

novel background odors were presented as catch trials and not during
training.

Cntnap2−/− mice errors in novel environments were not caused
by excessive licking
The Cntnap2−/− mice low performance might be caused by their
hyperactivity44. Hyperactivity could result in uncontrolled licking,
increasing the fraction of false alarms and/or early licks. For the known
background odors in Cntnap2−/− mice, performance was high (85.5%,
see Fig. 10G). Most of the errors were indeed caused by excessive
licking consistent with Cntnap2−/− being hyperactive. There were sig-
nificantly more false alarms(10.4% of 220 trials, p = 1.7e-6, Fisher exact
test) and early licks(3.6%, p =0.037, Fisher exact test) compared to
misses, which were quite rare (0.4%). In theWTmice, misses were also
the least frequent type of error (2.1% of 140 trials) compared to false
alarms (5.7%, p =0.21, Fisher exact test) and early licks (5.0%, p =0.33,
Fisher exact test). There was no significant difference in the types of
error for standardbackgroundodors between the phenotypes (p > 0.2,
Fisher exact test). Cntnap2−/− mice performance on known back-
grounds may be affected by hyperactivity to a small degree.

In contrast, the main type of error made by Cntnap2−/− mice in
novel background odors was misses (28.6% of 283 trials, see Fig. 10H)
and this fraction was significantly larger than false alarms (6.0%,
p = 4.7e−13, Fisher exact test) and early licks (4.2%, p = 6.6e−16); that is,
most of the errors in novel backgrounds in Cntnap2−/− mice were not
caused by excessive licking but by not licking to the go stimulus. WT
mice also had a significantly larger number of misses (21.9% of 228
trials) compared to false alarms (3.1%, p = 4.3e−10) and early licks
(0.8%, p = 3.7e−14, Fisher exact test). Increased misses by Cntnap2−/−

mice in novel background odors are not consistent with being caused
by Cntnap2−/− mice hyperactivity.

Cntnap2−/− mice did not increase their sniff rate for target odors
Children with autism have lower sniff modulation in response to
odors48 and this lack of sniffing modulation might be affecting
Cntnap2−/− mice performance. WT mice that trained with the full
training set increased their sniff rate in response to target odors (see
Fig. 5E andFig. 6D). In contrast,Cntnap2−/−mice had a smaller elevation
of their sniff rate in response to the target odors in the presence of
known background odors (see Fig. 10I). We quantified the sniff rate in
response to the target in the 750ms interval following target odor
onset. Cntnap2−/− had 3.29 ±0.06 sniffs per second (mean ± s.e.m.) in
response to the target (1046 target presentations, four Cntnap2−/−

mice) and it was lower than the sniff rate of the WT mice that trained
with the same reduced training set (4.06 ±0.06 sniffs per second, 957
target presentations, three WT mice, p = 5.11e−16, Wilcoxon ranksum
test). The lack of elevation of the sniff rate in response to the target
odors inCntnap2−/−mice also resulted in fewer sniffs in response to the
target before a lick response. We counted the number of sniffs in the
time interval between the first inhalation following the target odor

Fig. 10 | Cntnap2−/− mice discrimination in novel backgrounds was selectively
affected. A Performance and 95% confidence interval for four Cntnap2−/− mice
(n = 220 trials) and three WT mice (n = 140 trials) on known backgrounds for the
reduced training set. Symbols indicate individual animal performance. Significance
was calculated using a two-tailed Fisher exact test. B Performance in the novel
background for the reduced test set. p-values were calculated with a two-tailed
Fisher exact test. C Performance and 95% confidence intervals for butyl propionate
when it was used as a novel and as a standard background for different mice
cohorts. p-values were calculated using the Fisher exact test. D–F Odor learning
curves were not affected in Cntnap2−/− mice compared to WT mice. Solid lines
represent themean response calculated using a 60-trial sliding window and dotted
lines represent the mean±s.e.m calculated for 6 Cntnap2−/− and 6 WT mice.
D Learning curves for the second pair of go target and no-go target at a high
concentration (0.1%). E Learning curves for the first exposure of the standard

background odors at 0.025% (1/5 of the final concentration) with the targets at their
final concentration (0.025%). F Learning curves for the first exposure of the stan-
dard background odors at the final concentration of the background odors (0.1%).
G Fraction of types of errors for WT and Cntnap2−/− mice for standard background
odors for four Cntnap2−/− mice (n = 220 trials) and three WT mice (n = 140 trials).
Error bars are the 95% confidence intervals. p-values were calculated using a two-
tailed Fisher exact test. H Fraction of trials of types of errors with the 95% con-
fidence interval for WT and Cntnap2-/- mice for novel background odors. I Sniff
responses for Cntnap2−/− and WT mice for novel and standard background odors.
Lines represent mean± s.e.m. J WT mice lick response times were slower in the
presence of novel background odors compared to the known background odors in
both the asynchronous and the synchronous tasks. Error bars represent the s.e.m.
p-values were calculated using a two-tailed Wilcoxon rank-sum test.
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presentation and the first lick response (both hits and false alarms).
Cntnap2−/− mice took 2.3 ± 0.1 sniffs (mean ± s.e.m., n = 462 lick
responses, 4 mice) whereas WT mice took 2.5 ± 0.1 sniffs (mean ±
s.e.m., n = 496 lick responses, 3 mice, p =0.008, Wilcoxon rank-
sum test).

Cntnap2−/− mice increase in sniffing rate for novel background
odors was similar to WT mice
Although Cntnap2−/− mice did not modulate their sniffing responses to
target odors, Cntnap2−/− mice did increase their sniff rate in response
to the first presentation of the novel background odors. This increased
sniff response was similar to the three WT mice that performed the
same reduced test set task and similar to the WTmice that performed
the asynchronous (see Fig. 5E) and synchronous tasks (see Fig. 6D)with
the full test set. The sniff rate in the 750ms following the onset of the
novel background odor but preceding the onset of the target was
4.35 ± 0.23 sniffs per second (77 responses, 4 Cntnap2−/− mice) and it
was not significantly different from the sniff rate for the WT mice
(4.06 ±0.25 sniffs per second, 66 responses, 3 WT mice, p = 0.40,
Wilcoxon ranksum test). The sniff rate after the onset of the target
odor was 5.35 ± 0.23 sniffs per second (77 responses, 4 Cntnap2−/−

mice) and it was also not significantly different from the sniff rate for
the WT mice (5.21 ± 0.27 sniffs per second, 66 responses, 3 WT mice,
p =0.58, Wilcoxon ranksum test). The baseline sniffing before odor
onset was similar between Cntnap2−/− mice and WT mice (Cntnap2−/−

2.29 ±0.15 sniffs per second, 77 trials, WT 2.16 ± 0.18 sniffs per second,
66 trials, p = 0.26 Wilcoxon ranksum test). Cntnap2−/− mice did detect
and explore the novel background odors. However, an increase in
sniffing in response to the novel background odors was not sufficient
for Cntnap2−/− mice to match the performance of the WT mice.

Cntnap2-/- mice did not increase lick response latency for novel
background odors
Although WT mice increase their target response latencies by
70–100ms when challenged with difficult odor discrimination tasks24,
WT mice have much shorter target response latency increases of just
16ms when sampling mixtures of increased difficulty for odor detec-
tion in known background odors7. We wondered if Cntnap2−/− mice
might also have only small increases in their target response latency
when challenged with the increased difficulty of identifying odors in
novel backgrounds. We quantified the target response latency as the
time interval between the first inhalation following the target odor
presentation and the first lick response (both hits and false alarms).
Although Cntnap2−/− mice increased their sniff rates, they did not
increase their target response latency in the presence of novel back-
ground odors. Cntnap2−/− mice target response latency with novel
background odors was 553.0 ± 67.1ms (n = 49 lick responses, 4
Cntnap2−/− mice, see Fig. 10J) and it was not significantly slower than
the latencywith known backgroundodors (530.3 ± 17.2ms, n = 462 lick
responses, p =0.87,Wilcoxon rank-sum test). In contrast,WTmice that
performed the sameasynchronous reduced training set task, increased
their latencywhen theywere challengedwith novel background odors.
Target response latency increased from 479.5 ± 12.4ms (n = 496 reac-
tions, 3 WT mice) in standard backgrounds to 621.5 ± 60.2ms in novel
backgrounds (n = 67 lick responses, 3 WT mice, p =0.046, Wilcoxon
rank-sum test). Cntnap2−/− mice had intermediate target response
latencies that were not different from WT mice for known odors and
novel background odors (p =0.40 between known background odors
and p =0.25 between novel odors,Wilcoxon rank-sum test). Cntnap2−/−

mice took 2.4 ± 0.2 sniffs before licking in response to the targets on
the novel background odors (n = 49 lick responses, 4 Cntnap2−/− mice)
and WT mice took a similar number of sniffs (2.6 ± 0.2, n = 67 lick
responses, 3 WT mice, p =0.65, Wilcoxon rank-sum test).

Increased target response latencies with novel background odors
were also present in WT mice that trained with the full training set.

The target response latency for the asynchronous case for novel
background odors was 563.3 ± 38.0ms and it was significantly slower
(n = 146 lick responses, 4WTmice, p =0.007, Wilcoxon rank-sum test)
than the response for the known background odors (475.8 ± 11.6ms,
800 lick responses). The latency for novel background odors for the
synchronous case was 785.5 ± 45.6ms and it was also significantly
slower (109 lick responses, 4 WTmice, p = 0.0029 Wilcoxon rank-sum
test) than the latency for known background odors (662.8 ± 15.7ms,
n = 577 trials).

Cntnap2−/− mice produced a sniffing response to the novel odors
that was different from their response to the standard background
odors and similar to the sniffing response of WT mice to novel back-
ground odors. Cntnap2−/− mice reacted to the presence of novel
background odors but they did not delay their responses for novel
backgroundodors asWTmicedid (see Fig. 10I). Sniffing reaction to the
presence of a novel background odor similar to WT mice was not
sufficient for theCntnap2−/−mice tomatchWTmice target detection in
novel background odors.

Discussion
We have developed an olfactory CAPTCHA for mice that revealed the
odor generalization capabilities of WT mice and the limitations of the
Cntnap2−/− mouse model of autism. WT mice could identify odors in
novel environments, even on the first presentation. Further exposure
to an initially novel background or having the novel background pre-
cede the target onset did not significantly improve WT mice perfor-
mance. By using intrinsic images of the dorsal glomeruli in WT mice,
we determined that responses from individual glomeruli could not
generalize to novel background odors. WT mice performance was
unaffected by a reduction in the diversity of trainingmixtures, whereas
the NNC and the linear classifiers’ performance fell to chance levels.
Cntnap2−/− mice glomerular activation patterns, were similar to WT
mice, and Cntnap2−/− mice learning rate and performance for known
backgrounds were indistinguishable from WT. However, Cntnap2−/−

mice performance for novel backgrounds was significantly lower than
that of WTmice. Cntnap2−/− mice performance on a novel background
odor could be rescued by pre-training, matching the performance of
WT mice.

WTmice increased their sniffing responses as the target odor was
presentedwith known backgrounds. This sniffing response was absent
in Cntnap2−/− mice and might constitute an additional mechanism that
contributes to odor detection in the presence of background odors,
which have been proposed as suppressing the responses to preceding
novel background odor30. However, sniff increases only occurred for
the first presentations of a given novel background odor. WTmice are
able to solve the task on later appearances of the novel background
where the sniff rates had returned to the levels seen for known
background odors.

Mice are sensitive to fast differences in temporal profile between
odor streams which could be used to separate odor sources49. We have
not explored the role of these fluctuations extensively for target iden-
tification in novel environments. The only temporal difference tested
was a 750ms onset difference between the novel background odor and
the target in the asynchronous task. This temporal difference did not
contribute significantly to target detection in our task because the
performance obtained on the synchronous task was almost identical to
the performance on the asynchronous task. This stands in contrast with
invertebrate experimental data: honeybees required 5 s or longer to
segregate novel odors, which is two orders of magnitude longer than
the time required for known odors35. Although Cntnap2−/− mice did
increase their sniff rate to novel background odors in a pattern similar
to WT mice, this elevated sniff rate was not sufficient to produce a
performance that matched WT mice in novel background odors.

A limitation of our imaging data is that we can only sample glo-
meruli from the dorsal surface of the olfactory bulb. We also averaged
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glomerular responses over a 7 s window, an order ofmagnitude slower
than the animal reaction time, which ignores the rich temporal
dynamics exhibited by the glomeruli that might also contribute to
odor identification50. Including glomerular activity from non-optical
accessible ventral glomeruli might permit generalization to novel
background odors using linear classifiers or NNC. However, the per-
formance of these algorithms reached a plateau using 24–36 glomer-
uli. This is consistent with a glomerular representation of odors being
highly redundant as revealed by lesion studies51. Our imaging data
were from awake naïve animals that were passively exposed to indi-
vidual odors and odor mixtures.

Performance using single glomeruli activation on known back-
ground odors was similar to WT and Cntnap2−/−mice behavioral per-
formance. However, activation of individual glomeruli is not sufficient
to trigger suprathreshold neural responses52 in target areas and might
requireplastic changes to enhance the activationof downstreamareas.
Potential plasticity mechanisms include experimentally observed
changes in receptor expression produced by odor experience53 and
presynaptic modulation of the olfactory receptor neurons
themselves54–56. In addition, mitral/tufted cell activity mostly accesses
activity from an individual glomerulus21,57 and their modulation could
also increase the effect of individual glomeruli activation in target
areas. Neural responses in mitral/tufted cells do increase towards the
rewarded odor58,59. There is also increased frequency coupling across
bands for odors associated with reward60 in the olfactory bulb. Mitral/
tufted cell responses could also be quicklymodulated to increase their
response to target odors61. However, individual glomeruli did not
generalize well to novel background odors with a performance of
53.0%, which was much lower than the performance of WT mice
(asynchronous 76.9%, synchronous 77.2%) but close toCntnap2−/−mice
performance (61.1%). Our target concentrations were in the micro-
molar range and there was a high overlap between the target and the
background. Strategies that rely on individual glomeruli might be
more effective at nano or picomolar concentrations where glomerular
activation is sparser62.

Although there has been interest in computational neuroscience
onpotential deconvolutionmethods usedby themammalian olfactory
system with odor mixtures37–39, so far experimental results19 showed
that linear classifiers represented an upper limit for target recognition
in mixtures7. In previous work19 WT mice had a training set consisting
of individual odors and were presented with intermixed catch-trials
with mixtures of the same odors. WT mice performance on the mix-
tures was lower than the performance of a linear classifier and was not
consistent with the use of a deconvolution method like the Lasso. In
contrast, both our training set and catch trials used mixtures, with
catch-trials consisting of mixtures with novel background odors and
novel combinations of known background and target odor. By having
themicebeingpreviously trainedwithodormixtures andnot onlywith
individual odors,wewere able to unveilWTmice strategies that extend
beyond the limits imposed by linear classifiers and the NNC, as well as
the limitations of Cntnap2−/− mice in target detection.

Cntnap2−/− mice average glomerular activations produced by
odors were very similar to the activations seen in WT mice. This is
consistent with a previous report of Cntnap2−/− mice with intact
olfactory function, which outperformed WT mice on the buried food
task44. However, the trial-to-trial variability of glomerular responses
was higher in Cntnap2−/− mice compared to WT mice. This increased
variability was not large enough to affect the performance of linear
classifiers, the NNC, or Lasso deconvolution for odor identification in
novel background odors in our task. However, the higher variability
might affect the performance of other types of odor classification
wheremiceneed to detect small differences between very similar odor
mixtures23.

Linear classifiers and NNC performance plateaued when using
24–36 selected glomeruli. However, these algorithms required at least

100 glomeruli to predict the performance of WT mice on individual
novel background odors. By using a larger number of glomeruli, WT
micemightmitigate the effect of noisy glomerular responses.WTmice
responses to novel background odors were delayed by 100–120ms
compared to responses to known background odors. This increase in
response time for novel background odors is consistent with the
increased difficulty of the task63 which might require longer temporal
integration. This delay was not present in the Cntnap2−/− mice and
might have contributed to the lower performance ofCntnap2−/−mice in
novel environments.

The extra delay in WT mice could also reflect the recruitment of
circuits that perform a deconvolution algorithm in the presence of
novel background odors. The additional mitral cell activity produced
by novel odors6 might recruit the piriform cortex that could imple-
ment recurrent computations required for identifying odors in novel
backgrounds using its association fiber system64.

Cntnap2−/− mice have multiple circuit deficits that might affect
their capability to detect odors in the presence of strong novel back-
ground odors. Although we found that increased variability in the
Cntnap2−/− mice glomerular responses was not large enough to affect
classifiers’ performances, increased variability in other downstream
neural structures could affect the performance, resulting in the lower
performance of Cntnap2−/− mice65. The lack of CNTNAP2 causes a
broadening of the transmitted action potential resulting in enlarged
neurotransmitter release66 which might cause excessive activation by
strong background odors, masking the target odors. However,
Cntnap2−/− mice differences in performance with respect to WT mice
on novel background odors became only apparent when novel back-
ground odors were presented as catch trials among trials with other
well-rehearsed background odors and not when Cntnap2−/− mice
trained over days with the same background odor. The increased
release of neurotransmitters would affect both situations when a
background odor was novel and when it was a standard background
odor, whereas the deficit in Cntnap2−/− mice was selective for novel
background odors.

Cntnap2−/− mice could be using individual glomeruli or linear
classifiers to identify target odors in known background odors, as
these algorithms reached performances that matched Cntnap2−/− mice
behavior for known background odors but did not produce good
behavior for novel background odors, similar to Cntnap2−/− mice.
These algorithms do not require inhibitory activity and their perfor-
mance would not be affected in Cntnap2−/− mice by their reduced
expression of GABA44. In contrast, deconvolution algorithms that
approximate the Lasso behavior require computations37–40 including
normalization67 which might make them more likely to be affected by
reduced inhibition. Changes in cortical spine development68 and
reduced local spine density in cortex69 in Cntnap2−/− mice might also
affect the capability to integrate information over multiple glomeruli
which is necessary to identify odors in novel background odors.

Our results fit in the broader context of previous research with
mouse models of autism as well as open new avenues for future
research. First, behavioral deficits observed in our task have direct
implications for understanding social behavior deficits in Cntnap2−/−

mice44 and lack of interest in conspecific urine43, especially as only
some of the volatile odor components in a complex mixture like urine
signal social information70. Thus, our paradigm will allow for future
studies using ethologically relevant odors such as those found during
social encounters with conspecifics. Second, we demonstrate equal
mean average responses but increased variability at the glomerulus
level in Cntnap2−/− mice using intrinsic signal imagining. Thus, future
studies can compare our findings with the response to novelty present
in neurons along the olfactory pathway to elucidate the circuit
mechanism that affects the computations involved in autism sensory
issues. Third, our paradigm can be used to examine other mouse
models of autism in future studies to test the hypothesis that impaired
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response to novelty is a core feature of the autistic brain. Finally,
having demonstrated that Cntnap2−/− mice are impaired at our task,
future studies can test pharmacological and behavioral interventions
with the goal offinding new approaches to treating olfactory deficits in
children with autism48,71 which could lead to food neophobia72 and
impact the quality of life.

Methods
All procedures were approved by the institutional animal care and use
committee of the New York Institute of Technology, College of
Osteopathic Medicine (protocol 2017-GOA-0142).

Odor stimulus
Odor mixtures were composed of three odors; a target odor, and two
backgroundodors. In each trial, the target odorwas selected from four
possible odors and was presented at a relatively low concentration
(0.025% of saturated vapor). We used low odor concentrations so that
the background odors could have higher concentrations than the
target odors, without having a high absolute concentration thatmight
be aversive to the animals. The odors were selected for their non-
toxicity as well as their capability to activate dorsal glomeruli73,74, and
absence of reported innate responses75.

Both the algorithmic and behavioral performance was based on
the discrimination of the target odors. Two of the target odors were
labeled go-odors and were associated with water rewards in the
behavioral experiments and the other two target odorswere the no-go
odors that were not rewarded with water. The second odor in the
mixture was a contextual background odor, which was selected to be
one out of four odors and was presented at a higher concentration
(0.1% of saturation vapor). This contextual background odormade the
task harder and prepared the animals to identify the target odors in
variable backgrounds. The third odor in themixture was selected from
12 possible background odors and was also presented at a higher
concentration (0.1% of vapor pressure). The combination of four tar-
gets, with the four contextual background odors and the 12 variable
backgrounds resulted in 192 possible odor mixtures.

The training set consisted of 16 mixtures of a target and con-
textual background, and (s)-(−)-limonene and was used for algorithm
training and the animal’s behavioral training.

The test set consisted of mixtures of a target and contextual
background, but insteadof (s)-(−)-limonene, they contained one out of
the other 11 novel background odors, which will result in 176 possible
test mixtures.

Odor delivery
We used a serial air-dilution machine76 that delivered mixtures of tar-
get odors embedded in background odors at higher concentrations
(see Supplementary Fig. 1). We used a triple serial air-dilution to
achieve reliable low odor concentrations for both targets and back-
grounds. Each odorant was contained in a 60ml vial filled halfwaywith
3mm glass beads and 3ml of odorant, which were refilled at the start
of each session as necessary. Air was pushed into the odor vials to
collect saturated vapor and was serially diluted in air three times,
resulting in a diluted odor stream that reached the animal. The odor
machine had three groups of odors divided into three-manifolds. The
manifold M5 contained the four target odors. The manifold M1 con-
tained the four contextual background odors. The manifold M3 con-
tained (s)-(−)-limonene and the 11 novel background odors. The odor
concentration delivered to the animals could be adjusted indepen-
dently for each manifold. For instance, on day 1, the dilution of 0.5/3
0.5/1.5 0.5/5.2 means that 0.5 liters per minute of odor were pushed
into the odor vial. This 0.5 lpm flowwas diluted into a 3 lpm air stream
(first dilution). Of the resulting 3.5 lpm diluted odor, 0.5 lpm was fur-
ther diluted into a 1.5 lpm air flow (second dilution). 0.5 lpm from the
second dilution was diluted into 4.7 lpm air stream (third dilution)

resulting in a total dilution of 0.5/(3 + 0.5)*0.5/(1.5 + 0.5)*0.5/
5.2 = 0.34% from saturated vapor.

Each of the three groups of odors (targets, contextual back-
grounds, and novel background plus (s)-(−)-limonene) had a single air
valve to direct the odorized air to the animal or into the exhaust. The
same valve opened for the go-target odors as well as for the no-go
target odors so it was not possible to solve the task by using the valve
sound. Similarly, the valve delivering (s)-(−)-limonene was the same
valve that delivered the 11 novel odors, so the valve sound was the
same for training set trials as well as for the test set trials. All tubing
used was Teflon coated and had an internal diameter of 1/8 of an inch.
For each streamof odorized air corresponding to eachmanifold, there
was a non-odorized air streamwith amatched flow thatwas redirected
in a complementary manner, such as to maintain the total airflow into
the animal constantwhen switching on andoff each of the odorized air
streams.

Odor machine latencies
The odormachine has a long delay and a short delay. The long delay is
the time required for the odorized air to go from the odor vial to the
valve next to the animal snout. The short delay is the time for the
odorized air to go fromthe valve next to the animal snout to the animal
snout. We calculated these delays based on the airflows, length of
tubing, and tubing cross-sections,

The target odors required 3.4 s to travel from the odor vial to the
last valve close to the animal snout and the backgroundodors required
2.6 s. Therefore, we used a 7 s delay between the odor vial valve
opening and the opening of the valves close to the animal snout to
guarantee the presence of odorized air at the valve, ready to be
delivered. We used also a relatively long intertrial interval (30.4 ± 3.3 s,
mean± s.d.) to allow for enough time towash away residual odor in the
tubing.

The three odorized airstreams were collected into a single tube
and merged with an air carrier of 4.6 lpm, resulting in a 5.2 lpm flow
whichwas kept constant during training and testing. In order to reduce
the air velocity at the animal snout, there was a t-connection just
before the airflow reached the animal snout, that directed part of the
odormixture flow into the exhaust, resulting in a reduction of the flow
into the animal from5.2 to0.7 lpm. The air velocity at the animal’s nose
was 1.47m/s. The total delay between the opening of the valve next to
the animal nose to the odor reaching the animal, including air trans-
port delay and valve opening mechanical delay (15ms) was calculated
to be 108ms based on the airflows, length of tubing, and tubing cross-
sections. We have used a metal oxide sensor to confirm the latency
calculations, as well as to determine the reliability of the odor delivery
(see Supplementary Fig. 2).

Metal oxide measurements of odor machine latencies
We used the Figaro TGS 2620 Organic Solvent Vapor Sensor powered
using a 5 V power supply as described before77. We replaced one of our
contextual background odors with a similar vial containing ethanol at
95% concentration. We connected a 2 kΩ resistor to the output of the
sensor resulting in signal responses to ethanol at 0.1% of vapor pres-
sure that was appreciable over the noise level. We sampled the voltage
using a NI USB-6003 at 1000Hz. We removed the metal case of the
TGS 2620 sensor and located the sensor close (<4mm) to where the
animal snout would be. We adjusted the airflows to deliver a con-
centration of 0.1% of vapor pressure. We applied 60 ethanol pulses of
11.5 s separated by 30 s, which mimics the intertrial interval we used
during the behavior and imaging. The response timewas calculated by
performing a single-tailed t-test to detect where the first time point
in the voltage trace following valve opening was larger than the
baseline value at the p < 0.05 level, with the baseline calculated as
the sensor reading valuepreceding the opening of the valve next to the
animal.
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Behavioral training
Adult female C57BL/6J mice (WT) and Cntnap2−/− mice (2–4 months
old, original weight 20–24 g) were implantedwith titanium headbars78

and water deprived for at least 7 days before training started (see
Supplementary Table 1: Animals used for behavior). Animals were
weighted every day. Every day after training, water was supplemented
such as an animal’s weight reached 80–85% of the weight just before
water deprivation started. The water-deprived mice were trained to
detect odors in 2 stages before Testing: Target training and Target in
known background training (see attached Supplementary Data 1 for a
detailed training schedule).

Target training. On the first training stage, mice were exposed only to
the target odors (no background odors). After the animal’s heads were
fixed, animals were allowed to rest for at least 5min before starting the
training session. Immediately after head fixation, animals’ inhalation
patterns were symmetrical with long inhalation and long exhalations.
As animals relaxed, their sniff pattern changed to deeper shorter
inhalations and shallower exhalations, indicating that animals were
ready for the start of the training. Animalswere initially exposed to one
of the go target odors at high concentration (isopropyl butyrate, 0.34%
of saturated vapor) and odor delivery was coupled with direct delivery
of a small amount of water (4μl) after 1 s of odor exposure to elicit
licking. Once the animals reliably licked for 10–20 trials, the direct
delivery of water was stopped and animals were required to lick the
water tube in response to the odor forwater to bedelivered. The target
odor was presented for 3 s. Animals continued to perform using only
the go odor. Once they performed >100 trials without early licks
(reaction time >300ms, suggesting theywere reacting to odor and not
to valve clicking sounds), a no-go target odor (isobutyl propionate,
0.34% saturation vapor) trial was initially introduced with a probability
of 10%, so as not to discourage the animal from the continued per-
formance of the task. The minimal reaction time constrain of 300ms
played a role only on the first day of training because animals naturally
converged to a response time of ~700ms from valve opening onset.
Once the animals showed robust continuous responses even in the
presence of the no-go stimuli, the probability of the no-go stimuli was
increased to 50%. Most animals learned to discriminate the first odor
pair (one go odor versus one no-go odor) on the first day of training.
On day 2, a similar procedure was used for the second odor pair (go
odor: propyl butyrate, no-go odor: ethyl propionate 0.34% saturation
vapor pressure). On days 3 and 4 both odor pairs were introduced
simultaneously and the concentration was reduced over days to reach
the target concentration of 0.025%. As described in other go/no-go
tasks28, animals had a tendency tomake false alarmerrorsby licking for
the no-go stimuli. In order to discourage that behavior, the probability
of no-go stimuli was set to 75% at the beginning of some training
sessions. Once animals stopped responding to the no-go stimuli, the
go-stimuli probability was returned to 50%. Care was taken to return
the go-stimuli probability to 50% before the reaction time of the ani-
mals increased to over 1 s, as this indicated that the animalswere losing
interest and were about to stop the behavior altogether. All behavioral
measurements reported here were done at a go-stimuli probability of
50%. Early licks or false alarms produced increased inter-trial intervals
(see Supplementary Fig. 7 for a diagram of the time-out schedule).

Target in known background training. Mixtures that include back-
ground odors were introduced in this phase. The background odors
(one of the four contextual background odors and (s)-(−)-limonene)
were introduced initially at a concentration of 0.025%, the same con-
centration as the target odors. Odor delivery started with the delivery
of the contextual background odor, followed 0.75 s later by (s)-
(−)-limonene. The target odor was presented 1.5 s after the onset of the
contextual background odor. The background odors were con-
tinuously presented during the 3 s target odor presentation. For some

mice continuous white noise of ~70 db SPL was delivered through a
speaker to mask the sound of the background odor valve opening to
avoid having animals reacting to the sound of the background valve
opening. Animals quickly learned to recognize the targets embedded
in the background odors. Over several days the concentration of the
background odors was increased in 3 steps (see Supplementary Data 1
for a detailed training schedule). Animals performed at the final con-
centrations (target 0.025%, background 0.1%) for at least 2 sessions
(>400 trials), before the introduction of the novel background odors.
All animals, except the animals performing the reduced training set
task, were trained using all 16 odormixtures. For the animals doing the
reduced training set, they were exposed only to the 8 odor mixtures
specified in Fig. 7B for their entire training.

Testing. The 11 novel background odors were presented over 3 con-
secutive days. Each day, animals started a pre-training session on the
known background odors (training set) until their performance
reached over 80% for more than 50 trials. Once the reliable perfor-
mance was obtained, animals were switched to the test trial session
that included a small number of novel background odors mixture
trials. Each novel background odor was presented at most 4 times per
training session and each novel background odor presentation was
separated from presentations of the same novel background odor by
at least 25min. On day 1 of testing, only five different novel back-
ground odors were presented. On day 2, the other six novel back-
grounds were presented. On day 3, all 11 novel background odors were
presented. The performance on the known background odors inter-
leaved with the novel odors should be above 80%, or the session was
discarded. Only 4 sessions from 63 sessions across 21 animals
had to be discarded because of low performance on the known
background odors.

Synchronous trial training and testing. For the four animals that
performed the synchronous task, initial training was identical to ani-
mals doing the asynchronous task. Animals did two extra sessions with
the training set using the final concentrations of the target and back-
ground odor, but where the backgrounds preceded the onset of the
target by only 50 ms. The 50 ms delay was introduced to reduce the
possibility that the target odor might reach the animal’s olfactory
epithelium before the background odors arrived.

For the animals trained with the reduced training set, the 11 novel
backgroundodorswerepresentedover 2 days.All 11 novel background
odors were presented each day, with each novel background odor
presented at most 4 times per day.

Odor pre-exposure
Before starting on water deprivation, a group of 5 WT mice was
exposed to the odor group E. Briefly, we put a filter paper soaked in
0.1ml of each group E odorant in an empty cage. Animals were indi-
vidually placed in the cage for 5min at a time. Eachday, this procedure
was repeated for all five odors of group E. The same procedure was
repeated for at least 5 days preceding the onset of the behavioral
training. Odor pre-exposurewas not done in the 24-hperiodpreceding
the beginning of the testing phase.

Surgical procedure
Femalemice >60 days old, 20–25 g were anesthetized using ketamine/
xylazine (KX, initial dose 70/7mg/kg), further supplemented to keep
the pedal withdrawal reflex diminished. Respiration and lack of pain
reflexes were monitored throughout the experiment. Ophthalmic
ointment was applied to the eyes. Aseptic technique was used, first
clipping hair and prepping with betadine on the skin. Lidocaine and
iodinewere applied topically to the skin (as ananalgesic and antiseptic,
respectively). After the animals were deeply anesthetized, they were
mounted in a stereotaxic framewith ear bars. A small incision (2–3 cm)

Article https://doi.org/10.1038/s41467-023-36346-x

Nature Communications |          (2023) 14:673 23



wasmade into the skin above the surgical site. A titaniumhead barwas
cemented on the skull near the lambda suture using light-cured
Vitrobond (3M). For animals used for imaging,we also implanted 3mm
windows over the olfactory bulb, as described before78. Animals were
allowed to recover for 1week before startingwater deprivation. During
the imaging sessions, the animal’s head was held firmly in place by
mounting the titanium head bar onto a custom-built holder. The ani-
mals were awake during the imaging session.

Imaging
Intrinsic optical imaging of theolfactory bulb18was doneusing apair of
back-to-back SLR lenses with a 50mm f/1.4 lens used as objective and a
second lens Tamron AF 90mm f/2.8 Di SP AF/MF 1:1 Macro Lens cou-
pled to an sCMOS camera (CS2100M, Thorlabs). The camerawas fitted
with a long pass filter with a cut-on wavelength of 500nm (FELH0500,
Thorlabs). This setup resulted in a resolution of 3.3 µmper pixel.White
light fromaflashlightwas used tofind the surfaceof the olfactorybulb.
The imaging plane was set between 200 and 250 µm below the vas-
culature on the surface of the bulb. Single odors and odor mixtures
were presented for 9 s randomly interleaved.

Intrinsic imaging. Imageswere acquired at a rate of 40Hz. The surface
of the bulb was illuminated using an infrared (λ = 780nm) fiber-
coupled LED (M780F2, Thorlabs) connected to a 1000 µm fiber of 0.50
NA (M59L01—Ø1000 µm, 0.50 NA, Thorlabs). The fiber output was
collimated using a fiber collimation package f = 8.00mm, NA =0.50
(F240SMA-780-780, Thorlabs). Illuminationwas set up to reach 80%of
the pixel saturation value. To avoid saturation of the camera, the
aperture of the 50mm lens was closed to f/16, which resulted in a NA
for the lens of 0.0313. This configuration resulted in a diffraction-
limited resolution of 12.5 µm for a wavelength of λ = 780nm.

GCamP6f imaging. Images were acquired at a rate of 4Hz. We used a
470 nm LED (M470L4, Thorlabs) mounted with a GFP excitation filter
(MF469-35, Thorlabs) and a diffuser (ACL2520U-DG6-A, Thorlabs) to
produce a uniform and pattern-free illumination. The illumination was
setup to the minimum value that produced noticeable increases in
fluorescent responses to avoid photobleaching. The aperture of the
objective lens was opened to the maximum value of f/1.4 to maximize
light collection.

Image acquisition started 7 s before odor onset. An inter-trial
interval of 40 s was used between odor presentations in order to avoid
adaptation effects. Each stimulus (either single odors or mixtures) was
repeated between 16 and 26 times.

Image analysis
Images in response to the same stimulus were averaged over the
repeats (n > 16). A normalized signal df/f0 was calculated for the aver-
age image using as f0 the average response of the 5 s period preceding
odor onset. In order to remove the broad hemodynamic signal in
response to odors in intrinsic images, the images were convolved with
a Gaussian of radius σ = 40 µm and this low-pass-filtered signal
was subtracted from theoriginal signal. In order to remove high spatial
frequency spatial noise, the resulting images were further convolved
with a Gaussian of radius σ = 12 µm. In order to normalize this signal, a
z-score was calculated for each pixel using the values of df/f0 of the 5 s
before the onset of the odor period to calculate the mean and the
standard deviation. Average z-score odor responses were calculated
using the period between 2- and 9-s following odor onset. ROIs were
drawn manually using ImageJ79 over activated glomeruli across all
odors presented. Activated glomeruli were drawn using the minimal
projection over all the odors presented. We quantified glomerular
activation as the mean value of the z-score across all selected pixels
in an ROI.

Measurement of trial-to-trial variability in WT mice
We quantified the trial-to-trial variability of the glomerular response
using the coefficient of variation (CV). To determine the coefficient of
variation (CV) of WT mice, we calculated the z-score in response to
individual odor presentation in three animals: two WT mice that were
exposed to all 20 odors and one WT mouse that was exposed to the
training set and test set odorswhere cineolewas the novel background
odor.Odorswerepresented as9 spulses and repeatedbetween20and
27 times. To have a good estimate of the variability we only considered
responses fromROIs that showed a strong responsewith an average z-
score < −2 for at least one of the odors tested. This resulted in 141 ROIs
selected and 2684ROI–odor pairs. As described above, the glomerular
response to an individual trial was the average z-score of the response
between 2 and 9 s fromodor onset.We calculated themean(μ) and the
total variance(σ2) of the glomerular response over the trials. The total
variance increased with the mean value of the evoked response con-
sistentwith a previous report19. In addition, therewas also a pedestal of
variability for ROI–odor pairs responses that were independent of the
average activation and even appeared for ROI–odor pairs with zero or
positive average responses which are related to imaging-related noise.
The CV relates the average odor response to the observed standard
deviation: σ2ðμÞ=CV2

μ2. Therefore, the total observed trial-to-trial
variability σ(µ)2 is given by

σ2ðμÞ= σ2
noise +CV

2
μ2 ð3Þ

We fitted this function using the Matlab function fit. σnoise correspond
to the variability in the absence of an odor response and was 1.59 with
the 95% CI [1.52, 1.66]. The coefficient of variation was 0.34 with the
95% CI [0.30, 0.37] which is within the range of previous
measurements19 of 0.37 ± 0.07 (mean± SD) using calcium imaging in
anesthetized mice.

Measurement of uncorrelated component of trial-to-trial varia-
bility in WT mice
A large fraction of the trial-to-trial variability for a given odor was
shared across glomeruli which had been partially ascribed to global
anesthesia effects19. Our intrinsic imaging data was measured in awake
WT mice, so we expected that the correlated noise component would
be smaller compared to the anesthetized condition. However, there
were still correlated responses between glomeruli (see Supplementary
Fig. 3), that is, a trial where a glomerular response produced a larger-
than-average odor response would also produce larger-than-average
odor responses in other glomeruli.

To determine the coefficient of variation of the uncorrelated
variability, we used a previously develop method19. Briefly, for each
odor presentation, we plotted the average response of an ROI–odor
pair across trials against the response for a particular odor presenta-
tion. For each odor presentation, we fitted a line for all the simulta-
neously recorded ROIs responses. The population correlated
fluctuations fall on a line because the fluctuations are proportional to
the average response of each glomerulus. The deviations from a fitted
line correspond to the contribution of the uncorrelated noise for that
ROI for that odor presentation. For each ROI–odor pair we calculated
the variance (σuncorr) from the distribution of uncorrelated noise
across trials. The coefficient of variation of the uncorrelated response
CVuncorr relates the average response to the mean response μ as
σ2

uncorrðμÞ=CV2
uncorrμ

2. However, in the intrinsic imaging, there was
still uncorrelated variance in the absence of an average odor response
due to imaging noise which we called σ2

uncorrnoise. Therefore, the total
observed uncorrelated variance was

σ2
uncorrnoise μð Þ= σ2

uncorrnoise +CV
2
uncorrμ

2 ð4Þ

Article https://doi.org/10.1038/s41467-023-36346-x

Nature Communications |          (2023) 14:673 24



We fitted the standard deviation of the uncorrelated response
σuncorr μð Þusing the average response of the mean μ. We estimated a
value of σuncorrnoise of 1.47 with 95%CI [1.46, 1.49]. This value is very
similar to our noise estimate σnoise = 1.59 which indicates that the
imaging noise was mostly uncorrelated across glomeruli and probably
related to imaging noise. The coefficient of variation for the uncorre-
lated variability CVuncorr was 0.25 with 95% CI[0.23, 0.27]. This value is
larger than the value measured by Mathis et al 0.099 ± 0.019 in anes-
thetized WT mice.

Relationship between intrinsic imaging and calcium imaging of
olfactory bulb output
We implanted a C57BL/6J-Tg(Thy1-GCaMP6f) GP5.11Dkim/J20 mouse
with a window over the olfactory bulb as described above. Thismouse
line expresses GCaMP6f inmitral and tufted cells and has been used to
measure the output of the olfactory bulb21. The mouse was presented
with 20 odors using 9 s odor pulses at the concentrations used for the
behavior. Wemeasured the intrinsic odor response by using a 780nm
light and collecting the reflected light as described above. Afterward,
we measured the bulbar output response by using a 470nm blue light
and collecting the green fluorescent responses. ROIs were drawn
based on the intrinsic signal. We analyzed the responses of 131 ROIs
resulting in 2620 ROI–odor pairs.

To determine the level of intrinsic glomerular activation that
resulted in significant activation of postsynaptic cells, we estimated
thefluorescent signal that corresponded to ROI–odorpairs that lacked
an odor-evoked response. ROI–odor responses that have a positive
value on their intrinsic signal were considered non-responding as the
intrinsic signal was characterized by negative deflections. The fluor-
escence signal corresponding to those non-responsive ROI–odor pairs
determined our noise distribution for the fluorescence signal. The
noise distribution for the fluorescent signal corresponded to a z-score
of −0.36 ± 0.10 (mean± s.e.m., 1083 non-responsive ROI–odor pairs).
We compared the fluorescence signal of the data binned data
according to the z-score on the intrinsic signal with the noise dis-
tribution of the fluorescence signal. Negative intrinsic z-scores were
associated with significant positive fluorescent z-scores (see Supple-
mentary Fig. 4). Even fluorescence signals associated with relatively
small intrinsic imaging z-scores (intrinsic z-score between 0 and −0.3)
produced a fluorescence z-score (0.20 ± 0.15, mean± s.e.m., n = 543
ROI–odor pairs) that was significantly different from the fluorescent
noise distribution (p =0.03, t-test).

Measurement of trial-to-trial variability in Cntnap2−/− mice
We measured the trial-to-trial reliability of the intrinsic responses of
the Cntnap2−/− mice using the same procedure as the one used for the
WT mice. We measured the individual odor presentations in 5
Cntnap2−/− mice that were presented with 20 odors. We selected ROIs
that showed a strong responsewith a z-score < −2 for at least one of the
odors tested. This resulted in 149 ROIs selected and 2980 ROI–odor
pairs. The estimated coefficient of variability reflected the larger
variability of the Cntnap2−/− mice. The coefficient of variation was 0.64
with 95%CI [0.60, 0.68]which is almost twice as large as the coefficient
of variationmeasured inWTmice (0.34). The variability in the absence
of an odor response σnoise was 1.83 with 95% CI [1.76, 1.89] which is
similar to the value of 1.59 with 95% CI [1.52, 1.66] measured in the
WT mice.

Measurement of uncorrelated component of trial-to-trial varia-
bility in Cntnap2−/− mice
Cntnap2−/− glomerular responses were also correlated on a trial-by-trial
basis in Cntnap2−/− mice (see Supplementary Fig. 12). We followed a
similar procedure as the one used for the WT mouse to calculate
CVuncorr. We estimated a value of σuncorr of 1.65 with 95% CI [1.64, 1.67].
This value is also very similar to our noise estimate σnoise = 1.83 which

indicates that the imaging noise was also mostly uncorrelated for
Cntnap2−/−mice, similar toWTmice. The coefficient of variation for the
uncorrelated variability CVuncorrwas 0.44 with 95% CI [0.42, 0.47]. This
value is larger than the value of 0.25 with 95% CI [0.23, 0.27] of the
awake WT mice reflecting the larger variability of the Cntnap2−/− mice
odor-evoked responses.

Recording responses from odor mixtures
For each novel background odor, we acquired images in response to
mixtures of the target, contextual background, and (s)-(−)-limonene
(16 training mixtures). We also acquired images of the same mixtures
of targets and contextual backgrounds, where (s)-(−)-limonene was
replaced by one novel odor (16 testingmixtures per novel background
odor). Eachmixture was repeated between 16 and 25 times. Because of
the long acquisition time required, we split some recording sessions in
two for individual novel backgroundodors. In those cases, on eachday
we presented either one go-odor and one no-go odor with all 4 con-
textual backgroundodors (8 trainingmixtures and 8 testingmixtures),
or we presented the two go-odors and the two no-go odors with two of
the contextual background odors (8 training mixtures and 8 testing
mixtures).We trained the linear classifier and used as templates for the
nearest neighbor classifier the mixtures that contained (s)-(−)-limo-
nene. For the split session, we report the performance of the classifiers
calculated in the two individual recording sessions. We recorded data
from 10 novel odors because one of the novel background odors, 2–3
pentanedione, stuck to the odor tube, and the large number of trials
required (over 150) clogged the odor vial valve.

Linear classifiers
Linear classifiers were created using the Matlab (R2017b, ver
9.3.0.713579) function fitclinear. The function was trained using as
input the glomerular activation patterns (as z-scores) of the 16 odor
mixtures (or 8) that included (s)-(−)-limonene that conformed to the
training set. The function calculated the weights wi and the bias w0,
that is,

cj =
Xn
i = 1

wisi,j +w0 ð5Þ

where si,j is the average glomerular activation of the ith glomerulus of
the jth training mixture and n is the number of ROIs. The training
variable cj had the value of +1 for the 8 mixtures (or 4 mixtures), from
the training set that included a go odor, and a value of −1 for the 8
mixtures (or 4 mixtures) that included a no-go odor.

When using real odor mixtures, the test set was based on the
average glomerular responses of the 16 (or 8) mixtures that included a
novel background odor. For the testing with virtual odormixtures, the
test set was based on the 176 virtual mixtures (or 88) that included the
novel background odors. The complete test set consisted of simulated
100 instantiations of each average glomerular response that the test
set was based on using Eq. (1).

The output of the linear classifier (either a go or no go) was based
on the sign of the output of the filter when applied to the test set
mixtures, with positive values considered a go stimulus.

Nearest neighbor classifier
For the nearest neighbor classifier, we used as templates the average
glomerular activation patterns (as z-scores) of the 16 odormixtures (or
8) that included (s)-(−)-limonene that conformed to the training set.
The complete test sets were the same ones as the ones used for the
linear classifiers. A dot product was calculated between the templates
and the test set mixture. The nearest neighbor was determined as the
template with the largest dot product. The output of the algorithm
(either a go or no go) was based on the target odor content of the
nearest neighbor.
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In order to create all the classifiers used, we preprocessed the z-
score of the recorded glomerular activation by centering, a common
preprocessing technique in data science that has been applied to
neural decoding80. We centered the responses of each glomeruli by
subtracting the average response of that individual glomerulus from
the training set. Centering resulted in increased performance of the
linear classifiers as well as the NNC (see Supplementary Fig. 5).

Measurement of saturation non-linearity
In order tomeasure the saturating nonlinearity of the intrinsic imaging
signals, we presented 2 odors in separate trials as well as mixed toge-
ther and compared the sum of the intrinsic signals (as z-score, see
above) of the individual odorswith the intrinsic signal produced by the
mixture. We used ethyl butyrate (0.1%) and ethyl tiglate (0.1%) as well
as ethyl valerate(0.1%) and ethyl tiglate(0.1%). We recorded 143 glo-
meruli on two WT mice and found 68 glomeruli that responded to
either the odors used or to the mixture with a value that exceeded the
z-score threshold (see Supplementary Fig. 13).

We calculated the deviation from the identity and found that
there was a 39% ±0.05 (n = 68) deviation from the identity line for
responses of individual glomeruli. As this measure includes both
noises as well as saturation, we fitted the data using a saturating non-
linearity (shown in green) similar to19, that is σ(R_o) = 2A/(1 + e^(R_o *s))
−A, where R_o is the sum of the z-score produced by the two odors
measures separately andσ(R_o) is the z-scoremeasured for themixture
of both odors.A is the asymptote value and s is the saturation constant.
The estimated saturating values of the fitted model were A = −8.0934,
s =0.2091.

Creation of virtual odor mixtures
Virtual odor mixtures from the training and test set were created by
adding the glomerular activation patterns (as a z-score produced by
individual glomeruli) of individual odors from the WT mice (5 mice,
775 ROI) and the Cntnap2−/− mice (5mice, 643 ROI). The 16mixtures of
the training set were generated by adding the contribution of three
odors: a target odor (0.025% saturated vapor), one contextual back-
ground odor (one out of 4 odors, concentration 0.1 % saturated vapor)
and (s)-(−)-limonene (0.1% saturated vapor). z-score were curtailed
such as activations that had z-score larger than the threshold were set
to zero. The threshold for WT mice was z-score = −0.42 and for
Cntnap2−/− mice was z-score = −0.46. The sum of activations was pro-
cessed through the saturating nonlinearity (see Supplementary
Fig. 13B) resulting in an average response to the mixture µ. To create
individual instantiations of an odor presentation, uncorrelated gaus-
sian noise with zero mean and standard deviation proportional to the
measured activation µ was added to each glomerular activation data µ
using Eq. (1). The constant of proportionality used was CVuncorr = 0.25
for WT mice, and CVuncorr = 0.44 for Cntnap2−/− mice.

Lasso deconvolution comparison with NNC, linear SVM, and
logistic regression
In order to test if the Lasso could identify target odors in novel back-
grounds we created large dictionaries of glomerular activation pat-
terns based on our glomerular imaging from 5WTmice in response to
the individual odors used with 155 ± 38.1(mean± s.d.) ROIs recorded
per animal. The created dictionaries included the glomerular activa-
tion patterns of all nine individual odors used in animal training (4
targets + 4 contextual background +(s)-(−)-limonene) but did not
include the 11 novel background odors as the animals had no exposure
to them during training. We assume that the dictionaries should also
contain glomerular patterns for other odors besides the odors that
animals were exposed to during training. To include novel dictionary
elements while preserving the average activation per glomerulus and
the interglomerular correlation, we calculated the mean and

covariance matrix from all the 20 odors used in the experiments. We
generated the additional dictionary elements using a gaussian process
with this mean and covariance matrix. Although we imaged the odor
responses at the concentrations used during the behavior, each dic-
tionary element was normalized to unit variance. We tested dictionary
sizes between 100 and 1000 elements. The Lasso algorithm was
implemented using the lasso function from Matlab 2017B (Math-
works). The regularization constant was λ = 0.0001. For each dic-
tionary size, we simulated 30different dictionaries and eachdictionary
performancewas evaluated using an instantiationof the 88mixturesof
the reduced test set using the virtual odormixture, resulting in 13,200
testmixtures per dictionary size. The NNC, the linear SVM, and logistic
regression were trained using the average virtual mixtures of the
reduced training set (88 mixtures) and their performance was eval-
uated with the same instantiations of the reduced test set used to test
the lasso.

Sniff detection
Sniff was detected using an airflow sensor (1000 SCCM AWM300V,
Honeywell) circuit connected opposite to the animal nose81. A soft
viton o-ring (ID= 3/16 inches, Macmaster Carr part number 1284N108)
was glued to the odor delivery port to create a tight seal without
discomforting the animal. The airflow signal was acquired after passing
it through an antialiasing filter to remove high-frequency turbulence-
associated noise. We used as antialiasing filter a low-pass RC filter with
R = 9.4 kΩ and C =0.3μF, given a cutoff frequency of 56.5Hz. The
signal was acquired at 1000Hz using a NI USB-6003 USB board.

Sniff rate quantification
Sniff rates were calculated by counting the number of inhalations in a
given period divided by the period length. For the asynchronous odor
delivery, we evaluated the sniff rate in four 750ms periods: the base-
line air period, the contextual odorperiod, the (s)-(−)-limoneneperiod,
and the target period. The baseline air period was defined as the
750ms preceding the onset of the contextual background odors. The
contextual air periodwas the 750ms period starting at the onset of the
contextual background odor and finishing at the onset of (s)-
(−)-limonene The limonene period started at the onset of (s)-
(−)-limonene deliver and stopped at the onset of the target odor. The
target periodwasdefined as the 750mswindowstarting at the onset of
the target delivery. For the synchronous odor delivery, we evaluated
the sniff rate in two periods: a baseline of 750ms preceding the onset
of odors and a 750msperiod startingwith theonset of thebackground
odors. All the odor onsets included a correction for the 121ms of odor
delivery delay (see Supplementary Fig. 2).

Changes in sniff rate produced by novel background odors
In order to determine the change in sniff rate produced by the novel
odors, we calculated the number of inhalations in a 1 s window
between 300 and 1300ms following the onset of the novel odor or the
(s)-(−)-limonene odor. In order to have a comparison that considers
the non-stationarity of the sniff rate across trials, we compared the
presentation of mixtures with novel background odors to the pre-
ceding trial with known background odors. To determine the reaction
time in response to a target odor, we assumed that the odor reached
the olfactory epithelium at the onset of the first inhalation following
the target odor valve opening plus the 121ms of odor delivery delay
calculated based on air flows and cross-section of the tubing and
confirmed using the odor sensor. We measured the lick latency from
this time point.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
Small dataset files to reproduce the figure panels are available at
https://github.com/gotazu/nat_comm_2022. Larger datasets files are
available from gotazual@nyit.edu upon request. Source data are pro-
vided with this paper.

Code availability
All the Matlab code necessary to reproduce the figure panels are
available at https://github.com/gotazu/nat_comm_2022. An excel
sheet (M_files_figures) indicates the m file that will reproduce a given
figure panel.
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