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Choice selective inhibition drives stability
and competition in decision circuits

James P. Roach 1,2, Anne K. Churchland 2 & Tatiana A. Engel 1

During perceptual decision-making, the firing rates of cortical neurons reflect
upcoming choices. Recent work showed that excitatory and inhibitory neu-
rons are equally selective for choice. However, the functional consequences of
inhibitory choice selectivity in decision-making circuits are unknown. We
developed a circuit model of decision-making which accounts for the speci-
ficity of inputs to andoutputs from inhibitory neurons.We found that selective
inhibition expands the space of circuits supporting decision-making, allowing
for weaker or stronger recurrent excitation when connected in a competitive
or feedback motif. The specificity of inhibitory outputs sets the trade-off
between speed and accuracy of decisions by either stabilizing or destabilizing
the saddle-point dynamics underlying decisions in the circuit. Recurrent
neural networks trained to make decisions display the same dependence on
inhibitory specificity and the strength of recurrent excitation. Our results
reveal two concurrent roles for selective inhibition in decision-making circuits:
stabilizing strongly connected excitatory populations and maximizing com-
petition between oppositely selective populations.

Perceptual decision-making requires neural circuits to integrate evi-
dence and classify a stimulus to trigger the correct behavioral
response. Neurons in a rangeof cortical areasmodulate theirfiring rate
to signal animal’s choice1. The functional properties of decision-
making neural circuits have been extensively studied and modeled2–9.
Central to the function of these circuit models are attractors in the
activity space which characterize the population’s encoding of a given
choice. The attractor mechanism driving the decision-making activity
in these models relies on structured recurrent connections between
populations of excitatory neurons that are each selective for a differ-
ent choice8,10,11. Inhibitory neurons, in this view, are merely supporting
actors facilitating competition and providing balance to the excitatory
neurons.

Since the canonical models of decision-making circuits were
built, the diversity and complexity of inhibitory neurons within the
cortex have been characterized in increasing detail12. In primary
sensory areas, inhibitory neurons are generally more broadly tuned13

and more densely connected to neighboring excitatory neurons14,15.
These inhibitory neurons reliably modulate spike output to reflect

stimulus features and have highly specific connectivity to sur-
rounding excitatory neurons16,17. The stimulus selectivity of inhibi-
tory neurons is enhanced by learning and attention18 suggesting that
task dependent modulation of inhibitory activity is necessary for
cognition. Beyond the primary sensory cortex, stimulus information
and animal choice can be decoded from the activity of inhibitory
neurons in secondary sensory and association areas indicating a role
for selective inhibition in higher cognitive functions, such as decision
making19–21. While there is growing evidence that the activity and
connectivity of inhibitory neurons is as complex as excitatory neu-
rons, how the selectivity of inhibitory activity and the diversity of
their connections affect the decision-making function of cortical
circuits is still unknown.

To reveal the role of choice selective inhibitory neurons in
decision-making computations we extended a well establishedmean-
field model of decision-making circuits4 to account for the presence
of inhibitory choice selectivity. Ourmodel allows us to parametrically
alter the specificity of connections between two choice-selective
excitatory and two choice-selective inhibitory populations. Through
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analysis of this model, we found that while inhibition must drive
competition between choice-selective excitatory populations it must
also stabilize activity driven by recurrent excitation at the same time.
These two concurrent roles are mediated by inhibitory connections
to the excitatory populations and either role can be enhanced
by structured inhibitory connectivity. We found that inhibitory
selectivity expands the space of possible circuits which support
decision-making by enhancing either a competitive or stabilizing
role for inhibition. In addition, the connectivity motif between
choice selective populations alters the underlying attractor dynamics
and modulates the decision-making performance to prioritize speed
or accuracy. We generalized these results by training recurrent
neural networks (RNNs) to perform the same decision-making task.
After training, RNNs had both excitatory and inhibitory units sig-
nificantly selective for choice and displayed a similar dependence
between the specificity of excitatory and inhibitory connections
found in the mean-field model. Finally, we perturbed inhibitory
neuron activity in these models to probe the dynamical regime in
which the circuit operates. We found two regimes in which circuits
respond differently to perturbations of inhibitory neurons: one in
which the competitive role dominates and the other in which the
stabilizing role dominates. Our work demonstrates that choice
selective inhibition impacts decision-making behavior by enhancing
either the competitive or the stabilizing role for inhibition in the

circuit. These results generate testable predictions for perturbation
experiments.

Results
We consider circuits where two excitatory (E) populations integrate
dedicated streamsof sensory evidence to produce a categorical choice
(Fig. 1a). In contrast to previous circuitmodels of decision-makingwith
global inhibition, we include two inhibitory (I) populations which can
inherit choice selectivity from excitatory neurons (Methods). We
model the circuit dynamics using two-dimensional mean-field equa-
tions where the mean presynaptic activation of N-methyl-D-aspartate
(NMDA) receptor of the two excitatory (E1 and E2) populations are the
dynamic variables4. The average strength of connections between the
four choice selective populations is controlled by a specificity para-
meter γ. For each of three connection classes (E to E, E to I, and I to E;
Fig. 1b), γEE, γEI, and γIE set the balance of connection strengths
between populations with the same and opposite choice selectivity
(Fig. 1c). For example, (1 + γEE) is the strength of feedback connections
within excitatory populations selective for the same choice, and
(1 − γEE) is the strength of connections between excitatory populations
selective for the opposite choice. We keep γEE positive due to the
importance of recurrent feedback excitation in the function of these
circuits4. When γEE = 1, each of E1 and E2 have a strong self-excitatatory
feedback and are not connected to each other. When γEE = 0, the
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Fig. 1 | A mean-field circuit model of decision making with choice-selective
inhibition. a The circuit diagram of themodel with choice-selective excitatory and
inhibitory populations. b The circuit model includes three connection classes:
excitatory-excitatory (EE), excitatory-inhibitory (EI), and inhibitory-excitatory (IE).
c The parameter γ controls the specificity of connections between choice-selective
populations. The output connections preferentially target neurons with the same
choice preferencewhen γ is positive, andwith theopposite choice preferencewhen
γ is negative. d γEI controls inhibitory choice selectivity. Firing rate of inhibitory
populations for γEI = 0 (left), γEI = 0.05 (center), γEI = 0.25 (right) are shown for an
example trial with stimulus strength equal to 20. e Circuits report choices by

elevating the firing rate of one excitatory population. Example trials showing E1
(blue) and E2 (red) population activity for stimulus strength equal to 20 (upper
panel), and for stimulus strength equal to 0 on a completed (middle panel) and
invalid trial (lower panel). Gray shading indicates stimulation period. Numbers
indicate activity corresponding to fixed points in f. f Eight fixed points are required
for decision-making dynamics in the circuit: five in the unstimulated phase-plane
(left) and three in the stimulatedphase-plane (right, stimulus strength is equal to0).
Lines show nullclines of E1 and E2 populations, black squares indicate fixed-point
attractors, and gray squares indicate saddle-points for a circuit with nonselective
inhibition.
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strengths of excitatory connections between and within E1 and E2 are
all equal. Inhibitory choice selectivity is controlled by γEI defined in the
same way, which is also positive because inhibitory neurons inherit
choice and stimulus information from the excitatory neurons. When
γEI = 1, inhibitory population I1 receives excitatory inputs from E1 but
not E2 and vice versa. When γEI = 0, each I1 and I2 receive equal exci-
tatory inputs from E1 and E2. Thus, inhibitory activity is not choice
selective when γEI = 0 because inhibitory neurons receive equal input
from both excitatory populations. Inhibitory choice selectivity emer-
ges as γEI increases (Fig. 1d).

For inhibitory choice selectivity to have any effect on circuit
function, the outputs of inhibitory populationsmust be structured (i.e.
γIE ≠0; Fig. 1c). The specificity of inhibitory outputs γIE can range
between [−1, 1] with negative values favoring connections between E
and I populations with opposite choice preference and positive values
favoring connections between E and I populations with the same
choice preference. When γIE = 1, I1 sends inhibitory output to E1 but not
E2. When γIE = −1, I1 sends inhibitory output to E2 but not E1. Thus, the
specificity of inhibitory output connectivity defines three circuit
motifs: contraspecific for γIE < 0, ipsispecific for γIE > 0, andnonspecific
for γIE = 0.

In any decision-making circuit, inhibition concurrently fulfills two
roles. The first is providing the substrate for competition between the
excitatory populations, and the second is stabilizing the self-
amplification driven by strongly recurrent excitatory populations.
Both of these roles must be fulfilled for a circuit to function, but spe-
cific connections to and from inhibitory populations could enhance
one of these roles (Fig. 1c). Specifically, ipsispecific inhibition can
promote stabilizing feedback and contraspecific inhibition can max-
imize competition.

In response to an input stimulus, the circuit can produce dif-
ferent choice outcomes by changing the firing rates of the excitatory
populations. Circuits report a choice by persistently raising the firing
rate of one excitatory population at least 15 Hz above the other. Trials
where this separation does not occur are considered invalid and not
included in the calculation of psychometric or chronometric func-
tions (Fig. 1e, Methods). We also require that prior to the stimulus
onset, the circuit maintains low, symmetric activation of excitatory
neurons. Persistence of the decision after stimulus offset allows for a
choice readout to bemade even after a significant delay and its utility
led us to include the working memory of a choice in our criteria for
inclusion as a circuit supporting decision-making (Fig. 1e). These
dynamics are governed by eight fixed points across the phase planes
of unstimulated and stimulated system, which are essential for the
functional decision-making andworkingmemory behavior (Fig. 1e, f).
Prior to stimulus onset, both excitatory populations maintain low
symmetric activation, which is set by an attractor located near the
origin in the unstimulated phase plane. Following stimulus onset, the
firing rate for both populations increases as the system approaches a
saddle point along the stable manifold which acts as a separatrix
between two choice attractors in the stimulated phase plane. Fol-
lowing stimulus offset, the system returns to its unstimulated phase
plane and the choice of the circuit is preserved by one of twoworking
memory attractors.

Inhibitory connection specificity expands the space of circuits
that support decision making
Using themean-fieldmodel, we investigated how the circuit’s ability to
perform decision-making depends on the inhibitory connectivity
structure. Specifically, we determined how choice-selective inhibition
affects the presence of the eight fixed points (three attractors and two
saddle points in the unstimulated phase plane, and two attractors and
one saddle in the stimulated phase plane) governing decision-making
behavior. We sampled the specificity parameter space to identify cir-
cuits which support these eight fixed points (Fig. 2a). We found that a

broad range of circuit configurations can support decision making.
There are two components of inhibitory choice selectivity which rely
on specific connections to and from inhibitory populations. The first is
the degree of choice selective firing by inhibitory neurons that is
controlled by γEI. The second is the degree to which inhibitory popu-
lations have a specific effect on excitatoryneurons that is controlledby
γIE. We combine these two components into a specificity index γEIγIE,
which is negative for contraspecific andpositive for ipsispecific circuits
following the sign of γIE. The specificity of excitatory and inhibitory
connections is highly correlated in circuits supporting decision
making (Fig. 2b). When inhibition is nonselective (γEI = 0) or non-
specific (γIE = 0), the strength of recurrent excitation (γEE) is highly
constrained and deviations from a narrow range leads to the loss of
one of the essential fixed points (Fig. 2c). For circuits with selecti-
ve inhibition, a wider range of γEE will support decisionmaking as long
as a complementary inhibitory motif is present. For low γEE, the inhi-
bitorymotifmustbe contraspecific (γEIγIE < 0, Fig. 2b andd left) and for
high γEE it must be ipsispecific (γEIγIE > 0, Fig. 2b, d right). A con-
traspecific inhibitory motif can promote competition in circuits where
excitatory feedback connections are insufficiently strong to amplify
firing rate differences between choice selective populations. An ispis-
pecific inhibitory motif can stabilize excitatory feedback to prevent
inadvertent winner-take-all dynamics in the absence of stimulus in
circuits with strong excitatory specificity. By enhancing either the
competitive or stabilizing role, circuits with choice selective inhibitory
populations can support decision making for a wider range of
γEE (Fig. 2b).

The emphasis on competition or stability can also be seen in
which fixed points are lost when connection specificity between exci-
tatory and inhibitory populations are not complementary. When γEE is
low, nonspecific and ipsispecific circuits lack the fixed points repre-
senting choice both in the presence and absence of stimulation as well
as the saddle point during the stimulus (Fig. 2d left, Supplementary
Fig. 1), because recurrent excitation is too weak to drive competition
alone. Contraspecific inhibition pairedwith low γEE restores these fixed
points by emphasizing competition between populations selective for
opposite choices. These fixed points emerge sequentially as the inhi-
bitory motif becomes more contraspecific: first the choice attractors
appear, followed by the saddle point, and finally by the working
memory attractors (arrow in Fig. 2d left). Formoderate γEE, nonspecific
circuits have all eight necessary fixed points, but deviations to a con-
traspecific motif cause the loss of the attractor for the low initial state,
whereas deviations to an ipsispecific motif cause the loss of the
working memory attractors, then saddle point, and then choice
attactors (arrow in Fig. 2d center, Supplementary Fig. 1). For circuits
with high γEE to support decision making, inhibitory motif must be
ipsispecific, as nonspecific and contraspecific circuits lack the initial
low activation state attractor (Fig. 1d right, Supplementary Fig. 1). The
trade-off between competition and stability across contraspecific and
ipsispecific circuits is also evident in the size of choice-selective
populations that support decision-making (Supplementary Fig. 2).

Specific connections between choice-selective inhibitory popu-
lationsmay also impact the attractors underlying decision-making. For
example, competitive inhibitory-inhibitory connections can mediate
disinhibition in contraspecific circuits22,23. We therefore investigated
the effect of inhibitory-to-inhibitory connection specificity on
decision-making dynamics. We extended our mean-field approach to
explicitlymodel the activity of two choice-selective excitatory and two
choice-selective inhibitory populations (Methods). This four-variable
model produces the firing-rate dynamics and attractors similar to the
original two-variable mean-field model (Supplementary Fig. 3a–c). In
the four-variable model, we controlled the balance of connection
strength between choice-selective inhibitory populations in the same
manner as for other connection classes using a specificity parameter
γII, which like γIE ranges between [−1, 1]. We sampled the four-
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dimensional specificity parameter space to identify points where the
eight decision-making attractors are present (Supplementary Fig. 3d).
Aswith the two-variablemodel, themain factor determiningwhether a
circuit has the necessary fixed points is the linear relationship between
γEE and γEIγIE. Inhibitory-to-inhibitory connection specificity γII has a
limited impact on the presence of the fixed points (Supplementary
Fig. 3d, cf. Fig. 2b). Circuits with negative γII are hyper-competitive and
lose the low activation state attractor.

Inhibitory motif controls the speed versus accuracy trade-off
The roles enhanced by contra- and ipsispecific inhibititory motifs
lead to differences in performance of decision circuits. In circuits
with moderate strengths of recurrent excitation, all three motifs can
support decisionmaking for the same γEE. We found that circuits with
three inhibitory motifs differ in choice accuracy on difficult trials
where stimulus strength is weak (Fig. 3a). Relative to a circuit with
nonspecific inhibitory outputs (γIE = 0), ipsipecific circuits are more
accurate at classifying difficult stimuli but more often fail to separate
the outputs sufficiently producing invalid trials (Fig. 3b). Con-
traspecific circuits, on the other hand, have lower accuracy for dif-
ficult stimuli. In addition, contraspecific circuits have a stimulus
independent rate of trial failure attributable to trials where the firing
rates of choice-selective populations separate prior to the stimulus
onset (Fig. 3b), highlighting how these circuits are primed for com-
petitive dynamics. It is well known that decision accuracy and deci-
sion time are linked through the speed-accuracy trade-off, where
longer integration times lead to more accurate decisions24–26.

Ipsispecific circuits could be more accurate at the expense of speed,
so we compared the average time it takes circuits to cross the deci-
sion threshold for each stimulus strength as a proxy for decision
time. Ipsispecific circuits do indeed arrive at choices more slowly
than the less accurate contraspecific circuits (Fig. 3c). These differ-
ences in behavioral performance indicate a speed versus accuracy
trade-off which is mediated by the specificity of connections
between choice-selective populations in the circuit (also evident in
the four-variable model, Supplementary Fig. 3e). These performance
outcomes again highlight the roles enhanced by ipsispecific and
contraspecific inhibition: the contraspecific motif primes a circuit for
competition, whereas the ipsispecific motif promotes stability,
lengthening integration times.

We can understand the speed-accuracy trade-off between ipsi-
and contraspecific circuits by analyzing the dynamics around the
saddle point. Differences in these dynamics are seen by comparing
single-trial trajectories of ipsi-, non-, and contrapecific circuits in
response to the neutral stimulus (Fig. 3d). At the trial start, both
choice-selective populations are symmetrically activated and the tra-
jectory moves along the stable manifold toward the saddle point. The
circuit activity deviates to a choice attractor after approaching the
saddle. Contra- and ipsispecific circuits differ in both how far along the
stable manifold the activity progresses and how quickly it moves
toward the choice attractor once it deviates. We can estimate how
quickly the dynamics will leave the neighborhood of the saddle point
with the time-constant τslow, which is the time-constant of dynamics
moving along the unstable manifold of the saddle point4,27. Changing
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the circuit motif from contraspecific to ipsispecific by increasing γEIγIE
leads to an increase in τslow (Fig. 3e) and slowing down the pace of
decisions (Fig. 3f). The divergence of τslow indicates that ipsispecific
inhibition stabilizes the saddle point until at high γEIγIE a bifurcation
occurs and the saddle point becomes an attractor with a symmetric
high activity state (Fig. 3g). This bifurcation leads to the system sta-
bilizing in a state where the firing rates of two choice-selective popu-
lations do not sufficiently separate on neutral and difficult stimuli
trials, a state where the circuit fails to produce a decision. Easy stimuli
impose a stronger asymmetry on the phase plane4 allowing circuits
with highly ipsispecific inhibition to converge to a choice on easy trials
(Supplementary Fig. 4).

Strong ipsispecific inhibition destabilizes working memory
The inhibitory connectivity motif affects the circuit’s ability to main-
tain the working memory of a choice. Contraspecific and nonspecific
circuits maintain a difference in excitatory firing rates of at least 15 Hz
for a very long time following stimulus offset, whereas ipsispecific
circuits exhibit a degradation of the choice readout (Fig. 4a). This
behavior can be linked to the phase plane of the unstimulated circuit.
Working memory is supported by two choice attractors that are
separated by saddle points from the attractor with symmetric low
activity state. The separation between the working memory attractors
and the saddle points is smaller for more ipsispecific circuits (Fig. 4b).
For highly ipsispecific circuits, working memory attractors are extin-
guished after merging with the saddle points (Fig. 4b).

Inhibitory choice selectivity in trained recurrent neural
networks
So far, we used the mean-field approach to establish that choice-
selective inhibition supports the function of decision-making circuits
by enhancing a competitive or stabilizing role. Next, we wanted to test
whether this result holds broadly by using another class of decision-
making network models. We therefore trained excitatory-inhibitory
recurrent neural networks (RNNs) to perform a decision-making task28

and then tested whether inhibitory choice-selectivity regularly emer-
ges in these networks after training and whether the dependence

between the excitatory and inhibitory specificity aligns with the two
roles for inhibition. We used RNNs with 100 excitatory and 25 inhibi-
tory units (Fig. 5a), but our results are not specific to this number of
units and hold in RNNs with twice the size (Supplementary Fig. 5). Two
input streams projected to all excitatory units through input weights.
Two output variables were calculated as a weighted sum of excitatory
unit activity.We trained RNNs to performan identical decision-making
task as the mean-field circuits by raising an output variable which
corresponds to the input stream with a higher mean value. Networks
were trained by back-propagation through time tominimize the mean
squared error between the network outputs and predefined targets.
For a given trial, a choice was recorded when the output variables
became separated by a fixed threshold set to 0.25. Trials were con-
sidered invalid if the outputs separated prior to the stimulus, failed to
maintain separation after stimulus offset, or separation was never
achieved. We trained networks until the correct choice was made on
85%of all trials (including correct, error, and invalid trials) in a 200 trial
epoch. One hundred and fifty networks reached this training threshold
in 104, 343 ± 9, 264 (mean± s.d.) trials, ranging from83,200 to 127,600
(Fig. 5b). Networks performed the task well, making errors and failing
to complete trials only for difficult stimuli (Fig. 5c). Trained networks
also took longer to make decisions when presented with a difficult
stimulus, similarly to mean-field circuits (Supplementary Fig. 6).

We determined whether inhibitory neurons in these RNNs were
choice selective. We classified recurrent units as choice selective
using receiver operator characteristic (ROC) analysis21 (Methods). We
constructed ROC curves by decoding network choice from a unit’s
activity on the time-step following stimulus offset. To identify which
units significantly modulated their firing rate to reflect choice, we
compared the area under the ROC curve (AUCROC) to a shuffle dis-
tribution generated from randomized trial labels (two-sided permu-
tation test, p < 0.05, 150 permutations). Units that were identified as
choice selective increased activation following the onset of a sti-
mulus corresponding to their preferred choice (Fig. 5d). Inhibitory
units had overall higher choice selectivity than excitatory units, as
measured by the selectivity index ∣AUCROC −0.5∣ that can range from
0 to 0.5 (Fig. 5e, inhibitory 0.23 ± 0.17, excitatory 0.12 ± 0.16;
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clarity. The decision threshold for each circuit is shown by the dashed line. Squares
indicate choice attractors, triangle indicates the saddle point. The stable (black)

and unstable (gray) manifolds of the saddle point are shown. e As the circuit motif
changes from contra- to ipsispecific, the time constant of the unstable eigenvector
of the saddle point τslow increases, indicating stabilization of dynamics and longer
integration times. f The time constant τslow is tightly correlated with decision time
(shown for stimulus strength equal to 0). g The saddle point becomes an attractor
for ipsispecific circuits with high γEIγIE. The bifurcation diagram for circuits driven
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a–d. In all panels γEE = 0.32 and γEI = 0.25.
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mean ± s.d.; Wilcoxon rank-sum test p < 10−10). Also, the proportion of
significantly selective units was higher for inhibitory than excitatory
units (Fig. 5f, inhibitory 0.87 ± 0.07, excitatory 0.72 ± 0.06; mean ±
s.d.; Wilcoxon Rank-Sum test p < 10−10). Thus, inhibitory unit activity
contained overall more choice information than excitatory unit
activity despite the fact that only excitatory units received stimulus
input. In this respect RNNs differ from experimental data in which
excitatory and inhibitory neurons contained similar choice
information21.

Excitatory specificity aligns with ispi- and contraspecific
inhibitory motifs in RNNs
Based on our mean-field model, we know that for choice-selective
inhibition to impact circuit function, the connections from inhibitory
to excitatory populationsmust be specific. Therefore, after identifying
choice-selective units in RNNs, we sought to determine whether the
connection specificity of excitatory-excitatory and excitatory-
inhibitory pairs followed the relationship predicted by the mean-field
model (Fig. 2b). To analyze the specificity of connections between
choice-selective populations in the RNNs, we estimated the specificity
parameter γ from theweights of trained RNNs defined in the sameway
as for the mean-field model (Methods). Trained networks consistently
had strong excitatory-excitatory (γEE = 0.59 ± 0.07) and excitatory-
inhibitory (γEI = 0.39 ±0.06) specificity (Fig. 5g). This result is con-
sistent with the constraint that inhibitory units inherit stimulus infor-
mation from excitatory units to be choice or stimulus selective.
Inhibitory-excitatory connections were nonspecific on average
(γIE = 3.6 × 10−3 ± 0.03) but their distribution showed both ipsispecific
and contraspecific motifs. Inhibitory-inhibitory connections were
nonspecific on averagewith higher variation than inhibitory-excitatory
connections (γII = −5.0 × 10−3 ± 0.06). Confirming the trend predicted
by the mean-field model, excitatory specificity γEE was correlated with
the inhibitory specificity index γEIγIE, where networks with stronger
recurrent excitation were ipsispecific and networks with weaker
recurrent excitation were contraspecific (Pearson’s r = 0.53, p < 10−10;
Fig. 5h). When comparing the connection classes individually, we
found positive correlations between excitatory-excitatory, excitatory-
inhibitory, and inhibitory-excitatory specificity (Fig. 5i). Inhibitory-
inhibitory connection specificity was not significantly correlated with
any other connection class. The higher variance and negligible corre-
lation with other connection classes suggest that the specificity of
inhibitory-inhibitory connections was unconstrained in these net-
works, in line with the mean-field model, where specificity of
inhibitory-inhibitory connections also had a small effect on whether
circuits could perform decisions (Supplementary Fig. 3d). These
results show that RNNs utilize choice selective inhibition to compen-
sate for variation in excitatory-excitatory specificity.

To further test the relationship between the excitatory and inhi-
bitory specificity, we trained additional sets of RNNs with higher or
lower excitability of excitatory units. In the mean-field model, lower
(higher) excitatory gain can be compensated by either an increase
(decrease) in excitatory connection specificity or by strengthening of
the contraspecific (ipsispecific) motif. Accordingly, we expect that
changing the activation function slope of the excitatory units in RNNs
should either shift the excitatory-excitatory specificity against the
direction of the gain change or shift the inhibitory specificity towards
contraselective (for lower slope) or ipsielective motif (for higher
slope). We trained two additional sets of networks with hypoexcitable
(slope 0.5) or hyperexcitable (slope 1.5) excitatory units. Changing the
excitability of excitatory units led to large shifts in γEE without chan-
ging the distribution of inhibitory specificity (Supplementary Fig. 7). In
these networks, γEE and γEIγIE were still correlated, with higher γEE
leading to higher γEIγIE (Supplementary Fig. 8). These results indicate
that excitatory-excitatory specificity is a higher leverage parameter
that RNNs use as themost effective path to compensate for changes in

the excitability of excitatory units. This observation is consistent with
the effect of changes in γEE on the dynamics in the mean-field model.
For accuracy, decision-time and τslow, changes in γEE are far more
effective than changes in inhibitory specificity (Supplementary Fig. 9)
when all other parameters are held constant. In both the mean-field
and RNN models, excitatory-excitatory specificity has a larger effect
than inhibitory specificity and is the main lever circuits use to com-
pensate for changes in neural parameters.

Perturbing inhibitory neuron activity reveals regimes where
stabilizing and competitive inhibition dominate
Using themean-field and RNNmodels, we established how contra- and
ipsispecific inhibitory motifs enhance two different roles for inhibition
in decision making circuits. To further probe these roles, we next
considered how circuits respond to perturbations of inhibitory neuron
activity. We used perturbations that equally targeted all inhibitory
neurons irrespective of their choice selectivity by driving them with a
nonspecific inputΔν0,I (Fig. 6a). Suchperturbations couldbe realized in
optogenetic experiments. In circuits where the competitive role of
inhibition dominates, we expect that enhancing inhibitory activity
should speed up dynamics whereas suppressing inhibition should slow
them down (Fig. 6b). Vice versa, in circuits where the stabilizing role of
inhibition dominates, we expect that enhancing inhibitory activity
should slow dynamics down and suppressing inhibition should speed
them up (Fig. 6b). Because τslow provides a readily available estimate of
the pace of dynamics in the mean-field model, we calculated τslow for
varying nonspecific baseline input to inhibitory neurons ν0,I. We found
that depending on the baseline level of inhibitory activity both regimes
are possible in the mean-field circuit: one where competitive role
dominates andonewhere stabilizing role dominates (Fig. 6c). Around a
low baseline value of inhibitory activity (ν0,I = 11.5 in Fig. 6c), contra-,
ipsi-, and nonspecific circuits respond to perturbations similarly, such
that enhancing inhibition (Δν0,I > 0) leads to a decrease in τslow, i.e.
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faster dynamics. Around a high baseline value of inhibitory activity
(ν0,I = 14 in Fig. 6c), all circuits respond in the opposite way, such that
enhancing inhibition increases τslow. This U-shapeddependence of τslow
on the baseline input to inhibitory neurons ν0,I results from the system
approaching bifurcation points at either extreme of the parameter
range that supports decision making4 (Supplementary Fig. 10). These
two regimes–a low inhibition and a high inhibition regime–differ in
which role of inhibition dominates: competitive or stabilizing, respec-
tively. The inhibitory motif (contra-, non-, or ipsispecific) further shifts
this emphasis within the constraints of each regime. These regimes can
be identified via perturbations by characterizing how the circuit
dynamics respond to changes in inhibitory tone.

To confirm the existence of competitive and stabilizing regimes,
we perturbed themean-field circuits around the low and high baseline
values of the inhibitory activity.We enhanced or suppressed inhibition
during the stimulus period of a trial and measured changes in the
circuit performance. We constructed a set of metrics to quantify
changes in the fraction of completed trials, decision time, and choice
accuracy relative to the unperturbed circuit for all stimulus strengths.
The effects of these perturbations followed the predictions from the

calculation of τslow (Fig. 6d–k). Enhancing inhibition decreased deci-
sion time in the low inhibition regime, but increased decision time in
the high inhibition regime (cf. Fig. 6d, f and h, j). Consistent with the
slowing effects of the perturbation, circuits in the high inhibition
regime failedmore often to complete trials (Fig. 6e) and becamemore
accurate (Fig. 6g) when inhibition was enhanced. Circuits in the low
inhibition regime showed the opposite behavior (Fig. 6h–k). Thus, by
perturbing inhibitory neuron activity we can determine whether the
competitive or stabilizing inhibition dominates in a circuit.

We then delivered enhancing or suppressing perturbations to
inhibitory units in trained RNNs during the stimulus period to identify
in which inhibitory regime these networks operate. Enhancing inhibi-
tion increaseddecision times, reduced the fraction of completed trials,
and increased accuracy, consistent with these RNNs operating in the
stabilizing inhibition regime (cf. Fig. 6h–k and l–o).

Discussion
We showed that choice selectivity of inhibitory neurons can affect the
function of decision making circuits by enhancing one of two roles for
inhibition: facilitating competition or stabilizing recurrent excitation. In
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the mean-field model, choice selective inhibition and specific connec-
tions from inhibitory to excitatory populations expand the excitatory-
excitatory specificity parameter space of circuits that support decision-
making. For the range of excitatory connection specificities supporting
both ipsispecific and contraspecific inhibitory circuits, the speed and
accuracy of decisions tightly depend on whether the ipsi- or con-
traspecific inhibitory motif is present. Inhibitory choice selectivity also
emerges in RNNs trained to perform a decision-making task, and the
specificity of excitatory and inhibitory connectionswithin trained RNNs
is correlated, consistent with the mean-field model predictions. The
mean-field model further predicts the existence of two dynamical
regimes: (i) a low-inhibition regime where the competitive role

dominates, and (ii) a high-inhibition regime where stabilizing role
dominates. In trained RNNs, perturbations of all inhibitory neurons
indicate that these networks operate in the stabilizing inhibition regime.

Decision-making circuits with non-selective inhibition exist only
within a narrow range of excitatory-excitatory connection specificity.
When inhibitory neurons inherit choice-selectivity from excitatory
neurons and also project to excitatory neurons via specific connec-
tions, a broad range of circuit configurations can support decision-
making. In circuits capable of decision-making, the correlation
between the specificity of excitatory (γEE) and inhibitory connections
(γEIγIE) reveals how the contra- and ipsispecific motifs enhance one of
two roles for inhibition: facilitate competition between populations
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d–g Around a low baseline (ν0,I = 11.5, brown line in c), enhancing inhibition speeds
up decision times (magenta line in d; f), increases the rate of trial completion (e),
and decreases accuracy (g), whereas suppressing inhibition produces the opposite
effects, e.g., slows down decision times (green line in d; f). Results are shown for
nonspecific circuits. Gray areas in d indicate stimulus strengths used to calculated
the values in e–g. Error bars indicate ± s.e.m. across 2000 trials. h–k Same as
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2000 trials. l–o Same ash–k for perturbations of inhibitory neurons inRNNs. RNN’s
response to perturbations mirrors the effects in the mean-field model in the sta-
bilizing regime (c.f. h–k). Enhancing inhibition in RNNs slows down decision times,
decreases the rate of trial completion, and increases accuracy. Error bars indi-
cate ± s.e.m. across 75 networks.
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coding for opposite choices or stabilize amplification driven by
strongly recurrent excitation. When γEE is low and excitatory popula-
tions alone cannot drive selective activation, contraspecific inhibitory
motifs support decision-making by maximizing competition. Con-
versely, when γEE is high and excitatory self-amplification becomes
unstable, ipsispecific inhibitory motifs stabilize firing rates.

The categorical output of decision-making circuits is thought to
be driven by strongly selective excitatory to excitatory selectivity with
the evidence accumulation based on amplification through NMDA
receptors2,4. In thesemodels the specificity of excitatory connections is
sufficient to drive competition and selective activation. We found that
deviations from a narrow range of γEE require complementary inhibi-
tory circuitry. When recurrent excitatory specificity is low, con-
traspecific inhibition is required to form the attractors needed for
decision-making computation. This mechanism was described in cir-
cuits where excitatory populations have limited capacity for amplifi-
cation, such as themidbrain circuit in the owl22, and in linear integrator
models29. On the other hand, when recurrent excitatory specificity is
high, the strong excitatory feedback amplification needs matching
ipsispecific inhibition to stabilize the circuit. This mode of inhibitory
selectivity is known to improve stability and robustness of a circuit to
perturbations17,30. Additionally, shifts in E/I balance through modula-
tion of gain or synaptic efficacy can improve the robustness and
parameter range of decicion-making circuit models31,32.

We found a similar relationship between excitatory and inhibitory
connection specificity in RNNs suggesting the balance between com-
petitive and stabilizing inhibition is a general principle in E-I networks.
While specific connections between excitatory and inhibitory units
were clearly important for the decision-making function in our net-
works, connections between inhibitory units appeared unconstrained,
indicating this connection class has limited effect on circuit function
like in the mean-field model. RNNs are increasingly often used to
develop theories of how neural circuits perform computations23,28,33.
Some studies trained RNNs under the constraint that units have either
exclusively excitatory or exclusively inhibitory outputs28,34 (Dale’s law).
Studies of E-I RNNs which focus on the impact of inhibitory connec-
tions show that specificity of inhibitory-inhibitory connections can be
critical to circuit function23. The apparent difference in the importance
of inhibitory-inhibitory selectivity between our networks and previous
work could result from differences in the training procedures35. We
observed a large impact of RNN training hyperparameters on the
emerging circuit structure. Future work is needed to understand how
details of training influence the emerging circuit structure and com-
putations performed by RNNs.

Our results show that selective inhibition can have amarked effect
on the functionof neural circuits.Manymodelsof categoricaldecision-
making rely on a nonspecific pool of inhibitory neurons to enforce
winner-take-all competitionbetween excitatory neurons2,3.While these
models reproduce the dynamics of decision-making circuits they do
not fully account for the diversity of interneurons within the cortex.
Cortical inhibitory neurons show selective activation in many mod-
alities including primary sensory13,17,36,37 and association areas19–21.
Moreover, choice-selectivity of parietal inhibitory neurons is equal to
that of excitatory neurons during an audio-visual discrimination task21.

In the mean-field model, we assume that choice selectivity of
inhibitory neurons arises from specific connections from choice-
selective excitatory neurons (γEI in our model). While it is possible that
choice selectivity could arise from external inputs to interneurons38 or
even from random connections between excitatory and inhibitory
neurons39, most circuit models assume stimulus information is exclu-
sively provided by inputs to excitatory neurons. Inhibitory choice-
selectivity also emerged in our RNNs trained to perform 2AFC task28. In
our RNNs, inhibitory units can only inherit stimulus or choice infor-
mation through specific connections from excitatory populations,
unlike in other trained RNNs23. For both excitatory and inhibitory units

in trainedRNNs,we found that the fraction of selective unitswas higher
than is commonly used in circuit models2,4 and found in experiments21.
This difference could be due to the simplicity of RNNs compared to
in vivo circuits, and also a training processwhich aims tominimize total
activity through regularization. In addition, decisions in the RNN are
fully determined by the local circuit, whereas an animal’s behavioral
output arises from a broadly distributed circuitry. Although higher
choice selectivity for inhibitory units was robust to doubling the net-
work size (Supplementary Fig. 5b, c), it could result from the need to
leverage all of these units in a network much smaller than those in
the brain.

The core computation of themodel is the selective activation of a
single excitatory population when the stimulus is presented and a
mechanism to integrate stimulus information before diverting to a
choice attractor. By enhancing stability, ipsispecific circuits lengthen
the period when a circuit can maintain mutual activation of popula-
tions encoding competing choices, thus increasing the integration
window which leads to more accurate stimulus classifications. Con-
traspecific circuits, primed for competition, minimize the integration
period which increases error frequency.

In attractor networks, modulation of τslow for controlling the
speed and accuracy of decisions iswell knownand canarise fromother
mechanisms than inhibitory output specificity. In the model with
nonspecific inhibition, τslow increases with stimulus difficulty4 and can
be also modulated via top-down excitation27. Our finding that
excitatory-inhibitory connectivity influences this well established
mechanism highlights the importance of inhibitory circuitry to evi-
dence accumulation. A key difference between controlling τslow via
inhibitory motif versus top-down excitation is that the location of the
saddle point is unaffected by γIE whereas increasing top-down excita-
tion shifts the saddle towards the origin, effectively acting as a col-
lapsing decision-bound27. Top-downexcitation canbe adjusted rapidly
from one trial to the next to match the decision’s speed and accuracy
to the task demands. Could the inhibitory motif also be dynamically
changed to meet changing task requirements? Modulation of the
speed-accuracy trade-off through changes of the inhibitory motif may
bemediated by activation or inactivation of inhibitory subpopulations
connected in either a contraspecific or ipsispecific pattern (repre-
senting a shift in γIE for the circuit as a whole).

Selective neuromodulatory control of genetically identifiable
inhibitory subtypes may provide for control of inhibitory motifs.
Inhibitory subtypes have distinct connectivity patterns to neighboring
excitatory neurons: fast-spiking cells have far more reciprocal con-
nections to excitatory neurons than adapting interneurons16. A shift in
output specificity could be mediated through top-down activation of
inhibitory subnetworks or through neuromodulation of distinct inhi-
bitory subtypes such as PV+, SOM+, or VIP+. Acetylcholine has layer-
dependent effects on the responsiveness of both regular spiking and
fast spiking neurons in the visual cortex, which could differentially
activate distinct inhibitory motifs on behaviorally relevant
timescales40–42. Additionally, acetylcholine can reduce the release of
inhibitory neurotransmitters in cortical neurons43, thus directly
affecting inhibitory connectivity.

Our mean-field framework reduces the dynamics of the full net-
work with 6 excitatory and inhibitory populations to a two-variable
system using several approximations, in particular, the steady-state
assumption for GABA dynamics4. This assumption is based on the
timescale separation between decay time constants of slow NMDA
(~100ms) and fast GABA (~5ms) conductance. The slow NMDA
dynamics dominate the time evolution of network activity, and one can
assume that all other variables reach their steady-statenearly instantly4.
Despite being fast, the dynamics of GABA synapses can also affect
decision-making behavior44. A study44 considered a set of circuits with
parameters chosen so that when the steady-state assumption is
applied, all models reduce to the two-variable model with the exact
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same parameter set. Thus, all differences in dynamics of these circuits
were driven by GABA dynamics. In these circuits, the GABA dynamics
mediated a speed-accuracy trade-off and, moreover, this tradeoff was
more efficient in circuits with selective inhibition44. While this study
considered only ipsispecific inhibitory connectivity and a narrow space
of circuits that all map onto a single parameter set of a two-variable
model, our work explores a wide range of circuit configurations ran-
ging from contraspecific to ipsispecific inhibitory motifs. Our findings
are robust to the steady-state approximation of GABA dynamics as we
show using a four-variable mean-field model (Supplementary Fig. 3).
Together these results show that inhibitory connectivity motifs and
GABA dynamics both affect decision-making behavior.

Another key performance metric that depends on selective inhi-
bition is the rate of trial completion. Our models (both the mean-field
andRNNs) fail to reach the imposed decision threshold on a fractionof
trials with low stimulus strength, which we call invalid trials. This
behavior is common across spiking2,32,45, mean-field4,44 and RNN28

models of decision-making. Our treatment of invalid trials is con-
servative, as we report invalid trials as a separate behavioral outcome
different from correct or incorrect decision32, whereas most other
studies assign a choice at random on trials when the network does not
reach the decision threshold2,4,28,44,45. The random assignment of
choices on invalid trials can conceal differences in network dynamics,
making distinct dynamical regimes indistinguishable in psychometric
functions45. We find that the completion rate of difficult trials is
reduced in circuits where stability is emphasized due to increased
integration time. Circuit models frequently differ from experimental
subjects in the rate of trial completion, which was attributed to an
urgency signal gating the evidence accumulation process which is
absent in circuit models46–49. One possible mechanism for an urgency
signal in decision circuits could be a nonspecific external ramping
input50. Incorporating such inputs into future models of decision-
making would be an important next step in the study of selective
inhibition.

We show that choice selective inhibition can enhance one of two
roles for inhibition indecision-making circuits: facilitating competition
or stabilizing excitatory feedback. Both these roles are simultaneously
fulfilled by inhibition in any decisionmaking circuit. Enhancing activity
of all inhibitory neurons can shift the circuit from a regime where the
competitive role dominates to a regime where the stabilizing role
dominates regardless of which inhibitory motif is present. This effect
echos results which find shifts in E/I balance can induce leaky or
unstable integration45. The stabilizing and competitive regimes can be
differentiated by the behavioral response to perturbations of inhibi-
tory activity. Perturbations during reaction time tasks should reveal
which inhibitory role is dominant in vivo. The balance of these two
roles is critical for circuits to perform decision tasks, and shifts in this
balance could align dynamics with changing task requirements. More
experimental work is needed to uncover how inhibitory subnetworks
strike this balance in the cortex. Specifically, whether functional
selectivity is constrained to certain inhibitory subtypes and whether
inhibitory neurons are recruited to performa task in a state dependent
manner are important questions for future work.

Methods
Mean-field model
Our mean-fieldmodel accounts for interactions among 6 populations:
3 excitatory (2 choice selective and 1 nonselective) and 3 inhibitory (2
choice selective and 1 nonselective). Including nonselective neurons in
the model is consistent with previous work4 and reflects the experi-
mental observation that only a fraction of all recorded neurons shows
choice selectivity21. Each selective population contains the fraction f of
the total number NE (NI) of excitatory (inhibitory) neurons, so that
1 − 2f is the proportion of nonselective neurons. We reduce the
dynamics of the full network with 6 excitatory and inhibitory

populations to a dynamical systemwith two variables representing the
activations ofN-methyl-D-aspartate (NMDA) conductances (in termsof
fraction of channels open) for synapses originating from two choice-
selective excitatory populations4. The model reduction to two
dimensions leverages the timescale separation between decay time
constants of the slow NMDA (~100ms) and fast γ-aminobutyric acid
(GABA, ~5ms) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA, ~2ms) receptors. The slow NMDA dynamics dominate the
time evolution of the system, and one can assume that all other vari-
ables reach their steady-state nearly instantly4. The dynamics of the
NMDA activation variable for population i (i∈ {1, 2}) are governed by:

dSi
dt

=
�Si

τNMDA
+ ð1� SiÞγΦðxiÞ, ð1Þ

where τNMDA = 0.1 s and γ =0.641. The non-linear function Φ trans-
forms input current xi [nA] into firing rate:

ΦðxiÞ=
axi � b

1� e�dðaxi�bÞ , ð2Þ

where a = 270nC−1, b = 108Hz, and d =0.154 s. The input to population
i is:

xi =α1ðγEE, γEI, γIEÞSi +α2ðγEE, γEI, γIEÞSj + I0, iðγEE, γEI, γIEÞ+ Istim, i + Iη, i,

ð3Þ

where index j refers to theother excitatory population. The complexity
of the circuit structure, including interactions between all selective and
nonselective excitatory and inhibitory neurons, is collapsed into two-
dimensionalmodel through the variables α1, α2, and I0,i as described in
the section Circuit Structure below.

The stimulus Istim,i is defined as an increase in the rate of external
excitatory inputs to choice-selective excitatory neurons of magnitude
μ. We define the strength of evidence for one versus the other choice
as stimulus coherence c, which can range between −100% and 100%.
For population i the stimulus is then defined as:

Istim, iðt,μ, cÞ=
JAMPA,extμð1� c

100Þ tstim,on < t < tstim,off , i= 1,

JAMPA,extμð1 + c
100Þ tstim,on < t < tstim,off , i=2,

0 otherwise:

8><
>: ð4Þ

For all cases, we set μ to 40Hz. Noise is introduced through the
inputs Iη,i to the two excitatory populations filtered through fast
synaptic activation of AMPA receptors:

dIη,i
dt

= � Iη,i
τAMPA

+
ηðtÞffiffiffiffiffiffiffiffiffiffiffiffi
τAMPA

p , ð5Þ

where τAMPA is 0.002 s and η(t) is a white Gaussian noise with zero
mean and standard deviation 0.02 nA. We performed numerical
simulations using the Euler method with a 2 ms time step.

Circuit structure
We derived two-dimensional mean-field equations, which model the
dynamics of the entire circuit through the effective interaction
strengths α1, α2 between the two excitatory populations, and the
background currents I0,i. This reduced model is based on approx-
imating the firing rates of all three inhibitory populations (two choice-
selective and one nonselective) and of the nonselective excitatory
population as linear functions of their inputs. Thus, the firing rates of
these populations change linearly in response to changes in the firing
rates of the two explicitly modeled excitatory populations E1 and E2

4.
We define α1 as a term which describes how activity S1(2) from the
excitatory population E1(2) filters through the circuit (i.e. via E2(1), E0, I0,
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I1, I2, and feeding back onto itself) to impact its own firing rate. Simi-
larly, α2 describes how the activity S1(2) filters through the circuit to
impact the firing rate of the opposite excitatory population. I0,i
describes the net input from the population activity that does not
depend on the activity of E1 or E2. Thus, this model accounts for
interactions between all six populations with only two dynamical sys-
tem equations Eq. (1).

We parametrized connection specificity between choice-
selective populations by γJK between presynaptic population J
and postsynaptic population K. The index J, K∈ {E, I} defines
neuron type as excitatory or inhibitory. We translate γJK to a
synaptic weight under a constraint that the total input to each
population remains constant for all values of γJK. To this end, we
defined an intermediate weight ŵJK =NswJ=ðNs + γJK ð2� NsÞÞ, where
Ns = 2 is the number of competing choice-selective populations
and wE =wI = 1. We then set connection weights between popula-
tions with the same choice selectivity to w+

JK = ŵJK + γJK ŵJK and
between populations with opposite selectivity to
w�

JK = ŵJK � γJK ŵJK . We can rewrite γ in terms of w+ and w− as:

γ =
w+ �w�

w+ +w� : ð6Þ

Connections to and fromnonselective neuronswere held atwJ = 1.
This definition enforces that all neurons receive the same total input
weight for any value of γJK. We set the specificity parameter γEE = 0.32
as in refs. 2,4, except in Figs. 1 and 2. We set γEI = 0.25 except in Figs. 1
and 2.

The effective interaction strengths α1 describes the recurrent
feedback from an excitatory population’s activity onto itself fed
through other populations in the circuit. This term consists of four
components α1 = λ1(α1a + α1b + α1c + α1d):

α1a = f NEw
+
EE JNMDA,eff,E, ð7Þ

α1b =
1

κg I2
ðcI f NEw

+
EI JNMDA,eff,IÞð fw+

IENI JGABA,EτGABAÞ, ð8Þ

α1c =
1

κgI2
ðcI f NEw

�
EI JNMDA,eff,IÞð f w�

IENI JGABA,EτGABAÞ, ð9Þ

α1d =
1

κg I2
ðcI f NEwE JNMDA,eff,IÞð fwINI JGABA,EτGABAÞ: ð10Þ

These components of α1 account for the effect of an excita-
tory population’s activity on its own activity filtered via (a) direct
self-coupling, (b) the activity of the inhibitory population with the
same choice selectivity, (c) the activity of the inhibitory popula-
tion with the opposite choice selectivity, and (d) the activity of
nonselective inhibitory neurons. Similarly, α2 describes the influ-
ence of one excitatory population’s activity onto the other fed
through all other populations in the circuit and also consists of
four components α2 = λ2(α2a + α2b + α2c + α2d):

α2a = f NEw
�
EE JNMDA,eff,E, ð11Þ

α2b =
1

κg I2
ðcI f NEw

�
EI JNMDA,eff,IÞð f w+

IENI JGABA,EτGABAÞ, ð12Þ

α2c =
1

κg I2
ðcI f NEw

+
EI JNMDA,eff,IÞð f w�

IENI JGABA,EτGABAÞ, ð13Þ

α2d =
1

κg I2
ðcI f NEwE JNMDA,eff,IÞð fwINI JGABA,EτGABAÞ: ð14Þ

The components of α2 account for the effect on an excitatory
population’s activity from the oppositely selective excitatory popula-
tion’s activity filtered via (a) direct coupling, (b) the activity of the
inhibitory population with the same selectivity, (c) the activity of the
inhibitory population with the opposite selectivity, and (d) the activity
of nonselective inhibitory neurons. The effects of nonselective neu-
rons and external background inputs are described by
I0,i = λI(I0,ia + I0,ib+ I0,ic + I0,id):

I0,ia = ð1� Nsf ÞNEwE JNMDA,eff,Eψ3,in, ð15Þ

I0,ib = IAMPA,ext,i � ð1� Ns f ÞwINI JGABA,EτGABAðν0,I + ðcII0,I � Im,IÞ=g I2Þ=κ,
ð16Þ

I0,ic = � fw+
IENI JGABA,EτGABAðν0,I + ðcII0,I � Im,IÞ=g I2Þ=κ, ð17Þ

I0,id = � f w�
IENI JGABA,EτGABAðν0,I + ðcII0,I � Im,IÞ=gI2Þ=κ, ð18Þ

where:

IAMPA,ext,i = JAMPA,ext,EτAMPANextνext, ð19Þ

I0,I = IAMPA,ext,I + JNMDA,eff,IwEð1� Ns f ÞNEψ3,in, ð20Þ

IAMPA,ext,I = JAMPA,ext,IτAMPAνext, ð21Þ

ψ3,in =
γτNMDAν3,in

1 + γτNMDAν3,in
: ð22Þ

These terms account for the input to the excitatory population Ei
from the nonselective excitatory population filtered via (a) direct
coupling, (b) the nonselective inhibitory population, (c) the inhibitory
population with the same choice selectivity, (d) the inhibitory popu-
lationwith the opposite selectivity. The termψ accounts for the NMDA
activation of nonselective excitatory neurons. We calculated the firing
rate of inhibitory populations as ΦI,1(2) = α1,IS1(2) + α2,IS2(1) + I0,II, where:

α1,I = ðcI f NEw
+
EI JNMDAeff,IÞ=g I2, ð23Þ

α2,I = ðcI f NEw
�
EI JNMDAeff,IÞ=g I2, ð24Þ

I0,II = ν0,I + ðcII0,I � Im,IÞ=gI2: ð25Þ

All parameter values are provided in Table 1.

Evaluation of circuit performance
We considered a trial to be valid if the following criteria were met: (i)
the firing rate difference between the two choice selective excitatory
populations was less than 5 Hz for the entire period prior to stimulus
onset, (ii) the firing rate differencewas above the decision threshold of
15 Hz for at least one time step during the stimulus period and the time
point following stimulus offset. Fraction completed trials for each
stimulus level was defined as the number of valid trials out of all trials
presented. Only valid trials were considered for computing chrono-
metric and psychometric functions. Our treatment of invalid trials is
more conservative than in many other studies, as we report invalid
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trials as a separate behavioral outcome different from correct or
incorrect decision32, whereas many other studies assign a choice at
random on trials when the network does not reach the decision
threshold2,4,28,44,45. The random assignment of choices on invalid trials

can conceal differences in network dynamics, making distinct dyna-
mical regimes indistinguishable in psychometric functions45.

Phase plane and bifurcation analysis
We analyzed the mean-field model to find null-clines and fixed points
using MatLab’s fsolve function with the Levenberg-Marquant algo-
rithm and a tolerance of 1 × 10−6. To identify the stability of the fixed
points, we computed the Jacobian matrix analytically and found its
eigenvalues numerically using the eig() function in MatLab. For the
saddle points, τslow is the inverse of the positive eigenvalue of the
Jacobian matrix.

Recurrent neural network models
Recurrent neural networks (RNNs) were composed of 100 excitatory
and 25 inhibitory units. We obtained the same results with networks
twice as large (Supplementary Fig. 5). The dynamics of these networks
were governed by the equations:

xEðtÞ= ð1� αrÞxEðt � 1Þ+αrðWEErEðt � 1Þ �WIErIðt � 1Þ
+WinxinðtÞ+σE

r ðtÞÞ,
ð26Þ

xIðtÞ= ð1� αrÞxIðt � 1Þ+αrðWEIrEðt � 1Þ �WIIrIðt � 1Þ+σ I
rðtÞÞ, ð27Þ

xinðtÞ= ð1� αinÞxinðt � 1Þ+αinuðtÞ, ð28Þ

rEðIÞðtÞ= sEðIÞ½xEðIÞ�+ , ð29Þ

zðtÞ=WoutrEðtÞ: ð30Þ

HerexE and xI are the vectors of activation variables for excitatory
and inhibitory units, respectively. rE and rI are the corresponding
activities after applying the rectified linear (RELU) nonlinearity sE(I)[]+,
where sE(I) sets the excitability of the excitatory or inhibitory units. xin
is the input activation and u(t) is the instantaneous input. The time
constants of recurrent units and inputs are set by αr and αin. Weights
within andbetweenunits are housed in thematriciesWEE,WEI,WIE,WII.
Only the excitatory units receive projections from the input and pro-
ject to the output through Win and Wout, respectively.

RNNs received two input streams u(t) = [u1(t), u2(t)] representing
sensory evidence:

uiðt,cÞ=
u0 + ð1 +μ c

100Þ+ σin,iðtÞ tstim,on < t < tstim,off , i= 1

u0 + ð1� μ c
100Þ+ σin,iðtÞ tstim,on < t < tstim,off , i=2

u0 + σin,iðtÞ otherwise:

8><
>: ð31Þ

The stimulus period was 21 time steps and tstim,on and tstim,off were
uniquely chosen for each trial. The stimulus magnitude μ = 3.2 was
fixed and stimulus difficulty was set by c which ranged between − 20
and 20.

The recurrent and input noise are modeled by the elements of
σEðIÞ
r ðtÞ and σin(t) that are sampled from a Gaussian distribution. We

ensure that each element has a standard deviation σ0,r and σ0,in via
scaling:

σEðIÞ
r,i ðtÞ=

ffiffiffiffiffiffiffiffi
2αr

p
σ0,rN ð0, 1Þ, ð32Þ

σin,iðtÞ=
ffiffiffiffiffiffiffi
2
αin

s
σ0,inN ð0, 1Þ: ð33Þ

Table 1 | Mean-field model parameters

Parameter Value Description

Mean-field physiological constants

NE 1600 Number of excitatory neurons

NI 400 Number of inhibitory neurons

Next 800 Number of external inputs

Ns 2 Number of possible choices/ choice
selective populations

f ∈ [0.13,0.2] Size of each selective population as a
fraction of all E or I neurons

τNMDA (s) 0.1 Slow excitatory synaptic time constant

τAMPA (s) 0.002 Fast excitatory synaptic time constant

τGABA (s) 0.005 Inhibitory synaptic time constant

γ 0.641 Firing-rate to NMDA activation
scaling factor

ImI (Hz) 177 Inhibitory f-I curve intercept

cI (Hz/nA) 615 Inhibitory f-I curve slope

gI2 2 Inhibitory f-I curve scaling factor

ν0,I (Hz) ∈ [9, 16] Rate of background input to inhibitory
neurons

νext (Hz) 3 Rate of background input to selective
excitatory neurons

ν3,in (Hz) 2 Rateofbackground input tonon-selective
excitatory neurons

VE (mV) −53.4 Excitatory neuron resting potential

VI (mV) −52.1 Inhibitory neuron resting potential

EE (mV) 0.0 Excitatory synapse reversal potential

EI (mV) −70.0 Inhibitory synapse reversal potential

gE,rec,NMDA (μS) 1.95 × 10−4 Maximum recurrent NMDA conductance,
excitatory neurons

gI,rec,NMDA (μS) 1.02 × 10−4 Maximum recurrent NMDA conductance,
inhibitory neurons

gE,rec,GABA (μS) 0.130 Maximum recurrent GABA conductance,
excitatory neurons

gI,rec,GABA (μS) 0.0084 Maximum recurrent GABA conductance,
inhibitory neurons

gE,ext,AMPA (μS) 2.1 × 10−3 Maximum external AMPA conductance,
excitatory neurons

gI,ext,AMPA (μS) 1.62 × 10−3 Maximum external AMPA conductance,
inhibitory neurons

JAMPA,ext (nA/Hz) 5.2 × 10−4 External stimulus current due to a single
input event

λ1 1.6719 Scaling factor for α1

λ2 1.8844 Scaling factor for α2

λI 0.9229 Scaling factor for I0,i

Mean-field derived constants

κ 1+ cI
gI2

NIJGABA,IτGABA Linearized factor for inhibitory neurons

JGABA,E (nA) −gE,rec,GABA(EI −VE) Effective GABA current, excitatory
neurons

JGABA,I (nA) −gI,rec,GABA(EI −VI) Effective GABA current, inhibitory
neurons

JAMPA,ext,E (nA) gE,ext,AMPA(EE −VE) Effective AMPA current, excitatory
neurons

JAMPA,ext,I (nA) gI,ext,AMPA(EE −VI) Effective AMPA current, inhibitory
neurons

JNMDAeff,E (nA)
gE,rec,NMDA ðEE�VE Þ
1+ 1

3:57e
�0:062VE

Effective NMDA current, excitatory
neurons

JNMDAeff,I (nA)
gI,rec,NMDA ðEE�VI Þ
1+ 1

3:57e
�0:062VI

Effective NMDA current, inhibitory
neurons
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RNN training
The goal of RNN training is to minimize the difference between the
output z (Ntrial ×Ntime ×Nout) and targets T (Ntrial ×Ntime ×Nout). We set
the entries in T to the baseline value of 0.2 and, following a stimulus
onset, raise the entries to 1 for the output corresponding to the correct
choice. This target is designed to train the network to remain in a low
activity state until stimulated and elevate the correct output in
response to a stimulus.Half of training trials were catch trials, onwhich
no stimulus was presented and target values remained at 0.2
throughout the trial. The training batch consisted of Ntrial = 200 trials
which were randomly generated every training epoch. Within the
training batch, noncatch trials were equally divided between possible
choices and the difficulty was randomly sampled.

Recurrent network weights were randomly initialized from a
Gamma distribution with a shape wμ =0.0375 and scale wσ = 0.5 for
excitatoryweightsWEE,WEI, and θwμ and scalewσ for inhibitoryweights
WIE, WII. The scaling factor θ =NEsE/NIsI adjusts the strength of inhibi-
tory connections to offset for differences in the number and excit-
ability between excitatory and inhibitory units. Input and output
weightsWin,Wout were randomly initialized fromauniformdistribution
and then values were normalized so the weights associated with each
input andoutput summed to 1 acrossunits. All weightswere trained via
back-propagation through time to minimize the loss function:

L=
1

Ntrial

1
Ntime

XNtrial

i = 1

XNtime

t = 1

1
Nout

XNout

o= 1

Mi,tðTi,t,o � zi,t,oÞ2 +
λx

Ne +Ni

XNe+Ni

n= 1

x2i,t,n

 !

+
λw

ðNe +NiÞ2
XNe+Ni

m,l = 1

∣Wml ∣:

ð34Þ

Here x is a concatenation of xE and xI of the size
Ntrial ×Ntime × (NE +NI), and W is a concatenation of WEE, WEI, WIE, and
WII of the size (NE +NI) × (NE +NI). To encourage the network to inte-
grate the stimulus for extended time, we used amaskM (Ntrial ×Ntime),
where entries were zero during the stimulus period so that time points
during the stimulus were not considered when calculating the error
term of the loss function. On catch trials, all entries ofMwere set to 1.
The hyperparameter λx = 0.1 controls the amount of L2 regularization
intended to minimize the activation of each unit. The hyperparameter
λw = 1.0 controls the amount of L1 regularization applied to weights.
We updated the weights by stochastic gradient descent using the
ADAM optimizer in PyTorch and Python 3.7 with a learning rate 0.01.
During training, the norm of the gradient was clipped at 1.

To maintain the identity of excitatory and inhibitory units and to
keep the input and output weights positive, all negative elements of
WEE, WEI, WIE, WII, Win, and Wout were set to 0 after every training step.
We prevent self-connections by elementwise multiplying WEE and WII

by (1 − I),where I is the identitymatrix and 1 is amatrixof 1s, after every
training step.

We terminated RNN training based on its task performance. We
tested RNN performance on a validation batch of trials after every
training epoch. Each validation batch consisted of 100 trials with sti-
mulus strength ranging between −20 and 20 in steps of 2. The network
registered adecisionwhen thedifferencebetween theoutput variables
was above a threshold of 0.25. Trials were considered valid if at least
75% of the prestimulus period was below the decision threshold and at
least 50%of the post stimulus periodwas above thedecision threshold.
Overall performance was measured as the fraction of correct choices
out of all trials except for the ambiguous case where stimulus was
equal to 0. We compute the accuracy and the psychometric function
only using valid trials.We terminated trainingwhen a network’s overall
performance reached85%. RNNparameter values are shown inTable 2.

Measuring choice selectivity of RNN units
After training, we analyzed the activity of excitatory and inhibitory
RNN units to quantify their choice selectivity. Our metric is based on
the ability to decode the choice registeredby the networkbasedon the
activity of the unit at the time point immediately following stimulus
offset21. For each unit, we computed the receiver operating char-
acteristic (ROC) using the roc function and the area under the ROC
curve (AUCROC) using the trapz function in Matlab. A unit with the
same activity for either choice will have an AUCROC equal to 0.5, thus
our choice selectivity measure was defined by AUCROC −0.5. To iden-
tify significantly selective units, we compared AUCROC to a shuffled
distribution generated from that unit’s activity by shuffling the choice
outcomes 150 times.We considered units to be choice selective if their
AUCROC fell within the lowest or highest 2.5% percentiles of the shuf-
fled AUCROC distribution.

Measuring connection specificity in RNNs
We measured the specificity of connections between choice selective
units in RNNs. For each connection class (EE, EI, IE, and II), we com-
puted w+

� �
and w�h i, the mean strength of the weights between sig-

nificantly selective units with, respectively, the same and opposite
selectivity. Then we computed the specificity γ as:

γ =
w+
� �� w�h i
w+h i + w�h i : ð35Þ

This expression is identical to the specificity γ used in the mean-
field model. To assess significance of correlations between γ for the 4
connection classes, we computed a shuffled distribution constructed
by shuffling the network labels 5000 times.

Perturbing inhibitory populations
We perturbed activity of inhibitory neurons by delivering the same
constant input to all inhibitory neurons during the stimulus period. In

Table 2 | Recurrent neural network parameters

Parameter Value Description

RNN parameters

NE 100 Number of excitatory units

NI 25 Number of inhibitory units

Nin 2 Number of inputs

Nout 2 Number of outputs

Ntime 60 Number of time steps in a trial

αr 0.2 Recurrent unit time constant

αin 0.2 Input time constant

sE ∈ [0.5, 1.5] RELU slope, excitatory units

sI 1 RELU slope, inhibitory units

u0 0.2 Input baseline

μ 3.2 Stimulus magnitude

c ∈ [−20, 20] Stimulus strength

σ0,r 0.35 Recurrent noise level

σ0,in 0.05 Input noise level

RNN training parameters

Ntrial 200 Number of trials in a training epoch

fcatch 0.5 Fraction of training catch trials

λx 0.1 Hyperparameter for activation regularization

λw 1.0 Hyperparameter for weight regularization

wμ 0.0375 Initial weight distribution shape parameter

wσ 0.5 Initial weight distribution scale parameter

θ NEsE
NIsI

Inhibitory weight scaling factor
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the mean-field model, we modified the parameter ν0,I by a small
amount within the range [−0.5, 0.5] around a baseline. We used two
baseline values of ν0,I: 11.5 for low-inhibitory regime and 14 for high-
inhibitory regime. In RNNs, we delivered perturbations in a similar
manner, where we delivered a constant input within the range [−1, 1]
during the stimulus period.

Four-variable mean-field model
To model the effects of inhibitory-inhibitory specificity and dynamics
of inhibitory synapses, we developed a simplified version of ourmodel
which explicitly modeled the activity of selective inhibitory popula-
tions. In this model, the dynamics of NMDA synapses for excitatory
populations E1 and E2 (i = 1 and i = 2, respectively) are governed by:

dSi
dt

= � Si
τNMDA

+ ð1� SiÞγΦðxiÞ, ð36Þ

and dynamics of GABA synapses for inhibitory populations I1 and I2
(i = 3 and i = 4, respectively) are governed by:

dSi
dt

= � Si
τGABA

+ΦðxiÞ: ð37Þ

The nonlinear activation function Φ(x) is of the form Eq. (2) with
a = 310 nC−1, b = 125Hz, and c = 0.16 s for excitatory populations E1 and
E2, and a = 615 nC−1, b = 177Hz, and c =0.087 s for inhibitory popula-
tions I1 and I2. The input to population i is

xi =
X4
j = 1

Ai,jSj + I0,EðIÞ + Istim,i + Iν,i, ð38Þ

where the adjacency matrix A is

A=

w+
EE JNMDA,E w�

EE JNMDA,E w+
IE JGABA,E w�

IE JGABA,E
w�

EE JNMDA,E w+
EE JNMDA,E w�

IE JGABA,E w+
IE JGABA,E

w+
EI JNMDA,I w�

EI JNMDA,I w+
II JGABA,I w�

II JGABA,I
w�

EI JNMDA,I w+
EI JNMDA,I w�

II JGABA,I w+
II JGABA,I

0
BBB@

1
CCCA: ð39Þ

Only excitatory populations (i = 1 and i = 2) receive stimulus
information through Istim, which is identical to Eq. (4). Noise is intro-
duced by Iν,i which is implemented as in the two-variable model (Eq.
(5)) with the standard deviation of ν(t) set to 0.2 nA.

The weight parameters w+
EE, w

�
EE, w

+
EI , w

�
EI, w

+
IE , w

�
IE, w

+
II , and w�

II
were defined as in the two-variable model. The difference is the addi-
tion ofw+

II , andw�
II which define the specificity of inhibitory-inhibitory

connections and depend on γII which can range between [−1, 1]. The
synaptic parameters JNMDA,E, JNMDA,I, JGABA,E, JGABA,I, and the background
input currents I0,E(I) were chosen so that the firing rate dynamics of E1
and E2 matched that of the two-variablemodel on a noiseless trial with
a stimulus strength of 0.05 using PyABC parameter inference51. The
values of these parameters are defined in Table 3. Simulations of the
four-variable model were performed in Python 3.7.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used in this study can be reproduced using the source code.

Code availability
The source code to reproduce the results of this study is available on
GitHub (https://github.com/engellab/selective-inhibition-models).
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