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Forecasting individual progression trajec-
tories in Alzheimer’s disease

Etienne Maheux 1, Igor Koval1, Juliette Ortholand1, Colin Birkenbihl2,3,
Damiano Archetti 4, Vincent Bouteloup5,6, Stéphane Epelbaum7,
Carole Dufouil 5,6, Martin Hofmann-Apitius 2,3 & Stanley Durrleman 1

The anticipation of progression of Alzheimer’s disease (AD) is crucial for
evaluations of secondary prevention measures thought to modify the disease
trajectory. However, it is difficult to forecast the natural progression of AD,
notably because several functions decline at different ages and different rates
in different patients. We evaluate here AD Course Map, a statistical model
predicting the progression of neuropsychological assessments and imaging
biomarkers for a patient from current medical and radiological data at early
disease stages. We tested the method onmore than 96,000 cases, with a pool
of more than 4,600 patients from four continents. Wemeasured the accuracy
of the method for selecting participants displaying a progression of clinical
endpoints during a hypothetical trial. We show that enriching the population
with the predicted progressors decreases the required sample size by 38% to
50%, depending on trial duration, outcome, and targeted disease stage, from
asymptomatic individuals at risk of AD to subjects with early and mild AD. We
show that the method introduces no biases regarding sex or geographic
locations and is robust tomissing data. It performsbest at the earliest stages of
disease and is therefore highly suitable for use in prevention trials.

The cost of drug development is highest, by far, for neurodegenerative
diseases, with unparalleled failure rates1. In this respect, the con-
troversial approval of aducanumab on 7 June 2021 by the Food and
Drug Administration (FDA) represents a turning point in Alzheimer’s
disease (AD) drug development2. This decision raises the critical issue
of demonstrating the clinical benefit of a compound acting on a key
biological process, the accumulation of amyloid plaques in the brain3.

It remains unclear why an effective intervention for such a key
biological mechanism is only weakly associated with lower levels of
cognitive decline. It is likely that the corebiological processes and their
interactions are not yet fully understood. Another, non-exclusive

explanation is that the issue of who and when to treat must be
addressed with greater precision to demonstrate clinical efficacy. In
2019, Cummings and coworkers were already stressing the need to
improve clinical trials, by targeting the right participant with the right
biomarker in the right trial4. The motivation, here, is simple: it is not
possible to show that a candidate therapy slows down the degradation
of the endpoint if this endpoint is not expected to worsen during the
trial. The treatment effect sizewill be larger if one includes participants
right before the disease progression would cause a significant change
in the endpoint without an intervention. Such a target period depends
on the endpoint selected to demonstrate efficacy.
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It is particularly difficult to identify the most appropriate time
frame for a disease likeAD,whichprogresses overdecades, in a non-
linear manner, and with different clinical presentations between
patients. The thresholds currently used for the main biomarkers
and clinical endpoints are not sufficiently effective for the selection
of patient populations with homogeneous progression profiles5.
Disease modeling uses computational and statistical methods to
address this question6–14. These models learn the variability of dis-
ease progression from observational longitudinal cohort data and
can then predict the progression of patients from their historical
data. They require various clinical or biomarker assessments at one
or several time points as input. These techniques are beginning to
be evaluated for clinical trial design. For example, a retrospective
analysis showed that the effect size of treatment could be increased
by targeting participants with a predicted type of progression at
trial entry15. Other studies indicated that predicting the value of
endpoints might make it possible to reduce sample sizes in clinical
trials16,17.

We propose here a software tool using a disease progression
model for participant selection in clinical trials. The goal is to
enrich the selected population of participants likely to display
progression during the trial, a concept called prognostic
enrichment18 by the FDA and already applied in some AD trials19,20.
We will use AD Course Map as a disease progression model. It is a
non-linear mixed-effect model, which predicts both the dynamics
of progression and the clinical presentation of the disease21,22. This
technique outperformed the 56 alternative methods for predict-
ing cognitive decline in the framework of the TADPOLE
challenge6,23. We will compare this model with RNN-AD, which is a
recurrent neural network, namely a deep learning method that
learns temporal dynamic behavior. In June 2020, it ranked 2nd for
the prediction of cognitive decline in the TADPOLE challenge24.

We will first evaluate the ability of the model to predict pro-
gression for the main endpoints used as outcomes in current
clinical trials. We will use five independent data sets with data
from more than 4600 patients spread over four continents. We
will analyze the systematic biases of such algorithms, their
robustness to missing data, and suitability for generalization
across countries, ethnicities, and disease stages. Finally, we will
simulate inclusion procedures for clinical trials by varying several
key parameters: the chosen outcome, trial duration, and selection
criteria. Finally, we will show that participants predicted to be at
risk of the outcome worsening constitute a population likely to
show a greater and more homogeneous response to treatment.

Results
Characteristics of the study population
We used data from 4687 participants from five longitudinal multi-
center cohorts from North America, Australia, Japan, and Europe: the
Alzheimer’s disease neuroimaging initiative (ADNI)25–31 (N = 1652), the
Australian imaging, biomarker and lifestyle flagship study of aging
(AIBL)32,33 (N = 460), the Japanese Alzheimer’s disease neuroimaging
initiative (J-ADNI)34,35 (N = 470), the PharmaCog cohort36,37 (N = 111) and
the MEMENTO cohort38 (N = 1994). Each study enrolled participants
attending memory clinics.

Tables 1 and 2 summarize the characteristics of each data set.
These data sets contain diverse patient profiles from different ethnic,
genetic, and geographic backgrounds, with follow-up visits at different
disease stages. For all these studies, the neuropsychological exam-
inations were performed in accordance with international standards,
and the image acquisition procedures were performed in accordance
with the protocols established by the ADNI consortium. Together,
thesedata sets, therefore, correspond to a relevant pool of patients for
simulating inclusion procedures for a typical large multicenter phase
III trial.

Disease progression models learn the timing of changes in bio-
marker levels during disease progression
We train disease progression models using the ADNI participants with
confirmedpathological amyloid levels as the training set (N = 866)with
baseline and all available follow-up data. We kept the data from the
other ADNI participants and themembers of the four external cohorts
as the validation set (N = 3821). The same protocol for training and
validating the models is used for AD Course Map and RNN-AD. See
Methods for details.

The two models include the following endpoints: Mini-Mental
State Examination (MMSE), Alzheimer’s Disease Assessment Scale—
cognitive sub-scale with 13 items (ADAS-Cog13), Clinical Dementia
Rating—sum of boxes (CDR-SB), volumes of the left and right hippo-
campus and lateral ventricles, Aβ1–42 and p-tau181 levels in the cere-
brospinal fluid (CSF), standard uptake value ratio (SUVR) for Amyloid
PET and Tau PET scans. See Methods for details.

AD Course Map assumes that these endpoints follow a logistic
progression curve during disease progression with distinct progres-
sion rate and age at the inflexion point21,22. It learns how this set of
logistic curves need to be adjusted to fit individual data by changing
the dynamic of progression and disease presentation (i.e., the relative
value of the endpoints at a given disease stage). By contrast, RNN-AD
learns how the values of the endpoints will change in the next month
given the values of the endpoint at a given time-point. The 1-month
transition is assumed tobeanon-linear function (e.g. a neural network)
of the current value of the endpoints and the current diagnosis. Sup-
plementary Table 1 shows the goodness-of-fit on the training set,
consistent with the results of our previous studies on AD CourseMap6

and RNN-AD24. See Methods for details.

Disease progression models forecast cognitive decline
The disease progressionmodels predict the subject-specific trajectory
of biomarker changes from data collected from the subject concerned
at one or several visits. The predicted trajectory is used to forecast the
values of the biomarkers at future time points. Figure 1 illustrates this
forecast procedure.

We repeatedly assessed the errors of ADCourseMap and RNN-AD
for forecasting cognitive endpoints (ADAS-Cog13, MMSE and CDR-SB)
for participants in the validation set. We blinded the latest visits of the
participants and tried to predict them from the unblinded data (see
Supplementary Fig. 1 and Methods for details of the procedure). From
44,435 forecasts for ADAS-Cog13 (96,970 for MMSE and 96,849 for
CDR-SB), we determined the absolute difference between predicted
and actual results as a functionof the characteristics of theparticipants
and the information used for forecasting purposes.

Figure 2 shows the distribution of mean absolute errors (MAE) for
AD Course Map and RNN-AD adjusted for co-founding factors. The
reported errors are for the reference participant in the reference
forecast design: a 75-year-old American woman from the ADNI cohort
with an average education level, no APOE-ε4 mutations, and an A +
T +N + status with a questionable dementia (CDR =0.5 noted C~), for
whom we forecast neuropsychological assessments in three years’
time, based on two past visits separated by eight months with no
missing data. ADCourseMap yields amean absolute error of 5.98 (95%
CI = [5.44, 6.48]) on a scale of 85 for ADAS-Cog13, of 2.54 (95% CI =
[2.39, 2.71]) on a scale of 30 for the MMSE, and of 1.86 (95% CI = [1.75,
1.99]) on a scale of 18 for the CDR-SB.

On all occasions, AD Course Map and RNN-AD yielded sig-
nificantly smaller errors than two alternative methods: no-change
prediction (predicting the same value as obtained at the participant’s
last visit) and a linear mixed-effects model (p <0.01 for both, see
Supplementary Table 2). These two alternatives were shown to be
good predictor of short-term progression, essentially because of the
overall slow pace of progression of the disease6,23. The deep learning
method RNN-AD yields intermediate performancewith adjustedmean
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absolute errors of 6.53 (95% CI = [6.02, 7.19]), 2.75 (95% CI = [2.57,
2.92]), and 1.95 (95%CI = [1.81, 2.09]) for the prediction of ADAS-Cog13,
MMSE and CDR-SB respectively.

We investigated the change in MAE for ADAS-Cog 13 score for
different categories of participants and forecast designs (Fig. 3). For
AD Course Map, the number of previous visits considered (1, 2, or 3)
did not significantly affect forecasting error. By contrast, for every
additional year of time to prediction, MAE for ADAS-Cog13 score
increased by 0.80 (95% CI = [0.71, 0.93]). Forecasts were not sig-
nificantly affected by sex nor APOE genotype but were slightly
improved for participants who are older than average and had longer
education. On average, the forecasts for the European participants
from PharmaCog cohort as well as the Japanese participants from the
J-ADNI cohort were better than those for the American participants
from the ADNI cohort, by about 1.1 and 0.6 points respectively. Fore-
casts were robust to missing CSF or Tau PET data, and slightly wor-
sened whenMRI or Amyloid PET weremissing with differences inMAE
of 0.27 (95% CI = [0.00, 0.55]) and 0.54 points (95% CI = [0.15, 1.02])
respectively. The model forecasts better at earlier stages of the AD
continuum than at later clinical stages (Fig. 3a). The method was
readily generalizable to the included participants with suspected non-

amyloid pathology (SNAP) and possible concomitant pathological
non-Alzheimer’s changes.

Similar conclusions were drawn for predictions of MMSE and
CDR-SB (see Supplementary Figs. 2 and 3). AD Course Map performed
better on all but one external validation cohort. Errors were robust to
changes in the available information used tomake the prediction, such
as the number of unblinded visits and missing data. This method did
not produce biased forecasts for women. Forecasts for those two
endpoints however displayed slightly worse results for participants
older than average orwith an education level that is below the average,
and for APOE-ε4 carriers.

Disease progression models select participants displaying pro-
gression for trials
We now use disease progression models to identify the participants
likely to experience significant cognitive decline during a trial (see
Fig. 4). The definition of participants displaying progression depends
on the endpoint used tomeasure the condition and the duration of the
trial. We simulated six clinical trials with different primary outcomes,
trial durations, and inclusion criteria. These designs were inspired by
real phase III trials (see Table 3).

Table 1 | Characteristics of study participants

ADNI AIBL PHARMACOG J-ADNI MEMENTO

Number of subjects 1652 460 111 470 1994

Number of visits 6.1 ± 3.0 [2, 17] 3.7 ± 0.7 [2, 4] 5.1 ± 0.6 [3, 7] 5.1 ± 0.8 [4, 6] 6.9 ± 1.8 [2, 9]

Follow-up duration (y) 4.8 ± 3.1 [1.4, 15.2] 4.1 ± 1.0 [1.5, 4.5] 2.0 ± 0.3 [1.5, 3.0] 2.7 ± 0.5 [1.5, 3.0] 3.8 ± 0.7 [1.4, 5.2]

Time between visits (m) 11.3 ± 6.6 [1.8, 62.8] 18.2 ± 2.0 [18.0, 54.0] 6.0 ± 0.6 [6.0, 18.0] 7.8 ± 2.8 [6.0, 24.0] 7.7 ± 3.4 [1.5, 53.7]

Age at baseline (y) 73.3 ± 7.0 [55.1, 91.5] 71.5 ± 7.1 [55.3, 92.1] 69.8 ± 7.4 [50.5, 84.5] 71.8 ± 6.7 [30.0, 85.0] 70.6 ± 8.6 [32.5, 92.6]

Female 771 (46.7 %) 247 (53.7 %) 63 (56.8 %) 247 (52.6 %) 1215 (60.9 %)

Education level

≤9 years 24 (1.5 %) 75 (16.3 %) 47 (42.3 %) 64 (13.6 %) 355 (17.8 %)

Between 10 and 15 years 525 (31.8 %) 278 (60.4 %) 39 (35.1 %) 255 (54.3 %) 1016 (51.0 %)

≥16 years 1103 (66.8 %) 107 (23.3 %) 25 (22.5 %) 151 (32.1 %) 571 (28.6 %)

Missing 52 (2.6 %)

APOE-ε4 copies

0 917 (55.5 %) 295 (64.1 %) 56 (50.5 %) 251 (53.4 %) 1340 (67.2 %)

1 588 (35.6 %) 138 (30.0 %) 41 (36.9 %) 176 (37.4 %) 500 (25.1 %)

2 144 (8.7 %) 27 (5.9 %) 10 (9.0 %) 40 (8.5 %) 66 (3.3 %)

Missing 3 (0.2 %) 4 (3.6 %) 3 (0.6 %) 88 (4.4 %)

Diagnosis at baseline

CU 649 (39.3 %) 365 (79.3 %) 140 (29.8 %) 831 (41.7 %)

MCI 803 (48.6 %) 59 (12.8 %) 111 (100.0 %) 211 (44.9 %) 1163 (58.3 %)

Dementia 200 (12.1 %) 36 (7.8 %) 119 (25.3 %)

A/T/N/C profile (worst for all visits)

A-T-N-C- 133 (8.1 %) 91 (19.8 %) 24 (5.1 %) 104 (5.2 %)

A*T*N*C- 45 (2.7 %) 122 (26.5 %) 82 (17.4 %) 129 (6.5 %)

A+T-N-C- 80 (4.8 %) 48 (10.4 %) 6 (1.3 %) 26 (1.3 %)

A+T+N-C- 27 (1.6 %) 4 (0.9 %) 1 (0.2 %) 2 (0.1 %)

A+T+N+C- 47 (2.8 %) 11 (2.4 %) 1 (0.2 %) 24 (1.2 %)

A*T*N*C~ 80 (4.8 %) 52 (11.3 %) 2 (1.8 %) 95 (20.2 %) 880 (44.1 %)

A+T+N+C~ 191 (11.6 %) 6 (1.3 %) 35 (31.5 %) 28 (6.0 %) 109 (5.5 %)

A*T*N*C+ 111 (6.7 %) 49 (10.7 %) 124 (26.4 %) 118 (5.9 %)

A+T+N+C+ 300 (18.2 %) 10 (2.2 %) 5 (4.5 %) 45 (9.6 %) 40 (2.0 %)

A+[T- or N-] C[~ or +] 221 (13.4 %) 13 (2.8 %) 28 (25.2 %) 15 (3.2 %) 84 (4.2 %)

A-T+* 183 (11.1 %) 26 (5.7 %) 8 (7.2 %) 10 (2.1 %) 56 (2.8 %)

A-T-N+C- 40 (2.4 %) 13 (2.8 %) 12 (2.6 %) 81 (4.1 %)

A-T*N* C[~ or +] 194 (11.7 %) 15 (3.3 %) 33 (29.7 %) 27 (5.7 %) 341 (17.1 %)

Format for continuous variables:mean ± standarddeviation [lowest, highest]. Stars in A(myloid)/T(au)/N(eurodegeneration)/C(linical) classification indicate unknown status (seeMethods for details).
(y) years, (m) months. APOE apolipoprotein E, CU cognitively unimpaired (CDR =0 for MEMENTO), MCImild cognitive impairment (CDR =0.5 for MEMENTO), CDR clinical dementia rating.
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For each trial, we selected the participants in the validation set
who met the inclusion criteria at one of their visits (considered as the
baseline visit for the simulated trial) and attended a follow-up visit
after a period equal to the theoretical duration of the trial. We split this
population into two equal halves: fast and slow progressors, according
to whether the outcome considered (e.g. the annual change in end-
point relative to baseline) was above or below the population median
value. We aimed to identify the participants in these two groups
exclusively on the basis of their baseline data.

We used the disease progressionmodels to forecast the values of
the endpoint at the end of the trial from the baseline data for each
participant. The predicted outcome was used as a prognostic score.
For AD CourseMap, Pearson correlations with the true outcome range
from 28% to 47% depending on the trial, while for RNN-AD they range
from 13% to 36% (see Supplementary Table 3). Participants with a
prognostic score above a given threshold were considered to be likely
to be fast progressors. We plotted receiver operating characteristics
(ROC) curves for the six simulated trials (Fig. 5). The area under the
ROC curve (AUC) of the six simulated trials fell within the 65–80%
range for AD Course Map and within the 55–80% range for RNN-AD
(see Fig. 5).

We compared this prognostic enrichment strategy with two
alternative methods: selecting participants at random (bisector of the
ROC curve) as currently done in most trials, or selecting participants
based on their APOE genotype (gray crosses in Fig. 5). All selection
methods were significantly better than random selection, meaning
that disease progression models succeed in identifying the pro-
gressors compared to the current practice that does make any differ-
ence among the participants meeting the inclusion criteria. In all but
one case, selections with ADCourseMapwere significantly better than
selection on the basis of APOE genotype. RNN-AD also compares
favorably against the two alternatives. Nevertheless, it has significantly
worse performance than AD Course Map in two out of six tested sce-
narios, with a drop of 9% and 14% in the ROC AUC. AD Course Map
shows therefore more robust results than RNN-AD when the trial
design is varied.

We analyzed whether our assessment of the risk of progression
led to an over- or under-selection of certain types of participants
relative to the true progressors (see Supplementary Fig. 4).
Depending on the design, the group that was selected using AD
Course Map displayed slight enrichment in men or women, and
tended to be biased towards older participants. The selected parti-
cipants were often, but not always, enriched in carriers of the APOE-
ε4 variant. The presented disease progression models do not use
sociodemographic or genetic factors as proxies for the selection of
participants displaying progression. They limit therefore the biases
of sex, age, or APOE-ε4 carriership, which are the basis of current
practices to increase the likelihood that a participant progresses
during a trial.

Disease progression models can be used to design more pow-
ered clinical trials
The automatic selection of participants displaying progression makes
it possible to implement prognostic enrichment strategies in trials (see
Fig. 4). For each trial design, we simulated a hypothetical treatment
decreasing the outcome value. We calculated the sample size required
to show the effect of this treatment for a range of treatment effects
(see Methods). We compared the results when all eligible participants
were included to those obtained when only participants predicted to
be fast progressors at baseline were included.

We plotted sample size against the treatment effect for all six
simulated trials (Fig. 6). The selection of participants at risk of pro-
gressionwith ADCourseMapallowed a significant reduction in sample
size relative to current inclusion criteria alone, across all scenarios
tested. For a treatment effect of 25%, the sample size was reduced byTa
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50.2% (±7.1) for participants at risk of the onset of AD, by 40.9% (±4.9)
for a trial targeting individuals with preclinical AD and high brain
amyloid levels, by between38.1% (±1.6) and45.4% (±2.0), depending on
the outcome considered, for subjects with early AD and high levels of
brain amyloid, by44.6% (±3.9) for subjectswith earlyADandhighbrain
levels of tau, and by 43.1% (±0.8) for participants with mild cognitive
impairment probably due to AD or mild AD.

For all preclinical and early AD trials, enrichments based on AD
Course Map significantly outperformed the selection of APOE-ε4 var-
iant carriers only. For mild cognitive impairment due to AD or a mild
AD trial, the performance of enrichment based on AD CourseMap was
not significantly different from targeting APOE-ε4 carriers. AD Course
Map achieved a similar decrease in sample size, but without the need
to target a specific genetic profile. In this case,wealso found that49.2%

Fig. 1 | Disease progressionmodels forecast the progression of endpoints from
historical data of a participant. In this simplified example, the model has only
three endpoints (Amyloid PET, Hippocampus volume, and mini-mental state
examination (MMSE)). The participant has been observed twice at 70 and 71 years
old (colored crosses). After normalizing the data to a 0–1 scale (0 being the most
normal and 1 the maximum pathological change), the model predicts the

participant-specificprogression curves. Fromthese curves, one forecasts the values
of the three endpoints in 4 years’ time (colored dots). As shown in this example, AD
Course Map does not require the imputation of missing data. In trial simulations,
the curves are predicted from the data at a single time point, e.g. the baseline. CL
centiloid scale, ICV intracranial volume.

Fig. 2 | AD Course Map forecasts cognitive decline better than alternative
methods. The mean absolute error is reported for the reference participant: a 75-
year-old American woman from ADNI with an average level of education, no APOE-
ε4 mutation, and a A + T +N +C~ status (i.e., with CDR global of 0.5), for whom we
forecast neuropsychological assessments in three years’ time, based on two past

visits separated by eight months and for which all data were available. Box plots
represent median value, first and third quartiles; whiskers represent the empirical
95% confidence interval. Statistics are computed for n = 100 resampling of the
validation set (see Methods). Source data are provided as a Source Data file. MAE
mean absolute error.
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(95% CI = [48.6, 49.9]) of the participants would be selected by AD
Course Map, versus 39.1% (95% CI = [38.7, 39.4]) for heterozygous
APOE-ε4 carriers, facilitating recruitment with AD Course Map (see
Supplementary Table 4).

RNN-AD also allowed a significant reduction of the sample size
compared to current practice, from 21% to 42% depending on the
tested scenario.Nevertheless, the reductionwas never better thanwith
AD Course Map with an increase of 10% and 35% participants to be
selected for the two scenarios where RNN-AD yielded a lower AUC (see
Supplementary Table 5).

Discussion
We used disease progression models to forecast cognitive decline
across all stages of the AD continuum. Using five independent cohorts
containingmore than 4,600 participants, we show here that AD Course
Map provides a fair, robust, and generalizable predictive method. It is
fair, in that its predictions are not biased with respect to sex, and are
only marginally affected by level of education and the age of the par-
ticipant. The method is robust to missing CSF or Tau PET biomarkers,
but in general better results are achieved when MRI and Amyloid PET
data are present. The model was trained on data acquired in North
America, but it is readily generalizable to participants from Europe,
Asia, and Oceania, with no loss of performance. It performed better at
the earliest preclinical stages of the AD continuum than at later disease
stages, and is therefore relevant for early-stage interventions.

Disease progression models automatically identify the partici-
pants already at risk of experiencing cognitive decline at baseline in a

trial. They can therefore be used to enrich the trial population in par-
ticipants likely to experience a worsening of a given endpoint during
the trial. By targeting more homogeneous groups of participants dis-
playing progression, AD Course Map makes it possible to decrease
sample size significantly, by 38% up to 50%, at the expense of dis-
carding about half of the screened participants. It shows better and
more robust performance than the deep learning method RNN-AD.
Disease progression models adapt seamlessly to various clinical trial
designs targeting different disease stages with different outcomes and
trial durations. They do so without the need to re-train the model for
each new trial. In comparison, a recent method based on another
prognosis score reported sample size reductions of 20% to 28%17.

The main limitation of the method is the data used to monitor
disease progression. Cognitive assessment displays about 10% inter-
rater variability39–41. MRI biomarkers also display a similar degree of
variability between two scans acquired on the same day for the same
participant, and their reliability is further decreased by possible var-
iations in the processing pipelines42. Mapping CSF biomarkers from
different immunoassays also limit their reliability43. These factors limit
the accuracy of the method for forecasting disease progression.
Increasing the reliability of these measurements would improve the
performance of the approach described here. In the future, disease
progressionmodels such as AD Course Mapmay also benefit from the
inclusion of promising new biomarkers, such as plasma biomarkers,
neurofilament light chain44, or digital biomarkers45.

Given these limitations, it is notable that such large sample size
reductions can be achieved with data already available in routine

a

b

Fig. 3 | Changes in forecast absolute errorsdependingoncovariates.Results are
presented for the forecast of ADAS-Cog13 with the AD Course Map. a Changes
due to forecast design (4 top rows, in brown), genetic and sociodemographic
characteristics of the participant (rows 5–10, in blue), the cohort of the partici-
pant (rows 11 and 12, in pink), andmissing data (rows 13 to 16, in gray). b Changes
due to A(myloid)/T(au)/N(eurodegeneration)/C(linical) status of the participant,
grouped in: Alzheimer’s continuum at the top (8 top rows, in green), possible
Alzheimer’s disease and concomitant non-Alzheimer’s pathologic change in
between (row 9, in orange), and suspected non-Alzheimer’s pathophysiology

(SNAP) at the bottom (3 bottom rows, in gray). Coefficients below zero indicate a
lower mean absolute error (MAE) (better forecast) than those for the reference
participant and design. For example, if the reference participant comes from
J-ADNI instead of ADNI, the prediction of ADAS-Cog13 is more accurate, resulting
in a 0.63 point decrease in MAE (95% CI = [0.32, 0.96]). Box plots represent
median value, first and third quartiles; whiskers represent the empirical 95%
confidence interval. Statistics are computed for n = 100 resampling of the vali-
dation set (see Methods). Source data are provided as a Source Data file. MAE
mean absolute error.
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clinical practice. These findings demonstrate the benefits of compa-
nion software tools for patient recruitment in trials and for supporting
clinicians in the future, enabling them to prescribe the right treatment
to the right patient at the right time.

Methods
Participants
We used the data from five longitudinal multicenter cohorts: the
ADNI25–31 (N = 1652), the Australian imaging, biomarker, and lifestyle

flagship study of aging (AIBL)32,33 (N =460), the JJ-ADNI34,35 (N =470), the
PharmaCog cohort36,37 (N = 111) and the MEMENTO cohort38 (N = 1994).

The study protocols were approved by the ethical committees of
theuniversity of southernCalifornia (ADNI), AustinHealth, St Vincent’s
Health, Hollywook Private Hospital and Edith Cowan University (AIBL),
IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli (Pharma-
Cog), Comité de protection des personnes sud-ouest et outre-mer III
(MEMENTO), the National Bioscience Database Center Human Data-
base (J-ADNI). Informed consent forms were obtained from research

Fig. 4 | Illustration of the prognostic enrichment procedure in a clinical trial.
Participants are selected first using standard inclusion criteria and undergo a
series of exams. A disease progression model, such as AD Course Map, then
forecasts the progression of each participant’s data and predicts if the participant
is likely to progress significantly during the trial, as measured by the predicted
outcome change, which is the mini-mental state examination (MMSE) in this

example. The treatment effect (e.g., a 25% reduction of the change of the MMSE
during trial) leads to a greater effect size, and therefore a smaller sample size, on
the group of predicted fast progressors compared to the group of predicted slow
progressors or the two groups combined. As a result, one may demonstrate the
treatment efficacy with fewer participants by monitoring only the group of pre-
dicted fast progressors.

Table 3 | Description of the simulated trials

Clinical trial description Inclusion/exclusion
criteria

Primary outcome (annual
rate of change of…)

Trial duration window Inspiration from existing AD trial (Clinical-
Trials.gov identifier)

Participants at risk of AD onset - Age [59.9, 76.1]
- CDR global = 0
- MMSE ≥ 24
− 1 risk factor of:
> Homozygous APOE-ε4
> Heterozygous APOE-ε4
& Amyloid+ (*)

MMSE 4 years
± 12 months

Novartis
Generation S2 (NCT03131453)

Preclinical AD with high brain
amyloid levels

- Age [54.9, 81.1]
- CDR global = 0
- MMSE ≥ 27
- Amyloid+ (*)

ADAS-Cog13 4 years
± 12 months

Eisai
AHEAD A45 (NCT04468659)

Early AD with high brain
amyloid levels

- Age [49.9, 86.1]
- CDR global = 0.5
- MMSE ≥ 24
- Amyloid+ (*)

- MMSE
- CDR-SB

1.5 years
± 6 months

Biogen
EMERGE / ENGAGE (NCT02477800 &
NCT02484547)

Early AD with high brain
tau levels

- Age [54.9, 81.1]
- CDR global = 0.5
- p-Tau+ (*)

ADAS-Cog13 4.5 years
± 6 months

Janssen
Autonomy
(NCT04619420)

MCI probably due to AD or
mild AD

- Age [54.9, 86.1]
- CDR global = 0.5 or 1
- From AD data sets

MMSE 3 years
± 9 months

/

Six trials were simulated because we considered two possible primary outcomes for the trial targeting early Alzheimer’s disease (AD) with high brain amyloid levels (third row).MCImild cognitive
impairment, AD Alzheimer’s disease.
*CSF or PET (worst visit to date).
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Fig. 5 | ADCourseMap andRNN-AD select participants at risk of experiencing a
worsening of the outcome during the trial. Receiver operating characteristic
(ROC) curves are shown. They demonstrate the performance of AD Course Map
and RNN-AD in selecting the group of participants with the largest change in pri-
mary outcome during follow-up. Shaded areas correspond to the empirical 95%
confidence interval. The green circle and orange triangle on each curve correspond
to selections splitting the participants into two equal groups, with bars

representing the 95% confidence intervals. The cross in gray gives the specificity
and sensitivity when APOE-ε4 carriers (with 1 or 2 copies) are selected, with bars
indicating the 95% confidence interval (note: the first trial includes only APOE-ε4
carriers, and there is, therefore, no gray cross). Statistics are computed for n = 100
resampling of the validation set (see Methods). Source data are provided as a
Source Data file. AUC: area under the ROC curve (mean ± standard deviation with
95% confidence interval).
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participants. The research has been performed in accordance with the
Declaration of Helsinki and relevant guidelines and regulations. Parti-
cipants were not compensated for the current study.

The five cohorts are longitudinal observational studies with an
average observation period ranging from 2.0 years for PHARMACOG to

4.8 years for ADNI, with an average number of visits ranging from 3.7 in
AIBL to 6.9 in MEMENTO. We considered all participants with at least
one year of follow-up. The sociodemographic, genetic, biological and
clinical characteristics of the selected participants are reported in
Tables 1 and 2, as well as the proportion of available data in each cohort.

Fig. 6 | Enrichment based onADCourseMap significantly decreases the sample
size for a hypothetical treatment effect ranging from 20% to 30%. Reported
sample sizes are the total size for two arms. The light-shaded areas represent the 95%
confidence interval and the dark-shaded areas the 50% confidence interval around the

median value. For all preclinical and early Alzheimer’s disease (AD) trials, enrichment
based on AD Course Map significantly outperformed the enrichment based on APOE-
ε4 carriership. Statistics are computed forn= 100 resamplingof the validation set (see
Methods). Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-022-35712-5

Nature Communications |          (2023) 14:761 9



Neuropsychological assessments
In our experiments, we considered the following neuropsychological
assessments:

• The mini-mental state examination39 (MMSE),
• The Alzheimer’s disease assessment scale–cognitive sub-scale

with 13 items40,46 (ADAS-Cog13),
• The clinical dementia rating scale41,47 – sum of the boxes score

(CDR-SB).

Structural magnetic resonance imaging/anatomical imaging
biomarkers
Weextracted cortical and subcortical volumes from three-dimensional
T1-weighted magnetization-prepared rapid gradient-echo imaging
(MPRAGE) sequences.

For the ADNI study, scans were acquired in the standardized
protocol for morphometric analyses (http://adni.loni.usc.edu/
methods/documents/mri-protocols/). The ADNI MRI core processed
raw scans, using Gradwarp for the correction of geometric distortion
due to gradient nonlinearity48, B1-correction for the adjustment of
image intensity inhomogeneity26, N3 bias field correction for reducing
residual intensity inhomogeneity49,50, and geometric scaling for
adjusting scanner- and session-specific calibration errors26,51. The same
MRI protocol was also used in AIBL32, J-ADNI52, PharmaCog36, and
MEMENTO38,53.

For all studies, cortical reconstruction and volumetric segmenta-
tion were performed with the Freesurfer image analysis suite (http://
surfer.nmr.mgh.harvard.edu/). Version 5.3 was used for J-ADNI, MEM-
ENTO, and PharmaCog, and version 6.0 for ADNI and AIBL, operated
within Clinica for reproducibility purposes54. The cohort effect in the
following analyses accounts for possible differences due to different
versions of the software.

We calculated the mean volume of the left and right hippo-
campus, and the total volume of the lateral ventricles (including
inferior lateral volume). Hippocampus segmentation with Freesurfer
was previously reported to have good reproducibility55,56. Both
volumeswere normalized by estimated total intracranial volume (ICV).

Cerebrospinal fluid biomarkers
We used the concentrations in cerebrospinal fluid (CSF) of β-Amyloid
1–42 peptide (Aβ1–42), Tau protein, phosphorylated at the threonine
181 residue (p-Tau181), and total tau protein (t–Tau).

ADNI used the automated Elecsys immunoassay (Roche); AIBL,
PharmaCog, andMEMENTO used INNOTEST single-analyte ELISA tests
(Innogenetics/Fujirebio NV), and J-ADNI used the multiplex xMAP
Luminex platform with the INNO-BIA AlzBio3 immunoassay kit (Inno-
genetics/Fujirebio NV).

We harmonized the measurements to account for the differences
in immunoassays and participants' characteristics across cohorts.
Within each cohort, we regressed each biomarker against age, APOE
genotype, and CDR global score with a linear mixed model with ran-
dom intercept. We then linearly transformed the measurements so
that the intercept is 0 and the total variance is 1 for all cohorts. Har-
monization equations used are listed in Supplementary Table 6 for
reproducibility purposes.

Positron emission tomography/functional imaging biomarkers
For ADNI participants, we used regional standardized uptake value
ratios (SUVR) extracted from Amyloid PET scans ([18F]-Florbetapir and
[18F]-Florbetaben radiotracers), and, starting from ADNI 3, Tau PET
scans ([18F]-AV-1451 radiotracer). Each PET scan was registered toge-
ther with the MRI for the subject performed as close as possible to the
PET scan in terms of time.

For Amyloid PET, we used a cortical-summary region consisting of
the frontal, anterior/posterior cingulate, lateral parietal, and lateral
temporal regions; data were normalized with a composite reference

region consisting of the whole cerebellum, brainstem/pons, and ero-
ded subcortical white matter57–59. These PET SUVR values were con-
verted to the centiloid scale (CL)60 using equations from the literature61

listed in Supplementary Table 6. In the AIBL cohort, the processed
Amyloid PET SUVR data that correspond to the published centiloid
conversion equations were not publicly available. In the MEMENTO
cohort, Amyloid PET SUVRdata are not directly comparable with ADNI
data and equations for centiloid conversion were not available.
Therefore, we used Amyloid PET data on these cohorts only to define
the Amyloid status of the participants, using pathological thresholds
provided by these studies.

For Tau PET, we used a volume-weighted average SUVR value for
all anatomical Braak regions of interest (I-VI)62, normalized against the
inferior cerebellum gray matter63.

A/T/N/C classification
We classified participants with the A(myloid)/T(au)/N(eurodegenera-
tion) classification64,65, together with a C(ogntion)/C(linical) group
based on the Clinical Dementia Rating (CDR) global score (see the
Supplementary Table 7 for all thresholds used). Participant category at
a given visit was based on the patient’s all-time worst biomarker levels
to date. Incomplete A/T/N/C profiles are denoted with a star after any
of the biomarkers that could not be determined.

Disease progression models
We trained and tested two disease progression models: AD Course
Map and RNN-AD. AD Course Map is built on the principles of a
parametric Bayesian non-linear mixed-effects model21,22. RNN-AD is
built on the principles of recurrent artificial neural networks24,66. The
implementation of both models relies on the open-source software
that was made publicly available by their respective authors.

Both models use the same set of endpoints as input: MMSE, CDR-
SB, ADAS-Cog13, volume of the left and right hippocampus and lateral
ventricles, CSF Aβ1–42 and p-tau181 levels, together with cortical-
summary SUVR on Amyloid PET and Tau PET scans. They consider
these endpoints at one or several visits of a participant, allowing for
possible missing data, and predict the value of all these endpoints at
any time-point in the future. AD Course Map also takes into account
the age of the participant at each visit, while RNN-AD takes into
account only the duration between two consecutive visits, irrespective
of the age of the participant. In addition, RNN-AD needs the diagnosis
of the participant at the corresponding visit, the diagnosis being
cognitively normal, mild cognitive impairment, or demented, as
defined in the ADNI protocol.

AD Course Map assumes that these endpoints follow a logistic
progression curve during disease progression with distinct progres-
sion rate and age at the inflexion point21,22. It learns how this set of
logistic curves needs to be adjusted to fit individual data, by changing
the dynamic of progression anddiseasepresentation (i.e., the ordering
and timing of progression among the endpoints. The shape and
position of the reference set of logistic curves are the fixed effects, and
the parameters changing these curves to fit individual data are the
random effects. Themodel parameters (fixed effects together with the
mean and variance of the random effects) are estimated using a
training data set containing the repeatedmeasurements of amultitude
of participants. After the training phase, the model is fit to the mea-
surements of one test participant (outside the training test) at one or
several visit, using the learnt distribution of the random effects as a
regularizer. As a result, the model predicts a subject-specific set of
logistic curves, which shows the value of each endpoint at any age of
the participant.

By contrast, RNN-AD does not make any assumption on the life-
long pattern of progression of the endpoints. It learns instead how the
values of the endpoints will change in the next month given the values
of the endpoint at a given time-point. The 1-month transition is
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assumed to be a non-linear function of the current value of the end-
points and the current diagnosis (e.g. artificial neurons). The para-
meters of this transition function are estimated using a training data
set containing the repeated measurements of a multitude of partici-
pants. After the training phase, the measurements of one test partici-
pant (outside the training set) at one or several visits are used as input
of themodel. Themodel then computes the values of all the endpoints
at each month in the future.

AD Course Map can be trained and tested with missing data: the
likelihood is optimized using the available data only. Model training is
robust to missing data6, so we did not perform data imputation. By
contrast, RNN-AD needs complete data at the baseline visit. We
imputed missing data with the mean value of the endpoint in the
training set, following authors’ recommendations;24 missing data at
subsequent visits are imputed recurrently using model predictions.

Both models also need an internal step of data normalization. For
AD Course Map, cognitive assessments were normalized to a 0 to
+1 scale according to the theoreticalminimumandmaximumvalues of
each assessment, 0 representing the theoretical best value (unaffected
participants) and +1 theworst possible value. Harmonized amyloid PET
data are clippedbetween0 and 100 and converted to a (0,1) scale.MRI,
tau PET, and Harmonized CSF data were clipped at the first and last
centile, and then linearly mapped to a (0,1) scale. For RNN-AD, nor-
malization consists in a z-score transformation estimated from
training data.

Regardless of the normalization procedure, the outputs of the
models are always converted back to the native scale (and unit) of the
measurement before being analyzed (see Fig. 1). Predicted values are
therefore comparable with the true, non-normalized data. Forecast
errors can be compared across methods that do not use the same
normalization procedure.

Validation procedure
We split the data sets in two (see Supplementary Fig. 1). We first con-
sidered the ADNI participants who were amyloid-positive according to
CSF or PET data on at least one visit (shown in red in Supplementary
Fig. 1). We then kept the other ADNI participants and all participants
from the four other cohorts as anexternal validation set (shown inblue
in the Supplementary Fig. 1).

We then split the amyloid-positive ADNI participants into five
random folds and trained AD Course Map and RNN-AD using all
available data of the participants in four out of the five folds, e.g., the
training set. We repeated this procedure with another split, so that we
ended up with 10 instances of each model. Each participant has been
counted twice as a test subject in the left-out fold. Therefore, it can be
used twice for evaluating prediction tasks with two different instances
of each model. By contrast, each participant in the external validation
set can be tested with 10 different instances of each model. In the
following, we averaged the prediction made by the 2 instances of the
model for the participants in the test sets, and by the 10 instances for
the participants in the external validation set.

The test subjects did not contribute to any model selection or
hyperparameter tuning neither for AD Course Map nor for RNN-AD.
Therefore, we pooled the forecasts of test subjects with the ones in the
external validation set.

Forecasting endpoints
We aimed to assess the accuracy of each model to forecast the values
of the endpoints of a participant in the test set or the external vali-
dation set. The general principle is to blind the latest data of the par-
ticipant, use the unblinded data as input of the model, and compare
the predicted value with the blinded data.

We used a combinatorial procedure to generate prediction tasks,
as described in Supplementary Fig. 1. Becausewehavemultiple follow-
up visits,weassessed several forecast errors for a single participant: we

blinded the data of the participant except at one to three consecutive
visits, we predict the individual trajectory using the unblinded data,
and forecast the data at the blinded visits after the latest unblinded
visit. We required that the participants are between 50 and 90 years
old and have a CDR global of at most 2 at the latest unblinded visit to
exclude severely demented participants, and that the blinded visits
used to assess the forecast fall between 1.4 and6.6 years after the latest
unblinded visit. We computed the forecast error as the absolute dif-
ference between this value and the value of the endpoint at the follow-
up visit concerned.

Analysis of forecast errors
We analyzed the distribution of mean absolute errors with a mixed-
effectsmodel.We corrected the errors for several possible cofounding
factors and accounted for the fact that multiple forecasts originated
from the sameparticipant. In practice, for a given endpoint and a given
model, we performed the following procedure 100 times:

• We randomly picked a subset of disjointed prediction tasks,
namely predictions not sharing any common visit (neither the
blinded visit to forecast, nor the unblinded visits used to
forecast);

• We fit a multivariate linear mixed-effects model with a random
intercept for each individual, using the following categorical
explanatory variables: A/T/N/C stage at prediction, cohort,
number of APOE-ε4 alleles, sex, level of education, number of
unblinded visits, and continuous explanatory variables: actual
patient’s age at prediction centered on 75 years and normalized
by 7.5 years, years to prediction centered on three years and
normalized by one year, mean time between unblinded visits
centered on eight months and normalized by three months,
percentage ofmissing data for the unblinded visits permodality.

Education level was classified as low if the subject had followed no
more than nine years of formal education and high if the subject had
followed at least 16 years of education, in accordance with the guide-
lines of the international standard classification of education of the
United Nations.

We derived the mean and empirical confidence interval for the
model intercept (the mean absolute error adjusted for cofounding
factors) and regression coefficients (association between the mean
absolute errors and each cofounding factor).

Comparison with alternative methods
We also compared AD Course Map with two additional alternative
methods. The first, the no-change prediction or last-observation-
carried-forward method, forecasts the future value of an endpoint to
be the same as it was at the last unblinded visit. The second method,
the linear mixed model method, involved generating a linear mixed-
effects model for each endpoint, regressing endpoint values against
the age of the participant at the successive visits, with a random
intercept and a random slope per subject. The model was fitted to an
unseen participant with a maximum a posteriori estimator67. We used
the same validation procedure for all models: AD Course Map, RNN-
AD, no-change prediction, and the linear mixed model.

Clinical trial simulation, enrichment evaluation, and sample size
calculation
We simulated clinical trials in subjects at risk of developing AD or at an
early stage of AD, as described in Table 3. For each trial, we selected all
pairs of visits from all participants in the five data sets satisfying the
following criteria:

• The primary endpoint of the trial was assessed at both visits,
• The patient fulfilled the inclusion criteria and had none of the

exclusion criteria of the trial at the baseline visit,
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• Visits were separated by the duration of the trial, with a certain
tolerance, depending on the trial.

For each pair of visits, the first was considered to be the baseline
visit at inclusion and the second was considered to be the visit at the
end of the trial. We did not take into account possible intermediate
visits. Supplementary Table 8 summarizes the characteristics of par-
ticipants included in all the simulated trials.

We first evaluated our prognostic enrichment strategy from a
diagnostic test standpoint. For each trial, we forecast the value of the
primary endpoint at the follow-up visit from the baseline data only,
using the procedure described above. We calculated the median value
of the outcome (i.e. the annual rate of change between baseline and
follow-up visit). Participants above this threshold were considered to
be fast progressors and formed the target population to be identified.
A threshold for predicted outcomes was used to split the population
into two groups: one considered at high risk of progression and the
other at low risk of progression. We let the low-risk vs. high-risk
threshold vary and calculated the resulting receiver operator char-
acteristic (ROC) curve. On this curve, we identified the point splitting
the population into a low-risk and a high-risk group of equal sizes,
which was used as the operating point. We determined confidence
intervals by performing our analyses 100 times on half the samples
selected at random. Within any given run, any visit of a patient was
used no more than once. The regions of confidence around ROC
curves were constructed graphically as envelopes of both sensitivity
and specificity confidence intervals along thresholds.

We evaluated possible biases in the group at high risk of pro-
gression.Weused a logistic regressionpredicting selection status from
population covariates (age, sex, education, number of APOE-ε4
alleles), cohort, and missing baseline modalities, together with the
true indicator of fast progression. This last binary predictor was
included to check for biases emerging in addition to the biases natu-
rally present in the target population.

We then evaluated our prognostic enrichment strategy by calcu-
lating statistical power. We used a hypothetical individual treatment
model: if the outcome actually worsened between baseline and follow-
up for the participant, we changed the annual rate of change by the
treatment effect, e.g. a 20% improvement of the annual rate of change.
We did not apply a treatment effect if the participant improved
between baseline and follow-up. For treatment effects ranging from
20% to 30%, we computed effect size (Cohen’s d) and sample size from
a two-independent sample asymptotic t-test, with a 5%bilateral level of
significance and 80% statistical power. We compared this sample size
for the population selected with the trial inclusion criteria alone, and
for the subpopulation identified as at high risk of progression. We
reported the total sample size for twoarms.Wedidnot account for the
drop-out rate in the calculation, as the goal was to compare statistical
power with and without enrichment.

In these two experiments, we compared the results obtained with
those for a method selecting APOE-ε4 carriers (heterozygous or
homozygous) as participants at high risk of progression. We were
unable to use this method for the trial targeting participants at risk of
the onset of AD since this trial included only APOE-ε4 carriers.

Statistics and reproducibility
No statistical method was used to predetermine the sample size. We
considered all availabledata fromall the cohorts andexcludedonly the
data of the participants with less than one year of follow-up. The
experiments were not randomized since only observational data were
used. The investigators were not blinded to allocation during experi-
ments and outcome assessment since only observational data were
used. Simulations of clinical trials included a random unblinded allo-
cation into treated and control arms with assessment of biases in sex,
center, level of education, and APOE genotype.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The ADNI and AIBL data used in this study are available in the database
of the laboratory of neuroimaging at the University of Southern Cali-
fornia under accession code at http://adni.loni.usc.edu. The J-ADNI
data used in this study are available in the NBDC Human Database
under accession code at http://humandbs.biosciencedbc.jp/en/. The
PharmaCog data used in this study are available in the NeuGRID2
platform under access code at https://www.neugrid2.eu/ (https://doi.
org/10.17616/R31NJN1E). The MEMENTO data used in this study are
available in Dementia Platform UK under accession code at https://
portal.dementiasplatform.uk/CohortDirectory/Item?fingerPrintID=
MEMENTO. Rawdata and patient-level data thatwere generated in this
study are protected and are not available due to data privacy laws and
data use agreements. These data can be re-generated using the open-
source software Leaspy (see below) by anyone with authorized access
to the above third-party data. The data used to compute the statistics
in this study are available in a dedicated Zenodo repository68. Source
data are provided with this paper.

Code availability
The statistical analysis of the forecast errors and the simulation of
clinical trials were performed in Python. We used the Leaspy open-
source software (https://gitlab.com/icm-institute/aramislab/leaspy)
for training and testing AD Course Map, and the corresponding open-
source software for RNN-AD https://github.com/ThomasYeoLab/
CBIG/tree/master/stable_projects/predict_phenotypes/Nguyen2020_
RNNAD. Linear mixed models were trained using the open-source
statsmodels package69. The frozen versions of the Python libraries that
were used to generate the results of this article can be found in a
dedicated Zenodo repository68.
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