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Single-cell sequencing shows cellular
heterogeneity of cutaneous lesions in
lupus erythematosus
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Discoid lupus erythematosus (DLE) and systemic lupus erythematosus (SLE)
are both types of lupus, yet the characteristics, and differences between them
are not fully understood. Here we show single-cell RNA sequencing data of
cutaneous lesions from DLE and SLE patients and skin tissues from healthy
controls (HCs). We find significantly higher proportions of T cells, B cells and
NK cells in DLE than in SLE. Expanded CCL20" keratinocyte, CXCL1" fibroblast,
ISGMCD4/CDS8 T cell, ISG" plasma cell, pDC, and NK subclusters are identified
in DLE and SLE compared to HC. In addition, we observe higher cell commu-
nication scores between cell types such as fibroblasts and macrophage/den-
dritic cells in cutaneous lesions of DLE and SLE compared to HC. In summary,
we clarify the heterogeneous characteristics in cutaneous lesions between DLE
and SLE, and discover some specific cell subtypes and ligand-receptor pairs

that indicate possible therapeutic targets of lupus erythematosus.

Lupus erythematosus (LE) is a severe autoimmune disease character-
ized by the presence of many abnormal immune cells and a large
number of autoantibodies and immune complexes, all of which lead to
damage to multiple organs, such as the skin, kidney, and brain'.
Clinically, LE is mainly divided into two types. One type is known as
cutaneous lupus erythematosus (CLE), which mainly presents as der-
matological injuries and does not involve systemic damage”. The other
type of LE involves systemic manifestations, including cutaneous,
respiratory, renal, cardiovascular and other symptoms, and is called
systemic lupus erythematosus (SLE)’. Discoid lupus erythematosus
(DLE) accounts for >80% of cases of CLE and is the most common type
of CLE*. On the one hand, approximately 5% of CLE patients will con-
vert to SLE’; on the other hand, ~20% of SLE patients exhibit CLE lesions
at the time of diagnosis or in the years after diagnosis®. Although the

manifestations of cutaneous lesions are distinct between DLE and SLE,
the cell composition and the underlying molecular events in cutaneous
lesions of DLE and SLE remain unclear.

Recently, single-cell RNA sequencing (scRNA-seq) studies were
performed in peripheral blood mononuclear cells (PBMCs), kidney
biopsies and lesions of lupus nephritis (LN) patients using a micro-
fluidic device and CEL-Seq2. These results indicated single-cell tran-
scriptional maps of peripheral blood and damaged organs in SLE and
identified the important function of type I interferon genes in the
pathogenesis of SLE’°. However, due to the throughput limitation of
scRNA-seq on microfluidic chips, little information has been obtained
about the cutaneous lesions of lupus patients. Besides, previous stu-
dies reported that the infiltration of plasmacytoid dendritic cells
(pDCs) contributed to the overproduction of type I interferons, which
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have an important function in the cutaneous lesions of DLE and SLE'",
Several bulk RNA-seq analyses also showed enhanced activation of the
interferon (IFN) signaling pathway, innate immune response pathways
(including TLR, RIG-I, cytosolic DNA sensing, JAK/STAT) and high
expression of some genes, such as GBP2, HLA-F, IFIT2, RSAD2, and
ISGI5, in cutaneous lesions of DLE patients'>™. In addition, ultraviolet
light (UV), immune cells, cytokines and the deposition of immu-
noglobulins have been reported to have a function in the development
of skin inflammation and damage in SLE™*. Macrophages and TNF and
IFN/IFNR signaling participate in skin injury of SLE. Although previous
studies have provided general knowledge about the cutaneous lesions
of lupus patients, an understanding of the precise pathological cell
types in skin lesions, the functions and activities of each cell subset,
and skewed communication networks have not been completely
elucidated.

In this study, to further explore the differences between cuta-
neous lesions of DLE and SLE at a high-throughput single-cell tran-
scriptional level, we collected 23 skin tissues from DLE and SLE patients
and age- and sex-matched healthy controls (HCs), separated their
epidermis and dermis and performed scRNA-seq on the single-cell
suspensions using the Chromium System of 10x Genomics. We show
important and detailed information on the differences between heal-
thy skin tissues and skin biopsies of lupus patients and demonstrate
the similarities and differences in the cutaneous lesions of DLE
and SLE.

Results

Sample collection and scRNA-seq workflow

As the cell diameters of epidermal and dermal cells are different, to
avoid the capturing preference of the 10x Genomics system, we
separated the epidermis and dermis of skin tissues to obtain more
transcriptional messages from the cells. In total, 23 skin biopsy sam-
ples from 8 DLE patients with an average age of 40.4 +11.0 years, 10

SLE patients with an average age of 41.4 +12.3 years and 5 HCs with an
average age of 32.4 + 6.0 years were collected. We successfully per-
formed scRNA-seq on 14 epidermal single-cell suspensions (4 HCs, 5
DLE, and 5 SLE samples) and 16 dermal single-cell suspensions (4 HCs, 5
DLE, and 7 SLE) by the 10x Genomics Chromium system (Fig. 1a). The
age, sex and other clinical information of all samples are summarized
in Supplementary Data 1. The initial number of captured cells per skin
biopsy sample, the average reads per cell and other sequencing
information are shown in Supplementary Data 2.

Distinct cell compositions of DLE and SLE illustrated by
scRNA-seq

After removing cell doublets, correcting for batch effects, and filtering
low-quality cells (see Materials and methods), we acquired 107,428
epidermal cells and 191,701 dermal cells for the downstream analysis
(Supplementary Fig. 1a, b, e, f). Through t-stochastic neighborhood
embedding (t-SNE) clustering and analysis of differentially expressed
genes (DEGs), all epidermal clusters were identified as keratinocytes by
high expression of KRTI4 and KRTI*, T cells by CD3D and CD3G,
macrophages/dendritic cells (Macro/DCs) by LYZ and AIFI”, melano-
cytes by PMEL and MLANAY, NK cells by XCL2 and NKG7'® and B cells by
CD79A and MS4A1” (Fig. 1b, d, Supplementary Fig. 1d, and Supple-
mentary Data 3). In addition to T cells, Macro/DCs, B cells and NK cells,
other dermal clusters were labeled as fibroblasts by COLIAI and
COL3AT, endothelial cells by CDHS and VWF”, mast cells by TPSABI
and TPSB2* and Schwann cells by CDH19 and MPZ** (Fig. 1c, e, Sup-
plementary Fig. 1h, and Supplementary Data 4). Overall, except for
immune cells, other cell types identified in our scRNA-seq were con-
sistent with those cell types found in full-thickness skin®.

The proportions of T cells, B cells, Macro/DC, and NK cells were
29.5%, 1.7%, 10.2%, and 3.5%, respectively, in the epidermis of DLE
patients, and 31.2%, 0.4%, 8.6%, and 1.9%, respectively, in the epidermis
of SLE patients, which were higher than those in the epidermis of HC
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Fig. 1| scRNA-seq shows the main cell types in epidermis and dermis.

a Workflow of overall study design. Single-cell RNA sequencing was performed on
14 epidermal samples and 16 dermal samples. b, ¢ t-SNE plots represent the main
cell types identified in epidermal tissues (b) and dermal tissues (c). These cell types
were identified by the specific gene expression shown in Fig. 1d, e, Supplementary

Data 3 and Supplementary Data 4. Macro/DC: macrophages/dendritic cell.

d, e Stacked violin plots show canonical gene expression in each cell type of epi-
dermis (d) and dermis (e). The violin chart is colored by cell classification. The
height represents the level of gene expression, and the width represents the ratio of
gene expression. Source data are provided as a Source Data file.
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(T: 14.0%, B: 0.1%, Macro/DC: 1.8%, NK: 0.5%) (Fig. 2a). Moreover, the
proportions of T cells, B cells and NK cells in the dermis of DLE patients
were 43.7%, 16.7%, and 5.4%, respectively, which were higher than
those in the dermis of SLE patients (T:17.2%, B: 2.5%, and NK: 1.3%). The
higher proportion of B cells in the lesional skin of DLE patients com-
pared to SLE patients was consistent with a previous report*. The
proportions of dermal immune cells from both DLE and SLE patients
were higher than those from HC (T: 11.5%, B: 0.8%, NK: 0.8%) (Fig. 2b).
Regarding dermal Macro/DCs, the proportion in the dermis of SLE
patients (8.3%) was higher than that in the dermis of DLE patients
(6.7%), and HC (6.9%) (Fig. 2b). In addition, the compositions of cell
types in individual samples further supported the findings of different
cell proportions in HC, DLE patients and SLE patients (Fig. 2c and
Supplementary Fig. 1c, g). Immunofluorescence staining of T cells
(CD3), B cells (CD19) and NK cells (CD56) verified the differences in cell
composition among HCs, DLE patients and SLE patients (Fig. 2d).
Taken together, these results show that immune cells, such as T, B, and
NK cells, account for higher cell proportions in DLE patients than in SLE
patients or HCs.

CCL20" keratinocyte and other amplified keratinocyte subtypes
in epidermal samples of DLE and SLE

Keratinocytes, the most prominent cell type in the epidermis, have
been reported to be involved in the pathogenesis of various auto-
immune skin diseases, including lupus®. Here, after removing the
batch effect (Supplementary Fig. 2a, b), we identified and labeled 12
keratinocyte subtypes: 6 differentiating keratinocyte subtypes (Diff
kera-1-6) with high expression of KRT1, KRTDAP, and SBSN*, 2 basal
keratinocyte subtypes (Basal kera-1,2) with high expression of
COL17A1, DST, and KRT15%, 1 channel-related keratinocyte subtype
(Channel-related kera) with high expression of components of channel
ATPases (ATPIBI) and G/B2", 1 cycling keratinocyte subtype (Cycling
kera) with high expression of mitotic markers (UBE2C and TOP2A*)
and proliferative markers (MKI67 and PCNA), 1 CCL20" keratinocyte
subtype (CCL20" kera) with high expression of CCL20 and 1 terminally
differentiating keratinocyte subtype (Terminal diff kera) with high
expression of terminal keratinocyte markers (LCEIA and LCEIB)
(Fig. 3c, d). Among all subtypes of keratinocytes, we found that kera-
tinocytes from DLE and SLE groups accounted for more than 75% of
Diff kera-3, CCL20" kera, Diff kera-4, Diff kera-5 and Diff kera-6, which
suggested their amplifications in the epidermis of DLE and SLE patients
(Fig. 3b and Supplementary Fig. 2c).

To identify the transcriptome differences between those DLE
and SLE-expanded keratinocyte subtypes, we adopted Gene
Ontology (GO) analysis based on the DEGs. Notably, Diff kera-3,
characterized by high expression of SI00A6 and ACTN1, showed
enrichment in epithelial cell proliferation, regulation of actin
cytoskeleton organization and muscle organ development (Fig. 3d,
f). CCL20" kera highly expressed CCL20 gene (Fig. 3d), which has
been reported to be a ligand for the chemokine receptor CCR6 to
recruit immune cells”. The immunofluorescence staining of CCL20
and KRT10 further confirmed the expansion of CCL20" kera in the
epidermis of DLE and SLE patients (Fig. 3e). Furthermore, Diff kera-4
was characterized by high expression of the interferon-stimulated
genes (ISGs) IFIH1, IFIT2, and IFITM3, the chemokines CXCL10 and
CXCL11, and antigen processing and presentation related molecules
HLA-DRA and HLA-DRBI (Fig. 3d, f and Supplementary Data 5-6).
Diff kera-5 with high expression of CYP1B1 and GPX4 was involved in
the regulation of lipid metabolic processes (Fig. 3f and Supple-
mentary Data 5-6). Diff kera-6 expressed the chemokine ligands
CCL4 and CCLS, and the chemokine receptor CXCR4, which enriched
leukocyte cell adhesion and migration (Fig. 3d, f and Supplementary
Data 5-6). Interestingly, the pathways of neutrophil activation and
neutrophil degranulation, which have been reported to have an
important function in the development of lupus®®, were commonly

enriched in CCL20" kera, Diff kera-4, Diff kera-5 and Diff kera-6
(Fig. 3f and Supplementary Data 5-6).

Due to the existence of similar and distinct GO enrichments in
the lupus-expanded keratinocyte subtypes, we wondered whether
there was a differentiating association between those subtypes.
Thus, we performed pseudotime trajectory analysis by Monocle2.
Intriguingly, the results showed a potential differentiated trajectory
from Diff kera-2 to Diff kera-1, Diff kera-6 and finally to Terminal diff
kera or CCL20" kera and Diff kera-4 (Fig. 3g). Diff kera-2 was located
in the initial position of the trajectory with high expression of genes
such as GRHL3 and SERPINB2. Both Diff kera-1 with high expression
of ID1, FGFR3, and CHP2 and Diff kera-6 with high expression of
RUNXI1, RGS1, and CXCR4 was located in the middle of the trajectory.
Terminal diff kera was in one end stage of the trajectory with high
expression of LCEIC, LCE2B, and LCEIB. CCL20" kera and Diff kera-4
were located in the other end stage with high expression of IFi3,
IFITM1, and CXCLIO (Fig. 3h). The above findings suggested a
potential differentiation direction of keratinocytes in lesional skin
of lupus.

CXCL1" fibroblasts, HLA" fibroblasts and other expanded fibro-
blast subtypes in the dermis of SLE patients

Recent reports have shown that fibroblasts participate in skin wound
healing and the progression of scleroderma®?°, However, the
function of fibroblasts in lupus is poorly understood. In our study,
after integrating 92,162 fibroblasts from DLE patients, SLE patients
and HCs and removing batch effects, we generated and labeled 9
fibroblast subtypes (Fig. 4a and Supplementary Fig. 3a-c). The cells
from SLE occupied for more than 75% of CXCL1" Fib, HLA" Fibl,
Pericyte2, and Fib4, which indicated their amplification in the der-
mis of SLE (Fig. 4b and Supplementary Fig. 3d). Although we were
unable to identify fibroblasts by the known marker genes of the
classic fibroblast subtype®-** (Supplementary Fig. 3e), two fibroblast
genes, COLIAI and DCN*, were highly expressed in 7 fibroblast
subtypes (Fibl, Fib2, CXCL1" Fib, HLA" Fibl, Fib3, Fib4, and HLA"
Fib2). Pericytel and Pericyte2 were characterized by high expression
of ACTA2 and TPM2, which indicated a pericyte subtype (a special
subtype of fibroblasts®®) (Fig. 4c, d). CXCL1" Fib was found to have
high expression of CXCL1, which has been reported to promote the
infiltration of immune cells, especially neutrophils® (Fig. 4c, d). In
addition, we identified a marker gene CXCLI2 of activated
fibroblasts® to be highly expressed in CXCL1* Fib and HLA" Fib2.
Interestingly, major histocompatibility complex-Il family member
genes (HLA-DRBI and HLA-DRAI), which are usually expressed in
antigen-presenting cells, were identified to be highly expressed in
HLA" Fibl and HLA" Fib2, suggesting that these fibroblasts may
function as nonclassical antigen-presenting cells (APCs) (Fig. 4c, d
and Supplementary Data 7). Although the CXCL1" Fib and HLA"
Fibl subtypes were not expanded in DLE, we observed that CXCLI
and HLA-DRBI1 were highly expressed in DLE fibroblasts (Supple-
mentary Fig. 3f). The immunofluorescence staining of CXCLI and
HLA-DRBI1 with Vimentin also verified their overexpression in SLE
and DLE (Fig. 4e, f).

Furthermore, GO function analysis based on DEGs in expanded
fibroblast subtypes showed that the biological processes (BPs) of
response to oxygen levels, response to hypoxia and neutrophil
degranulation were enriched in HLA" Fibl, Fib4, and CXCLI" Fib cells,
while the regulation of viral process and the immune response-
activating signal transduction were enriched in HLA" Fibl and Fib4
cells. In addition, HLA" Fibl and CXCL1" Fib showed enrichment of
leukocyte cell-cell adhesion, positive regulation of leukocyte activation
and positive regulation of cytokine production. Strikingly, type I
interferon signaling pathway and response to virus were separately
enriched in Pericyte2 and CXCL1" Fib (Fig. 4g and Supplemen-
tary Data 8).
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Fig. 2 | Distinct cell compositions of HC, DLE, and SLE. a, b Bar plots show the
proportions of 6 cell types in the epidermis (a) and 8 cell types in the dermis (b) of
biopsy samples from DLE and SLE patients. Macro/DC: macrophages/dendritic cell.
¢ Histogram plots comparing the proportions of the main immune cell types,
including T cells, B cells, Macro/DCs and NK cells in dermis of HCs (n=4), DLE
patients (n=5), and SLE patients (n = 7). The histograms for HCs are shown in pink,
histograms for DLE are in red and histograms for SLE are in blue. Data were pre-
sented as mean + SD, the P values were calculated using a one-way ANOVA test with
Bonferroni's multiple comparisons test. *P < 0.05, **P < 0.01, **P < 0.001, ns: no

significance. T cells: DLE vs HC, P=0.0002; SLE vs DLE, P=0.0004, B cells: DLE vs
HC, P=0.0036; SLE vs DLE, P=0.0027. NK cells: DLE vs HC, P= 0.0099; SLE vs DLE,
P=0.0090. d Represent images show immunofluorescence staining for CD3
(green)/CD19 (red) for T cells/B cells, CD56 (green) for NK cells in HCs, DLE and SLE
samples. The dotted line outlines the dermal-epidermal junction. Parts of the
stained area were enlarged in the corresponding single-unit grid. Scale bar: 100 uM.
Data are representative of three independent experiments. Source data are pro-
vided as a Source Data file.
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Fig. 3 | Sub-clustering analysis of keratinocytes identifies major keratinocyte
subtypes in epidermis. a t-SNE plot represents subtypes of keratinocytes merged
from HC, DLE and SLE by Seurat packages. Diff kera-1-6: differentiating keratino-
cyte subtype 1-6; Basal kera-1, 2: basal keratinocyte subtype 1, 2; Channel-related
kera: channel-related keratinocyte; Cycling kera: cycling keratinocyte; CCL20" kera:
CCL20" keratinocyte subtype; Terminal diff kera: terminally differentiating kerati-
nocyte subtype. b A bar plot shows the cell proportions of each sample group in
labeled keratinocyte subtypes. ¢ Stacked violin plots represents the expression
levels of the selected genes used for defining keratinocyte subtypes. d A heatmap
displays the top 10 differentially expressed genes in each subtype of keratinocytes.
e Immunofluorescence staining represents the expression of CCL20 (red) and
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KRTI10 (green) in the epidermis of HC, DLE, and SLE. KRT10 staining represents
keratinocytes. Scale bar: 100 uM. Data are representative of 3 independent
experiments. f A bubble diagram shows the Gene Ontology (GO) biological process
(BP) terms enriched in expanded keratinocyte subtypes. g Trajectory plot shows
pseudotime trajectory analysis of selected keratinocyte subtypes by Monocle2.
Different colors represent keratinocyte subtypes. The arrow indicates a possible
differentiation direction. h A heatmap shows gene clusters with differentiation
states that were predicted by pseudotime trajectory analysis. The color represents
the levels of given gene expression. The arrow indicates a possible differential
direction. Source data are provided as a Source Data file.

We also performed pseudotime trajectory analysis on fibroblast
subtypes to explore whether there was a differential trajectory in these
expanded fibroblast subtypes. The pseudotime trajectory analysis
presented a potentially differentiated trajectory of fibroblasts, in
which Fib2 was located in the initial part and HLA" Fibl and HLA" Fib2
expressing HLA-DRBI1, CD74, and HLA-DRA were located in the first
middle stage. Part of the Fibl expressing PDGFRA and FBLN was in one

end stage of the trajectory, and CXCL1" Fib with CYPIBI and CXCL1
expression was located in the other end stage (Fig. 4h, i).

ISGs" T cells, GPR183" T cells, and other expanded T cell sub-
clusters in cutaneous lesions of DLE and SLE patients

Abnormal T cells in the peripheral blood of patients with lupus have
been widely reported®**. However, the T cell subset changes in
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Fig. 4 | Sub-clustering analysis of fibroblasts identifies major fibroblast sub-
types in dermis. a t-SNE plot shows labeled fibroblasts which were merged from
HC, DLE and SLE by Seurat packages. Fibl-4: Fibroblast subtype 1-4; HLA" Fib: HLA*
Fibroblast; CXCL1® Fib: CXCL1" Fibroblast. b A bar plot shows the sample compo-
sitions of fibroblasts subtypes. ¢ A stacked violin plot shows selected gene
expression used for identifying fibroblast subtypes. d A heatmap displays the top
10 differentially expressed genes in each subtype of fibroblasts.

e, f Immunofluorescence staining represents the expression of CXCL1 (green) (e),
HLA-DRBI(green) (f) and Vimentin (red) in the dermis of HC, DLE, and SLE. The
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immunofluorescence staining of Vimentin represents the cell type of fibroblasts.
Scale bar: 100 uM. Data are representative of 3 independent experiments. g A
bubble diagram shows the Gene Ontology (GO) biological process (BP) terms of
expanded fibroblast subtypes. h Trajectory plot shows pseudotime trajectory
analysis of selected fibroblast subtypes. The arrow indicates the possible differ-
entiation direction. i Heatmaps show gene clusters with the differentiation state
that were predicted by pseudotime trajectory analysis. The arrow indicates the
possible differentiation direction. Source data are provided as a Source Data file.

cutaneous lesions of DLE and SLE are not fully understood. To evaluate
T cell subset transcriptome changes, we integrated a total of 23,982
epidermal T cells (HC: 4,286; DLE: 11,429; SLE: 8,267) and yielded 7 T
cell subclusters (SCs) (T_SCO to T_SC6) (Fig. 5a and Supplementary
Fig. 4a-c). The cells from DLE and SLE accounted for more than 75% of

the 5 epidermal T cell SCs (T_SC1-T_SC5) (Fig. 5b and Supplementary
Fig. 4d). In addition, a total of 40,047 dermal T cells (HC: 5,330; DLE:
20,327; SLE: 14,390) yielded 7 dermal T cell SCs (T_SCO-T_SC6) (Fig. 5f
and Supplementary Fig. 4f-h). DLE and SLE accounted for 75% of all
dermal T cell SCs except T_SC2 (Fig. 5g and Supplementary Fig. 4i).
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Fig. 5 | Sub-clustering analysis of T cells identifies major T cell subclusters in
skin tissues. a, f t-SNE plots distribution of T cell subclusters (SCs) in epidermis (a)
and in dermis (f). b, g Bar plots show the proportions of cells from HC, DLE, and SLE
in T cell SCs of epidermis (b) and dermis (g). d, i Heatmaps show the specific classic
gene expression in SCs of epidermal (d) and dermal (i) T cells. The annotation of
rows shows the classical subtypes of T cells with marker genes. CTL: Cytotoxic T

T_SC3

T_SC2

Lymphocyte; ISG: interferon-stimulated gene. ¢, h Heatmaps indicating the top 10
differentially expressed genes between each SC of T cells in the epidermis (c) or
dermis (h). e, j Bubble diagrams show the enriched Gene Ontology (GO) biological
process (BP) terms in HC, DLE and SLE group of epidermis (e) and dermis (j). Source
data are provided as a Source Data file.

According to the classical marker genes and DEGs profile, there
were several T cell SCs with similar characteristics in both epidermis
and dermis. First, ISGs (/Fl6, IFI44, IFIHI, and DDX58) were highly
expressed in epidermal T_SC1 and dermal T_SC5, which are identical to
the previously reported T-SC4 in PBMCs of lupus patients’ (Fig. 5c,d, h,
i, Supplementary Fig. 4e, j, and Supplementary Data 9). Moreover, a
gene panel of ISGs (IFI6, IFI44, IFITM3, ISG20, IFI27, ISG15, and IFI44L)
showed significantly higher expression in dermal T cells of DLE and SLE
patients than in HCs (Supplementary Fig. 4k). Second, epidermal

T_SC3 and dermal T_SC3 were both identified by high expression of
Treg marker genes (IKZF2, IL2RA and FOXP3°¢; Fig. 5c, d, h, i and Sup-
plementary Data 9). Epidermal T_SC2 and dermal T_SC5 highly
expressed marker genes of Thl (/FNG and TBX21”’) and CTLs (cytotoxic
T cells: XCL2, XCL1, and GZMA®) (Fig. 5d, i), which suggests the potential
effector functions of these two T cell subsets. Notably, GPR183, which
has been reported to be involved in the migration, expansion, and
infiltration of B cells and T follicular helper cells (Tfh)***, showed high
expression in dermal T_SCO (Fig. 5h), suggesting that this T cell subset
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may be related to B cell accumulation and ectopic germinal center
formation in cutaneous lesions of DLE and SLE.

To determine the distinct transcriptome functions of T cells in
skin tissues among HCs, DLE patients and SLE patients, we conducted
GO analysis on DEGs. Intriguingly, T cells in the epidermis of DLE and
SLE patients showed enrichment of some BPs, including cellular
response to type | interferon, positive regulation of defense response,
positive regulation of leukocyte cell-cell adhesion and type I interferon
signaling pathway, which were distinct from T cells in the epidermis of
HC with enrichment of RNA catabolic process and translational
initiation (Fig. Se). In contrast to epidermal T cells, both cell adhesion
and regulation of T cell activation were enriched in dermal T cells of
DLE patients, SLE patients and HCs. However, response to virus and
cellular response to heat were specifically enriched in dermal T cells
from DLE, and type I interferon signaling pathway, response to inter-
feron gamma and regulation of inflammatory response were enriched
in dermal T cells from SLE (Fig. 5j). These GO BP results suggest the
common and distinct functions of epidermal and dermal T cells among
HCs, DLE patients and SLE patients.

To further understand the relationship among dermal T cells of
HCs, DLE patients and SLE patients, we performed pseudotime tra-
jectory analysis to assess the potential differentiation of dermal T cells.
The trajectory results showed that dermal T cells of HC were located in
the initial stage with high expression of GASS5, TLES and SNHG29, der-
mal T cells highly expressing ISGs (IFITM1, IFI44L, ISG15, and IFITM3)
from DLE and SLE were located in the middle stage, and dermal T cells
mainly from SLE with high expression of HIFX, HLA-A, and TGFBR2
were located in the end stage (Supplementary Fig. 41, m).

ISG" plasma, HSP" B and other expanded B cell SCs in cutaneous
lesions of DLE and SLE patients

B cell selection defects and autoreactive B cell activation lead to the
overproduction of autoreactive antibodies in lupus*’. In our study, 864
epidermal B cells (HC: 41; DLE: 678; SLE: 105) yielded 5 B cell SCs
(B_SCO0-B_SC4), almost all of which were composed of cells from DLE
and SLE (Fig. 6a, b and Supplementary Fig. 5a-d). In addition, 9,494
dermal B cells (HC:338; DLE: 7,190; SLE: 1966) generated 7 B cell SCs
(B_SCO-B_SC6) (Fig. 6f and Supplementary Fig. 5g-i). Dermal B cells
from DLE and SLE accounted for more than 75% in each dermal B cell
SC (Fig. 6g and Supplementary Fig. 5j), which is consistent with a
previous report of B cell expansion in CLE lesions***,

To clarify the characteristics of epidermal and dermal B cell sub-
clusters, we represented the classic B cell subset markers and DEGs
expression in B cell SCs. Notably, B cell SCs from the epidermis and
dermis presented similar features. We found high expression of ISGs in
epidermal B_SC3 and dermal B_SC4 and B_SCS5, which were identified as
plasma cells by the gene expression of CD38, IGHG4, and IGHGI*
(Fig. 6¢, d, h, i and Supplementary Data 10). These three SCs were
similar to the P-SCO in the PBMCs of lupus patients identified in a
previous scRNA-seq study’ (Supplementary Fig. 5e, k). Hsp70-coding
genes, which are involved in antigen presentation****, were highly
expressed in epidermal B_SCO, dermal B_SC3 and B_SCé6 (Fig. 6d, h),
suggesting that these B_SCs may participate in antigen presentation.
Age-associated B cells (ABC) have been reported to be abnormally
expanded in SLE*. Therefore, we analyzed the expression of ABC
marker genes (ITGAX, TBX21, FCRL2*°) in B cell subsets and found that
these marker genes were expressed in multiple B cell subsets but notin
a specific subset (Supplementary Fig. 5f, I).

Next, we performed GO analyses on epidermal and dermal B cells
of HCs, DLE patients and SLE patients. The results showed that epi-
dermal B cells in HC were involved in RNA catabolic processes and T
cell activation, while epidermal B cells in DLE and SLE were involved in
more BPs, including the type I interferon signaling pathway, response
to virus, response to interferon gamma, regulation of innate immune
response, neutrophil activation involved in immune response and

leukocyte cell-cell adhesion (Fig. 6e). In addition, epidermal B cells of
DLE were characterized by macroautophagy, which has been reported
previously to be activated in B cells of SLE lesions and required for
plasmablast development*’ (Fig. 6e). Different from epidermal B cells,
the response to interferon gamma and viral life cycle were enriched in
dermal B cells in each sample group. Moreover, dermal B cells from
HCs and DLE patients were enriched in lymphocyte differentiation,
leukocyte cell-cell adhesion and T cell activation, and only dermal B
cells from SLE patients were enriched in the type I interferon signaling
pathway (Fig. 6j). Taken together, these findings indicate that epi-
dermal and dermal B cells, including ISG" plasma cells and HSP" B
cells, were expanded in the epidermis and dermis of DLE and SLE,
especially in the dermis of DLE.

pDC, ISGs" Macro/DC and other expanded Macro/DC SCs in
cutaneous lesions of DLE and SLE patients

Macrophages and DCs have been reported to be defective in clearing
apoptotic cells in lupus®. In our study, 6,595 epidermal Macro/DCs
(HC: 546; DLE: 3832; SLE: 2217) and 11,864 dermal Macro/DCs (HC:
3059; DLE: 2874; SLE: 5931) were used for sub-clustering analysis
(Supplementary Fig. 6a, e). More than 75% of the 5 epidermal Macro/
DC SCs, except M_SC5 and dermal M_SC3, M_SC5 and M_SC6, were
contributed by the DLE and SLE samples (Fig. 7b, g, Supplementary
Fig. 6b-d, f-h).

To discover transcriptional differences among Macro/DC SCs of
HCs, DLE patients and SLE patients, we performed DEGs analysis. We
found that ISGs were highly expressed in epidermal M_SC1 cells, which
were identified as a mix of macrophages and DCs because of the co-
expression marker genes of CD16" DCs (FCGR3A, CXCL10, CXCLII")
and macrophages (MRCI, CD163, CD68*) (Fig. 7d). Dermal M_SC6
highly expressed ISGs and marker genes of CD16" DCs (Fig. 7i). Epi-
dermal M_SC2 and dermal M_SC3 showed high expression of marker
genes of pDCs (JCHAIN and MZB1*®) (Fig. 7c, d, h, i, Supplementary Data
11), which have been reported to accumulate and help produce spon-
taneous germinal centers in lupus®’. As classic APCs, multiple Macro/
DC SCs expressed HSP70-coding genes. In addition, epidermal-specific
Langerhans cells were identified by CD207 expression in epidermal
M_SC5 (Fig. 7d).

Further GO analysis showed that antigen processing and pre-
sentation, neutrophil activation involved in immune response and T
cell activation were common enriched in epidermal Macro/DCs in HCs,
DLE patients and SLE patients. The differences were that epidermal
Macro/DCs of DLE contained some BPs, including cell killing, positive
regulation of leukocyte cell-cell adhesion and response to oxidative
stress, and epidermal Macro/DCs of SLE were enriched in the type |
interferon signaling pathway (Fig. 7e). Dermal Macro/DCs from HCs,
DLE patients and SLE patients were all involved in antigen processing
and presentation and T cell activation, which was similar to epidermal
Macro/DCs. Although type | interferon signaling pathway, type |
interferon production and response to virus were enriched in dermal
Macro/DCs of both DLE and SLE, macroautophagy, which was reported
to be impaired in SLE macrophages®, and regulation of inflammatory
response were enriched in dermal Macro/DCs of SLE (Fig. 7j). These
differences in Macro/DCs further suggest a possible difference in the
pathogenesis of cutaneous lesions between DLE and SLE.

ISGs and HSP-coding gene overexpression in NK cells of DLE and
SLE patients

NK cells have rarely been reported in cutaneous lesions of lupus. In our
study, 2152 epidermal NK cells (HC: 214; DLE: 1398; SLE: 540) and 3489
dermal NK cells (HC: 282; DLE: 2165; SLE: 1042) were ultimately
involved in sub-clustering analysis (Supplementary Figure 7a, e).
Except for epidermal and dermal N_SC3, cells from DLE and SLE
composed more than 75% of other epidermal and dermal NK SCs
(Fig. 8b, g and Supplementary Fig. 7b-d, f-h).
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Fig. 6 | Sub-clustering analysis of B cells implicates major B cell subclusters.
a, f t-SNEs plot B cell subclusters (SCs) distribution in epidermis (a) and dermis (f).
b, g Bar plots show the proportions of cells from HC, DLE and SLE in B cells SCs of
epidermis (b) and dermis (g). ¢, h Heatmaps show the top 10 differentially
expressed genes in 5 epidermal B cell SCs and 7 dermal B cell SCs. d, h Heatmaps
show specific classical genes expression in B cell SCs of epidermis (d) and dermis

(h). The annotation of rows shows the classical subtypes of B cells with marker
genes. HSP: Heat Shock Protein coding gene. ISG: interferon-stimulated gene.
e, j Bubble diagrams show the Gene Ontology (GO) biological process (BP) terms
enriched in epidermal or dermal B cells of HC, DLE, and SLE. Source data are
provided as a Source Data file.
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Fig. 7 | Sub-clustering analysis of macrophage/dendritic cells (Macro/DCs)
identifies major Macro/DCs subclusters. a, f t-SNEs plot epidermal (a) or dermal
(f) Macro/DCs subclusters (SCs) distribution. b, g Bar plots show cells proportions
of HC, DLE and SLE in six epidermal Macro/DCs SCs (b) and in 7 dermal Macro/DCs
SCs (g). ¢, h Heatmaps display the top 10 differentially expressed genes in 6 epi-
dermal Macro/DCs SCs (c) and 7 dermal Macro/DCs SCs (h). d, i Heatmaps show the

expression of specific classic genes in epidermal (d) and dermal Macro/DCs SCs (i).
LC Langerhans, LAM lipid-associated macrophages, PVM perivascular macro-
phages, MAC macrophages. The annotations of rows indicate the classical subtypes
of Macro/DCs with marker genes. e, j Bubble diagrams show the Gene Ontology
(GO) biological process (BP) terms enriched in epidermal (e) and dermal Macro/
DCs of HC, DLE and SLE (j). Source data are provided as a Source Data file.

According to DEGs analysis, we found that ISGs were more highly
expressed in NK cells from DLE and SLE patients than in those from
HCs, and HSP70-coding genes were highly expressed in epidermal
N_SCO and dermal N_SC1 cells (Fig. 8c, d, h, i and Supplementary

Datal2). Further GO functional analysis showed the enrichment of the
type linterferon signaling pathway in epidermal NK cells from DLE and
SLE patients (Fig. 8e). In contrast to dermal NK cells of SLE patients
enriching the type | interferon signaling pathway and the regulation of
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inflammatory pathway, only the defense response to virus and the
positive regulation of cytokine production were enriched in dermal NK
cells of DLE patients (Fig. 8j).

Active cell communication in cutaneous lesions of DLE and SLE
patients
The interaction between cells based on receptors and ligands has an
important function in physiological and pathological processes®. To
investigate the interaction among different cell types identified by
scRNA-seq in lupus cutaneous lesions, we conducted cell commu-
nication analysis by CellPhoneDB*. Based on the number of ligand—
receptor interaction pairs, we calculated the interaction scores. The
cell communication scores of keratinocytes and macro/DCs were sig-
nificantly higher in the epidermis of DLE and SLE patients than in HCs
(Fig. 9a). Notably, the scores of keratinocytes, Macro/DCs and mela-
nocytes in DLE were higher than those in SLE (Fig. 9a). Moreover, the
cell communication scores of endothelial cells, fibroblasts, and Macro/
DCs in the dermis of DLE were higher than those in SLE and HC
(Fig. 9b). These findings suggested a potential connection of kerati-
nocytes, endothelial cells, fibroblasts, and Macro/DCs in the immune
microenvironment in cutaneous lesions of DLE and SLE.
Furthermore, the more highly expressed chemokine ligands and
receptors of cell types in DLE and SLE are shown in Supplementary
Datal3. Immune cells, such as T cells, NK cells, Macro/DCs and B cells in
the epidermis of DLE and SLE, highly expressed CXCR3 (Fig. 9c), which
is a receptor for the chemokine ligand CCL20 with higher expression
levels in keratinocytes of DLE and SLE patients than in those of HCs. In
addition, other ligand-receptor pairs in keratinocytes and immune
cells, such as TNFSF9 TNFRSF9 and SPN_/CAMI, were also highly
expressed in the epidermis of DLE and SLE (Fig. 9¢). Macro/DCs, as
antigen-presenting cells, interact most strongly with other immune
cells, in which FAM3C CLEC2D indicates the possible interaction
between Macro/DCs and T or B cells in DLE and SLE (Fig. 9¢). In
addition, FAM 3C_ HLA C was expressed at higher levels in immune
cells (B, NK, T, Macro/DCs) and keratinocytes of DLE than SLE (Fig. 9c).
Regarding the dermis, the receptors of CCLI9 (CCR7, CCR2, and
CXCR3), CXCL12 (CXCR4), FAM3C (CLEX2D), and TNFSFI3B (CD40) in
fibroblasts showed the highest expression in B, Macro/DCs, NK, and
T cells in the DLE group among the three sample groups (Fig. 9d). The
interaction between Macro/DCs and other cells was represented by the
expression of TNARSFI3B CD40, which also showed the highest
expression in DLE (Fig. 9d). Immunochemical staining verified the
increased CCLI9 expression in fibroblasts (vimentin) and the increased
CCR7 expression in macrophages (CD68) in cutaneous lesions of DLE
and SLE patients (Fig. 9e). Together, the overexpression of these
ligands and receptors may be involved in the activation, migration, and
residence of immune cells in cutaneous lesions of DLE and SLE
patients.

Discussion
Lupus is a spectrum of autoimmune diseases, including DLE on one
end and SLE on the other®*. Although we know that there are distinct
skin phenotypes between DLE and SLE and understand the basic
immune changes that occur in cutaneous lesions, the precise cell
composition and their functions in cutaneous lesions in DLE and SLE
remain unclear. Here, we identified detailed cell types and their
constitutions in the epidermis and dermis of cutaneous lesions in
DLE and SLE by scRNA-seq. Our dataset comprised transcriptional
database of 107,428 epidermal cells and 191,701 dermal cells from
23 skin tissues of HCs, DLE patients and SLE patients. We compared
the difference in cell type composition, further described the cell
subclusters and their functions, and finally investigated cell-cell
interactions.

Based on scRNA-seq data analysis and immunofluorescent stain-
ing, we identified that there are more immune cells, such as T, B and NK

cells, in the cutaneous lesions of DLE than SLE. The B cell expansion in
DLE was consistent with a previous study showing that B cells account
for a greater proportion in DLE than in SLE*. These results suggested
the distinct pathogenesis of DLE and SLE and provided a potential way
to distinguish DLE and SLE. Furthermore, we identified the subclusters
of some cell types and showed that the ISGs signature, autophagy
signaling and neutrophil activation were enriched in DLE or SLE cells.
Notably, we defined some epidermal and dermal cell subtypes with
increased proportions/expressions in DLE and SLE, including CCL20"
keratinocytes, CXCL1* fibroblasts, ISG" CD4/CD8 T, ISG" plasma,
pDCs, and NK SCs. We also identified some important genes related to
immune microenvironments in cutaneous lesions of lupus patients.
For example, the G protein-coupled receptor GPR183, which has been
reported to be involved in the migration and localization of multiple
immune cells**, was shown to be highly expressed in dermal T_SCO in
our dataset.

Combining DEGs and GO enrichment analysis, we found that
some keratinocytes and fibroblasts in cutaneous lesions of lupus might
function as immune cells. Diff era-4, Diff kera-5 and Diff kera-6 parti-
cipated in some BPs, such as the regulation of innate immune response
and antigen processing and presentation, and HLA'Fibl and CXCL1'Fib
were involved in the processes of leukocyte adhesion and activation®.
HSP70-coding genes have been reported to assist in the delivery of
antigens in both epidermis and dermis and to have an important
function in immunoregulation of autoimmune diseases*®. In this study,
we found that HSP70-coding genes were highly expressed in epidermal
T_SC2,B_SC0,M_SC2, and N_SCO and dermal T_SC5, B_SC3, M_SC3, and
N_SC1, which suggests that HSP70-coding genes may have an impor-
tant function in cutaneous lesions of DLE and SLE.

Extensive evidence has shown the involvement of the interferon
signaling pathway in the pathogenesis of lupus®*’*%. Our study iden-
tified some cell subtypes with high expression of ISGs, such as Diff
kera-4, Pericyte2, epidermal T_SC1, dermal T_SCS, epidermal B_SC3,
dermal B_SC4 and B_SC5, epidermal M_SC1, dermal M_SC6, epidermal
N_SC2 and dermal N_SC1, which is consistent with a previous report
that a strong interferon signature was identified in multiple cell sub-
types of CLE". Thus, studying the functions and mechanism of the
activation of the interferon signaling pathway in lupus may help
identify more intervention targets for lupus treatment.

Previous studies have shown that neutrophil dysfunction is
related to the pathogenesis of SLE™. In this study, although we did
not detect any neutrophil infiltration due to the preference error of
the droplet-based 10x Genomic system, the neutrophil activation
pathway was found in multiple cell types according to GO BP analysis.
Furthermore, we identified neutrophils in cutaneous lesions of DLE
and SLE by immunofluorescence staining for ELANE (a neutrophil
elastase; Supplementary Fig. 8), suggesting that neutrophils are
involved in the formation of cutaneous lesions of lupus. In addition,
we found that the autophagy pathway, which has been reported to
facilitate skin differentiation and epidermal proliferation and accel-
erate inflammation®®®', was enriched in epidermal B cells of DLE and
dermal Macro/DCs of SLE.

Cell communication analysis among different cell types identified
the enhanced interactions of keratinocytes and Macro/DCs with other
immune cells in the epidermis of DLE and SLE, which may contribute to
an increased number and activation of immune cells in cutaneous
lesions of DLE and SLE. Furthermore, ligand-receptor pairs, such
as CCL20 CXCR3, FAM3C CLEC2D, FAM3C HLA C, SPN_ICAMI, and
TNFSF9 TNFRSF9, had higher mean expression levels in epidermal cells
of DLE patients and SLE patients than in those of HCs. Similarly, higher
interaction scores were found in endothelial cells, fibroblasts, and
Macro/DCs in the dermis of DLE patients than in SLE patients and HCs,
in which many receptors and ligands, such as CCR7, CCR2, CXCR3, and
CCLI9, were found to be highly expressed in DLE. Therefore, the
potential cell-cell interactions found in our study will help understand
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the changes in the immune microenvironment and cutaneous lesion
formation in DLE and SLE.

While this study discovered critical transcriptional features of
cells in cutaneous lesions of DLE and SLE, there were several lim-
itations. We admit that because of mechanical separation and

sequencing data calculation deviation, we could not completely
distinguish the cell types in the epidermis and dermis and had to
remove the overlapping cells in the clustering analysis of the epi-
dermis and dermis and in the sub-clustering analysis of cell types.
Transcriptome analysis has a limited ability to identify immune cell
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subclusters, and the use of some protein markers will help to
identify cell types more accurately.

In summary, we have shown that the use of scRNA-seq by 10x
Genomics is feasible and informative in the study of lupus, especially in
distinguishing different cutaneous lesions of lupus patients. Our
findings provide much information about DLE- and SLE-specific cel-
lular and molecular signatures in cutaneous lesions compared to that
of HCs, and we described in detail the similarities and differences in
cell compositions between DLE and SLE, which will help understand
the pathogenesis of DLE and SLE and develop novel and precise
therapeutic targets for lupus erythematosus.

Methods

Clinical sample collection

All skin biopsies were collected at the dermatology biopsy center in
the Second Xiangya Hospital of Central South University, Xiangya
Hospital of Central South and University and Institute of Derma-
tology of Chinese Academy of Medical Sciences and Peking Union
Medical College. Our study was approved by the Ethics Committee
of the Second Xiangya Hospital, Xiangya Hospital and University
and Institute of Dermatology of Chinese Academy of Medical Sci-
ences and Peking Union Medical College. All patients and healthy
controls involved in this study signed informed consent forms. Skin
biopsy tissue samples (4 x 4 mm) were obtained from patients with
clinically indicated LE by the classification criteria for SLE (1997/
2012)%* and CLE®. The average tissue mass of cutaneous lesions was
7 mg (3-10 mg).

Preparation of single-cell suspensions

Once the pathological cutaneous lesion samples were removed from
the patients, we immediately immersed them in tissue separation
solution consisting of 10 mg dispase enzyme (Sigma, D4693-1G), 1 mL
sterile PBS, and 2 mL sterile 1640 medium or physiological saline.
Then, the biopsy tissue samples were transported to the laboratory
within 30 minutes. The cutaneous lesion sample was placed in a petri
dish with the epidermis facing up and the dermis facing down at 4 °C
overnight. Skin biopsy tissue sample isolation and single-cell suspen-
sion preparation were performed the next day. We used an enzyme
isolation method to make single-cell suspensions as previously
described®*. In short, enzyme reagents in a whole-skin dissociation kit
(Miltenyi Biotec, 130-101-540) were mixed into EP tubes at a certain
ratio according to the operation manual. The dermis and epidermis
were separated by sterile tweezers and scissors and transferred into
mixed enzyme solutions. Both the dermis and epidermis were sub-
jected to a water bath at 37°C for 3-4 hours. After the enzymatic
reaction, the tissue residue solution was filtered by a strainer, and the
filtrate was centrifuged at 300 x g for 10 min at 4 °C. Furthermore, we
separately added 100 pL magnetic beads to cells of the epidermis and
dermis, incubated them at room temperature for 15min, and then
filtered them on a magnetic stand. The filtrate was collected, cen-
trifuged at 300 x g for 10 min at4 °C, and then resuspended in 10% FBS.
Ten microliters of the cell suspension were mixed with the same
volume of Trypan blue for counting. The loading volume was verified
by the cell concentration.

scRNA-seq

scRNA-seq mainly includes GEM (gel bead-in-emulsion) generation,
barcoding, cDNA amplification, library construction and sequencing.
These steps were completed according to the user’s instructions of
Chromium Single Cell 3’ Reagent Kits v3.1 (10x Genomics, product
code: 1000268, 1000215, 1000120) (https://www.10xgenomics.com/
support/single-cell-gene-expression). Libraries were sequenced by
an Illlumina NovaSeq6000 System. Approximately 10,000 cells (tar-
geting 5000-12,000) per sample were used for single-cell RNA
sequencing.

scRNA-seq data processing

Raw sequencing data were first filtered and then mapped to GRCh38
by using Cell Ranger Version 3.0.0 (https://www.10xgenomics.com).
After the Cell Ranger indicator evaluation, cell doublets were
removed by Scrublet®. Then, the Seurat v4 package® was used as
the main tool for single-cell RNA sequencing analysis. Quality con-
trol was performed to remove low-quality cells with nFeature_RNA
values less than 200 or greater than 5000, with percent.mt values
over 20% and with percent.redcell values over 10%. The filtered gene
expression matrix was normalized and scaled by a scaling factor of
10,000. Then, the variable genes were generated by the function
FindVariableFeatures. Furthermore, the first 2,000 highly variable
genes were selected for principal component analysis (PCA). The
batch effect among different patients was removed by the Harmony
package®” (https://github.com/immunogenomics/harmony). Then,
the EIbowPlot function was performed to identify meaningful PCs.
The first 20-40 PCs were used for t-SNE (t-distributed stochastic
neighbor embedding) clustering analysis. The DEGs of each cluster
were determined by the FindAllMarkers function, which compared
one cluster with all other cells. The function AverageExpression was
applied to calculate the average gene expression of each cluster or
cell type. The distribution of single cells in clusters, sample groups
or each sample was visualized by t-SNE plots. Some specific gene
expression levels were plotted by feature plots and stacked violin
plots. Other R packages, such as pheatmap, ggplot2, dplyr and
RColorBrewer, were used for stacked bar plots and heatmaps. We
followed the same steps as above for the sub-clustering analysis. Due
to sequencing bias, there were some other cells involved in the
second clustering analysis of a cell type. To eliminate their inter-
ference, we removed these cells before sub-clustering analysis.

Pseudotime trajectory analysis

Monocle2°® was adopted to infer potential differentiation associations
between some expanded subclusters of cell types. The genes used for
pseudotime trajectory analysis came from the FindAlIMarkers function
in the Seurat package based on the Wilcoxon rank sum test and were
filtered by pct.1>0.5 and pct.2 < 0.5. The newCellDataSet function in
Monocle2 was applied to generate a data structure for trajectory
analysis. Then, after normalization, reduceDimension and orderCells
were used to reduce the dimensionality and order cells in the pseu-
dotime trajectory.

GO biological process analysis

The clusterProfiler package was used for the GO functional analysis of
biological processes as previously described®’. Briefly, the marker gene
list of subclusters or samples was provided for ID conversion from
gene symbols to Entrez ID, and the enriched GO functions were used
for GO biological process analysis with a p value <0.01 and a g-value
<0.05. The bubble chart in this study visualizes the partially enriched
biological processes of subclusters or samples.

Similarity scores

The similarity scores were calculated based on the differentially
expressed genes of each subcluster in our study and subclusters (SCs)
reported in PBMCs of lupus’. We adopted the intersecting function of
R to find the common number of differentially expressed genes
between the subclusters in our study and SCs in PBMCs, and then we
divided by the sum of two differentially expressed genes. The value
obtained was the similarity score. The pheatmap package was used for
visualization.

Immunofluorescence

T cells, B cells and NK cells were separately stained for CD3 (MAB-
0740, MXB Biotech), CD19 (1:1000, ab134114, Abcam) and CD56
(1:400, ab75813, Abcam) expression. CCL20" keratinocytes were
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stained with CCL20 (1:50, ab224188, Abcam) and KRT10 (1:500,
ab76318, Abcam). CXCLI" fibroblasts and HLA® Fibl were identified by
staining CXCL1 (1:100, ab89318, Abcam) and HLA-DRB1 (1:1000,
ab133578, Abcam) with Vimentin (1:20000, ab92547, Abcam). ELANE
(1:2000, ELA-2, ab131260, Abcam) was used to stain neutrophils. CCL19
(1:500, 13397-1-AP, ProteinTech) staining was performed in fibroblasts,
and CCR7 (1:500, 25898-1-AP, ProteinTech) staining was performed in
macrophages (CD68, 1:400, ab955, Abcam). The second antibodies
used in this study came from Abcam (Donkey Anti-Rabbit IgG, 1:1000,
ab205722, Abcam). All immunofluorescence experiments were con-
ducted as follows’. Briefly, skin biopsy samples were embedded in
paraffin and sectioned into 4 um thick sections. After the paraffin tissue
sections were baked, dewaxed, and rehydrated, they were used for
antigen retrieval under acidic conditions in a pressure cooker. After
peroxidase enzymes were removed, the cutaneous lesions were sealed
with 5% serum (Well-Biology, CN). Then, the samples were incubated
with primary antibodies at room temperature for 1h or at 4 °C over-
night. After incubation with secondary antibodies and staining with
reagents from an Opal 7-color IHC detection kit (NEL811001KT, Per-
kinElmer, Hopkinton, MA), histologic sections were observed with an
LSM 510 confocal microscopy system (Leica) or PerkinElmer Vectra
(Hopkinton, MA). All images were analyzed using inForm software
compatible with the PerkinElmer Vectra.

Cell-cell communication analysis and interaction scores
Cell-to-cell communication analysis of potential receptor-ligand
pairings was conducted using CellPhoneDB™. For calculation of the
average expression and product value of ligands and receptors,
each cell type was labeled and randomly arranged 1000 times. To
identify the meaningful interaction pairs, we calculated the p value
and mean expression, and then we eliminated the pairs with a cutoff
p value lower than 0.05. The visualizations were performed in
pheatmap and ggplot2. Furthermore, we counted the numbers of
ligand-receptor pairs enriched between cell types, and the interac-
tion scores were generated by the pheatmap function with the
parameter scale =‘row’ and clustering_distance_rows =“
correlation” (Pearson correlation).

Statistical analysis

The data are shown as the mean + SD, and the statistical significance of
the proportional differences in cell types among HC, DLE, and SLE was
determined by one-way ANOVA test with Bonferroni’s multiple com-
parisons test. Other biologically significant differences were deter-
mined by the default algorithm of R packages.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The processed data of this study have been deposited in the GEO
database under accession code GSE179633. These data generated in
this study are available within the Article, Supplementary Information
or from the corresponding author upon reasonable request. Source
data are provided with this paper.

Code availability

All the codes used for processing and analyzing the data in this study
have been deposited in an available GitHub repository” (https://doi.
org/10.5281/zenodo0.7193545).
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