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Triggering and recovery of earthquake
accelerated landslides in Central Italy
revealed by satellite radar observations

Chuang Song 1,2,5, Chen Yu1,2,5, Zhenhong Li 1,3 , Stefano Utili 2,
Paolo Frattini4, Giovanni Crosta 4 & Jianbing Peng1,3

Earthquake triggered landslides often pose a great threat to human life and
property. Emerging research has been devoted to documenting coseismic
landslides failed during or shortly after earthquakes, however, the long-term
seismic effect that causes unstable landslides only to accelerate,moderately or
acutely, without immediate failures is largely neglected. Here we show the
activation and recovery of these earthquake accelerated landslides (EALs) in
Central Italy, based on satellite radar observations. Unlike previous studies
based on single or discrete landslides, we established a large inventory of 819
EALs and statistically quantified their spatial clustering features against a set of
conditioning factors, thus finding that EALs did not rely on strong seismic
shaking or hanging wall effects to occur and larger landslides weremore likely
to accelerate after earthquakes than smaller ones. We also discovered their
accelerating-to-recovering sliding dynamics, and how they differed from the
collapsed 759 coseismic landslides. These findings contribute to a more
comprehensive understanding of the earthquake-triggering landslide
mechanism and are of great significance for long-term landslide risk assess-
ment in seismically active areas.

Landslides refer tomasswasting on the ground surface, causing severe
casualties and economic losses each year either instantaneously from
rapid slope failures1 or accumulatively from slow-to-fast downslope
movements of soil and/or rocks2. The slope instability of a landslide
can be triggered by earthquakes3–5, rainfall6, snowmelt7, volcanic
activities8 and disturbances from anthropogenic activities9. Among
them, the Earthquake Triggered Landslides (ETLs), occurring imme-
diately following an earthquake10 or after a period of time11, accounted
for over 60% of landslide casualties between 2002 and 201012 and are a
major concern, especially in seismic active regions. This hasmotivated
plentiful studies with a focus on coseismic landslides that collapsed
during or within a short period (seconds to minutes) after
earthquakes10,13,14, new post-seismic landslides that developed into

failures under the action of aftershocks or post-seismic rainfalls along
earthquake-cracked slopes15,16, and post-seismic reactivations/remo-
bilizations of coseismic landslide deposits that occurredmostly during
rainfall events17. However, long-term seismic effects that activate
unstable landslides but without causing failures/collapse, even after a
long period since the earthquake (months to years), are typically
ignored due to minor, if any, ground changes caused compared to
collapsed slopes. These landslides (referred to as Earthquake Accel-
erated Landslides, EALs) respond to coseismic or post-seismic stress
disturbances differently from the coseismic landslides and other types
of collapsed/cracked post-seismic landslides and are typically acti-
vated with considerably increased displacement velocities compared
to their pre-earthquake levels. As a result, EALs may generate
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continuous damage to the ground or man-made infrastructure above
them and develop into catastrophic failures in the future.

Preliminary attempts have located a single EAL18,19 or limited
neighboring EALs12. For example, Bontemps et al.18 used 3-year geo-
detic and seismic datasets to characterize a slow-moving landslide
affected by local earthquakes and seasonal rainfall, and highlighted
how small-shaking events weakened the landslide rigidity. Lacroix
et al.12 detected nine slow-moving landslides in the Colca valley (Peru)
with Pléiades images and reported their accelerationswere causedby a
regional Mw 6.0 earthquake. However, due to the lack of a complete
and consistent EAL inventoryafter earthquakes, these localized studies
only characterized individual EALs and were unable to investigate
collectively the landslide behaviors in the perspective of an integral
EAL inventory. The spatial-temporal features of EALs such as the spatial
pattern of landslide distribution, the different behaviors between EALs
and coseismic landslides, and their overall evolution of the sliding
velocity were largely unknown. These features may well explain the
landslide-triggering mechanisms and contribute to hazard early
warning or prediction.

In this context, establishing a complete EAL inventory consistently
over a sufficiently large spatial extent and a long period becomes
essential. At such a spatial-temporal coverage, various potential land-
slide conditioning factors (LCFs, e.g., seismic effects, slope, lithology)
can be related statistically against the EAL occurrence and different
temporal behaviors of EALs before and after the earthquake can be
distinguished. In this study, we employed a novel InSAR-based EAL
detection method to establish an EAL inventory of the 2016-2017
Central Italy earthquake sequence using six years of Sentinel-1 data in
both descending and ascending modes from 2014 to 2020. By com-
paring the identified EALs with the landslides not accelerated by
earthquakes (non-EALs) established using InSAR and the Italian
national landslide inventory (IFFI20), we investigated 15 LCFs and

quantitatively classified their impacts on landslide acceleration based
on the Information Gain (IG) function21. We further investigated the
different spatial patterns between EALs and coseismic landslides and
the different temporal behaviors of EALs before and after the earth-
quakes using high temporal resolution InSAR time series. These
investigations provide a more complete picture of the landslide trig-
gering mechanisms in addition to the extensively studied coseismic
landslides and contribute to a more comprehensive long-term
assessment of landslide risk.

Results
The 2016-2017 Central Italy earthquake sequence
The study area, Central Italy, accommodates an influential earthquake
sequence including four main events that occurred respectively on 24
August 2016 (Mw6.1), 26October 2016 (Mw5.9), 30October 2016 (Mw
6.6) and 18 January 2017 (Mw 5.5), which struck a wide area of Central
Apennines (Fig. 1a). The four events caused more than 300 casualties
and severely damaged buildings and transportation routes14. The
earthquake sequence mainly ruptured the Mt Gorzano-Vettore-Bove
(MGVB) fault system trending NW-SE, with normal fault slipping22.
According to the geodetic inversion and the relocation of aftershocks,
an antithetic NE dipping normal fault near the Norcia area was addi-
tionally discovered to be ruptured during the 30 October 2016
event23,24. The slip state of another inherited west-dipping thrust,
the Olevano‐Antrodoco‐Sibillini (OAS) thrust, was also widely
discussed24–26 but its role in the rupture geometry and the reactivation
mechanism remained unclear23. In addition to the coseismic ruptures,
centimeter-level post-seismic surface deformation following a loga-
rithmic temporal decay was also observed and the related shallow
afterslip was revealed to likely halt the rupture propagation27. Such
complex seismotectonic background poses a challenge to large-scale
EAL detection and prompts us to develop a new EAL detectionmethod

Fig. 1 | Seismotectonic background of the study area and velocity fields along
the radar Line of Sight (LOS) direction derived from Interferometric Synthetic
Aperture Radar (InSAR). a Seismotectonic background with the four 2016–2017
earthquakes. Solid black lines represent the major active faults while gray barbed
lines indicate the pre-existing compressional faults22. The locations and moment
tensor solutions of the four main earthquakes in Central Italy from 2016 to 2017
(red beach balls) were obtained from the United States Geological Survey (USGS).
Dark blue arrows indicate the maximum fault slips of the four events22,74. Orange

dots represent aftershocks (M> 3.0). Black triangles mark Global Positioning Sys-
tem (GPS) stations, and black solid circles represent major cities. b Geographical
location of the study area (red rectangle). Purple rectangles indicate the coverage
of descending- and ascending-track Sentinel-1 images. c and d are the filtered post-
earthquake descending and ascending LOS velocity fields, with positive values
implying the Earth’s surface moving away from the satellite. The insets (e) and (f)
are exampled zoom-in views of the InSAR velocity.
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based on the InSAR-derived velocity fields (Fig. 1c, d) as described in
the Methods section.

Spatial distribution of earthquake-accelerated landslides
The InSAR-derived EAL inventory reveals awide-spreading distribution
of EALs in the study area. Compared with the existing IFFI (partly
updated to 2007 and partly to 2017), we detected a total of 819 EALs,
among which 684 (83.5%, magenta polygons in Fig. 2a) were already
documented in IFFI and the remaining 135 (16.5%, navy-blue polygons
in Fig. 2a) were newly detected landslides. Not all the landslides in IFFI
were detected by InSAR as they were either not moving or not accel-
erated by the earthquakes. Note that the final boundaries of EALs
determined by InSAR may not be entirely consistent with IFFI due to
their different temporal coverages (detailed in Methods). As shown in
Supplementary Fig. 1, the newly detected landslides by InSAR are
mainly distributed on the southwest side (Lazio Region) of the seis-
mogenic fault, which could be due to the low density of the docu-
mented landslides in this area (the IFFI was only updated to 2007). We
also noticed that there is no significant relation between the occur-
rence of new EALs and the distance to the seismogenic fault as new
EALs can occur in areas either near or far from theMGVB fault system.
According to IFFI, 40.3% of the total 819 InSAR-detected EALs are
rotational/translational landslides and 17.7% are slow earth flows
(Fig. 2b). These two types of landslides are also dominant in the whole
IFFI inventory within the study area. There are 17.0% EALs whose types
are unclear, including four previously undefined landslides in IFFI and
135 newly detected landslides by InSAR. Note that we cannot rule out
the possibility that the detected moving slopes are not authentic
landslides, but as the vast majority of EALs (83.5%) are IFFI-verified
landslides, we consider the proportion of false detection to be low and
will not alter our conclusion.

Conditioning factors of landslide occurrence
We investigated 15 LCFs (Supplementary Table 1) that may directly
trigger EALs or have impacts on the occurrence of EALs.We quantified

their impacts according to the IG values (Supplementary Fig. 2a),
which represent the influence of a particular LCF on the occurrence of
EALs. The greater the IG, the stronger the relationshipbetween the LCF
and EAL and themore important the LCF is to the EAL occurrence. We
classified the IG values of the 15 LCFs into three categories: prominent,
moderate and negligible impacts. Among all the LCFs, the size of the
landslide body exerted the strongest effect (Supplementary Fig. 2a).
Non-EALs tend to concentrate on smaller landslides with 70.2% being
smaller than 0.3 km2 compared to 30.8% for EALs as shown in Sup-
plementary Fig. 2b. The proportion difference of landslide numbers
between EALs and non-EALs (Supplementary Fig. 2c) more clearly
shows EALs contains a greater proportion of larger landslides than
non-EALs, implying that larger landslides are more likely to accelerate
after the earthquakes than smaller ones. Note that very small EALs and
non-EALs (<9 � 10�4km

2
) are not detectable in our case and some

adjacent small landslides without clear boundaries could be joined
together. This is due to the spatial clustering effect of the InSAR-based
(30m spatial resolution) automated landslide detection method
and the principle that anEAL or non-EAL needs to contain at least three
InSAR pixels to ensure measurement reliability (see the Methods sec-
tion). The remarkable effect of landslide size revealed here is con-
sistent with previous studies of failed coseismic and post-seismic
landslides15,17, which found that larger coseismic landslides were more
susceptible to remobilization after earthquakes than smaller ones and
also tended to remain active for longer. Although EALs and the post-
seismic remobilizations in coseismic deposits are two different types
of ETLs, the underlying activation mechanisms may be similar, such as
a high proportion of weak materials in large landslides, leading to a
decrease in the frictional strengthwith increasing landslide size, as also
observed in other studies28,29. Therefore, the landslide size could be a
generic conditioning factor of landslide susceptibility after earth-
quakes, especially in the far field, where the faster attenuation of high-
frequency waves with respect to low frequency may cause a slope
resonance that favors larger landslides with respect to smaller ones30.
While this effect of resonance is completely obscured by the effect of

(a)

(b)

All landslides in IFFI

EALs included in IFFI

Active faults

Landslide cases A to F

EALs not included in IFFI

40.3%
rotational/translational

17.7%17.0%
slow earth flow

not
defined

Elevation (m)

Fig. 2 | Established Earthquake Accelerated Landslide (EAL) inventory. a
Distribution of detected EALs and landslides documented by the inventory of
landslide phenomena in Italy (IFFI). Gray polygons are IFFI-documented landslides.
Magenta and navy-blue polygons are respectively EALs already in IFFI and EALs not
in IFFI. Black dots indicate the spatial locations of six landslide cases used for

temporal analysis.b Proportionof different types of EALs. Note that these landslide
types are from IFFI’s historical records with the following codes. 0: not defined,
1: fall/topple, 2: rotational/translational, 3: slow earth flow, 4: rapid debris flow,
5: complex, 6: Deep Seated Gravitational Slope Deformations (DSGSD), 7: shallow
landslides.
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high shaking intensity for collapsed coseismic landslides close to the
epicenter4, it is particularly important for those far-field EALs as the
seismic induced stress changes may be already weak in the far field.
This will be investigated further in the discussion section.

The second most influential factor is lithology. As shown in Sup-
plementary Fig. 2d, the top three landslide compositions in the study
area are sandstones/claystones (with limestones and evaporites),marl,
and limestones/marly limestones. There is a larger proportion of
sandstone/claystone type landslides among EALs than non-EALs (40%
compared to 32%), suggesting this type of landslide has a weak resis-
tance to the post-earthquake acceleration effect. The third most
influential factor is the pre-earthquake landslide activity indicator, i.e.,
the pre-earthquake velocity. Surprisingly, its distribution histogram
(Supplementary Fig. 2e) does not lean towards the high-velocity side,
which reveals that most EALs were not highly active before the
earthquakes. In contrast, active landslides with pre-earthquake velo-
cities greater than 12mm/yr seemed to have been less affected by the
earthquakes. Possible explanations could be: (i) the force induced by
earthquakes was insignificant compared to their original driving fac-
tors (e.g., gravity and rainfall) and was hence not strong enough to
alter their state of motion; or (ii) they might have accelerated shortly
after the earthquakes and then quickly decelerated back to their
original state due to the rate- and state-dependent frictional
properties19,31. Similar landslidebehaviorswereobserved in theTrishuli
River catchment, Nepal, where 6 slow-moving landslides with velo-
cities greater than 20mm/yr driven by monsoonal precipitation were
not accelerated by the 2015 Mw 7.8 Nepal earthquake32.

Among all the topographic LCFs, the positive openness (repre-
senting the surface convexity) has a prominent influence on EALs, and
the slope and aspect angles, commonly used topographic variables in
assessing landslide hazards, have moderate influence according to the
IG ranking. EALs were found to be more prone to have high positive
openness (~80, Supplementary Fig. 2f) than non-EALs. The histogram
of slope angles (Supplementary Fig. 3a) shows that the preferred slope
angle of EALs was between 10 and 20 degrees and the rose diagram of
aspect angles (Supplementary Fig. 3b) shows that the orientations of
EALs were concentrated between SE and SSW directions. In addition,
compared to non-EALs, EALs also exhibited an increased proportion in
the NNW and NNE directions. These EAL aspect directions are roughly
parallel to the strike of the seismogenic faults (SSE-NNW, solid black
line in Supplementary Fig. 3b) and perpendicular to the direction of
normal fault slips, suggesting the existence of a directional effect.
However, the cause of this effect is inconclusive. Some studies5,13,33

argued that landslides with a slope aspect parallel to the fault slip
direction aremore susceptible to failure during earthquakes, but there
areother studies10,34 reporting theprevalent landslideorientation tobe
normal to the fault ruptures. The difference is that almost all previous
studies were focused on coseismic landslides that collapsed during
earthquakeswhilst we focused primarily on EALs,whichmay represent
a different spatial pattern as will be shown later.

The IG values of Peak Ground Velocity (PGV) and Acceleration
(PGA) are moderate and rank in the middle (7-8) of all LCFs. To
investigate the detailed spatial relationship between seismic ground
shaking and EALs, we displayed the PGA counters, the earthquake
epicenters, and the landslide velocity ratio before and after the
earthquakes in Fig. 3a. Unlike the coseismic landslides (collapsed
shortly after themainshock, black dots in Fig. 3a, a total of 75914) which
were distributed mostly near the epicenters, EALs had a wide dis-
tribution and were not concentrating inside the high PGA area
(e.g., inside the purple PGA contour in Fig. 3a). We further plotted in
Fig. 3d, e their density scatters against PGA and PGV (each dot repre-
sents the landslide density under the corresponding PGA/PGV), in
which an opposite correlation was observed between these two types
of ETLs. Coseismic landslides tend to appear in areas with strong
shaking, whilst EALs tend to occur in light-to-moderate ground-

shaking areas. We also constructed a uniform grid map within the
study areawith a cell size of 5 km× 5 km, and for eachgrid, we counted
the number of EALs (Fig. 3b) with the ratio between their average
velocities before and after the earthquakes (i.e., the velocity ratio
shown in Fig. 3c). More EALs were distributed in the northeast which is
consistent with the distribution of landslides in IFFI (Fig. 2a) but the
distribution of the EAL velocity ratio was almost uniform in space. It is
asserted that weak ground shaking far away from the epicenter was
enough to cause notable accelerations to the landslide movement and
greater ground shaking did not necessarily mean the larger potential
to accelerate landslides or larger accelerations. On the one hand, most
unstable landslides near the epicenter had collapsed during the
mainshock, leaving most EALs identified in the far field. On the other
hand, the landslide rigidity could be altered by relatively weak ground
shaking and its kinematic behavior may not directly be related to the
magnitudeof ground shaking. For example, Bontemps et al.18 observed
diverse responses of a slow-moving landslide in Peru to a series of
small-to-mediumearthquakes (Ml < 4.5). Lacroix et al.19 found the post-
seismic motion of a landslide triggered by an Mw 6.0 earthquake
20 km away was even 3 times larger than the coseismic displacement.

Post-earthquake dynamics of earthquake-accelerated landslides
Apart from detection and spatial analysis of distributed EALs using
mean velocitymaps, InSAR-derived deformation time series can reveal
the temporal evolution characteristics of EALs at time intervals of 6 to
12 days. We started by looking at individual EALs and plotted the
sliding velocities of six examples in Supplementary Figs. 4 and 5. Note
that the linear sliding velocity (Supplementary Fig. 4) is based on the
assumption that landslides mainly move along the slope direction35,
whichmay not be suitable for all InSAR pixels but is sufficient to reveal
the scale and evolution of the underlying movement. The velocity
fields verify the reliability of our landslide detection results as most
InSAR pixels are distributed within uniform slope cells without noisy
pixels and apparent slope cell aliasing. They also show that the active
parts of landslides are well outlined, which ensures the restoration of
the most significant movement features. The epoch-by-epoch velocity
of eachEAL (SupplementaryFig. 5)wascomputedby linearlyfitting the
InSAR LOS displacement time series within a fixed 3-month time win-
dow and projected onto the slope direction using Eq. (3) in the
Methods section. The six EALs were distributed on both sides of the
seismogenic faults (locations shown in Fig. 2a) with a distance of
<10 km (AandB,on thehangingwall of the faults), 10 to 25 km (Eand F,
footwall) and >25 km (C and D, hanging wall), respectively. All the six
EALs have considerable velocity ratios (>2.0) regardless of the distance
to the fault, and, as noticed in Fig. 3c, being closer to the fault does not
necessarily imply larger velocity changes. For example, the closest EAL
A only showed a moderate velocity ratio (2.5), whilst EALs B and C,
farther than A, had larger ratios (6.6 and 4.6) and EAL D (farthest from
the fault, 32.2 km) exhibited the largest ratio (23.3). EALs E and F that
were distributed on the footwall have even larger sliding velocities
than the EALs (A, B and D) on the hanging wall which is generally
considered to receive more seismic energy, with stronger ground
motion in dip-slip events36,37. This suggests the hanging wall effect on
the EAL velocity is marginal, probably because the EAL does not
depend on strong coseismic ground motions, as analyzed in the pre-
vious section according to Fig. 3.

One notable dynamic feature shown in Supplementary Fig. 5 is
that all the six EALs were dominated by stronger velocity fluctuations
after the earthquakes as compared to relatively flat variations before
the earthquakes. The variation of the post-earthquake velocity corre-
lated with the precipitation time series (monthly precipitation aggre-
gated from daily Global Precipitation Measurement (GPM) records)
andmost velocity peaks (red dotted rectangles) were accompanied by
local precipitation peaks. We should note that the correspondence is
not perfect since the precipitation may not be the only force
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dominating the activity of these EALs after the earthquakes and other
factors (e.g., landslide depth, joints and geomorphological dis-
continuities, soil moisture and soil strength) could collectively affect
the sensitivity of landslides to rainfall/precipitation38–40. The complex
interactions of these factors may lead to a delayed or heterogeneous
response of landslides to rainfall inputs and the relation between the
landslide activity and precipitation is thus more sensitive to local
effects16. Nevertheless, compared to the pre-earthquake level, the
response of velocity to precipitation after the earthquakes is clearly
much stronger, implying that the accelerated landslides becamemore
susceptible to precipitation than before. Such changes may be caused
by the generation of preferential paths for water infiltration in land-
slide bodies due to soil damage after the earthquake16,18,41. The soil
damage could bemanifested asmicrofractures42, whichmakes it easier
for water to penetrate the landslide body and increases the sensitivity
of the landslide body to precipitation. To conclude, the enlarged
velocity fluctuations in response to precipitation, together with the
post-earthquake sliding acceleration, have collectively weakened the
stability of EALs.

Benefiting from a complete EAL inventory, the overall responding
mechanism of EALs within the study area, rather than a single EAL, can
be investigated. We calculated the 3-month mean velocity of all the

detected EALs and plotted in Fig. 4a their averages together with the
averaged GPM precipitation in the study area. The 3-month mean
velocity of each EAL was computed in the same way as in Supple-
mentary Fig. 5 and then averaged across the whole study area, with the
standard deviation calculated (gray error bars in Fig. 4a, representing
the velocity dispersion between EALs). The average velocities before
the earthquake sequence remained at a low level close to zero and
their standard deviations were smaller compared to their post-
earthquake counterparts. After the earthquakes, the velocity began
to increase,with each EALhaving its ownvelocity ratio, reflectedby the
large velocity standard deviation across all the EALs. According to the
change of velocities, we identified three distinct velocity evolution
phases after the earthquakes and plotted them in Figs. 4b2–4 respec-
tively their velocity distributions using the samemethod as in Fig. 3b, c
but within the correspondent time periods, (1) the acceleration phase,
from January 2017 to March 2018, during which a continuous increase
in the average velocity was observed, implying a stage where most
EALs were experiencing substantial accelerations; (2) the stabilization
phase, from March 2018 to September 2019, during which the mean
EAL velocity reached a steady state accompanied by a rapid decrease
of the number of aftershocks, implying that most EALs had stopped
accelerating and were creeping at relatively steady velocities; (3) the
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recovery phase, from September 2019, during which the average
velocity began to decrease, suggesting the effect of the earthquakes
was fading away. The fully accelerated velocitieswere unable to sustain
at a high level for long and started to recover (at least partially) ~3 years
after the earthquakes.

The phenomenon of landslide recovery was also observed for
other earthquakes (e.g., the 1999 Chi-Chi earthquake43, the 2008
Wenchuan earthquake17 and the 2015 Gorkha earthquake44). However,
they all focused on new post-seismic landslides or post-seismic reac-
tivations/remobilizations, which are different from EALs with con-
tinuous slow-moving dynamics after earthquakes. For the new post-
seismic landslide failures or remobilizations, potential mechanisms
include the progressive decay of energy from aftershocks, closure of
fractures due to the settlement of shaken rock, re-establishment of
plant root networks, and erosive removal of debris or weakened
materials36. But for the EALs, due to the slow-motion feature without
slope failures/collapse (i.e., relatively intact landslide bodies), there
would be no significant erosive removal of landslide materials after
earthquakes and theplant root networkswould not suffer fromserious
seismic damage. The root cohesion is also probably ineffective as a
stabilization factor considering the relatively large size of the mapped
EALs (see Supplementary Fig. 2c). Instead, the progressive decay of the
aftershock energy and the closure of earthquake-generated micro-
fractures are the likely controlling factors for EAL recovery. This canbe
evidenced by the decreased number of aftershocks in the stabilization
and recovery phases as shown in Fig. 4a. The role of the microfracture
closure is also justified since the healing process of slow-moving
landslides after earthquakes is usually associated with the re-
compaction of the soil as microfractures close and grains re-cement
together, which reflects a viscoelastic response of the soil18. Such a
healing process could be considerably slow. For example, the landslide
activity after the 2008 Wenchuan earthquake took 10 years to enter
the recovery period and required further 15 years to be completely

stable45. For EALs in this Central Italy earthquake sequence, their
recovery seems to be faster. Until August 2020 (4 years after the
earthquakes), the average velocity has already shown the trend of
returning to the pre-earthquake level. However, there is also a degree
of spatial variability in the recoveryprocess,with someof the EALs (i.e.,
those with large sliding velocities in the grid of Fig. 4b4) recovering
more slowly than others. Compared to the pre-earthquake level
(Fig. 4b1), the higher spatial variability of the velocity among EALs
shown in Fig. 4b4 suggests the existence of longer-term or non-
recovering earthquake-induced effects.

Discussion
In previous sections, we distinguished EALs from coseismic landslides
by considering whether they are affected immediately and fail shortly
after earthquakes, or can maintain intact for a relatively long period
but experience accelerated sliding, which may eventually lead to fail-
ure in the future. However, this is not the only difference between
them, and it is crucial to investigate in detail their different behaviors
to understand the earthquake-related landslide triggeringmechanism.
This is facilitated by the complete EAL inventory developed in this
study and the well-published coseismic landslide inventory14.

The first notable difference is their spatial distribution against the
earthquake-induced ground motion described by PGA and PGV
(Fig. 3). EALs and coseismic landslides tend to respectively occur in
areas with light-to-moderate (i.e., in the far field) ground shaking and
strong ground shaking (i.e., in the near field). We explain this by con-
sidering that the ground-shaking energy generated by the mainshocks
is large enough to cause weak and unstable landslides close to the
epicenters to collapse shortly after the earthquakes, but the
earthquake-induced energy in the far field is relatively weak and gives
rise to long low-frequency seismic waves so that the landslides there
were only triggered moderately without immediate failures (i.e.,
becoming EALs). Thiswas also observedby Saroli et al.46 who identified
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a previously unknown paleo-landslide in southern Italy that was trig-
gered by light-to-moderate seismic shaking without a failure but only
accelerated sliding. Detailed spatial analysis in Fig. 3c also reveals that
the accelerationmagnitude has no close correlations with the location
of EALs and large accelerations (velocity ratio larger than 4.0) can
occur several tens of kilometers away from the epicenter.

We further investigated the rock composition of the landslide
body in Supplementary Figs. 2d and 6a which show the dominant
lithologies are limestones and clayey limestones for coseismic land-
slides and sandstones and claystones (with limestones and evaporites)
for EALs. This can be explained by the vulnerability of different
lithologies. Since clayey limestones are more fragile than sandstone/
claystones in nature47,48, landslides composed of more clayey lime-
stones are more susceptible to failure during strong seismic ground
shaking and develop into coseismic landslides. On the other hand,
landslides with finer materials have a longer response time to seismic-
induced pore pressure changes and could more easily develop into
EALs subject to a delayed but long-lasting post-earthquake effect.

EALs and coseismic landslides also differ in topographic features.
We can see from Supplementary Fig. 6b that the preferential positive
openness of coseismic landslides is lower than EALs (75 compared to
80), but their slope angles (Supplementary Fig. 6c) tend to be greater
than those of EALs, implying the failure of coseismic landslides relied
more on steep slopes than EALs. We further visualized the aspect
angles of coseismic landslides in Supplementary Fig. 6d in comparison
with Supplementary Fig. 3b of EALs. There are fewer coseismic land-
slides than EALs along the strike direction of the seismogenic faults,
suggesting landslides with an aspect close to the strike of the seis-
mogenic faults are more likely to experience acceleration in motion
rather than immediate collapse after the earthquakes. However, the
type of earthquakes may also play a role that needs further investiga-
tion with additionally established EAL inventories of different types of
earthquakes.

Overall, this study provides a pioneering spatiotemporal obser-
vation of the distributed EALs over large areas, which, unlike pre-
viously widely studied coseismic landslides5,14, revealed the long-term
landslide behaviors in response to earthquakes. Results show that the
occurrence of EALs was not dominated by strong seismic shaking or
hanging wall effects but wasmore significantly influenced by landslide
size, with large landslides more likely to develop into EALs. We also
found a more sensitive response of EALs to precipitation after the
earthquakes and three post-earthquake velocity evolution phases of
EALs, i.e., the acceleration, stabilization and recovery phases, eachwith
distinctive velocity features. Such phased evolution towards landslide
recovery could be controlled by the progressive decay of seismic
energy and the closure of earthquake-generated microfractures.
Finally, we distinguished the different behaviors between EALs and
coseismic landslides in respect of seismic-induced ground shaking,
lithology and topographic features.

These findings constitute amore complete picture of earthquake-
induced landslide risks, including both coseismic landslide failures and
post-seismic landslide dynamics. This gives great implications for
hazard monitoring such that immediate and short-term earthquake-
induced effects can be investigated by inspecting coseismic landslides
in a near-real-time manner to support rapid rescue operations. Then,
the investigation of EALs can help to identify potential hazards in
medium-to-long terms so that the local community can be provided
guidance to quantitatively assess future slope failures and their
impacts on lives and properties. Such comprehensive, long-term and
continuous investigation of landslide susceptibility will greatly benefit
landslide hazard prevention and mitigation. In the investigation of
EALs, this study also proposed potential landslide mechanisms to
explain the observed phenomena. A more in-depth understanding of
the exact role of each mechanism will be possible in the future for
individual landslides or groups of landslides of the same type within a

relatively homogeneous geological and morphological setting, with
the support of evidence from field investigations and geotechnical
data. Besides, how frequent earthquakes of different types affect the
behavior and stability of existing pre-earthquake landslides (historical
ones) is yet tobe studied. Thesequestionswouldbe answered in future
ETL studies of more earthquake cases in different areas, with both
coseismic andpost-seismic landslides (especially the easily overlooked
EALs) investigated.

Methods
InSAR data and processing
Sentinel-1 Terrain Observation by Progressive Scans (TOPS)49 data in
Interferometric Wide (IW) swath mode was used to capture the
deformation in our study area. The Sentinel-1 constellation operated
by European Space Agency comprises two polar-orbiting satellites
(Sentinel-1A and 1B) performing C-band SAR imaging and offers wide-
area monitoring with a minimum 6-day revisit cycle. The spatial reso-
lution of Sentinel-1 acquisitions is about 5m in range and 20m in
azimuth. We collected 280 Sentinel-1 images in the descending track
(Path 22) spanning from 7 October 2014 to 30 August 2020 and 292
images in the ascending track (Path 117) from 13 October 2014 to 30
August 2020. Each SAR image was connected to at least 10 nearest
images in time to generate interferometric pairs. Considering that a
long temporal baseline could cause strong decorrelation, we excluded
interferograms with a temporal baseline greater than three months
and finally obtained 1,420 and 1,507 interferometric pairs (Supple-
mentary Fig. 7) for the descending and ascending tracks, respectively.

A time series InSAR processing flow50 considering tropospheric
delays was used to process the Sentinel-1 data. To generate inter-
ferograms, a 30m Digital Elevation Model (DEM) from the Shuttle
Radar Topography Mission (SRTM)51 was used to remove topographic
phases and geocode interferograms. Tropospheric delay corrections
from Generic Atmospheric Correction Online Service (GACOS) for
InSAR52–54 were applied to each interferogram to reduce the atmo-
spheric effect. These corrected interferogramswere thenprocessedby
the Small BAseline Subset (SBAS) mode of the Stanford Method for
Persistent Scatterers (StaMPS) software55 to generate InSAR time ser-
ies. During the time series processing, the spatial reference was set as
themeanphasevalue in the study area, and InSARcoherent pixels after
the phase correction of spatially uncorrelated noise were sampled at
30m resolution for 3D unwrapping56 to improve the processing effi-
ciency. SuchSBASmethoddoes not require a pre-defined deformation
model to constrain time series and has been proved to be effective in
retrieving the coseismic and post-seismic displacements27,57.

The resultant InSAR time series was then validated by Global
Positioning System (GPS) displacements from 19 stations (Fig. 1) in the
Istituto Nazionale di Geofisica e Vulcanologia (INGV) network. GPS
time series solutions provided by the Nevada Geodetic Laboratory
(NGL)58 were projected onto the radar Line of Sight (LOS) direction,
following Eq. (1):

LOS =

�sinθincsinαhead

sinθinccosαhead

�cosθinc

2
64

3
75
T

�
N

E

U

2
64

3
75 ð1Þ

whereN, E andU are GPS displacements in the North, East and Vertical
(Up) directions; θinc is the incidence angle of satellite radar and αhead is
the heading angle; LOS is the projected displacement along LOS. Then
GPS LOS displacement time series were resampled to the SAR acqui-
sition dates. As InSAR observations are relative measurements with a
spatial reference, the GPS time series was referenced to AQUI located
in Coppito, Province of L’Aquila, and the InSAR reference point was set
to the location of AQUI (marked in Fig. 1a). The reason for choosing
AQUI is that it is relatively less affected by the coseismic deformation
(<5mm) and has recorded the most complete GPS data in the past 10
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years without interruption. We compared the InSAR and GPS dis-
placements for each observation epoch before and after the earth-
quake sequence. The comparison results (Supplementary Fig. 8) show
that the root mean square (RMS) of the differences between GPS and
Sentinel-1 InSAR displacements in descending and ascending modes
are 6.2mm and 7.0mm, respectively. The linear fit between GPS and
InSAR LOS displacements and their Pearson’s linear correlations are
0.75 and 0.89 for descending and ascending LOS, respectively. The
high correlation with GPS and the small RMS difference implies the
reliability of InSAR observations.

Pre- and post-earthquake InSAR velocity fields
Based on the InSAR displacement time series, we calculated LOS
velocity fields respectively for periods before the first event (i.e., pre-
earthquake velocity (vLOSpre ) from 13 October 2014 to 21 August 2016)
and one year after the last event (i.e., post-earthquake velocity (vLOSpost)
from 24 January 2017 to 25 January 2018). Only one year of the dis-
placement time series after the last event was included to highlight the
direct acceleration effect due to the earthquakes,whichmay fade away
over time, and to avoid possible velocity variations caused by non-
seismic forcings (e.g., heavy rainfall) as noticed in Supplementary
Fig. 5. The velocities during these two periods were obtained by line-
arlyfitting the associateddisplacement time series59. Comparing InSAR
and co-located GPS-derived LOS velocities, the RMS differences in the
ascending and descending LOSwere approximately 3.1 and 3.0mm/yr,
respectively.

Landslide motion signals may be contaminated by residual
medium-to-long-wavelength deformation (e.g., post-seismic defor-
mation) or errors (atmospheric, orbital and ocean tide loading errors)
on InSAR velocity fields. Therefore, to identify localized landslide
motions, we first applied a local spatial filter on the velocity fields to
reduce the effects of spatially correlated noise (e.g., residual medium-
to-long-wavelength errors) and post-seismic deformation, as shown in
Supplementary Fig. 9a. Instead of using a fixed global reference point,
the local spatial filter referenced the phase of each pixel against the
local mean phase averaged within a kernel (i.e., a circular buffering
area) surrounding that pixel32.We fixed the radius of the kernel to 2 km
as suggested by Bekaert et al.32 in double-difference phase analysis
which minimized the effect of over-filtering on the landslide signals.
With this local spatial filter, spatially correlated signals at distances
beyond the kernel size can be largely canceled out.

Italian national landslide inventory
The Inventario dei Fenomeni Franosi (Inventory of Landslide Phe-
nomena) in Italy (IFFI) project, implemented by Istituto Superiore per
la Protezione e la Ricerca Ambientale (ISPRA) and regional environ-
mental protection agencies, provides a national landslide database20.
The landslide inventory was first published online by ISPRA in 2005.
Since then, 620,808 landslide sites (www.progettoiffi.isprambiente.it)
have been updated by means of satellite images, airborne photos and
field investigation. However, only a limited number of landslides in IFFI
remain active, for example, in the Piedmont regionof Italy, only ~15%of
landslides in IFFI were classified as active by InSAR60. In addition, dif-
ferent regions differ in the update time of the landslide inventory. Our
study area spans four regions, of which the Umbria Region has upda-
ted the inventory up to 2017 while the Marche, Lazio and Abruzzo
Regions only updated up to 2007. In total, 9,509 landslides shown in
Fig. 2a have been documented in the study area, of which 3,615 (38.0%
of the inventory) are classified as rotational/translational slides. The
second most widely distributed type of landslide is slow earth flow,
accounting for 25.7%, followed by shallow landslides (11.3%). Each of
the other landslide types, including rapid debris flow (9.5%), rockfalls/
topples (9.4%) and complex slides (4.0%), etc., only represents a small
percentage of the entire inventory. In our study, we used IFFI to locate
non-EALs and compare the spatial characteristics of these non-EALs

with EALs to analyze the impact of different LCFs on landslide
acceleration.

Detection method for earthquake-accelerated landslides
The novel EAL detection method we developed includes three main
steps: the location of post-earthquake moving pixels, the automatic
clusteringofmovingpixels into landslidebodies, and the identification
of EALs from landslide bodies.

Firstly, the post-earthquake InSAR velocity fields (Fig. 1c, d) were
used to locate all the moving pixels which may be clustered as active
landslides in the follow-on steps (Supplementary Fig. 9a). We used the
LIBRA software61 to statistically identify themoving pixels basedon the
Minimum Covariance Determinant (MCD) method62,63. The inputs of
the software were vLOSpost of the InSAR pixels and the outputs were the
locations of the identifiedmoving pixels. This method has two notable
features: (i) it does not require an empirical velocity threshold and (ii)
the moving pixels can be detected adaptively in an automatic way.

Secondly, based on the identified moving pixels, we used the
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN)64,65 algorithm to automatically cluster these pixels into
landslide bodies. DBSCAN is a powerful cluster algorithm in statistics
but its application in the landslide field is rare. Unlike the commonly
used k-means partitioning algorithm, this algorithm is based on the
spatial density of pixels without the requirement of a pre-defined
number of clusters, which improves the adaptability of clustering.
Moreover, the k-means algorithm forcibly clusters all the included
pixels and is vulnerable to noise, while theDBSCAN algorithm is able to
exclude noisy pixels that lack sufficient connected neighborhoods64.
DBSCAN defines three types of pixels: core pixels, border pixels and
noisy pixels (Supplementary Fig. 9d). A core pixel is located inside a
cluster that is surrounded by at least a minimum number (MinPts) of
moving pixels within a fixed radius (R). Thesemoving pixels are called
the neighborhoodmoving pixels of the core pixel. In this study,MinPts
was set to three to guarantee at least three moving pixels per
cluster60,66, and R was set to 60m (twice the InSAR pixel spacing) to
connect sufficient pixels. A border pixel is the neighborhoodpixel of at
least one core pixel, but it has less thanMinPts of neighborhoodpixels.
A noisy pixel is not neighboring to any core pixel. DBSCAN starts with
an arbitrary moving pixel p: 1) if p is a core pixel, all neighborhood
moving pixels of pwill be assigned as the same cluster with p and their
types (core or border pixel) will be evaluated; 2) repeat step 1) itera-
tively for all the neighborhood moving pixels of the core and border
pixels in the cluster of p until all the moving pixels that should be
clustered with p are identified; 3) move to the next moving pixels until
all the pixels were clustered.

Among DBSCAN-produced clusters, those with an average slope
of less than 3 degrees were masked out because landslides were unli-
kely to occur on such flat terrain. Note that since we have collected
both descending and ascending Sentinel-1 data, two inventories of
post-earthquake active landslides will be generated following the
above procedure. Thus, we merged them by uniting overlapping
landslide bodies and calculated their pre- and postearthquake velo-
cities along the slope (vSlopepre and vSlopepost ) by averaging the along-slope
velocities of all pixels inside the landslide body. The along-slope
velocity vSlope of each pixel was calculated by projecting the LOS
velocity vLOS onto the landslide slope direction, assuming that the
landslide movements occurred along the steepest gradient of the
slope35,60. The projection can be expressed as Eqs. (2) and (3), where s
and a are the slope and aspect angles at the location of InSAR pixels, σ
and α are the incidence and heading angles of satellite radar, C is the
projection coefficient that converts vLOS to vSlope. It should be noted
that C was limited to 0.3 when 0<C <0:3 and to −0.3 when
�0:3<C <0 to avoid anomalous exaggeration caused by the
projection67. Besides, for landslides containing both descending- and
ascending-mode Sentinel-1 coherent pixels, the along-slope velocities

Article https://doi.org/10.1038/s41467-022-35035-5

Nature Communications |         (2022) 13:7278 8

http://www.progettoiffi.isprambiente.it


projected from InSARobservations in these twomodeswere averaged.

C = �cos sð Þcos að Þsin σð Þsin αð Þ+ cos sð Þsin að Þsin σð Þcos αð Þ+ sin sð Þcos σð Þ
ð2Þ

vSlope = vLOS=C ð3Þ

Finally, we compared vSlopepre and vSlopepost of each candidate landslide
to identify the accelerated landslides of interest with sufficient velocity
changes (vSlopepost /v

Slope
pre ≥ 1.2) and thereby created an EAL inventory. We

refer to this ratio as the landslide velocity ratio which represents
the tendency of landslides to accelerate or not due to the earthquakes.
The active landslides that were not accelerated by the earthquake
sequence (vSlopepost /v

Slope
pre < 1.2) were then classified as non-EALs.

Since InSAR can only detect active landslides, the above proce-
dure is unable to locate non-EALs that are dormant both before and
after the earthquake sequence. Therefore, as shown in Supplementary
Fig. 9b, we used IFFI to find these non-EALs by (1) locating landslides in
IFFI that, like EALs, also contain at least three InSAR pixels; (2) pro-
jecting vLOS of pixels in IFFI-landslides to vSlope with Eqs. (2) and (3); (3)
calculating vSlopepre and vSlopepost of each IFFI-landslide by averaging vSlope of
pixels inside before and after the earthquakes; 4) identifying dormant
landslides whose vSlopepre and vSlopepost are both smaller than 5mm/yr as
definedbyCigna et al.68. Thesedormant landslideswere then imported
to the non-EAL inventory. Finally, in accordance with the above
workflow (Supplementary Figs. 9a, b), we created the inventories of
both EALs and non-EALs which facilitate the following statistical and
spatial analysis.

Statistical analysis method
Landslide Conditioning Factors (LCFs) are geo-environmental factors
that control landslide occurrence, evolvement and potential collapse.
Hence, their spatial distribution may play a key role in landslide sus-
ceptivity assessment. We used the Information Gain (IG) function to
quantitatively rank a set of LCFs linked to EALs in order to statistically
investigate the main conditioning factors. IG is one of the fastest and
simplest attribute ranking methods21 used to select features in a
decision tree model69,70. The value of IG represents how much con-
tribution of a LCF can affect the EAL occurrence.

As shown in Supplementary Fig. 9c, the first step of implementing
the IG method is to create a dataset of LCFs. We selected a large set of
LCFs, including topographic, lithologic, vegetation, hydrologic and
seismic factors11 (SupplementaryTable 1). The 30mSRTMDEMused in
InSAR data processing was processed by the SAGA GIS software
(http://www.saga-gis.org) to compute topographic factors (e.g., slope,
aspect, and curvature). A Sentinel-2 image with almost zero cloud
cover (0.2%) on 14 August 2016 was used to calculate Normalized
Difference Vegetation Index (NDVI)71 based on the near-infrared
spectrum (band 8) and red range of the spectrum (band 4). We also
collected GPM daily records72,73 from multi-satellite gauging to inves-
tigate hydro-climatic factors such as rainfall and snowfall. Regarding
the seismic effect, Peak Ground Acceleration (PGA) and Peak Ground
Velocity (PGV) of the four 2016-2017 earthquakes in Central Italy were
extracted from the USGS ShakeMap products (https://earthquake.
usgs.gov/data/shakemap). Note that the ground motions of the four
earthquakeswere accumulated to account for the overall impact of the
earthquake sequence. We additionally selected two other types of
LCFs to represent the pre-earthquake landslide activity and the size of
the landslide body which may also explain the governing mechanisms
of EALs. The pre-earthquake landslide activity factors included the pre-
earthquake velocity (vSlopepre ) and the proportion of relatively highly
active pixels (vSlopepre > 10mm/yr) inside a landslide body before the
earthquakes. After collecting the LCF dataset, we calculated high-

resolutionmaps for each LCF and resampled them into a 30muniform
grid as the DEM (i.e., one map per LCF).

To calculate IG of each LCF, we introduced the concept of infor-
mation entropy21, which was used to measure the uncertainty in the
classification of the landslide (i.e., whether the landslide is an EAL or
non-EAL).We first generated an indexmapwith the samedimension as
the LCFmaps for the study area, where pixels inside EALsweremarked
as 1 and pixels inside non-EALs as 0 (Supplementary Fig. 9d). We then
randomly selected 1,000,000 pixels on the index map (about 10% of
the total) and calculated the information entropy HðEALÞ with Eq. (4),
where p ið Þ is the percentage of the pixels belonging to landslide class i
among the total 1,000,000 pixels (i= 1: EAL; i=0: non-EAL); n repre-
sents the number of the class (2 in our case).

HðEALÞ= �
Xn

i = 1

pðiÞlog2pðiÞ ð4Þ

We then quantified the uncertainty of the landslide class given
that the value of a LCF is known using the conditional entropy
HðEAL∣LCFÞ. As shown in Eq. (5), l represents the value of a LCF, p lð Þ
denotes the percentage of the sampled pixels whose value is l on the
LCF map, and p i∣lð Þ represents the percentage of the sampled pixels
belonging to landslide class i when its value is l on the LCF map. Thus,
with Eq. (5), we computed the conditional entropy of each LCF.

HðEAL∣LCFÞ= �
X
l2LCF

p lð Þ
Xn

i= 1

p i∣lð Þlog2pði∣lÞ ð5Þ

The IG of a LCF is the difference between the information entropy
of the landslide class and the conditional entropy of the LCF, as
expressed in Eq. (6), representing how much the uncertainty of
determining a landslide as EAL has been reduced after knowing the
LCF. Following Eqs. (4) to (6), the IG of each LCF can be calculated and
ranked to identify the main influencing factors of EALs.

IG LCFð Þ=H EALð Þ � HðEAL∣LCFÞ ð6Þ

Data availability
The Sentinel-1 and Sentinel-2 data are available from the European
Space Agency (ESA) (https://scihub.copernicus.eu/dhus/#/home). The
seismicity data are available from the United States Geological Survey
(USGS) (https://earthquake.usgs.gov). The historical landslide inven-
tory in Italy (IFFI) is provided by the Istituto Superiore per la Prote-
zione e la Ricerca Ambientale (ISPRA) (https://www.progettoiffi.
isprambiente.it). The precipitation data are provided by the NASA/
Goddard Space Flight Center’s Mesoscale Atmospheric Processes
Laboratory and Precipitation Processing System (PPS), which develop
and compute the IMERG as a contribution to GPM, and archived at the
NASA GES DISC (https://gpm.nasa.gov/data/directory). The GPS data
of the Istituto Nazionale di Geofisica e Vulcanologia (INGV) network
are available from the Nevada Geodetic Laboratory (http://geodesy.
unr.edu).

Code availability
The script of the MCD method is included in the LIBRA software,
available at https://wis.kuleuven.be/stat/robust/LIBRAfiles/, and the
script of the DBSCAN method for InSAR is available at https://github.
com/ImagingGeodesy/DBSCAN_InSAR. Othermethods of data analysis
are illustrated through text or equations and scripts are available from
the authors upon request.
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