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High-precision estimation of emitter
positions using Bayesian grouping of
localizations

Mohamadreza Fazel1, Michael J. Wester 1,2, David J. Schodt 1,
Sebastian Restrepo Cruz3, Sebastian Strauss 4,5, Florian Schueder4,5,
Thomas Schlichthaerle4,5, Jennifer M. Gillette3,6, Diane S. Lidke3,6,
Bernd Rieger 7, Ralf Jungmann 4,5 & Keith A. Lidke 1,6

Single-molecule localization microscopy super-resolution methods rely on
stochastic blinking/binding events, which often occur multiple times from
each emitter over the course of data acquisition. Typically, the blinking/
binding events from each emitter are treated as independent events, without
an attempt to assign them to a particular emitter. Here, we describe a Bayesian
method of inferring the positions of the tagged molecules by exploring the
possible grouping and combination of localizations from multiple blinking/
binding events. The results are position estimates of the taggedmolecules that
have improved localization precision and facilitate nanoscale structural
insights. The Bayesian framework uses the localization precisions to learn the
statistical distribution of the number of blinking/binding events per emitter
and infer the number andposition of emitters.Wedemonstrate themethodon
a range of synthetic data with various emitter densities, DNA origami con-
structs and biological structures using DNA-PAINT and dSTORM data. We
show that under some experimental conditions it is possible to achieve sub-
nanometer precision.

Fluorescence super-resolution microscopy methods exploit the inde-
pendent behavior of fluorescent molecules to circumvent the diffrac-
tion limit1,2. Single-molecule localizationmicroscopy (SMLM)methods
combine the independent and sparse blinking of fluorophores with
direct inference of fluorophore’s locations3–6. The SMLM methods of
(d)STORM3,6 andDNA-PAINT7 often undergomultiple blinking/binding
events from each fluorophore and these blinking events are randomly
spaced temporally throughout the data collection. Throughout the
manuscript,we refer to a ‘localization’ as the estimateof thepositionof
the fluorophore from a single blinking/binding event and an ‘emitter’
as the fluorescently tagged molecule. These localizations can be used

to reconstruct high-resolution images of the underlying biological
structures8. Yet, the presence of multiple low precision individual
localizations per emitter hinders quantification of the underlying
biological structures required for understanding biology on nan-
ometer scale. For instance, better precision directly improves esti-
mates of the position and spacing between molecules, which is
necessary for understanding the structure and function of macro-
molecular complexes9 and signaling clusters10–12.

Each of multiple individual localizations generated from an
emitter during SMLM methods carries with it information that can be
employed to estimate the underlying emitter position with high
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precision, scaling as approximately 1/sqrt(λ) where λ is the number of
repeat blinking/binding events (Supplementary Note 4). However, in
practice, emitters exist in close proximity (often a few nanometers
apart) leading to dense areas containing many localizations with low
precisions. This in turn introduces considerable uncertainty in esti-
mating the underlying emitter positions and allocation of sub-groups
of localizations to these emitters. Therefore, to incorporate all the
existing sources of uncertainties into the problem, we adopt a Baye-
sian framework to explore all the possible grouping configurations for
a set of given localizations in order to make inference about the
number and positions of emitters.

There have been a few attempts to correct for multiple localiza-
tions per emitter, however, these methods are specialized to only
dSTORM and PALM13,14 as they rely on photobleaching to enumerate
emitters. These methods use maximum likelihood estimation which
does not propagate uncertainty from all the existing sources, e.g.,
uncertainty in the number of emitters and localization precisions,
throughout the problem. Here, we advance the state-of-the-art by
lifting the photobleaching requirement using a Bayesian Grouping of
Localizations (BaGoL) to deal with both dSTORM and DNA-PAINT data
while rigorously propagating uncertainty from all the existing sources.
BaGoL is also capable of correcting for residual drift in the input
localizations and accomplishes sub-nanometer precisions under dense
labeling conditions.

Here, we describe and demonstrate the BaGoL method. BaGoL
uses the observed localizations and their uncertainties to explore the
possible number of emitters (K), allocation of localizations to emitters
(Z), the distribution of the number of localizations per emitter (ξ), and
uses this information to make estimates of emitter positions (θ), often
with substantially improved precision. In the Bayesian paradigm, we
make inference about the set of unknown parameters (K, Z, ξ, θ) by
taking samples from the posterior probability distribution of these

parameters15. The posterior probability distribution is proportional to
the product of the likelihood model and prior distributions over the
unknown parameters (Supplementary Note 1). In practice, the BaGoL’s
posterior has a complicated form with a variable number of para-
meters, which stems from an unknown number of emitters K, and
cannot be directly sampled. Therefore, BaGoL uses Reversible Jump
Markov Chain Monte Carlo (RJMCMC)16 to draw samples from the
posterior to facilitate inference of the number of parameters,
i.e., model.

While Markov Chain Monte Carlo (MCMC) is confined to pro-
blems with a fixed number of parameters (fixed model), RJMCMC
makes inferences about the number of parameters (model inference)
as well as the parameters themselves. To do so, RJMCMC constructs a
chain of samples using an extension to the Metropolis-Hasting
algorithm17–19 to vary the model throughout the chain. The returned
chain can then be used to find the probability distributions of both the
models and the parameters within each model. Our method therefore
uses RJMCMC to vary the number of emitters to explore the possibility
of different models and can be used to make a weighted average over
allmodelsor tofind themost probablemodel (SupplementaryNote 2).

The input to the BaGoL algorithm is a set of localizations, uncer-
tainties, and time stamps generated by a traditional SMLManalysis20. If
there is a priori knowledge of the probability distribution for the
number of blinking/binding events of a single label, ξ, such as from a
dedicated control experiment where the sample is known to be at low
labeling fraction21, this can be given to the algorithm. Otherwise, this
distribution can be directly learned from the data. The complete
algorithm consists of several steps (Fig. 1, Supplementary Notes 2–3):
(1) Splitting the set of coordinates into smaller subregions to speed up
the analysis; (2) Removing outliers using a filtering step; (3) The
RJMCMC algorithm; (4) Generating the model with maximum a pos-
teriori number of emitters (MAPN) (i.e., the most repeated/probable
model) and posterior probability results; and (5) Stitching back toge-
ther the results of the subregions. We briefly describe each step below
whereas mathematical details can be found in the Supplementary
Information.
1. To speed up the calculations, the data set is split into sub-regions

with small overlaps that are used to account for edge effects. The
size of subregions is typically adjusted such that subregion size is
inversely correlated with the data density. There is no restriction
on the size of the subregions other than its effect on computa-
tional speed. We recommend using subregions with not more
than a few thousand localizations.

2. Localizations that were not generated from a single emitter in the
sample are considered outliers which can negatively affect the
performance of the algorithm and are therefore removed before
analysis, Supplementary Fig. 17. These outliers may arise, for
example, from fitting two closely spaced emitters as a single
emitter or from non-specific binding. To eliminate these outliers,
we include two types of optional pre-analysis filtering methods:
(a) localizations with an intensity higher than ~2 times the mean
are removed to prevent incorrect, but high-precision localizations
from entering the analysis22; (b) in DNA-PAINT data where many
localizations per emitter are expected but there is the possibility
of spurious non-specific binding events, localizations that don’t
havemany nearby neighbors are removed.We call this procedure
theNNDfilterwhich is further detailed in theMethods section and
Supplementary Fig. 17, where NND stands for nearest neighbor
distribution. We emphasize that the NND filter must not be used
for dSTORM data where it may be possible to have only one
localization per emitter.

3. The core RJMCMC step constructs a chain of samples by itera-
tively sweeping the parameter set including: the number of
emitters, K; the emitters’ positions and drifts, denoted by
θ = {μ1,a1..,μK,aK} where μk is the location of the kth emitter and ak

Fig. 1 | Bayesian grouping of localizations concept and data flow. Circles are
centered on given localizations with radii equal to two times the corresponding
localization precisions. Colors represent localization allocations to emitters.
Squares show emitters. a The data flow. The RJMCMC step is illustrated in further
detail in panels b–d. b From left to right, addition of a new emitter (blue) in a
random location is proposed via a Birth jump. From right to left, an existing emitter
is picked randomly and is eliminated from the model via a Death jump.
c Localizations are redistributed across the emitters via an Allocation jump while
emitter positions are fixed. d Given a fixed set of allocations, all emitter positions
are updated in a Move jump.
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models a linear drift term of the kth emitter; and the allocation of
the N localizations to K underlying emitters, Z (Supplementary
Movie 1). In each iteration, a parameter is selected at random and
explored by proposing a new value by a small jump in the current
value. BaGoL, uses four jump types to update the parameter
values illustrated in Fig. 1.Move selects new values of θ by directly
drawing samples from the posterior given the current values for
the rest of parameters. Allocate redistributes all localizations
across the K emitters while assuming the remaining parameters
stay fixed. Birth adds a new emitter to the current model and
redistributes the localizations. Death removes one of the emitters
and redistributes the localizations. Here, theMove jump is always
accepted by virtue of taking direct samples from the posterior,
whereas the other jumps are accepted or rejected with a prob-
abilityA as given by the rules of RJMCMC (Supplementary Note 2).
During the described RJMCMC iteration, the localization per
emitter distribution is used as a prior distribution. This distribu-
tion itself, parameterized by ξ, is explored using a hierarchical
Bayes approach, where information from data and the current
state of the chain is propagated to ξ through the number of
emitters, K; Supplementary Fig. 18. To facilitate mixing of the
chain, multiple RJMCMC steps are taken in between each MCMC
step that proposes a new ξ. The complete formalism is described
in Supplementary Note 1–2. Finally, the constructed chain of
samples is returned and used for the subsequent numerical
analyses.

4. BaGoL uses the chain of samples from the RJMCMC step to gen-
erate two output images: posterior and MAPN images. The pos-
terior image is a weighted average over all the possible models of
emitter positions, generated by a histogram-type 2D image of the
emitter positions stored in the chain. Moreover, the model that
has the most repeated/probable model is extracted from the
chain and is used to generate a MAPN image in the same manner
as the posterior probability image. The extracted model is also
used to calculate the MAPN emitter coordinates and their
uncertainties using k-means clustering of the distribution of
emitter positions in the chain23; Supplementary Note 3. For the
posterior image and resulting MAPN coordinates, emitter posi-
tions that fall into the overlapping regions are removed.

5. The posterior images for the subregions are combined to give a
single BaGoL reconstructed posterior image of the entire region.
The MAPN image of the entire region is also constructed by
combining the MAPN images of subregions.

Results
We benchmark BaGoL using a range of experimental and realistic
synthetic data from both DNA-PAINT and dSTORMmethods. First, we
show that BaGoL facilitates inspection of structures by combining
localizations to improve precisions using experimental DNA-PAINT
data from DNA origami structures with emitter separations varying
from 20nm to the challenging case of 5 nm, as well as biological
samples; see Figs. 2–3.We further show that ourmethod accomplishes
sub-nanometer precisions for multiple DNA origami structures in
Fig. 2. Moreover, we use synthetic DNA-PAINT data to benchmark
various aspects of ourmethodunder different conditions including: (1)
different emitter separations/densities (Fig. 4 and Supplementary
Figs. 1–7); (2) different number of localizations per emitter (Fig. 4 and
Supplementary Figs. 2–7); (3) presence of drift (Supplementary Fig. 8).
Using synthetic data, we also show that BaGoL: (1) can improve reso-
lutions for structures with tightly spaced emitters by improving pre-
cisions (Supplementary Fig. 9); (2)multiple subsequent applications of
BaGoL on data from identical DNA origamis attains accurate geometry
of structures with very high precisions (Supplementary Figs. 10–11).
For example, the average accuracy of thepredictedpositions byBaGoL
in Supplementary Fig. 10 is <1 nm; (3) outperforms other existing

grouping techniques (Supplementary Fig. 12). Next, we show that
BaGoL assists examination of biological structures and inspection of
the spatial distribution of molecules using dSTORM data, although it
does not exhibitmuch improvement in precisions due to small number
of localizations per emitter (Supplementary Figs. 13–15). To do so, we
use a range of biological data from microtubules, CD82, a scaffolding
protein found at the plasma membrane, and labeled EGF bound to
EGFR (Supplementary Figs. 13–14). Furthermore, we demonstrate
BaGoL’s performance using synthetic dSTORM data generated using
different emitter separations ranging from 5 to 15 nm (Supplementary
Fig. 15). In addition, we compared BaGoL’s performance for synthetic
dSTORM data with the DDC algorithm that employs pairwise distance
in conjunction with photobleaching to correct for multiple blinking
events13 (Supplementary Fig. 16). In what follows, we describe our
results in more detail.

We begin with Fig. 2, showing results for experimental data col-
lected using various DNA origami structures with decreasing spacing
between docking strands from left to right. In Fig. 2a–c we first show
the results of BaGoL applied to DNA-PAINT data collected from com-
mercially available 20 nm spaced DNA origami rulers that are intended
tobeused as test structures. TheBaGoLanalysis clearly improves upon
the traditional SR result and resolves the 20 nm spacing of the ruler
with a reported precision of about 1.2 nm (Supplementary Fig. 11). We
averaged multiple rulers and applied BaGoL to the combined MAPN
results over multiple structures (Supplementary Fig. 11), which gives a
ruler separationof 20.7 nmwhich is consistentwith themanufacturer’s
specification of 20 nm. Data in Fig. 2d–i was originally collected and
used to demonstrate a template-free particle averaging algorithm for
SMLM data24 whereas the data in Fig. 2j–l uses an improved sequence
design25 to increase the number of localizations per emitter. The
emitter positions in the 10 nm spaced arrays in Fig. 2d–f are clearly
resolved and have a sub-nanometer precision of 0.32 nm on average
from BaGoL. The TUD and MPI origami in Fig. 2g–l are also resolved
with mean precisions of 0.25 and 0.70 nm (sub-nanometer precision)
from BaGoL, respectively. In all cases, BaGoL improves upon the tra-
ditional SR analysis and reveals the underlying origami structures.
Particularly, BaGoL reveals accurate geometry of the TUD and MPI
structures (Fig. 2I, l), which have 5 nm spacing between adjacent
docking strands in an overall densely labeled local area (Fig. 2g, j).

In Fig. 3, we used BaGoL to analyze DNA-PAINT data of focal
adhesion formation and visualized kindlin-2-GFP with a DNA-labeled
GFP nanobody26. Figure 3a–c represents the conventional super-
resolution image with multiple localizations per emitter, posterior
image of BaGoL, andMAPN image from BaGoL, respectively. Figure 3d
shows a zoomed-in region of the super-resolution image where the
blue circles indicate the found MAPN emitter positions by BaGoL.
Figure 3e shows the corresponding MAPN images with improved
precisions. Figure 3f depicts histograms of localization precisions
before and after applying BaGoL showing a factor ~6 improvement in
precisions. Here, BaGoL provides a single position for each emitter
with high precision (MAPN emitter positions) allowing follow-up
quantitative analysis.

We additionally used synthetic data to assess the performance of
BaGoL under a wide range of potential imaging conditions. To assess
high labeling density conditions with an unknown distribution of
localizations per emitter, we used DNA-PAINT simulations with 50 and
15 localizations per emitter on average (λ = 50, 15) to build a plot of
Jaccard Index (JAC) and root mean square error (RMSE) vs density,
Fig. 4a. We used the BaGoL’s MAPN output for quantification and a
definition of JAC where a true position and MAPN coordinate are
considered a matched pair for the JAC calculation if the true position
falls within the 3 sigma precision radius of the MAPN position (see the
Methods section). The RMSEwas calculated by finding themeanof the
differences between the matched pairs in sets of true and found
positions. We simulated 5 data sets for every condition and plotted
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Fig. 3 | BaGoLapplied to the focal adhesion protein kindlin.Theprotein kindlin-
GFPwas visualized using aDNA-labeledGFPnanobody and imaged via DNA-PAINT.
a 5 × 5μm2 region of traditional super-resolution image. b BaGoL posterior image
of panel a. c BaGoLMAPN image of panel a. d Zoom-in of the green box in panel a.
Blue circles represent the found emitter coordinates by BaGoL. e Zoom-in of the

green box in panel c. f Histograms of the localization precisions from SR data
shown in brown (input to BaGoL), and the improved precisions fromBaGoL shown
in blue. BaGoL was applied to the focal adhesion protein kindlin data for three
similar regions. Scale bars in the top and bottom rows are 1000 and 100nm,
respectively.

Fig. 2 | Bayesiangrouping of localizations applied to various structures imaged
withDNA-PAINT. Row 1: Traditional SR analysis with each localization represented
by a Gaussian blob of the size of its localization precision. Row 2: Posterior prob-
ability image of the chain from BaGoL including all the proposed models. Row 3:
The image from the model with the most likely number of emitters (MAPN).
a–c Gattaquant DNA rulers with 20 nm spacing between docking strands. The
shown images were selected from the BaGoL results of 50 similar structures;

d–f DNA-origami grid with 10 nm spacing between docking strands. The shown
images were selected from the BaGoL results of 170 similar structures; g–i TUD
DNA origami with 5 nm spacing between docking strands. The shown images were
selected from the BaGoL results of 170 similar structures (see Supplementary
Movie 2); j–l MPI DNA origami with 5 nm spacing between docking strands. The
shown images were selected from the BaGoL results of four similar structures. The
source data is provided within the paper. The scale bars are 20nm.
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their average of JAC and RMSE in Fig. 4a. As shown in Fig. 4a, BaGoL
maintains a ~83% JAC with a RMSE of <1 nm up to 17,000 emitters per
μm2 (corresponding to an average nearest neighbor distance of
3.8 nm) for λ = 50. As expected, the JAC and RMSE results are corre-
lated with the average number of localizations per emitter (λ) and they
are, respectively, ~75% and 1.5 nm for λ = 15 and a density of 17,000
emitters per μm2. To show an example of the simulated data used in
our calculations of JAC and RMSE, we depicted a simulated data set
with 10,000 emitters per μm2 (corresponding to an average nearest
neighbor distance of 5 nm) and the resulting MAPN coordinates from
BaGoL in Fig. 4b, c. Figure 4d, e, respectively, shows zoomed-in images
of the green boxes in Fig. 4b, c. The true emitter positions are shown
with blue circles in Fig. 4e to compare them with the found positions
by BaGoL represented by Gaussian blobs. The sigma of Gaussian blobs
are equal to the resulting improved localization precisions
from BaGoL.

To assess BaGoL’s potential performance with two closely spaced
emitters (two-point resolution), we simulated two emitters with
separations from 1 to 10 nm (Supplementary Fig. 1). In all cases, BaGoL
gives an improved representation of the true emitter positions as
compared to that seen in the traditional SR reconstruction. At 1 nm
separation, the correct number of emitters is estimated but the posi-
tion uncertainty is the same scale as the separation and the two
emitters are not resolved. At 2 nm separation, the two emitters are
resolved with the reported uncertainty matching well with the
observed deviation from the true positions. At larger separations, the
precision and accuracy improve, which can be explained by less
uncertainty in allocations of localizations to emitters.

In Supplementary Fig. 2–7, we used small synthetic multimeric (8-
mer) structures to evaluate and illustrate the impact of emitter den-
sities and number of localizations per emitter on the performance of

BaGoL including: (1) deducing the underlying structures; (2) estima-
tion of the number of emitters (Supplementary Fig. 5); (3) improve-
ment in precisions, Supplementary Fig. 6; and (4) accuracy of the
estimated emitter positions, Supplementary Fig. 7. Supplementary
Figs. 2–4 show the traditional SR reconstruction, the BaGoL posterior
image, and the BaGoL MAPN image, respectively. Even at the smallest
radii of 2.5, BaGoLbegins to resolve the ring structure that is not visible
in the traditional SR reconstructions. With the larger spacings, BaGoL
resolves each emitter with a precision that improves with the number
of localizations per emitter and with separation. Supplementary Fig. 5
shows the histogram of the number of found emitters obtained by
analyzing 100 similar structures generated for each specific synthetic
8-mer. The reported precisions from BaGoL and the accuracies, as
calculated by the deviation from the true position, improve with a
number of localizations and spacing and are better than 1 nm for
several conditions (Fig. 2 and Supplementary Fig. 6). The improvement
with more localizations per emitter is related to both the ~1/sqrt(λ)
factor and the reduced uncertainty in the number of emitters. The
improvement with separation is related to both reductions in uncer-
tainty of number of emitters and the reduction in uncertainty of the
allocation of localizations to emitters. Moreover, the accuracy of the
estimated emitter positions (difference between the true and esti-
mated positions) are depicted in Supplementary Fig. 7, which again
show improvement with increasing separations and the number of
localizations per emitter.

In practice, it can be difficult to correct and entirely eliminate
drift. Therefore, when nanometer emitter drifts are present in the data,
our algorithm is capable of learning independent emitter drifts along
with other parameters, which comes with the cost of an approximate
factor of two loss of precision and accuracy (Supplementary Fig. 8).
Supplementary Fig. 8i, j depicts the learneddrifts byBaGoL in the x and

Fig. 4 | Jaccard index (JAC) and root mean square error (RMSE). JAC and RMSE
were calculated for nine logarithmically spaced concentrations starting from 1000
emitters per μm2 to 17000 emitters per μm2 corresponding to average emitter
separations ranging from 15.8 to 3.8 nm. a JAC and RMSE was calculated by aver-
aging over outcomes of five simulated data sets for each concentration. b An
example of simulated SR-data at a concentration of 10,000 emitters per μm2

(average emitter separation of 5 nm) with λ = 50 simulated over an area of

500 × 500nm2. cMAPNresults of panelbwhere each found emitter is presentedby
a Gaussian blob centered at the found location and a width similar to the corre-
sponding localization precision. d Zoom-in of the green box in panel b. e Zoom-in
of the green box in panel c. The BaGoL analysis in panel b-e was repeated for five
similar data sets. Details of the data simulation and analysis are described in the
“Methods” section. The blue circles represent the ground truth emitter locations.
Scale bars are 50nm.
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y directions where peaks of the histograms deviate from the ground
truth by <5%.

We explored the potential of BaGoL to improve resolution by
improving precisions and resolve features of continuous structures
with closely spaced emitters. Supplementary Fig. 9 shows the con-
ventional SR and BaGoL results of simulated DNA-PAINT data of line
pairs separated by two different distances, 6 and 12 nm, with average
emitter separations on the lines of 1.4 nm. BaGoL clearly resolves the
line pair separated by 6 nm whereas the conventional reconstruction
does not.

For structures that are expected to be similar, BaGoL can be re-
applied to aligned outputs from the MAPN where each MAPN emitter
position is treated like a localization (Supplementary Figs. 10–11).
Supplementary Fig. 10 illustrates this concept. Multiple individual
MAPN results were aligned to a template (Supplementary Movie 2).
The emitter positions and uncertainties returned from individual
structures were treated like localization positions and uncertainties,
and then grouped and combined using BaGoL to generate a high-
precision estimate of the average structure. The resulting TUD struc-
ture matches that expected from the DNA-origami design24 with an
average accuracy<1 nm. Supplementary Fig. 11 shows the results of this
procedure applied to the DNA-rulers data set.

In Supplementary Fig. 13–14, we apply BaGoL to experimental
dSTORM data from microtubules, the tetraspanin CD82 and labeled
EGF bound to EGFR and use the resulting emitter positions to inspect
the underlying structures and the spatial distribution of emitters. For
the microtubule data, BaGoL reveals the parallel tracks structure
expected from the 2D projection of a cylinder and that the sample is
under-labeled (Supplementary Fig. 13a, b). FromCD82data, a regionof
the cell was selected for BaGoL analysis to investigate the spatial dis-
tribution, Supplementary Fig 13d, e. The BaGoL MAPN positions were
used to calculate NND and the Hopkins’ statistic, both showing that
CD82 is more regularly spaced than expected from a purely random
(i.e. spatial Poisson) distribution (Supplementary Fig. 14a–f). Supple-
mentary Fig. 13g, h shows BaGoL applied to dSTORM data of labeled
EGF bound to EGFR. The small number of localizations per emitter
does not allowBaGoL todramatically improveprecision, but theMAPN
of BaGoL allows quantitative analysis. EGF induces dimerization in
EGFR giving rise to an ~20 nm separation that includes the size of the
EGF-streptavidin-biotin-Alexa647 label27. An inspection of the NND
(Supplementary Fig. 14h) and Hopkins’ statistics (Supplementary
Fig. 14i) of the MAPN coordinates shows a clustering behavior with an
excess peak in NND at ~20 nm as compared to that expected from
randomly distributed emitters (Supplementary Fig. 14b, c). Moreover,
Supplementary Fig. 15 shows simulated dSTORM data of crossed lines
with various linear labeling densities. Even with an average of just five
blinking events before photobleaching, BaGoL improves upon con-
ventional reconstruction. In addition, we compared BaGoL’s results
with the results from the DDC algorithm13, which relies on photo-
bleaching for enumerating emitters, using realistic simulated dSTORM
data (Supplementary Fig. 16). In Supplementary Fig. 16b, DDC has
modeled localizations further away from the cross (ground truth
locations) as single emitters likely due to the lack of uncertainty pro-
pagation from localization precisions in the DDC algorithm. We also
quantitatively assessed the performances by calculating the JAC and
RMSE for both algorithms. The resulting JACs are, respectively, 0.85
and 0.80 for BaGoL and DDC. Further, the resulting RMSEs are,
respectively, 12.9 and 13.2 nm for BaGoL and DDC. This implies that
BaGoL slightly outperforms DDC for dSTORM data but they are still
comparable.

The performance of the NND filter used to remove outliers is
illustrated in Supplementary Fig. 17. Supplementary Fig. 17a, b depicts
localizations from theMPI structure in Fig. 2j, and the histogram of the
number of localizations within threemedian of localization precisions.
The red dots in Supplementary Fig. 17a are localizations that fall to the

left of the valley in the histogram, indicated by the red arrow, and are
recognized as outliers. Supplementary Fig. 17c, d, respectively, show
the posterior image of BaGoL before and after applying the NND
outlier removal filter. Comparison of panels c-d demonstrates worse
precisions and spurious emitters in the absence of the filter. Supple-
mentary Fig. 17e–h depicts the same set of results for the TUD struc-
ture shown in Supplementary Fig. 10. In this case, the resulting
posterior image without applying BaGoL also shows excess emitters
and worse precisions in the presence of outliers in Supplementary
Fig. 17g.

Discussion
Grouping localizations to improve precision is a simple concept, but in
practice requires the proper treatment of uncertainties in both the
number of true emitters and the allocation of localizations to emitters.
There are many clustering algorithms that could be employed for this
problem such as hierarchical, k-means, Gaussian mixture models28,
DBSCAN29, Voronoi tessellation30, and others. None of these general
purpose clustering algorithms make best use of the information
available in SMLM data, particularly the variable localization precision
and information about the distribution of localizations from an emit-
ter. We tested several of these algorithms and did not obtain satis-
factory results (Supplementary Fig. 12). Therefore, we employed the
RJMCMC approach within the Bayesian paradigm described here,
which allows propagation of uncertainties, e.g., uncertainties in allo-
cations of localizations to emitters, throughout the problem and does
not require the number of emitters a priori.

The core RJMCMC step of the BaGoL algorithm makes the
assumption that localizations are generated by the underlying true
emitter, the emitter is labeled by a single dye or docking strand, and
that the localization uncertainty is reported correctly. We chose to
primarily use DNA-PAINT to demonstrate the quantitative aspect of
BaGoL experimentally because it is possible to label proteins with only
one docking strand and the binding kinetics are independent of laser
intensity (such as might vary across the image or with depth in total
internal reflection microscopy) and of buffer conditions such as oxy-
gen or thiol concentration. We also expect that the number of binding
events per docking strand will be well described by a Poisson
distribution31, although any distribution can be used with BaGoL.
Experimental SMLM data can provide additional challenges due to
spurious SMLM localizations that do not correctly originate from a
static, true emitter. Particularly detrimental are high-precision but
inaccurate localizations that can arise from fitting two emitters in the
raw data as a single emitter. Here, we used preprocessing to identify
and remove probable double-fitting events. In practice, it would be
desirable to image at a low enough duty cycle so that these events are
rare and/or use of amultiple emitter fittingmethod that could identify
these events as multiple emitters. Moreover, small, nanometer scale
movements of individual emitters are present for many emitters in
some of the data sets and required modeling these movements to
avoid mis-representation by an excess of emitters. Resolving these
issues allowed BaGoL results of experimental data to approach that of
synthetic data.

The grouping of localizations into emitters makes it possible for
downstream analysis such as cluster analysis of the resulting emitter
positions (Supplementary Figs. 13–14). BaGoL is particularly suited for
the quantitative analysis of small oligomers, such as dimers, separated
by several nanometers (Supplementary Fig. 1). In principle, imaging
longer would generate more localizations leading to higher precision.
In practice, the precision seems to be limited by sample fixation and
nanoscale movements. As a rule of thumb, we would recommend
targeting about 50 localizations per emitter with an anticipation of
~1 nm precision.

In this work, BaGoL was applied to 2D data. However, the algo-
rithm can be extended in a simple manner to any number of
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dimensions, most obviously to include the axial direction. This could
provide nanometer precision in the axial dimension comparable to
that from interference-based measurements32. Applications to other
dimensions can also be envisioned, such as overlapping spectral data.
The sub-nanometer precision of BaGoL could be combined with other
experimental approaches to generate independence and sparsity on
the scale of nanometer precision, such as multicolor imaging or
sequential imaging using orthogonal docking strands. It is also possi-
ble to use localizations’ timestamps in our likelihood model, but for
imaging modalities with no photobleaching, e.g., DNA-PAINT, this will
not yield any further benefits and may only provide minimal benefit
with dSTORM as evidenced by our comparable performance with the
DCC algorithm (Supplementary Fig. 16). Although grouping of locali-
zations in PALM data could also yield benefits14, and the BaGoL algo-
rithm could be applied to SMLM data from PALM, we did not explore
BaGoL performance with real or synthetic PALM data in this
manuscript.

Finally, BaGoL performance scales with the available information
in the input data sets. This formalism can make direct use of future
improvements in localisation precision and labeling accuracy, density
and stoichiometry.

Methods
BaGoL implementation
BaGoL was implemented in MATLAB (MathWorks Inc.) using object
oriented programming. The stages of the algorithmwere organized as
methods and functions of a class. All the methods, with the exception
of the frame connection algorithm, were implemented as MATLAB
m-files and require the MATLAB Statistics and Machine Learning
toolbox. The frame connection algorithm was written in C++ and was
compiled into amex-file that could be usedwithinMATLAB. A desktop
computerwith an i7, 3.64GHzCPUwasused toprocess both simulated
and experimental data. The software is included as Supplementary
Software 1. The algorithm took ~8min to analyze theMPI DNA-origami
structure in Fig. 2.

BaGoL analysis
The probabilities for proposing different jump types were (PMove,
PAllocate, PBirth, PDeath)=(0.25, 0.25, 0.25, 0.25). The localizations per
emitter distribution were either deduced simultaneously along with
the other parameters, or learned from a part of the data itself and then
used to analyze the entire data set by BaGoL. This is specific for each
data set as described in their individual sections. For experimental
DNA-PAINTdata,we removedoutlier localizations using theNNDfilter.
Outliers were identified based on the number of localizations within
three times themedianof the localization precisions. This procedure is
as follows: (1) calculate the number of localizations within three times
the median of the precisions, denoted by Ψ, for every localization; (2)
find the valley in the histogram of the set of obtained Ψ; (3) use the
valley as a starting point to find a threshold and eliminate localizations
that have less neighbors than the threshold. This is illustrated in Sup-
plementary Fig. 17. For some data sets, this procedure results in a little
larger threshold value than the valley within the histogram of Ψ
allowing a more aggressive outlier removal. The NND filter was not
used for dSTORM data due to the low number of blinking events per
emitter. Furthermore, to generate synthetic data, we used a PSF size of
120 nm and 1800 photons per blinking/binding event throughout this
work except where mentioned otherwise.

DNA origami
DNA-origami data was collected using μManager33. All DNA-origami
data exceptMPI structures were localized using the BAMF algorithm23.
TheMPI data was localized using PICASSO7. DNA-origami structures of
the TUD pattern (Fig. 2g) and grid pattern (Fig. 2d) were part of the
same data set, so we used the grid to estimate the distribution of

localizations per emitter, ξ. We did so by manually selecting multiple
isolated grids and the average number of localizations per emitter
were found by dividing the total number of localizations by the num-
ber of docking strands in those grids. The resulting mean value, λ ~ 85,
was used to parameterize a Poisson distribution prior for the locali-
zation per emitter distribution. This data set was originally collected
for our previous work24 and we removed outliers using the same pro-
cedure as described in this paper. The isolated grids and TUD struc-
tures were then manually picked and processed by BaGoL. The
localization precisions were inflated by 1.25 nm to compensate for
what appeared to be an under-reported localization precision. To
analyze the small and large grids, we took 1000 samples for both burn-
in and post burn-in chains. For TUD structures, 5000 samples for each
burn-in and post burn-in chain were taken from the posterior. The
MAPN coordinates from BaGoL for 170 TUD structures were aligned
with a template generated from origami design (Supplementary
Fig. 10). The collection of aligned coordinates and their associated
uncertainties were again processed by BaGoL using the mean number
of binding events λ = 150, which is approximately the number of
aligned TUD patterns. The precisions were inflated by 0.8 nm, while
this time theoutlierswere removedusing theNNDfilter asdescribed in
Supplementary Fig. 17.

For theMPI structure (Fig. 2j), the distribution of localizations per
emitter (ξ) was simultaneously estimated along with the other para-
meters. Theoutlierswere removedusing theNNDfilter, asdescribed in
Supplementary Fig. 17. The precisions were adjusted by inflating them
by 0.4 nm.

DNA rulers
The DNA-ruler data was collected and localized using custom-written
software packages MIC34 and SMITE35. 150 isolated DNA-rulers were
picked manually and analyzed by BaGoL. The distribution of localiza-
tions per emitter was fixed by adjusting the mean number of binding
events λ = 50, obtained the same way as explained in the previous
section. Outliers were removed using the NND filter, localization pre-
cisions were increased by 2.5 nm and no docking strands drifts were
permitted. An example of raw data and BaGoL results are presented in
Fig. 2a–c. The MAPN coordinates from the DNA rulers were then
shifted and rotated to match a template with the known spacing,
Supplementary Fig. 11. Not all DNA rulers in the test sample were
formed correctly. The DNA rulers that did not match the template,
defined as structures where the sum of their nearest neighbor dis-
tanceswith the templateweremore than6 nm,were removed fromthe
set of aligned DNA rulers. The collection of the MAPN coordinates
from the aligned structures was then analyzed by BaGoL using λ = 50.

DNA-PAINT data analysis of kindlin
A 5 × 5μm2 region of data was selected. Localizations were frame-
connected36 and those not connected to anything were removed. The
localizations were further filtered by the NND filter. We inflated the
precisions by 2.5 nm to compensate for under-reported precisions.
The data was analyzed using a subregion size of 500 nm and taking
10,000 samples from the posterior for each sub-region. The hier-
archical Bayes method, Supplementary Note 2.2, was used to learn the
localization per emitter distribution.

Jaccard index and root mean square error
To obtain the JAC and RMSE plots in Fig. 4, data sets with 9 logarith-
mically spaced concentrations, starting from 1000 emitters per μm2 to
17,000 emitters per μm2, were generated (average nearest neighbor
separations can be found as <r > = 1/(2sqrt(ρ)), where ρ represents the
concentration with respect to area). An example of the synthesized
data is presented in Fig. 4b. For every concentration, 5 data sets were
synthesized using average number of blinking events λ = 15, 50 per
emitter, over an area of 500 × 500nm2. Data sets were analyzed by
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BaGoL using subregion sizes of 50× 50 to 20 × 20nm2, for con-
centrations ranging from 1000 emitters per μm2 incremented loga-
rithmically to 17,000 emitters per μm2, and taking 30,000 samples
from the posterior. The hierarchical Bayes method was used to learn
the localization per emitter distribution. JAC and RMSE for each data
set were calculated using pairs of matched emitters from the ground
truth set and the set of MAPN emitters, where the matched emitters
were identified by minimizing the distance cost matrix between the
true and MAPN emitters using the Hungarian algorithm37 and pairs
with costs no more than three times the average of localization pre-
cisions returned by BaGoL.

Generation and analysis of synthetic dimers
Two groups of localizations with λ = 50, separations of 1, 2, 5, and
10 nm were simulated, Supplementary Fig. 1. The number of localiza-
tions per emitter and the average intensities of the localizations were
drawn from a Poisson and an exponential distribution, respectively,
with the given means. The produced data sets were then processed
using a fixed distribution of localizations per emitter by setting the
mean of ξ to the given λ values and taking 20,000 samples from the
posterior.

Generation and analysis of synthetic 8-mers
Synthetic 8-mers with radii of 2.5, 5, 10, and 20 nm were generated to
mimic positions and uncertainties that would result from a standard
SMLM experiment (the distance between neighboring emitters in an
8-mer is ~0.76 R, where R is the radius). The number of binding events
from each emitter was drawn from a Poisson distribution para-
meterized by the expected number of events per emitter, λ = 10, 20,
and 50. For each binding event, the number of photons collected, I,
was drawn from an exponential distribution with an average intensity
of 1800 photons. The localization precision of the blinking/binding
event for each dimension was calculated using σ =σPSF/sqrt(I). The
observed location of the blinking/binding events were generated by
drawing a value from N(y,σ2) where y is the true position at the time of
the event and N is the normal distribution. These data sets were
employed to make Supplementary Figs. 2–7. The produced data sets
were processed using hierarchical Bayes to learn the localization per
emitter distributions.

The depicted accuracies in Supplementary Fig. 7 are the distances
of the found MAPN positions from the true positions. These data are
compared to the predicted distribution f(r) = r/σ2 exp(-(r2/2σ2))
(magenta curves), in which the parameter σwas taken as the precision
mean from the corresponding simulations in Supplementary Fig. 6.
The distributions were scaled to have the same areas under the curve
as the accuracy data over the data ranges displayed.

Double crossed lines
The simulated cross was composed of double lines with separations of
6 and 12 nm and lengths of 100nm, Supplementary Fig. 9. Seventy
emitters were placed at random positions along each line, producing
an average nearest neighbor distance of ~1.4 nm. The emitters were
synthesized with λ = 50 average number of localizations per emitter.
The generated data set was then processed with a Poisson prior on the
number of localizations per emitter with a fixed mean λ = 50, taking
30,000 samples from the posterior.

Structure alignment
Structure alignment was performed by minimizing the nearest neigh-
bor distances between a template structure and the experimentally
obtained structures. An experimental structurewasfirstmoved so that
its center of mass matched with the center of mass of the template. It
was then iteratively rotated and translated by random amounts to
minimize the sum of the nearest neighbor distances between the
structure and the template vertices using aMonte Carlo approach. The

contributions of localizations to the sum with nearest neighbors fur-
ther than a cutoff distance were set to the cutoff distance. The length
of the chain was 3000 samples. For the first and second half of the
chain, we, respectively, used rotation and translation jump sizes of 1
and 0.1 radian, 0.5 and 0.05 nm. The second half of the chain was then
employed to calculate the rotation and translation that minimize the
sum of nearest neighbor distances. Examples of alignment of TUD-
structures and DNA-rulers are, respectively, presented in Supplemen-
tary Figs. 10–11.

Comparison of clustering algorithms
A synthetic 8-mer was generated as described above with a radius of
10 nm and λ = 50. This data set was analyzed using five different algo-
rithms as shown in Supplementary Fig. 12. The data set was processed
with BaGoL using the parameters λ = 50 and taking 10,000 samples
from the posterior. For the algorithm described in Rubin-Delanchy
et al.38, we used the recommended value, 20, for the Dirichlet prior and
a gamma distribution with a mean of 4 nm, which was the average of
the localization precisions. For DBSCAN, the mean number of data
points within a group was set to (λ−2sqrt(λ))/2 and the distance para-
meter ɛ was adjusted to be the average of the localization precisions.
The best result from 10 different runs of k-means with 150 iterations
and 8 groups is depicted in Supplementary Fig. 12e. The Gaussian
mixture model algorithm was run with 8 groups.

dSTORM data of biological samples
All the dSTORM data was collected using MIC34 and localized using
SMITE35 (custom-written software packages). Localizations with
intensities more than 3000, 2000 and 4000 photons were removed
from the lists of coordinates, respectively, for microtubules, CD82 and
EGFR, Supplementary Fig. 13. For these data sets, we first ran BaGoL to
learn ξ, numbers of blinking events per emitter distribution, via the
hierarchical Bayes scheme using less dense regions of the same data
sets. The returned ξ values were then used in second runs of BaGoL
where each data was processed by taking 5000 samples from the
posterior. The localization precisions were increased by 1, 2 and
0.75 nm, respectively, for microtubule, CD82 and EGFR data.

We also inspected the cluster formation andprotein interaction in
CD82 and EGFR data using the MAPN coordinates of emitters from
BaGoL; Supplementary Fig. 14. We calculated the nearest neighbor
distribution for both sets of MAPN coordinates, using the built-in
MATLAB function knnsearch, and compared them with uniform ran-
domly distributed data, Supplementary Fig. 14b, e, h. Hopkins’
statistics39 were also utilized to examine clustering in biological sam-
ples. The Hopkins’ statistic (H) tests for spatial randomness of a point
pattern by comparing nearest neighbor distances from random emit-
ters and randomly chosen positions. Supplementary Fig. 14c, f, i shows
the PDF of H for 1,000 iterations of random emitters and location
choices (blue) of simulated data compared to the analytic curve (red)
for pure randomdata. Values ofH near 0.5 imply randomly distributed
data, while values near 1 indicate highly clustered data, and values near
zero signify more regularly spaced data.

dSTORM data of cross in the presence of bleaching
dSTORMdatawas simulated considering anon-state, anoff-state and a
bleached-state for every fluorophore with off to on rate Kon = 2 × 10−4,
on to off rate Koff = 5 × 10−2, and on to bleach rate Kb = 0.05, respec-
tively, Supplementary Fig. 15. The life-time of the on-state and off-state
were sampled from exponential distributions with the given rates. A
fluorophore in on-state can transit to either the bleached-state or off-
state. Therefore, we used the Gillespie algorithm40 to simulate the
transition from theon-state to the next state using the ratesKoff andKb.
The data were simulated over 100,000 frames so that the entire set of
fluorophores were bleached. The fluorophores were equally spaced on
the cross with three different separations of 5 nm, 10 nm and 15 nm.
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The resulting number of blinking events per fluorophore have expo-
nential distributions with means of ~5. We used the same exponential
distribution as the prior on number of blinking events per emitter by
taking a gammapriorwith η = 1 and γ = 5, see SupplementaryNote 1 for
a description of the parameters.

Experimental data collection
DNA rulers. GATTA-PAINT nanoruler slide samples (HiRes 20R,
GattaQuant DNA Technologies) were used as purchased. Imaging
was done on an Olympus IX71 inverted wide field fluorescence
microscope setup as described previously41. Fluorescence excita-
tion of the sample was done using a 642 nm laser diode (HL6366DG,
Thorlabs). The laser beam was collimated and passed through a
multi-mode fiber (P1-488PM-FC-2, Thorlabs), before being focused
on the back focal plane of a 1.45 NA oil objective (UAPON
150XOTIRF, Olympus America Inc.). TIRF excitation of the sample
was achieved by translating the laser close to the edge of the
objective back aperture. Fluorescence emission collected from the
nanoruler sample was passed through a quad band dichroic/emis-
sion filter set (LF405/488/561/635-A; Semrock, Rochester, NY) and a
band pass filter (685/45, Brightline) before being detected using an
EM CCD camera (iXon 897, Andor Technologies). A total of
100,000, 256 × 256 pixel frames were collected using a 100ms
exposure time. Data collection on themicroscopewas controlled by
custom-written MATLAB instrument control software (MIC)34. The
raw super-resolution data of DNA rulers was processed by a single-
emitter fitting algorithm42 and thresholded by p-value and locali-
zation uncertainty43. Localizations from the same binding events
were combined using a frame connection algorithm.

DNA-origami. DNA-PAINT data was collected as described in refs.
24, 25. The raw super-resolution data for the origami grids and TUD
logos were analyzed using the BAMF multiple-emitter fitting
algorithm23,24. The raw super-resolution data of MPI logos were ana-
lyzed using the PICASSO package7. The resulting localizations were
then combined across consecutive frames using a frame connection
algorithm. Localizations that were not connected across at least two
frames were filtered out.

DNA-PAINT kindlin-2-GFP. Cells were maintained in high glucose
Dulbecco’s modified Eagle’ medium (Thermo Fisher, 31966047) sup-
plemented with 10% fetal bovine serum (Thermo Fisher, 10270106)
and 1% penicillin/streptomycin (Sigma, P4333). Kindlin-2-GFP con-
structs were stably expressed together with talin-1-RFP by retroviral
infection in quadruple knockout fibroblasts deficient for talin-1, talin-2,
kindlin-1, and kindlin-2(Tln1 − /−Tln2−/−K1−/−K2−/−)44. Kindlin-2-GFP
was labeled for DNA-PAINT imaging by a GFP nanobody conjugated to
the R1 DNA-PAINT sequence to label the cells as described in ref. 25.
For imaging, 40,000 cells were seeded on ibidi 8-well glass bottom
slides (ibidi, 80807) as described in ref. 26. 80,000 frames were
recorded at 100ms integration time using 200 pM R1-Cy3b imager.
Data was acquired on an inverted Nikon Eclipse Ti microscope (Nikon
Instruments) with the Perfect Focus System, operated with an
objective-type TIRF configurationwith an oil-immersion objective (CFI
Apo TIRF 100×/1.49-NA). Samples were excited with a 561-nm laser
(Coherent Sapphire). The laser beam was passed through a cleanup
filter (ZET561/10; Chroma Technology) and coupled into the micro-
scope objective with a beam splitter (ZT561rdc; Chroma Technology).
Fluorescence light was spectrally filtered with two emission filters
(ET600/50m and ET575lp; Chroma Technology) and imaged on an
sCMOS (scientific complementary metal-oxide semiconductor) cam-
era (Zyla 4.2plus; Andor Technologies). Imaging was performed with-
out additional magnification in the detection path and 2 × 2 camera
binning, resulting in a pixel size of 130nm.

dSTORMmicrotubules. HeLa cells were plated on a #1.5 coverslip in
growth media and were incubated overnight. The cells were washed
once with PBS and then fixed by a two-step fixation: 60 seconds in a
solution of 0.6% paraformaldehyde, 0.1% glutaraldehyde, 0.25%
Triton X-100 in PBS, followed by 1.5 h in a solution of 4% paraf-
ormaldehyde and 0.2% glutaraldehyde in PBS. The cells were then
washed twicewith PBS followed by 5min in a solution of 0.1%NaBH4
in PBS. The cells were again washed twice with PBS followed by two
5min washes in a solution of 10mM Tris in PBS. The cells were then
washed twice with PBS followed by a 15 min wash in a solution of 5%
BSA and 0.05% Triton X-100 in PBS. The cells were washed oncewith
PBS and then labeled for 1 hour in a solution of 2% BSA, 0.05% Triton
X-100, and 2.5 μg/mL of anti-α tubulin-Alexa647 (NOVUS Biologi-
cals, NB100-690AF647) in PBS. The cells were then washed three
times for 5 min each in a solution of 2% BSA and 0.05% Triton X-100
in PBS. Imaging was performed in a standard dSTORM imaging
buffer with an enzymatic oxygen scavenging system and primary
thiol: 50mM Tris, 10mM NaCl, 10% w/v glucose, 168.8 U/ml glucose
oxidase (Sigma #G2133), 1404 U/ml catalase (Sigma #C9322), and
60mM 2-aminoethanethiol (MEA), pH 8.5. Data was collected as
described for the DNA-rulers with 16ms exposure time and a total of
200,000 frames. Weak 405 nm light was used to accelerate emitters
out of the dark state.

dSTORMCD82. HEK 293 cells stably overexpressing mCherry-CD8245

and EGFR-EGFP46 were plated on fibronectin coated eight-well Lab-Tek
chamber slides overnight at 37 °C. Cells were fixed with 4% PFA,
blockedwith 3%BSA/PBS and labeledwithAlexa Fluor647 anti–human
CD82 antibody (BioLegend, ASL-24) at 1.0 μg/mL. Cells were washed
and fixed again with 4% PFA. Labeled cells were imaged in a reducing
buffer composedof 50mMTris, 10mMNaCl, 10%w/vglucose, 168.8 u/
ml glucose oxidase (Sigma #G2133), 1404.0U/ml catalase (Sigma
#C9332), and 20mM MEA, pH 8.5. Cells were imaged using a custom
TIRF microscope system as described for the DNA-rulers. 40,000
frames were collected per cell, with a brightfield image acquired every
2000 frames for registration and drift correction. Each frame was 256
× 256 pixels with a pixel size of 0.107 µm and an acquisition time of
16ms per frame.

dSTORM EGF. CHO cells stably expressing EGFR-GFP46,47 were pla-
ted overnight on piranha cleaned 25mm coverslips. Cells were
washed with PBS and then treated with 50 nM AlexaFluor647-
conjugated EGF (ThermoFisher Scientific, #E35351) for 8min at
room temperature to ensure dimerization of EGFR on the basal
surface of the cell11. Cells were washed with PBS and immediately
fixed with 4% paraformaldehyde for 2 h. Finally, cells were washed
two times with PBS and once with 10mM Tris-HCl (pH 7.2) and
stored in PBS until imaging. Imaging was performed in a standard
dSTORM imaging buffer with an enzymatic oxygen scavenging
system and primary thiol: 50mMTris, 10mMNaCl, 10%w/v glucose,
168.8 U/ml glucose oxidase (Sigma #G2133), 1404 U/ml catalase
(Sigma #C9322), and 60mM 2-aminoethanethiol (MEA), pH 8.5.
Data was collected using a custom-built microscope consisting of a
647 nm laser excitation source (500mW 2RU-VFL-P; MPB Commu-
nications Inc.), an sCMOS camera (C11440-22CU; Hamamatsu Pho-
tonics) a 1.35 NA silicon oil immersion objective (Olympus
UPLSAPO100XS) and a 708/75-nm emission filter (FF01-708/75-25;
Semrock). A total of 60,000 frames were collected with an exposure
time of 50ms per frame.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Article https://doi.org/10.1038/s41467-022-34894-2

Nature Communications |         (2022) 13:7152 9



Data availability
The data that support this study are available from the corresponding
authors upon reasonable request. Source data are provided with
this paper.

Code availability
The BaGoL software package is included as Supplementary Software 1
and also available on Github (https://github.com/LidkeLab/BaGoL).
Some of the data sets were collected and localized using custom-
written softwarepackages ofMIC and SMITE, available onGithub (MIC:
https://github.com/LidkeLab/matlab-instrument-control) and (SMITE:
https://github.com/LidkeLab/smite).
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