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Intrinsic brain dynamics in the Default Mode
Network predict involuntary fluctuations
of visual awareness

Dian Lyu1,2, Shruti Naik 3, David K.Menon 1,4 & Emmanuel A. Stamatakis 1,2

Brain activity is intrinsically organised into spatiotemporal patterns, but it is
still not clear whether these intrinsic patterns are functional or epiphenome-
nal. Using a simultaneous fMRI-EEG implementation of a well-known bistable
visual task, we showed that the latent transient states in the intrinsic EEG
oscillations can predict upcoming involuntarily perceptual transitions. The
critical state predicting a dominant perceptual transition was characterised by
the phase coupling between the precuneus (PCU), a key node of the Default
Mode Network (DMN), and the primary visual cortex (V1). The interaction
between the lifetime of this state and the PCU- > V1 Granger-causal effect is
correlated with the perceptual fluctuation rate. Our study suggests that the
brain’s endogenous dynamics are phenomenologically relevant, as they can
elicit a diversion between potential visual processing pathways, while external
stimuli remain the same. In this sense, the intrinsic DMN dynamics pre-empt
the content of consciousness.

Being aware is believed to be a globally “illuminated” inner state when
locally encoded information gets propagated through subsequent
pathways and becomes accessible to other processing streams in the
brain1. However, the mechanism of the propagation process is largely
unknown. Recent theoretical developments in brain dynamics suggest
that the spontaneous information propagationmay be empowered by
the intrinsic ignition of neural activity2,3. Empirically, intrinsic brain
activity has been extensively studied recently during resting state
when no external stimuli are presented to participants. At rest, neural
activity from certain distant regions is correlated forming what are
known as large-scale networks. We hypothesise that the information
propagation during the state of “being aware” can be influenced by
intrinsic perturbations from the endogenous dynamics of large-scale
brain networks, by which the brain’s intrinsic activity might cause a
“butterfly effect” to the downstreamperceptual or cognitive events. In
this study, we used the well-known Binocular Rivalry (BR) paradigm,
with a simultaneous functional magnetic resonance imaging (fMRI)-
electroencephalogram (EEG) implementation, to investigate whether

and how intrinsic brain activity of a large-scale brain network influ-
ences the involuntary perceptual fluctuations during bistable visual
awareness.

BR is a robust visual phenomenonwhere the participant perceives
continuously alternating images even though the external visual sti-
muli remain the same. To successfully trigger this phenomenon, dis-
similar images need to be presented to the two eyes (each eye’s view is
blocked from the other); and to ensure balanced representations of
the two images (or “percepts” as we shall call them in this paper), the
two images should be distinguishable but of comparable features such
as image contrast, cognitive load of the content etc.4. BR is a popular
paradigm for the studies of visual awareness, and by extension the
neural correlates of consciousness (NCCs)4–6. A classical model for
explaining the BR mechanism is the mutual inhibition model (MIM),
which generally takes the form of a non-linear dynamic system7. Such
models require mutually inhibitory neurons encoding the repre-
sentations of the two images (forming attractors in the model) and
possible sources of perturbations, i.e., global and/or local adaptation
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of the neuronal populations as well as neuronal noise8–10. A dominant
percept during BR can be considered as a stable state/equilibrium
achieved by the neuronal activity settling in one of the two possible
attractors, while the state can escape from the current attractor under
the influence of noise or habituation processes (such as spike fre-
quency adaptation and synaptic fatigue)7–10. The MIM has been suc-
cessful in fitting behavioural data measured during experiments, but
empirical neural evidence to support themodel is limited11. In fact, this
explanatory framework only focuses on the dynamics of the local
neural circuitry, but totally ignores the background neural dynamics.
However, the intrinsic dynamics of brain networks may have a lot of
interactions with primary sensory regions, and as a result modulate
local sensory processing1,12–14.

Intrinsic brain activity is not random, instead, it is spatiotempo-
rally organised into reproducible, topologically meaningful
patterns15–17. Although the spatial patterns of large-scale networks are
mostly derived from mentally-unconstrained resting state, they can
also be identified in tasks across various cognitive domains, hence
have been suggested to serve as a topological scaffold supporting
various brain processes18,19. A large-scale network that has achieved a
prominent position in recent literature is the default mode network
(DMN)20. The DMN encompasses a wide range of associative regions
across the prefrontal, temporal and parietal lobes, and consumes a
major part of the brain’s energy budget20,21. A functional gradient
analysis demonstrated that theDMN is situated at the topof the brain’s
information processing hierarchy, where multi-modal sensory infor-
mation is integrated and highly abstract information (such as a con-
cept of “self”) is formed22. Dynamic neural state studies using Hidden
Markov models have shown that DMN activity dominates the latent
brain states which are characterised by the synchronisation of high-
order cognitive networks; where latent states are defined as recurring
transient states that are assumed to drive the observed global neural
dynamics15,17. From a perspective of control theory, it was also sug-
gested DMN regions have the highest capability for steering the whole
brain from one state to another23.

Clinical studies have already highlighted the significance of the
DMN in consciousness24–26, but little work has been done to investigate
the role of the DMN in visual awareness, even though the bistable visual
phenomenon is a classic experimental paradigm for investigating the
NCCs5,6,27. There has been some suggestion in the literature that the
DMN may play a role in BR. In many fMRI/EEG studies utilising the BR
paradigm, frontal and parietal regions have been reported to be
engaged28–31, some of which may overlap with DMN subregions, espe-
cially in the parietal cortex where high-level cognitive networks mostly
converge32. A recent fMRI study using ambiguous images as stimuli to
study pattern disambiguation established a role for the DMN in prior-
guided visual perception33, which suggests that the DMN is involved in
theonlinemodulationof visual processing and its functionmayperhaps
be associated with perceptual disambiguation. Furthermore, there is
accumulating evidence demonstrating the DMN’s engagement in tasks,
contrasting to thewell-establishedbelief that theDMN is a “resting state
network”34–36. These suggest that the contribution to cognitive function
from areas thatmake up the DMN is still not well understood. Given the
DMN’s role in global cortical dynamics and conscious representation,
we hypothesised that intrinsic DMN dynamics may influence the per-
ceptual fluctuations during BR, possibly by causing perturbation to the
equilibrium of the current dominant percept.

Results
Behavioural analyses
This experiment has been previously validated, analysed and pub-
lished in the recent literature37,38. For maximally eliciting BR percep-
tion, the experiment used stimuli of rotating green and red
checkerboard images, which were presented to each eye simulta-
neously. The order of green and red visual stimuli was

counterbalanced between the left and right eyes across participants
and their multiple experimental sessions. In a perceptually matched
Replay (RPL) condition where no BR is elicited, the same rotating
images of the red or green checkerboard were presented to both eyes
at the same time, but they alternated in time (Fig. 1a, d). Participants
were asked to instantaneously report their percept by using three
different buttons, respectively for the (dominant) red or green per-
cept, and the mixed percept i.e., a transitional phase between the red
and green percept. Therefore, this paradigm had a 2 × 2 factorial
designof dominant (redor greenpercept) andmixedpercept types for
the BR and RPL conditions.

Individual differences of the percept duration during BR were
significant (Fig. 1b) (Residual Sum of Squares [RSS] was reduced by
1490, p = 0.00 according to a χ2 test, and the Akaike Information Cri-
terion [AIC]wasdecreasedby 1057.5. Bothmeasures suggest that there
was stronger model evidence for a model that considers individual
differences compared to the null model). The duration of (dominant/
mixed) percept formed a heavy-tailed distribution (skewness = 1.29,
kurtosis = 2.89 for dominant percept; 3.15 and 17.82 for mixed per-
cept), and the dominant percepts (median = 2.22 seconds for the red
and 2.04 for the green) were significantly longer (decreased AIC/
dAIC= 7985) than the mixed percepts (median =0.33) (Fig. 1c).

Multimodal neuroimaging analyses
Different than the goal of the original study using this dataset to reveal
fMRI activation associated with BR-induced perceptual transitions38,
our goal was to test the hypothesis that the endogenous neural
dynamics in high-level cortical areas (i.e., DMN) can influence low-level
(i.e., primary visual cortex) information processing. Given the con-
troversies regarding the DMN’s role during tasks34,36,39, we first con-
firmed the involvement of the DMN regions in this task with the fMRI
dataset. Then using the EEG dataset, we conducted evoked response
analyses to (1) narrow down a time window preceding the subjective
report of a perceptual transition and (2) constrain source spatial
localisation within the DMN, for facilitating our further modelling of
thedynamic neural process. Finally, with theDMNsource signals of the
specified time window, we adopted time-delay embedded Hidden
Markov Model to search for the transient spatiotemporal patterns
which serve as endogenous neural triggers of the upcoming, involun-
tary perceptual changes during BR. The analysis pipeline is presented
in the supplementary information (Supplementary Fig. 1)

In agreement with the previous literature30,31, we found sig-
nificantly activated regions in the cuneus, the intraparietal sulcus/
inferior parietal lobule (BA40), angular gyrus (BA39) and inferior
frontal gyrus (BA47), for the contrast of BR (dominant) > RPL
(dominant). As suggested by the meta-analysis driven BrainMap
network atlas, a large portion of the significantly activated regions
overlapped with the DMN, supporting our hypothesis about the
DMN’s involvement in the task (view the full report of significant
clusters by using this link: https://htmlpreview.github.io/?https://
github.com/Aubrey-Lyu/BR-project/blob/master/Analysis-2_fMRI/
results/fMRI_activation_results_formated.html). Here we highlight an
F-contrast for the 2-by-2 interaction effect: 2 perception types
(dominant vs. mixed) × 2 ways of perception generation (BR vs. RPL),
which revealed the DMN and visual cortex having the most variable
activation patterns among the four conditions (Fig. 2).

The EEG recording with its excellent temporal resolution allowed
us to investigate a short time interval right beforemanual indication of
a perceptual change. Global Field Power (GFP) of the perceptual con-
ditions revealed that the most eventful epoch was between [−400,
−200] ms, which was when the EEG sensor voltages differed the most
between the BR (dominant) andRPL (dominant) conditions (MeanGFP
was 0.99 µV for BR and 1.59 µV for RPL, with a difference of t = −2.23,
p =0.037). Further, a cluster-based permutation t-test over the [−500,
0]ms time-window confirmed significant time-clusters between [−388,
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−350] ms, p-corr < 0.05) (Fig. 3a). Though based on response-locked
analyses, this result is comparable with previous literature dominated
by stimulus-locked analyses, which suggests that a ERP component
(roughly happening 300ms before a key press) from parietal activity
indicates a conscious recognition of a perceptual disambiguation40.

We observed no significant difference formixed percept between
the BR and RPL conditions during the same temporal window (Fig. 3b,
mean GFP during [−400, −200] ms was 1.11µV for BR and 1.34 µV for
RPL, with a difference of t = −1.45, p =0.175; Fig. 3b). Further 2-way
Analysis of Variance (ANOVA) in this time-window revealed a sig-
nificantmain effect of the source of perceptual transitions (F1,19 = 4.70,
p-corr = 0.04), but no significant main effect of perceptual types
(mixed or dominant) was found (F1,19 = 0.29; p-corr = 0.59). Although
there was a trend in the interaction effect between the source of per-
ceptual transitions and the perceptual type, the test was not significant
(F1,19 = 2.63; p-corr = 0.12; Fig. 3c). The event-related potential (ERP)
topographies during the [−400 −200] ms time window for the domi-
nant percept in both conditions are shown in the Fig. 3d.

To discover the brain location of the signals that generated
this difference in scalp topography, we then conducted source
reconstruction for the ERPs during this time window. The source
reconstruction indicated that the toporagphy was driven by a
deactivation in the posterior cingulate cortex (PCC; Brodmann
area (BA) 23/24), precuneus (PCU; BA 31/7 m), thalamus, insula,
caudate, claustrum and the fusiform gyrus (BA 20) during BR
(dominant) vs. RPL (dominant) condition. An F contrast during this
time window for the interaction effect of the four conditions
revealed the following regions: insula (BA 13), postcentral gyrus
(BA 43), thalamus, parahippocampal gyrus (BA 34), PCC (BA 30),
inferior frontal gyrus (BA 47) and anterior cingulate cortex (ACC)
(Fig. 3e). The activation profiles for finer grained frequency bands
and time windows were also explored for a sanity check, with no
further attention paid to their differences. The full results are
presented in the online repository: https://htmlpreview.github.io/?
https://github.com/Aubrey-Lyu/BR-project/blob/master/Analysis-
3_EEG/results/evokeResponse_result_table_permutationtest.html.
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Fig. 1 | Experimental design with 2-by-2 conditions of different percepts and
ways of percept generation. a Experimental schema adapted from the original
study from which the data was shared38. During the binocular rivalry (BR) blocks
(left), the participants were presented with different images, each for one eye, in
the centre of the visual field. During the replay (RPL) blocks (right), the participants
were presented with the same image for both eyes, and this image alternates over
time between red, green via a short superimposition. The purpose of the RPL
condition is to simulate the perceptual experience in the BR condition but without

evoking binocular rivalry: both conditions can generate alternating red/green
(dominant) and mixed (transitional) percepts, but the alternation was endogen-
ously generated in the BR condition, while it was exogenously elicited in the RPL
condition.b Individualdifference in perceptduration (s) for different percept types
in the BR condition (Ntrial ≈ 327 per participant per condition). c Distributions of
percept duration in the BR condition. d Percept duration for different percepts in
the RPL and BR condition (Nparticipant = 20).
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Dynamic neural pattern analyses
Touncover the endogenous neural activities that trigger theupcoming
perceptual change, we applied a dynamic neural pattern analysis to the
one second (s) time window before every subjective indication of a
perceptual change. We identified the dynamic neural patterns/states
by using the time-delay embedded HiddenMarkovModel (TDE-HMM)
toolbox (https://github.com/OHBA-analysis/HMM-MAR) which pro-
vides a series of encoding and decoding methods to (1) discover the
transient spatiotemporal patterns inherent in the source signals of all

trials, (2) extract spectral information (i.e., the power and phase
coherence among ROIs in canonical frequency bands) from the states
for interpretation. According to our hypothesis: if the intrinsic fluc-
tuation of the DMN regional activity influences the perceptual transi-
tions during BR, we should expect to find a correspondence between
the neural dynamics of DMN regions and the upcoming perceptual
transitions.

We set the HMM algorithm to extract four states among the
regional signals of all trials from all conditions and subjects (Fig. 4).

Fig. 2 | FMRI activation revealing the DMN’s involvement in the current task.
Subplots a–c show the significant clusters [pvoxel < 0.001 (uncorrected) & pcluster <
0.05 (family-wise error corrected)] respectively for the contrasts “BR (dominant) -
RPL (dominant)”, “BR (mixed) - RPL (mixed)” and the interaction effect between
perceptual generating (BR vs. RPL) and perceptual (dominant vs. mixed) condi-
tions. The interaction analysis (c) shows the regions mostly sensitive to the con-
dition differences. For statistical testing of (a–c), we adopted linear mixed-effects
models, where the paired t-tests and F-test were carried out at the individual level,
while statistical inferences weremade at the population level with group-level one-
sample t-tests (input being the individual-level estimators). Hence, the colour
bars of the subplots (a–c) indicate the t scores from the group-level testing
(Nparticipant = 20). Boxplots inb and all other cases in this paper present themedian,
lower quartile and upper quartile of the data respectively at the middle, the lower
and upper bound of the boxes. The data range is indicated by the whisker vertically
centred at the box. The circular plot in c shows the Intrinsic Connectivity Network

(ICN) affiliation of the significant clusters for the interaction effect. “ICN involve-
ment” is a measure of correspondence between an activation map and large-scale
networks with well-established cognitive function, as provided by the BrainMap
(BM) meta-analysis database89. The BM number on the circular plot indicates the
number of the ICN-BM network atlas. Cognitive domains of the networks that have
negligible involvement in this task are not listed in the figure. These are BM1: Limbic
andmedial-temporal areas; BM3: Bilateral BG and thalamus; BM4: Bilateral anterior
insula/frontal opercula and anterior cingulate gyrus; BM5: Midbrain; Cerebellum;
BM6: Superior and middle frontal gyri; Sensorimotor; BM9: Superior parietal
lobule; Frontoparietal (perception-somesthesis-pain); BM10: Middle and inferior
temporal gyri; Frontoparietal (cognition-language); BM11: Lateral posterior occi-
pital cortex; BM14: Cerebellum; BM16: Transverse temporal gyri; BM17: Dorsal
precentral gyri, central sulci, postcentral gyri, superior and inferior cerebellum;
BM19: Artefactual component; BM20: Artefactual component.
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Four components were specified as we expect the states to be inter-
pretable in terms of the experimental conditions, supposing that the
visiting time of the four states in the four conditions would be sig-
nificantly different. In addition, four components have often been
specified for discovering the EEG microstates in existing literature41,
and were shown to have correspondence with the Intrinsic Con-
nectivity Network (ICN) dynamics measured from the BOLD signals42.
The resulting auto-covariance patterns of the four states are presented
in the SI (Supplementary Fig. 4). All of the comparisons were carried
out within subjects and the difference was then grouped together for
the population-level inference.

To establish the cognitive relevance of the data-driven neural
states, we firstly compared the states’ dynamics features, such as the
switching rate (SR), i.e., the rate of state switches which can be
understood as a measure of state stability, and the fractional occu-
pancy (FO), i.e., theproportionof dwelling timeon a certain state given
a period of time.

The SRs were not different across conditions, except that the RPL
(mixed) had significantly higher SR than the rest (t = 3.57, p-adj = 0.00
vs. BR (dominant); t = 3.30, p-adj = 0.00 vs. BR (mixed), and t = 3.00, p-
adj = 0.01 vs. RPL (dominant)). The fact that the SRs were about a
quarter each suggested that there was a good mix of the presence of
the four states, indicating that the states had been separated well for
capturing the multi-dimensional variance in the data.

Importantly, we found that the four states’ FO was significantly
different among the conditions (F9,304 = 22.86, Cohen’s F2 = 0.68,
p =0.00, dAIC = 147.45). To establish exactly how the states’ FO dif-
fered (Fig. 5a), permutation tests were conducted within each experi-
mental condition for state-wise comparisons (with 2000 permutations
for simulating a null distribution of the state-wise differences). It

turned out that the states can discriminate conditions, in a way that a
unique state was always visited mostly during one specific condition
(Fig. 5b). This pattern was most noticeable in the BR (dominant) and
RPL (mixed) conditions, where respectively State 4 and State 1 clearly
stood out, with significant median differences of 0.44 (p-adj = 0.00),
and 0.36 (p-adj = 0.00) to the second most prominent state in their
respective conditions. Similarly, in the RPL (dominant) and the BR
(mixed) condition, State 2 and State 3 were respectively visited the
most, nevertheless they were not visited significantly more often than
the second most prominent state.

To validate that the states captured the endogenous neural trig-
ger of perceptual transitions in the BR, we further conducted a cross
validation (CV), using the trial-by-trial FOs of the hidden neural states
to predict the type (mixed or dominant) of the upcoming transition.
This was done respectively for the BR and RPL conditions. As a result,
the accuracy score for the BRconditionwas 91.38% (SD= 7.98%),which
was significantly higher (t = 2.92, p = 0.006) than the score of 82.40%
(SD = 10.77%) for theRPL condition (see the SI Supplementary Fig. 6 for
more details). This suggests that these neural states have registered
the endogenous neural activities that could predict the upcoming
perceptual change during BR.

To unpack the neuronal signatures encapsulated in the states, we
then extracted the spectral information (power and phase coherence)
from the multivariate auto-covariance matrix of each state. Once we
had estimated the power and coherence for each state, we factorised
the frequencies into a few dominating components so as to facilitate
interpretation with conventionally defined frequency bands. For that,
we applied a non-negative matrix factorisation (NNMF) algorithm on
the coherence matrix, concatenated across all states and ROIs and
confined it to four components. The four components turned out to

Fig. 3 | Event-Related Potentials for different perceptual conditions. a Event-
Related Potential contrast between BR and RPL for dominant percept at the sensor
level. The global field power (GFP) in the RPL condition was significantly higher
than that in BR condition from −400 to −200ms before the reported change in
percept at 0 s. This is indicated in the plot with the black horizontal line (p-corr
<0.05 significant clusters, by one-sample permutation cluster t-test). The ERP
topography for the “BR (dominant) vs. RPL (dominant)” contrast is displayed at the
topof the significant timewindow.bNo significant differencewas found in theGFP
between the BR (mixed) and RPL (mixed) conditions. c GFP difference across
sources of perceptual transitions and types of percept. The interaction effect was

not significant (p-corr = 0.12, F1,19 = 2.63). The plot shows the averaged GFP across
the time window between −400 and −200ms and its 95% confidence intervals for
each group. d ERP topographies in both of the BR and RPL conditions, dynamically
changing during the critical time window (e.g., [−450, −210]ms) before a response
to dominant percept. e Source localisation of the evoked responses contrasted
between BR and RPL conditions, and for the interaction effect of the two variables,
during the [−400, −200] ms before a subjective report. Plotted brain regions/
voxels survived the significance test with FWE-corrected non-parametric p-
values <0.05.
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match traditional frequency bands: theta (peak at 4Hz, half-maximum
at 1, 12 Hz), alpha (peak at 11 Hz, half-maximum at 7, 15 Hz), beta (peak
at 20Hz, half-maximum at 15, 34Hz) and gamma (peak at 34Hz, half-
maximum at 26Hz; Supplementary Fig. 8 in SI). Therefore, we next
focused on state-wise frequency-specific spectral information. To
identify the neural features that are representative to each state, we
performed permutation tests for each power and coherence values,
comparing across all four states (5000 permutations for each null
distribution simulation; significance level is p < 0.01; Fig. 5c).

Within the alpha band, State 4 was characterised by an increased
phase coherence between PCU and V1, and between PCU and rIPL, and
State 1was characterisedbyanoverall increasedpower in theDMNand
V1 regions, accompanied by a general decreased phase coherence
among theposteriorDMNnodes (PCC, bilateral HP and IPL). These two
states were often present during the BR (dominant) trials [FO =0.62
±0.27, 0.29 ± 0.22 (mean ± standarddeviation), respectively for State4
and 1]. Comparing the phase coherence among the ROIs across the
four states (Fig. 5c), the one between PCU and V1 clearly stood out, as
the PCU-V1 phase coherence was highest in State 4, an indicative state
for the BR (dominant); and it was the lowest in State 2, an indicative

state for the RPL (dominant) condition. This made us hypothesise that
the PCU-V1 coherence may underlie the spontaneous transition to a
stable percept.

For the state features in other frequencies (Supplementary
Figs. 11–13 in SI), we would like to highlight the general increase of the
theta coherences among DMN regions before the mixed-percept
transition in BR, especially the increased theta coherence between
ACC and PCC, which is unseen in other frequencies. This corresponds
to previous MEG literature where intrahemispheric and interhemi-
spheric theta coherences were found to be increased during percep-
tual dominance periods in BR43. The strong ACC-PCC coherence that
we observed only in the theta oscillations also echoes the result of a
recent study focused on the endogenous neural dynamics during
resting state, using the same HMM technique, which showed that the
mPFC/ACC-PCC coherence in the delta/theta frequencies char-
acterises the anterior higher-order cognitive state17.

We then investigated the behavioural relevance of the critical
state: State 4. State 4 was focused on because it was visited dis-
tinctively themost in the BR (dominant) condition, and the least in the
RPL (dominant) condition. State lifetime was used as an intuitive index

Fig. 4 | Schematic illustration of the procedures for HMM. a Illustration of the
HMManalysis pipeline. The one-second EEGepochs/trials were taken right before a
responseof everyperceptual change (“dominant” in redorgreen, “mixed” in black).
Toensureexperimental sensitivity, we select our regions of interest (ROIs) from the
significant results of the source-level evoked response in our previous analyses.
Also because of our theoretical interest, we further constrained our selection of
ROIs by choosing only the V1 and DMN regions (among all the significant voxels) to
construct the HMM. In the last subplot we presented an example of how the states
change across time in a random trial. The motivation and procedures for selecting

the particular time window and ROIs were detailed in the corresponding method
section in the SI. b Illustration of the relationship between conditions and states.
The surrogate timeseries indicate the EEG source signals of a single trial. The TDE-
HMM algorithm clusters the timeseries into four states based on the signals’
inherent spectral features. The inherent states are assumed to recur across time
and to be replicable in all trials, conditions and participants, as the endogenous
neural activity have been showed to have a robust spatiotemporal structure.
However, given the phenomenological differences among the conditions, the
compositions of the states during the trials are hypothesised to vary.
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for the state presence, estimated as the time that elapsed between
entering and exiting a state according to the HMM44. We correlated it
with the reaction time (RT) which was defined as the interval of the
participant’s adjacent reports to perceptual changes in both BR
(dominant) and BR (mixed) conditions. When the correlation is
examined on the individual level (i.e., when the variance is provided by
different performance across trials), the RT was the perceptual dura-
tion of the last percept; but when examined at the group level (i.e.,
variance provided by different average performance of all individuals),
the individual-averaged RT reflected the alternation rate for that par-
ticipant. We found that longer State 4’s lifetime could predict faster
perceptual transitions at the group level (b = −0.38, t = −2.28, df = 37,
Cohen’s F2 = 0.12, p =0.03; dAIC = 35.03; Fig. 6a).

We further investigated the cognitive implication of the “top-
down” connectivity from the PCU to V1, since we are interested in how
the DMN exerts an influence on the V1, and PCU was the only DMN
region shown to have a functional coupling with V1. The functional
coupling between the PCU and V1 stood out as a significant neural
feature of State 4; and it also demonstrated opposite patterns between
BR (dominant) and RPL (dominant), the key contrast that we are

interested in. As we were agnostic to the nature of this hypothetical
causal relationship, we adopted a simple form of causality to perform
this analysis, namely, Granger Causality (GC), which basically searches
for a time-lagged linear relationship between x1 and x2 that can predict
x1 better than what x1’s own auto-regression can predict (i.e., x2
Granger-causes x1).

We did not find a trial-by-trial relationship between the GC
(PCU→V1) and the perceptual duration, or an interaction between the
GC (PCU→V1) and State 4 lifetime to the perceptual duration. This
might be caused by a ceiling effect of the State 4 lifetime fromawithin-
subject analysis: there are six participants who showed a dominant
presence of State 4 (> 0.9 s) in most of the trials in the BR (dominant)
condition, thus providing little variability/statistical power for exam-
ining the aforementioned interaction effect. However, a relationship
between the GC (PCU→V1) and the perceptual duration was estab-
lished at the group level. Specifically, we found an interaction effect
between the individual-averaged state lifetime (K = 4) and GC (PCU→
V1) for predicting the individual-averaged perceptual duration. In
other words, the GC becomes more relevant to quicker perceptual
transitions when the trial is visited by State 4more (b = −0.39, t = −3.01,

Fig. 5 | Correspondence between states and conditions. a Different fractional
occupancy (FO) of the four states across conditions. Plotted data are the mean FO
values averaged across trials for each individual, grouped by the two categorical
variables: conditions and states. FDR-adjusted p-values of pairwise permutation
tests (two-tailed) are presented on the significance bar on top of the compared
groups (N = 20 per group). The distributions of non-averaged FO for all trials/
epochs of all participants, and an individual’s averaged State FO in the four
experimental conditions are presented in SI (Supplementary Figs. 9 and 10). For the
box plots, the white dot/circle on each box indicates the mean, while the length of
the box indicates quantiles with the middle bar showing the median. b Radar chart
showing the correspondence between conditions and states. Scales on the radar
chart indicate the median values of the state FO in the corresponding condition.
c Spectral information of the states in the alpha band. Diagonal and off-diagonal

values of the upper-triangle heatmaps respectively indicate the power and phase
coherence of the ROIs. The asterisk on the heatmap indicates that the phase
coherence (or power) in this state is significantly higher (yellow) or lower (blue)
compared with the other states (one-tailed test with the 95% confidence interval by
permutation). The circular bundle plots below highlight the significant con-
nectivities, with red and blue respectively signifying higher and lower significance
for the connectivity. All of the connectivities (whether significant or not) are also
mapped onto standardised brain anatomy from the left, right, back and top views
(clockwise), where the colour intensity of the connectivity has been normalised
across all states, thus being suitable for visual state-wise comparisons. Coordinates
of the nodes were selected based on significant peaks from the previous evoked-
response analyses (see the Supplementary Table 2 for all of the peak coordinates).
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df = 76, Cohen’s F2 =0.13, p =0.00 fitted with a generalised linear
model; dAIC = 4.54 compared to a multiple regression model with no
interaction). When State 4 dwells for the majority (> 95%) of the trial
time (i.e., >0.95 s), the negative correlation between the GC and the
perceptual duration was significant (b = −0.931, t = −2.821, df = 11,
Cohen’s F2 = 0.41, p =0.017; dAIC = 29.56; Fig. 6b). This suggests that
the top-down modulation of the PCU to the V1 can influence the per-
ceptual transition under the condition of State 4 being present.

Discussion
Awareness is suggested to emerge through the interactions between
local processing triggered by external stimuli, and global broadcasting
afforded by the brain’s intrinsic spatiotemporal states1. Resting-state
whole-brain signals are shown to be spatiotemporally organised15, but
it is still not clear whether this intrinsic architecture is epiphenomenal
or functional. By using simultaneously recorded EEG-fMRI data, we
showed that the brain’s spatiotemporal patterns or states found in this
study, characterised by EEG oscillation patterns in the DMN regions,
are phenomenologically relevant. We found that the four data-driven
states are associated with the four perceptual experiences corre-
sponding to the experimental conditions. The state indictive of a
dominant perceptual transition during the BR task was characterised
by phase coupling between the precuneus (PCU) and the primary
visual cortex (V1).We further found that the causal effect from the PCU
to the V1 is a temporally cumulative effect along with the state lifetime
of State 4. Taken together, our results suggest that the brain’s intrinsic
dynamics can influence visual awareness, possibly by triggering a
diversion of the whole visual processing pathway.

There are a lot of controversies in existing literature regarding the
sources of perceptual fluctuations during BR. Many advocate that the
rivalry is resolved at the early visual stage, such as in the lateral geni-
culate nucleus or the primary visual cortex, probably due to sensory
bottlenecks45,46. But it is also well-known that the BR alternation rate
can be modulated by object features, emotional or semantic loading
embedded in the stimuli as well as higher-level cognition such as
working memory and attentional control47. Therefore, many suggest
that the observed activity in the early visual pathway is but anoutcome

of the feedback projections from the higher-level areas (such as the
fronto-parietal regions), which is where the NCCs actually lie48,49.
According to them, the higher-level regions suppress unfavourable
stimuli representation in the early visualpathway inorder tomaintain a
congruent conscious experience11. These high-level regions have been
localised to frontoparietal regions by previous functional and struc-
tural MRI studies, including the frontal eye field, superior/middle/
inferior frontal gyrus and superior/inferior parietal lobule (SPL/
IPL)50–52. Especially the right-lateralised SPL was suggested to play a
causal role in the BR transition by a Transcranial magnetic stimulation
(TMS) study50. SPL is not investigated in our study, but parts of our
results hinted at its relevance. Our critical state, State 4, was char-
acterised not only by an increased coupling between PCU and V1, but
also between PCU and rIPL. Although the IPL is usually considered to
be part of the DMN, it is anatomically adjacent and functionally cou-
pled to the SPL which is a core of the posterior attentional control
system53,54. Despite its plausibility, the high-level control hypothesis
cannot explain why the perceptual transition keeps occurring when a
stable percept has been reached. In addition, it is difficult to dissociate
the cause and effect of the BR perception in practice. Given the poor
temporal resolution of fMRI, the frontoparietal regions or more spe-
cifically the right-lateralised SPL, as often reported in the BR
literature13,50,51, might get involved by its association with an attention
effect which inevitably intertwines with an involuntary perceptual
change. It has been argued that the frontal regions’ involvementduring
BRmay also reflect introspection and action to perceptual transitions,
rather than being a real cause55,56.

Our study provides a novel perspective as to why regular per-
ceptual transitions may occur during BR. We highlight the possible
influence of the temporal unfolding of the intrinsic large-scale cortical
dynamics, which could bias the binocular signalling gains, perturb the
current equilibrium, and eventually lead to a diversionof visual stream.
Vidaurre et al. (2018) found that the intrinsic transient states exhibited
in the posterior subdivisions of the DMN were characterised by high
power and total coherence in the alpha (8–12 Hz) range17. It was also
suggested that pre-stimulus posterior alpha power can modulate pri-
mary visual processing, likely by re-shaping the functional architecture
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Fig. 6 | Behavioural relevance of State 4. a Lifetime of State 4 can predict the
length of intervals between perceptual changes during BR (for both dominant and
mixed transitions). The longer State 4 persists, the shorter the transitional period
lasts, i.e., the quicker the rivalry is resolved. b shows that the duration of the last
stable percept is correlatedwith theGranger causality (GC) effect fromPCU toV1 at

the group level (N = 20, shaded area indicating the model residual of the linear
regression). Their relationship is also dependent on the lifetime of State 4. The GC
effect size was approximated by the improvement of model evidence (para-
meterised by decreased Bayesian Information Criterion [dBIC]).
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of thebrain networkwhenpreparing forupcomingprocessing57. These
findings support our hypothesis that the DMN’s activity may serve as a
source of “perturbation” to a bistable visual system during BR, thus
introducing a bias towards what external information gets released
from the overloaded visual channel.

Although the DMN and V1 are situated at the two opposite ends of
the brain’s functional gradient22, our result suggests that they may
achieve signal coupling via the PCU. To further understand this signal
coupling, we derived a Granger-causal effect of the PCU to V1 from their
EEG signals at the same timewindows.We found that, during the critical
state, the stronger the top-down effect from the PCU to V1, the quicker
the individual’s perception alternated. However, this relationship only
existed at the group level, but not for trial-by-trial prediction; therefore,
it only establishes the behavioural relevance of theGranger-causal effect
of PCU to V1, but did not provide enough evidence for us to claim that
the effect fromPCU toV1means either signal adaptationor suppression,
as both could potentially lead to a trial-by-trial prediction. That neither
statepropertiesnorGranger-causality fromPCUtoV1 couldpredict trial-
by-trial performance may just be due to a lack of statistical power;
however, it could also be a true negative. Namely, the intrinsic brain
dynamics may reflect more of individual-specific biological regularities,
rather than “on-line” cognitive control. In fact, the influence of voluntary
top-down control over BR is known to be limited58,59; and BR has been
reported to have notable inter-individual differences, depending on the
individual’s gender, psychological predispositions, neurotransmitter
levels and even handedness47,60. Twin and genome-wide association
studies have showed that the individual differences in BR can be
attributed to genetic factors61,62. These suggest that BRmay be bound to
certain biological constraints of the brain’s general state, while partici-
pants’ involuntary top-down control over the BR rate (limited but pos-
sible; such as paying more intrinsic attention could help by
strengthening perceived contrast of the image58) might have exerted its
influence rather indirectly by altering the intrinsic state of the brain.
Although the PCU has been associated with visuospatial integration and
imagery63, and its role in BR transition could be seen as a sign of
voluntary cognitive processes, either attentional control or memory
retrieval64,65, we rather propose that the PCU-V1 coupling might be an
underlying pre-conscious process, an indication of how intrinsic
dynamics exert influence onto information encoding in the primary
visual cortex. Previous studies have suggested the PCU’s role in con-
sciousness. For example, recent literature using graph theoretic metrics
and information theory has provided a new perspective for how we
understand consciousness; it suggests that the posteromedial cortex
(PMC; PCC/PCU), standing out as a hub for the whole-brain information
exchange, affords the complexity that consciousness emerges from66–68.
There have also been theoretical arguments hinting at the PCU’s role in
information integration between the internal and external worlds69,70, a
fundamental component of conscious processing71,72.

Finally, we would also like to comment on the correspondence
between the brain’s spatiotemporal dynamics and the phenomen-
ological mental dynamics. With abundant empirical evidence and
theoretical arguments, it has been suggested that the spatiotemporal
patterns of neural dynamics is the same thing as the instantiation of
mental dynamics16,73. However, we would like to point out the differ-
ences between the neural substrates representing the content of the
streams of consciousness, and the neural dynamics underlying con-
sciousness which themselves are not necessarily represented in the
conscious domain74. Although abundant evidence has suggested
the DMN’s significance to consciousness20,24–26, it may not necessarily
be the case that the neural dynamics of the DMN correspond to the
individual’s stream of consciousness in a simultaneous and linear
fashion. However, the simultaneous and linear correspondence is
always assumed in neuroscience studies for mapping between brain
and mind. As the controversy about the DMN’s function is accumu-
lating, we probably need to rethink the legitimacy of such

correspondence we are tempted to make between the physical and
mental levels of existence.

Methods
Subjects and experiment paradigm
The simultaneous recording of fMRI-EEG dataset for 20 young health
participants is publicly available (https://doi.org/10.5061/dryad.
bf1b1) along with a published paper37,38. During the experiment, 20
participants were presented with dichoptic stimuli, which were dif-
ferent images for the two eyes. To ensure separated eye views, a
vertical divider was placed between the head coil mirror and the
centre of the stimulus presentation screen located in the back of the
Magnetic Resonance Imaging (MRI) scanner bore. In a Binocular
Rivalry (BR) condition, the stimuli were rotating green and red
checkerboard images respectively. In a perceptuallymatched control
condition (i.e., the Replay condition), same rotating images, either
the red or green checkerboard alternating in time, were presented to
both eyes at any time. Participants reported their current perceptual
state using buttons to indicate red, green or mixed percepts. The
mixed percept is a transitional phase between the two stable (red and
green) percepts. The order of green and red visual stimuli for two
eyes in the rivalry condition was counterbalanced between the left
and right eyes across participants and their multiple experimental
sessions.

For eachparticipant, each experimental session/condition of rivalry
or replay consisted of 5 consecutive 42-second blocks of continuous
stimulus presentation followedby 12 s of rest, and 5 total blocks for each
stimulus type. Each participant repeated the BR and RPL sessions 5–7
times to increase replicability. Importantly, two different replay condi-
tions were employed: smooth replay and instantaneous replay. The
smooth replay condition was recommended to use for analyses as
opposed to the instantaneous replay condition according to the pre-
vious literature56. In the smooth replay condition, a smooth, expanding
wedgewas presented to approximate the gradual perceptual transitions
during the real rivalry condition, between the switches fromgreen to red
(or from red to green) percepts. Specifically, a small wedge of the target
checkerboard would smoothly expand to cover the old one during the
course of one second. More detailed description of the experimental
design was presented in the original article38.

Simultaneous EEG-fMRI data acquisition
The EEG-fMRI data were acquired and shared by Jamison et al., (2015)
andRoy et al. (2017)37,38.Wewill present here the key parameters,while
full descriptions of data acquisition have been presented in the above
original papers. Electroencephalogram (EEG) and electrocardiogram
(ECG) were recorded using a 64-channel MRI-compatible amplifier
(BrainAmp MRplus, Brain Products). All signals were referenced to an
electrode at the FCz position, and sampled at 5000Hz. Electrode
impedances were made sure to be all below 20 kOhm.

Structural and functional Magnetic Resonance Imaging (MRI)
were acquired using a Siemens Skyra 3 T scanner with a custom, high
slew-rate gradient insert developed for use in the Human Connectome
Project. The whole-brain blood-oxygen level dependent (BOLD) func-
tional data were acquired using a typical gradient-echo (GE)-Echo
Planar Imaging (EPI) pulse sequence (flip angle/FA = 90°, repetition
time/TR = 2200ms, echo time/TE = 30ms, 3mm isotropic voxels, 36
axial slices, with fat saturation pulse). 129 volumes were acquired for
most of the participants, which covered the whole experiment and
aligned temporally with the EEG recording. There were 7 participants
who had longer scanning sessions (with 130–141 volumes), but no
participant’s data were discarded. During the scanning session, the
timing of each volume acquisition was recorded and used for event-
related activation study. As a convention, the first 5 volumes were
considered unreliable due to the initiation of the scanner and have
been excluded for the following processing.
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EEG data preprocessing
Data was primarily preprocessed by the data distributors with stan-
dard pipelines which have been detailed in published articles37,38. To
recapitulate, the raw EEG data were re-reference to the average of all
channels, downsampled to 250 Hertz (Hz), band-pass filtered between
0.5 and 30Hz. Gradient artefacts were removed using a PCA-based
optimal basis set (OBS) algorithm, and cardioballistic artefacts were
removed based on a combination of ICA, OBS, and an information-
theoretic rejection criterion37.

FMRI data processing
Apart from the preprocessed steps already carried out by the data
distributors, which included slice-timing correction, motion correc-
tion, co-registration, normalisation and spatial smoothing, we extrac-
ted the signals (the first eigenvectors) from thewhitematter (WM) and
cerebrospinal fluid (CSF) by using standard template masks with a
threshold of 0.7, and treated them as non-neuronal confounds, along
with 6 movement parameters. The nature of the BR condition resem-
bles a resting statewhere the participant typically stares at an invariant
fixation point, while being more susceptible to movement since con-
tinuous responses are required here, thereforewe paid great attention
to the motion confound. Fast motions were inspected for each scan of
every subject. Volumes with >3 millimetres (mm) displacement (i.e.,
the voxel displacement resulting from the combined effect of indivi-
dual translations and rotations) compared to the previous volume are
considered to be contaminated by fastmotion andwere deweighted in
the GLM design using the ArtRepair toolbox75. Overall, bad volumes
comprised on average 5.12% (STD= 7.05%), and in the worst case 34%
(44 volumes out of 129) of a person’s data in one scanning session.

The procedure of ArtRepair motion scrub is described below. For
the following fMRI data processing, the main GLM for statistical infer-
ences has been estimated twice, once with the ArtRepair and once
without. The logic of the ArtRepair treatment is to deweight the con-
tribution of the bad-motion volumes in a general linear model (GLM)
estimation.Todetermine if the treatmentwas successful, a global quality
metric of the range of contrast estimates over all the voxels within the
standard brain mask was provided. For good contrast estimates,
themean of the contrast image should be near zero and themean of the
residual-sum-of-squares/variance (ResMS) image should be small
(https://cibsr.stanford.edu/tools/human-brain-project/artrepair-
software.html). If the post-hoc global quality metrics suggested that the
original contrast estimate was actually better, no ArtRepair treatment
would be applied to that session’s data. As a result, there were 51.84%
contrasts having their standard deviations (STDs) reduced (by 8.08% on
average) after the ArtRepair procedure.

All fMRI statistics were carried out with the SPM12 toolbox
(https://www.fil.ion.ucl.ac.uk/spm/) in MATLAB. We used the moment
of subjective reports as the critical timepoint and created the event-
related BOLD response, which was modelled by convolving the cano-
nical haemodynamic response function with a spike function (1 at the
event moment, 0 otherwise).

To fit the fMRI timeseries of each scanning session, the modelled
event-related BOLD responses associated with the three main effects
(dominant green percept, dominant red percept and mixed percept)
were taken as the main regressors, along with the non-neuronal con-
founds (thefirst six principal components extracted fromWM/CSF and
sixmovement parameters) and the block effects (the 5 task blocks). To
increase reliability, each participant was scanned in multiple sessions,
with about half (~6) of the sessions under the BR condition and another
half under the RPL. Therefore, the first-level GLM for each participant
was modelled with a mixed-level factorial design, with percept-
generation conditions (BR/RPL) and perceptual types (dominant/
mixed) as two factors. The global session effects were specified as
nuisance covariates (i.e., separate columns of identity vectors indi-
cating different scanning sessions). With the GLM, the coefficient

(beta) values associatedwith themain regressorswere then contrasted
with each other to reveal the effects that different experiment condi-
tions induced on brain activity. Contrasted conditions were 1. BR vs.
RPL for dominant percepts (red or green), 2. BR vs. RPL for the mixed
percept, 3. Dominant vs. mixed percepts in BR, 4. Dominant vs. mixed
percepts in RPL, 5. Difference of the contrast dominant vs. mixed
percepts, comparing between theBR andRPL condition (F contrast), 6.
The red vs. green percept (for sanity check). One sample t-tests against
zero for finding baseline activation for each condition were also con-
ducted in order to provide priors for the EEG source reconstruction
during the corresponding trials.

For the group-level GLM, a random effect (RFX) design was used,
with randomeffect being the interceptofwithin-subjectGLMfitting, and
fixed effect being the main effects/contrasts of interest. Specifically,
weighted beta coefficient maps from individuals were fed into a one-
sample t-test to make group-level inferences. To address the multiple
comparison problem, cluster-level inferences were used and corrected
for the family-wise error rate within the framework of Gaussian random
field implemented in SPM (version 12)76. Clusters were defined by a
default voxel-level threshold of 0.001 (uncorrected). The family-wise
error rate was controlled at the cluster level, and a threshold of P-cor-
rected<0.05 was used to determine significance among clusters.

EEG data processing
Evoked Responses at the sensor level. With the preprocessed data,
we then conducted the evoked EEG response analysis as a sanity check
for the data. It was conducted on the platform of MNE-python (version
0.23.4)77 (https://mne.tools/stable/index.html). To get the event-related
potentials, we epoched the pre-processed data using a 1 s time-window
around the perceptual report starting at −0.5 s (before report) and
ending at 0.5 s (after report). While epoching, a baseline correction was
applied to remove the average activity in the range of [−0.5, −0.4] (i.e.,
0.1 s before the critical period) from the whole time-series. We
acknowledge the limitation of the response-locked analyses (as con-
strained by the experimental design), as the epochs incorporate a
mixture of perceptual and motor processes. If we accept RPL as a per-
ceptually matched condition, any contrasted differences between the
BR and RPL should elucidate the endogenously driven neural features
that are distinct in the BR condition, rather than the noise or motor-
related features that are assumed to be common to both conditions.

For each subject, evoked activity was calculated by averaging
these epochs across all sessions for that subject. Global Field Power
(GFP) for each condition, was calculated as the standard deviation of
the voltages across electrodes at each time-point (after removing the
ECG electrode and bad electrodes identified for a particular subject).
Statistical analyses were performed using one-sampled cluster t-tests
to compare the conditions for each subject, as detailed inMNE-python
statistics toolbox.

Evoked Responses at the source level. The source-level EEG data
processingwasconductedwith theSPM12 toolbox (https://www.fil.ion.
ucl.ac.uk/spm/). After converting the data to the M/EEG SPM format,
the continuous data spanning across the whole session were first
chopped to many short epochs, which corresponded to the 1-second
period before a perceptual change, as reported by the subject. Struc-
turalMRI images of eachparticipant were segmented andwere used to
co-register with the electrodes. As a result, the EEG electrode positions
were projected to each participant’s MRI space with a rigid body cor-
egistration by minimising the differences between the landmark head
points (along with other electrode positions) and the scalp mesh
reference.Weused the 3-shell sphericalmethod for the forwardmodel.
Scalp, skull andbrain tissueswere segmented. Their conductivity ratios
were specified to be 1, 1/80, 1 (conductivities being 0.3300, 0.0042 and
0.3300 Siemens/metre, respectively). To do the inverse computing
which is to estimate the signals of the dipoles (or sources) from the
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observed EEG data on the scalp, we used different model configura-
tions including different forward model assumptions i.e., using the
minimumnormestimation that assumes independently and identically
distributed (IID) sources or the Standardised Low-Resolution Electro-
magnetic Tomography (sLOR); using signal hanning or not; and using
fMRI priors or not. These models were all estimated and compared
against each other. The best model configuration with the highest
model evidence was chosen for further analyses78 (see Supplementary
Fig. 2 and Supplementary Table 1 for the result of the model compar-
isons for the inverse modelling configurations).

Theusageof fMRIpriors in the source reconstruction is as follows.
According to the condition type, i.e., stimuli types (BR vs. RPL) ×
perceptual types (dominant vs. mixed) that the reported perceptual
change belongs to, the corresponding group-level fMRI (significant)
activation clusters were applied to constrain the sources’ covariance
for the model inversion. The usefulness of fMRI priors was then
determined by variational free energy (model evidence)78,79, in the
comparison with the model inversion without the fMRI priors.

The model inversion was conducted respectively for the fol-
lowing frequency bands: delta (0.5–3.5 Hz), theta (4–7 Hz), alpha-1
(7.5–9.5 Hz), alpha-2 (10–12 Hz), beta-1 (13–23 Hz), and beta-2
(24–30Hz), according to the conventional International Federation
of Clinical Neurophysiology guideline80.

Evoked (epoch-averaged) responses on the source level were
analysed for each frequency band, and for finer time windows.
According to previous sensor-level evoked responses which had
been compared between conditions, we knew that the time window
from 200ms to 400ms prior to a subjective report marked the
biggest difference between an endogenously (BR) and exogenously
(RPL) inducedperceptual change; therefore, wedivided the 1-s epoch
into 5 shorter windows with an equal length of 200ms and looked
into the evoked responses for these time windows. The images for
evoked response were saved as nifti files and in standard MNI space.
They were then contrasted between conditions, and non-parametric
permutation test were conducted for the group-level inferences with
the SNPM toolbox (https://warwick.ac.uk/fac/sci/statistics/staff/
academic-research/nichols/software/snpm).

Selection of time window and regions of interest for the TDE-
HMM dynamic process modelling
Instead of modelling the dynamic process for the whole brain during
the whole experiment, we narrowed down the time window and
regions of interest (ROIs), in order to increase the method’s sensitivity
and avoid overfitting17. Our previous evoked-response analysis helped
us to narrow down the time of interest to a window between [−400,
−200] ms before a subjective report of perceptual change, which is
when the pre-response ERPs showed the biggest GFP difference
between BR and RPL. However, the endogenous neural activity trig-
gering an upcoming transition might take effect even earlier than
that40. Therefore, we modelled the dynamic process in the 1-s (with
100-ms post-response padding) window before every report of a per-
ceptual change. The 1-s window was chosen as a trade-off between
having enough sample points and having enough specificity to the
targeted events. It has been suggested in the literature that endogen-
ous perceptual disambiguation is associated with posterior parietal
activity 50ms before the onset of a bistable stimulus;81 and the upper
limit of reaction time to it is about 600ms40,82, while the upper limit of
pure motor execution is about 150ms40,83. Therefore, the 1-s window
should be able to cover the whole dynamic neural process towards a
perceptual transition and a little further before. 25767 trials were
generated in total, considering all 4 conditions: BR/RPL (dominant)
(i.e., transitions from a mixed to a dominant percept in the BR or RPL
setting; n = 7795/7148), and BR/RPL (mixed) (i.e., transitions from a
dominant to a mixed percept in the BR or RPL setting; n = 5786/5038).
As the algorithm computes the latent states recurring across all

timepoints of all trials, the state delineation is assumed to be driven by
the endogenous neural states which have a robust spatiotemporal
structure recurring through time9,17,19,22,84.

Given our research interest in the default mode network (DMN)
we constrained the subsequent modelling within the 8 regions: bilat-
eral parahippocampal gyri (HP), bilateral inferior parietal lobules (IPL),
anterior cingulate cortex (ACC), posterior cingulate cortex (PCC),
precuneus (PCU), and the primary visual cortex (V1). To ensure
experimental sensitivity, we extracted signals from the significant peak
voxels (confined within the DMN) from the previous source-level
evoked-response analysis. The contrasts used for determining the
regional involvement in the task were BR (dominant) vs. RPL (domi-
nant), BR (mixed) vs. RPL (mixed) and the interaction effects between
the two factors; both contrast directions were considered. Hence,
1-second (+0.1 s post-response padding) source signals from these
coordinates were extracted for all trials (trials being the 1-s epoch
before a subjective report of a percept change). When multiple coor-
dinates were identified within a same ROI (identified by automated
anatomical labelling), the average of their signals was used as the
representative signal of that ROI. The anatomical labels for the peak
coordinates were identified using the Talairach Atlas (http://www.
talairach.org/), upon a conversion to theTalairach space. The list of the
peak voxel coordinates used for this purpose are presented in Sup-
plementary material Table 2. The full results of all significant voxels/
clusters upon all contrasts are available from an online repository:
https://htmlpreview.github.io/?https://github.com/Aubrey-Lyu/BR-
project/blob/master/Analysis-3_EEG/results/evokeResponse_result_
table_permutationtest.html.

Time-delay embedded Hidden Markov Model
The Hidden Markov Model (HMM) as a general framework assumes a
hidden sequenceof afinite number of stateswhichdrives theobserved
time series85. In practice, the algorithm adopts a probabilistic model
which infers the probability of each state being active at each time
point (order = 0). In the present study, the states were estimated at the
group level, but the information about the state probability is specific
to each subject. We used the Time-delay embedded HMM (TDE-HMM)
approach to search for the hidden states17.

In this approach, the observation model is described by the auto-
covariance (or lagged cross-covariance) of our specified regionswithin
a sliding time-window of 60ms. For the 8 specified ROIs and the
250Hz sampling rate of our data, the observed neural activity over a
window of 15 time points centred at t, is described by an auto-
covariance matrix of 15 × 8 by 15 × 8. We chose auto-covariance over
Gaussian distribution as our observationmodel, because for EEG data,
the frequencies and phases bring richer information than the ampli-
tude alone. The auto-covariance matrix can effectively capture pat-
terns of linear synchronisation in the oscillatory activities (i.e., “state-
wise phase-locking”). To avoid overfitting, the HMM was trained on a
principle-component-analysis (PCA) decomposition of the auto-
covariance matrices. As recommended, we used twice the number of
ROIs for the number of PCs (i.e., 16 PCs) (https://github.com/OHBA-
analysis/HMM-MAR/wiki/User-Guide). The PCs explained 96.1% of the
data variance for this dataset on average (lowest and highest across
subjects are 94.5% and 97.0%). For model inference, stochastic infer-
ence was used to alleviate the computation time as opposed to the
standard variational Bayes. After finding the states based on the data’s
transient oscillatory patterns, we then obtained the state-specific
spectral properties, i.e., the power and coherence, from the multi-
variate auto-covariance matrix in each state’s observation model.
Having estimated the power and spectral coherence for each state, we
then factorised them into different frequencymodes for finer analyses
by using a non-negative matrix factorisation (NNMF) algorithm. The
whole pipeline of HMM analyses was facilitated by the HMMMAR
toolbox17: https://github.com/OHBA-analysis/HMM-MAR.
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We provide validation of the HMM states by reproducing the
states on randomly half-split data. The procedure is as follows: we
randomly selected half of the subjects’ data, ran the HMM analyses on
each half, matched the states and measured the states’ similarity
between the two runs. These procedures were repeated 5 times. To
match the states across runs, we ordered the states in a way to ensure
the maximum similarity between the states in different runs. The state
similarity is measured with Pearson correlation and presented in
Supplementary Fig. 14a. We then performed statistical testing on the
consistency of states across runs. This is to ensure the matched states
reliably represent the same process. For example, if the similarity
between the matched states is significantly higher than any two non-
matched pairs, it means we correctly identified the state in different
runs (Supplementary Fig. 14b).

Cross validation
The cross validation (CV)was conductedwith the Scikit-learn toolbox86

(https://scikit-learn.org/stable/) on Python. The fitting data were the
Fractional Occupancies of the 4 hidden neural states for every trial.
The target variable was the binary variable indicating whether the trial
is transiting to a dominant or mixed percept. The model was trained
separately for BR and RPL conditions.

We used the linear support vector machine as the estimator, and
the default 5-fold CV. The regularisation parameter was selected from
the range [10−5 100] with a step of 0.2 in the log10 scale. The result was
reported in the regularisation parameter range where the CV score
improved and converged, suggesting that this is the best prediction
that this estimator could achieve. The relationship between the CV
score and the regularisation parameter was depicted in the Supple-
mentary Fig. 15.

Granger causality between the PCU and V1
Granger causality is used in this study to establish the causal influence
from the PCU to V1 in the BR dominant condition. Supposing X1 and X2
are two timeseries, X2 is called to “Granger” cause (GC) X1 if it can help
uspredictX1 better than justusing thepast knowledgeofX1 itself. From
the perspective ofmodel comparison, we compared the following two
models: the null model, which is an autoregressive model for the V1
timeseries (Eq. 1), and the augmented model, which also included the
backshift datapoints of the PCU timeseries as additional predictors
(Eq. 2). For model selection, we used Bayesian Information Criterion
(BIC) to decide which model is better in terms of the balance between
data fitting and model complexity. The GC effect size was approxi-
mated by the difference of the BIC (dBIC), i.e., the improvement of
model evidence after additionally considering the cross-lagged effect
of the PCU during every 20 preceding time points (in 80ms). The GC
was calculated for the original signals of PCU and V1 for every trial/
epoch, by using the granger_cause_1 toolbox87,88 released from the
MATLAB Central File Exchange (https://www.mathworks.com/
matlabcentral/fileexchange/59390-granger_cause_1).

Mathematical equations:

X1 =
Xp

j = 1

b11, jX1 t � jð Þ+E1 tð Þ ð1Þ

X1 =
Xp

j = 1

b11, jX1 t � jð Þ+
Xp

j =0

b12, jX2 t � jð Þ+E1 tð Þ ð2Þ

where X1, X2 are two timeseries for t = 1…T, E1(t) is a white Gaussian
random vector, b11,j and b12,j are the correlation coefficients respec-
tively for the autoregressive model of X1, and the multivariate-
autoregressive model between X1 and X2, for every backshift of j
within the maximal time-lag p. For model 1, we used the “best” p
adaptive to the V1 timeseries, for maximising the variance that can be

explained by the null, i.e., autoregressive,model. Sincewe are agnostic
to the time lag that the PCU (i.e.,X2) is supposed to lead V1 (i.e.,X1), for
model 2, we estimated the models with all possible values for p from 1
to 20 (leaving at least 20 time points for the coefficient to be robustly
estimated). The improvement of model 2 relative to model 1 was
parameterised by dBIC. Averaged dBIC across all p from 1 to 20 was
calculated as an unbiased evaluation of the GC effect.

Statistical testing for the behavioural relevance of the neural
states
The lifetime of each state was used to correlate with the pre-switch
perceptual duration with an Analysis of Covariance (ANCOVA) at the
group level. For the ANCOVA model, the dependent variable was the
perceptual duration, and the independent variables are the lifetime of
the state and the categorical variable condition. State lifetime can be
obtained from the Viterbi path, which is an estimate of the most
probable hidden state path given the observed data (See detailed
instruction from the online user guide: https://github.com/OHBA-
analysis/HMM-MAR/wiki/User-Guide). An equivalent measure to the
lifetime is the Fractional Occupancy (FO), which is the proportion of
dwelling time on a certain state given a period of time.

We also investigated the relationship between the GC (PCU-V1)
and the stable percept duration. The GC effect, which is indicated by
the GC effect size, approximated by dBIC (as recommended by the
toolbox granger_cause_1: https://www.mathworks.com/matlabcentral/
fileexchange/59390-granger_cause_1), was then used to correlate with
the stable percept duration at the group level. During this investiga-
tion, we found that the relationship is dependent on the presence of a
particular hidden state. Therefore, we improved the model by adding
the interaction effect between the lifetime of the state and the GC
effect (size). Considering the non-normal distribution of the data, we
used the generalised linear model (Gamma distribution for error fit-
ting) as well as the Akaike Information Criterion (AIC) for model
selections throughout the paper. The whole process of statistical
testing was implemented in R, with the lme4 and rcompanion packa-
ges. We have uploaded all the code and data used in this project to
Github (https://github.com/Aubrey-Lyu/BR-project/tree/master) for
public review.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data needed to evaluate the conclusions in the paper are previously
published38 and made publicly available in the repository: (https://doi.
org/10.5061/dryad.bf1b1). Source data displayed in the figures of the
present study is provided. Source data are provided with this paper.

Code availability
The code to replicate all the analyses can be obtained from the GitHub
repository: https://github.com/Aubrey-Lyu/BR-project/.
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