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Connecting multiple microenvironment
proteomes uncovers the biology in head
and neck cancer
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The poor prognosis of head and neck cancer (HNC) is associated with
metastasis within the lymph nodes (LNs). Herein, the proteome of 140 multi-
site samples from a 59-HNC patient cohort, including primary and matched
LN-negative or -positive tissues, saliva, andblood cells, reveals insights into the
biology and potential metastasis biomarkers that may assist in clinical
decision-making. Protein profiles are strictly associated with immune mod-
ulation across datasets, and this provides the basis for investigating immune
markers associated with metastasis. The proteome of LN metastatic cells
recapitulates the proteome of the primary tumor sites. Conversely, the LN
microenvironment proteome highlights the candidate prognostic markers. By
integrating prioritized peptide, protein, and transcript levels with machine
learning models, we identify nodal metastasis signatures in blood and saliva.
We present a proteomic characterization wiring multiple sites in HNC, thus
providing a promisingbasis for understanding tumoral biology and identifying
metastasis-associated signatures.

Head and neck cancer is the eighth leading cause of cancer worldwide,
and 90% of these tumors are mucosal head and neck squamous cell
carcinomas (HNSCC)1. HNSCC can severely impact the quality of life of
patients due to treatment sequelae and high rates of locoregional
recurrences. Unfavorable outcomes are largely related to the presence
of lymph nodemetastasis that reduces survival by approximately 50%,
and this is the primary argument supporting the use of elective neck
treatment2. The detection of lymph node alterations can be

challenging, and the discovery of molecularmarkers that can allow for
an accurate identification of locoregional spread would enable clin-
icians to avoid unnecessary extensive operations and could reduce
postoperative morbidity3.

While cancer research has previously focused on characterizing
malignant cells in primary tumor tissues, the investigation of
additional environments implicated in HNSCC regulation may lead
to an improved understanding of the mechanisms underlying
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carcinogenesis4,5. In addition to cancer cells, the tumor micro-
environment (TME) comprises distinct cell subsets, as the immune
portion and cancer‐associated fibroblasts (CAFs), and it is of special
interest once the intense crosstalk among these heterogeneous
populations reprogram key processes responsible for tumor growth
and invasion6. Additionally, neoplastic cells can enter lymphatic ves-
sels and migrate to lymph nodes where they interact with the host
immune environment and establish metastasis7. Thus, a better
understanding of the molecular signals within the TME and in the
metastatic microenvironment may provide insights into tumor biol-
ogy, thus helping to guide clinical investigations.

Body fluids are able to wire the diverse microenvironments and
their composition can also be affected by cancer. Tumor-specific
T cells, circulating tumor cells (CTCs), macrophage-like cells, tumor
endothelial cells, cancer-associated fibroblasts (CAFs), free molecules,
and exosomes have all been identified in the peripheral blood of
cancer patients and are valuable in clinical decision-making8–11. Saliva
has alsobeenproven tobe a promising sourceof biomarkers inHNSCC
due to its proximity to tumor lesions12–14. Thus, the analysis of fluids or
liquid biopsies raises the possibility of probing themolecular profile of
tumors in a non-invasivemanner andmay provide a valuablemeans of
tracking biomarkers in HNSCC.

In this scenario, clinical proteomics has emerged as a promising
approach for the identification and quantification of potential mar-
kers, leveraging the development of new tools that can be used in
clinical practice. Technological advances in proteomics, particularly in
themass spectrometry (MS)field15, have the power toprovide a deeper
understanding of the molecular mechanisms and guide the discovery
of biomarkers16–18.

In this work, we use a multisite mass spectrometry-based dis-
covery approach in a 59-patient cohort, and this is followed by a deep
biological characterization of the proteomes and application of a
multiparametric machine learning model to prioritize targeted mole-
cules. Taken together, this study presents the basis for understanding
the response of multiple microenvironments to lymph node metas-
tasis and indicates prognostic signatures in HNSCC.

Results
Global proteomes are collectively implicated in immune
response
To obtain a comprehensive view of the proteome composition in
HNSCC, we selected 27 primary tumors, 27 metastasis-negative or
-positive lymph nodes, 24 buffy coats, and 24 saliva samples from a 59-
patient cohort to evaluate the protein content using label-free quan-
titative MS in the discovery phase (Fig. 1a; Supplementary Data 1-1 and
1-2). A histology-guided approach was employed to harvest malignant
and non-malignant enriched cell populations in both primary tumor
and lymph node tissues. While malignant cells refer to the tumoral or
metastatic cells themselves, the non-malignant portion includes
microenvironment cells that surround and support the malignant
populations19. The populations that were evaluated included (i)
malignant cells from primary tumors, (ii) non-malignant cells located
adjacent to primary tumors (mucosal margins), (iii) malignant cells
from metastatic lymph nodes, (iv) non-malignant cells located adja-
cent to sites of metastasis from lymph nodes, (v) buffy coat samples,
and (vi) saliva cell samples. MS quality control measures were utilized
for all the experiments (Supplementary Fig. 1). Two primary tumor
samples (malignant cells) were excluded due to inconsistent detection
of control peptide precursor ions (patients 2875 and 4417), and this
resulted in 25 remaining malignant samples from primary tumors that
were used for analysis. In total, 140 samples from the multiple sites
monitored by DDAhad an appropriate quality andwere kept in further
analysis. We identified an average of 2035 protein groups that exhib-
ited MS signals covering close to five orders of magnitude (Fig. 1b).
Malignant cells from primary sites yielded the highest number of

identified proteins (n = 2444 proteins), and this was followed by
malignant cells from lymph nodes (n = 2308 proteins). The ranking
according to MS signal revealed a buffy coat proteome with a wider
dynamic range among all of the sites evaluated (n = 2188 proteins),
although different LC gradients were used. A total of 313 proteins were
shared across multiple sites (Supplementary Fig. 2a).

We then investigated the HNSCC proteome to retrieve insights
from the biology of multiple sites. Proteins from tissues and fluids
were separated into clusters (PC: protein cluster) based on the hier-
archical relationship among the label-free quantitation (LFQ) inten-
sities using a single clustering parameter for all the six datasets
(Ward’s method based on Bray-Curtis distance) (Fig. 1c; Supple-
mentary Fig. 2b), and the PCs were associated with Gene Ontology
(GO) biological processes (adjusted p ≤0.05; two-sided Fisher’s exact
test followed by Benjamini-Hochberg correction) (Fig. 1d). It is
noteworthy that at least one PC from each region was enriched for
immune-related processes that included mainly the neutrophil
mediated immunity (GO:0002283, GO:0002446,GO:0043312; -Log10
[adjusted p] = 10.14 to 66.68). Additionally, several other immune
processes were overrepresented for the PCs and involved antigen
processing and presentation of peptides via MHC class I or II speci-
fically in tissues (GO:0019886, GO:0002495, GO:0002478,
GO:0042590, GO:0002479; -Log10 [adjusted p] = 5.10 to 29.54),
regulation of inflammatory response particularly in fluids
(GO:0002673; -Log10 [adjusted p] = 11.69 to 14.19), regulation of
humoral response in buffy coats (GO:0030449, GO:0002920; -Log10
[adjusted p] = 12.71 to 13.19), and phagocytosis dependent or inde-
pendent of the Fc-gamma receptor signaling for saliva and lymph
nodes non-malignant samples (GO:0038096, GO:0006909,
GO:0006911; -Log10 [adjusted p] = 11.61 to 17.96).

Taken together, these findings revealed specific protein compo-
sition for malignant and non-malignant cells derived from primary
tumors and lymph nodes, buffy coat, and saliva samples. We also
identified subsets of proteins across distinct cell populations that
exhibit similar abundance profiles and may modulate common biolo-
gical functions in HNSCC, particularly immune-related processes.

Protein profiles indicate specific immune phenotypes across
datasets
Based on the observation that proteomes from multiple sites were
enriched for immune processes (Fig. 1d), we inferred the immune
composition associated with our bulk proteomes using signatures
from publicly available single-cell RNA sequencing data in CIBER-
SORTx version 1.020. Non-immune subpopulations were also inferred
from the proteomic data.

Because CIBERSORTx version 1.0 relied on transcriptome matri-
ces to estimate cell types, we first performed a series of analysis to
verify if predicting immune composition for proteomes could add any
bias to our results. The global proteome levels herein generated for
primary tumors (malignant cells)were compared to the transcriptomic
levels using data from 500 HNSCC tumor samples retrieved from The
Cancer Genome Atlas (TCGA). We observed a moderate degree of
correlation between proteome and transcriptome levels (ρ =0.53;
p ≤ 2.2E-16; two-sided Spearman correlation) (Supplementary Fig. 3a).
Subsequently, public scRNASeq datasets comprised of 18 HNSCC tis-
sue samples5 and a human peripheral bloodmononuclear cell (PBMC)
sample from a healthy donor (https://www.10xgenomics.com) were
used to generate signatures that were further employed as reference
matrices in this study (Supplementary Fig. 3b, c; Methods section
‘scRNASeq processing and differential expression’). We then analyzed
the correlation between protein abundance and gene expression of
genes considered in the signature matrix generated for HNSCC5. For
this, we retrieveddata fromanexpression atlasofhealthy tissues21. The
majority of cell types had median correlation scores around 0.4
(p ≤0.05; two-sided Spearman correlation), showing that the signature
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is overall similar across cell types and should not disfavor the esti-
mation of a given subpopulation (Supplementary Fig. 3d). Addition-
ally, to assess the validity of our approach,wedeconvolutedproteomic
data fromRieckmann et al.22 using the PBMC referencematrix (https://
www.10xgenomics.com) and observed consistent results for each cell
type (Supplementary Fig. 3e). These verifications indicated that RNA-

based cell signatures could be used to estimate cell types from bulk
proteomes in an unbiased manner.

Next, the HNSCC tissue5 and PBMC (https://www.10xgenomics.
com) matrices were applied as references to deconvolute the whole
proteome information generated in this study for non-malignant cells
isolated from tumors (n = 25 samples) and lymph nodes
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(n = 27 samples), which used HNSCC tissue matrix as background, and
buffy coat (n = 24 samples), which considered the PBMC matrix as
reference, in CIBERSORTx version 1.0. The subpopulations could not
be evaluated for saliva cells due to a lack of a suitable scRNASeq
reference. In addition, malignant cells were not included on this
inference because they were isolated by laser microdissection and are
primarily composed of neoplastic cells. According to the prediction,
non-malignant cells from tumors were enriched with high fractions of
CD4+ T cells (eight out of eight samples; deconvolution p ≤0.1)
(Fig. 1e). Mast cells, dendritic cells, macrophages, and plasma cells
were frequently detected in HNSCC (six to seven out of eight samples;
deconvolution p ≤0.1); however, they were present at lower percen-
tages. It is of interest to highlight the enrichment of the non-immune
population of CAFs in all 8 HNSCC tissue samples. This observation
indicates that further studies focusing on CAFs may benefit these
patients once several targeting strategies have been proposed to block
CAF-mediated tumor support23. Remarkably, the predominance of T
lymphocytes and fibroblasts in HNSCC tumors has been demonstrated
previously at the RNA level5 and agrees with predictions based on the
use of tumor proteomes. Buffy coat prediction revealed a high per-
centageofmemoryCD4+T cells, CD14monocytes, B cells, andNKcells
(14 to 15 out of 16 samples; deconvolution p ≤0.1) (Fig. 1f), thus
revealing that distinct immune profiles could be inferred for the tumor
microenvironment and blood cells, even though common biological
processes were enriched for these proteomic datasets (Fig. 1d).
Moreover, the presence (pN+) or absence (pN0) of nodal metastasis
could not segregate samples perfectly using hierarchical clustering
(Fig. 1e, f). Populations could not be significantly predicted for lymph
node non-malignant samples (deconvolution p >0.01). Even though
neutrophil-mediated processes have been herein enriched for non-
malignant and blood cells in the GO biological processes enrichment
(Fig. 1d), wedid not explore this population in CIBERSORTx version 1.0
analysis due to the lack of data in the PBMC (https://www.
10xgenomics.com) and tissue processed matrix from the literature5

used as backgrounds.
These analyses represent a detailed immune characterization of

the proteome from HNSCC microenvironments and can be used to
predict immune populations enriched in multiple sites based on
proteomic data.

HNSCC multisites exhibit immune-associated nodal metastasis
markers
We further explored themultiple sites to identify commonmetastasis-
dependent markers (primary tumor – malignant: 11 pN+, 14
pN0 samples;primary tumor and lymphnode–non-malignant: 13 pN+,
14 pN0; buffy coat: 11 pN+, 13 pN0; saliva cells: 13 pN+, 11 pN0).
Malignant cells from the lymph nodes (pN+) were not included in the
analysis, as the patients did not possess the pN0 counterpart to allow
for comparisons. A mean of 106 ± 56 differentially abundant proteins
was associated with locoregional metastasis across the tissues and
fluids (pN+ vs. pN0; p ≤0.05; two-sided unpaired Student’s t-test or
proteins detected exclusively in one group) (Fig. 2a; Supplementary
Data 2-1 to 2-5). Thehighestnumber of differentially abundantproteins

was observed in non-malignant cells from lymph nodes (n = 201 pro-
teins), and this was followed by malignant cells from the primary
tumor (n = 110 proteins) and non-malignant cells from the primary
tumor samples (n = 85 proteins) (Fig. 2a). Additionally, 80 and 54
proteins were associated with nodal status in the buffy coat and saliva
samples, respectively (Fig. 2a). Remarkably, malignant cells from pri-
mary tumor, buffy coat and saliva had a similar proportion of proteins
deregulated betweenpN+ andpN0 conditions,with a balance between
up- and downregulated proteins, whilst non-malignant environments
from primary tumors and lymph nodes demonstrated a closer differ-
ential profile with an elevated number of proteins highly abundant in
the pN+ counterpart (Supplementary Data 2-1 to 2-5). A comparative
GO biological process enrichment for the lymph node metastasis
proteins highlighted over-represented immune-related terms at mul-
tiple sites and were predominantly associated with granulocyte acti-
vation (GO:0036230; three datasets; FDR = 2.10E-12 to 7.17E-07),
leukocytes (GO:0002366, GO:0002443; three datasets; FDR = 7.62E-14
to 6.05E-05), myeloid cells (GO:0002275; 3 datasets; FDR = 3.78E-14 to
5.14E-07), and neutrophils (GO:0002283, GO:0042119, GO:0002446,
GO:0043312; three and four datasets; FDR = 7.62E-14 to 6.05E-05)
(Fig. 2b). It is becoming increasingly clear that neutrophils possess
various functions that dynamically regulate the metastatic cascade,
including a role in establishing a premetastatic niche24 or via neu-
trophil extracellular traps (NETs) by mediating the trapping of circu-
lating cancer cells25, or still awakening dormant tumor cells26. Our
enrichment analysis indicated that neutrophils may be important
players in the development of local metastasis in HNSCC.

Considering that an interconnection of multiple environments is
necessary to support the tumoral niche27, we next verified if the
metastasis-associated proteins are shared among the five datasets.
Twenty-three proteins were significantly associated with lymph node
metastasis at two ormore sites (Fig. 2c). The 23 proteins are implicated
in a series of connected immune-associated GO biological processes
(Enrichment FDR ≤0.05; hypergeometric test followed by FDR cor-
rection) (Fig. 2d) that have already been highlighted in the global and
metastasis-dependent profiles (Figs. 1d; 2b), and this suggests a role of
the immune response in HNSCC multisites. In parallel, some of these
proteins are associated with metabolism (Enrichment FDR ≤0.05;
hypergeometric test followed by FDR correction) and reflect the
results previously shown in HNSCC metastatic cell-derived extra-
cellular vesicles28. Alterations in the metabolic profile have been also
demonstrated to be associated with the metastatic potential of cancer
cells29.

Based on the significance of the immune system in lymph node
metastasis, we next investigated if the differentially abundant proteins
in the proteomes are cluster markers of immune subpopulations.
Cluster markers are herein defined as markers that designate popula-
tions and were identified across HNSCC tissues5 and PBMC scRNASeq
public data (Supplementary Fig. 3b, c; Methods section ‘scRNASeq
processing and differential expression’). Then, the cluster markers
were compared to the differentially abundant proteins (pN+ vs. pN0)
identified from our datasets of non-malignant populations and buffy
coat (Supplementary Data 2-2 to 2-4). Transcripts from a subset of

Fig. 1 | Proteomic profile of tissues and fluids in a 59-HNSCC patient cohort.
a Experimental design to uncover the biological aspects and prognosticmarkers in
the proteomes from multiple HNSCC sites. Created with BioRender.com.
b Dynamic range of proteomics quantitative data for primary tumor malignant
(n = 25 samples) and non-malignant (n = 27 samples) cells, lymph node malignant
(n = 13 samples) and non-malignant (n = 27 samples) cells, buffy coat
(n = 24 samples) and saliva cells (n = 24 samples). The bar sizes and respective
numbers in the right-sided graph indicate the total number of proteins identified
per site. c Groups identified by clustering of the protein datasets for the multisites
using the Ward’s method based on Bray-Curtis distance (primary tumor – malig-
nant: 2444 proteins; primary tumor – non-malignant: 1984 proteins; lymph node –

malignant: 2308 proteins; lymph node – non-malignant: 2137 proteins; buffy coat:
2188 proteins; saliva: 1154 proteins). d Top-10 significant GO biological processes
enriched for the PC groups of the global proteomes (adjusted p ≤0.05; two-sided
Fisher’s exact test followed by Benjamini-Hochberg correction). Immune-related
processes are labeled with a triangle. Predicted composition of immune popula-
tions based on proteomic data of non-malignant cells from primary tumors (e) and
buffy coat (f) samples using CIBERSORTx version 1.0. Sampleswere clustered using
the Euclideanmethod andWard.D distance, and the pN status was annotated. EMT
Epithelial-mesenchymal transition, HNSCC head and neck squamous cell carci-
noma, LC-MS/MS liquid Chromatography with tandemmass spectrometry. Source
data are provided as a Source Data file.
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metastasis-related markers were identified as cluster markers of
immune subpopulations, and these included 31 genes from a 201-
protein signature from lymph node non-malignant cells that were
differentially expressed primarily in CD4+ T cells, plasma cells, B cells,
and macrophages (Fig. 2e), 5/85 genes from primary tumor non-
malignant cells that are cluster markers of dendritic cells, mast cells,

and CD8+ exhausted T cells, and 26/80 molecules from the buffy coat
that were primarily identified in CD14+ and FCGR3A+ monocytes
(Fig. 2e), thus indicating that immune populations may be modulated
in themetastatic phenotype. Remarkably, genes such as ERLIN1, MT1M,
VAT1, FBN1, MMP2, STAT1, TOM1 and SERPINH1 that were identified as
potential metastasis markers in the primary tumor or lymph node
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microenvironments are cluster markers that are exclusively expressed
byCAF populations, thus indicating that CAFs can provide an excellent
source of candidates asmetastasis biomarkers for HNSCC (Fig. 2e).We
would like to reinforce that detection of clusters markers could not be
achieved for saliva cells due to a lack of an appropriate scRNASeq
reference.

Next, to strengthen the association between the immune
response and lymph nodemetastasis, we evaluated the clinical data of
cell counts obtained from the clinical laboratory in a group of 25
HNSCC patients (9 pN+ and 16 pN0 samples). Although all cell popu-
lations were reduced in pN+ when compared to pN0, our results
revealed a significant lower cell count/mm3 of lymphocytes in pN+
(p = 0.0261; two-sided unpaired Student’s t-test) (Fig. 2f). We also
correlated the immune subpopulations that were estimated from bulk
RNA sequencing (RNASeq) immune data using xCell algorithm30 with
pN outcome. The data was retrieved from TCGA for a 428-HNSCC (180
pN0, 248 pN+) cohort. Interestingly specific immune populations were
also associated with the presence of lymph node metastasis with sig-
nificant correlation coefficients that ranged from −0.23 to 0.12
(p ≤0.05; two-sided Spearman correlation) (Supplementary Fig. 3f).

Therefore, through wiring multiple comparisons among our
proteomics data, publicly available datasets and cell counting, we
strengthened the relevance of the immune system in HNSCC by
identifying a proteome composition that was associated with the
metastatic profile and immune populations that potentially express
metastasis markers. Based on the relevance of the granulocytes/neu-
trophils, lymphocytes, dendritic cells, monocytes, and macrophages
depicted in the biological process enrichment and public data com-
parison, we prioritized a list of immune markers based on their iden-
tification in the proteomes. From the initially 19 selected targets that
represent these specific immune populations, nine potential markers
passed the SRM-MS quality control assessment andwere verified using
targeted approaches and further combined with other targets to
investigate the ability to distinguish nodal status using machine
learning (ML) models. These immune markers included CD3, CD4,
CD8, CD11b, CD14, CD16, CD19, CD45, andCD66b (please seeMethods
section ‘Selection of targets for ML analysis’).

Nodal metastasis cells resemble the molecular signature from
tumors
We next sought to explore the protein profile of the malignant and
non-malignant populations in the tumor and lymph nodes to elucidate
the functional effect of tumor cell spread from the primary site to the
lymph nodes. To achieve this, we compared the proteome composi-
tion of malignant and non-malignant cells isolated from 11 and 27
matched primary tumors and lymph nodes, respectively (Fig. 3a). Of
the 2478 protein groups identified for the malignant portion, 126
proteins were differentially abundant between lymph nodes and pri-
mary tumors (q ≤0.05; two-sided unpaired Student’s t-test followedby

Benjamini-Hochberg correction or proteins detected exclusively in
one group) (Supplementary Data 2-6). Considering the non-malignant
cells, 2,360 protein groups were identified, and 869 of these were
differentially abundant between the two environments (q ≤0.05; two-
sided unpaired Student’s t-test followed by Benjamini-Hochberg cor-
rection or proteins detected exclusively in one group) (Supplementary
Data 2-7).

Even though the total number of quantified proteins in the
malignant and non-malignant portions are similar, the proteins that
are differentially abundant between primary tumors and lymph nodes
in the malignant microenvironment are reduced when compared to
the non-malignant portion (37% vs. 6% of all proteins in the non-
malignant and malignant cells, respectively; p ≤0.0001; Chi-square
test) (Fig. 3b). Thus, the current proteomics data suggest that less
proteomics changes are observed in the primary versus metastatic
tumor compartment compared to the non-malignant stromal cells. We
also performed a hierarchical clustering analysis to visualize the rela-
tionship between tumor and nodal patients’ samples in the two
populations of malignant and non-malignant cells. The proteomic
profile groupedmalignant cells from the two regions by patient, while
non-malignant cells were clustered according to site (Fig. 3c). This is
another evidence showing a more similar proteome pattern between
malignant cells from the primary and metastasis sites. Non-malignant
cells derived from sample 400, a tonsil tumor, were clearly grouped
with non-malignant samples from the lymph nodes (Fig. 3c) and
exhibited a similar proteomic pattern that may result from the
enhanced lymphoid composition of tonsillar HNSCC. These results
may reflect the high heterogeneity and dynamism in the cell con-
stitutions that surround the tumor and metastasis in primary tumor
and lymph node sites.

We thendetermined theGObiological processes overrepresented
for the differential proteomes and found distinct processes enriched
for malignant and non-malignant portions. Proteins from non-
malignant cells upregulated in the lymph nodes were mainly
involved in ribosomal and translational processes (Enrichment FDR =
1.63E-37 to 7.36E-30) (Fig. 3d; Supplementary Data 3-1 and 3-2), and
this may be related to the heterogeneous cellular composition of
tumor and lymph node microenvironments. For malignant cells, the
proteome differentially abundant between primary sites and lymph
nodes (metastasis)was strongly involved in actin-based cellmovement
through the deregulation of a group of nine proteins (Enrichment
FDR = 1.22E-04 to 1.79E-02) (Fig. 3d; Supplementary Data 3-1 and 3-3).
We evaluated the protein or gene levels of these molecules using
parallel reaction monitoring-mass spectrometry (PRM-MS) and real-
time quantitative reverse transcription PCR (RT-qPCR) in the same set
of 11 matched FFPEmalignant samples from lymph nodes and primary
tumors used in the discovery phase. Two out of the nine proteins were
notmeasureddue to the lack of proteotypicpeptides, and sevenout of
the nine genes had no transcript levels detected, resulting in seven

Fig. 2 | Proteinprofile and immunecharacterizationofmarkers associatedwith
lymph node metastasis. a Upset plot presenting the intersection of differentially
abundant proteins associated with lymph node metastasis in the multiple sites
(pN+ vs. pN0; p ≤0.05; two-sided unpaired Student’s t-test or proteins detected
exclusively in one group; primary tumor – malignant: n = 11 pN+, 14 pN0 patients;
primary tumor and lymph node – non-malignant: n = 13 pN+, 14 pN0; buffy coat:
n = 11 pN+, 13 pN0; saliva cells: n = 13 pN+, 11 pN0). b Combined view of the top-10
GO biological processes overrepresented for tissues and fluids considering differ-
entially abundant proteins between pN+ and pN0 from a (Enrichment FDR≤0.01;
hypergeometric test followed by FDR correction). c Abundance of 23 proteins
significantly associated with lymph nodemetastasis in multiple sites (pN+ vs. pN0;
p ≤0.05; two-sided unpaired Student’s t-test or proteins detectedexclusively inone
group). d Relationship between GO biological processes significantly enriched for
the 23 common proteins listed in c (Enrichment FDR≤0.05; hypergeometric test
followed by FDR correction). Darker nodes are more significantly enriched gene

sets, bigger nodes represent larger gene sets and thicker edges represent more
overlapped genes. e Differentially abundant proteins from proteomics data iden-
tified as cluster markers of cells from the lymph node microenvironment5 (upper),
the tumor microenvironment5 (bottom left), and PBMC (bottom right). The size of
the circles indicates the percentage of cells expressing the clusters markers in the
scRNASeq external dataset5. Colors represent the LFQ intensity of the metastasis-
associated proteins herein evidenced from the proteomes of lymph nodes or pri-
mary tumor non-malignant cells or buffy coat. Higher LFQ levels in pN+ are
represented in red and higher LFQ levels in pN0 are in blue. f Immune cell count/
mm3 from 9 pN+ and 16 pN0 HNSCC patients. Lymphocyte cell count/mm3 was
significantly associated with lymph node metastasis (pN+ vs. pN0; p = 0.0261; two-
sided unpaired Student’s t-test). The results obtained for basophils and eosinophils
were not plotted to improve visualization (low cell count), and the values were not
statistically different between pN+ and pN0 samples. Data are expressed asmean ±
standard deviation. *p ≤0.05. Source data are provided as a Source Data file.
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genes/proteins tested: ACTA1, ACTN2, GSTM2, MYL1, MYO1G, NEB,
and TPM3. Although the pattern of iRT peptides was consistent across
samples in PRM-MS, twoprimary tumorFFPE tissueswith low signal-to-
noise ratios (1159 and 2008) were excluded, and the nine remaining
matched pairs were considered for subsequent analysis (Supplemen-
tary Fig. 4a, b).We confirmed the reduction ofACTA1, MYO1G, andNEB

in lymph nodes metastasis at transcript or protein levels (Fig. 3e, f;
Supplementary Data 4-1 and 4-4), reinforcing that actin-related pro-
teins are altered during HNSCC spread by independent methodolo-
gies, possibly modulating cell motility (p ≤0.05; two-sided Wilcoxon
signed-rank test for PRM-MS and two-sided Mann-Whitney test for
RT-qPCR).
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Interestingly, the tightly control ofmotility programmes is critical
for establishing the epithelial–mesenchymal transition (EMT) neces-
sary for tumor invasion andmetastatic dissemination31. During EMT, as
previously described in HNSCC at the RNA level5, tumor cells undergo
a loss of intrinsic polarity and lose cell–cell junctions through exten-
sive reorganization of the cytoskeleton and initiation of actin-based
cell motility31. The alteration ofmotility proteinsmay also be related to
the acquisition of a mesenchymal-epithelial transition (MET) program
in the metastatic site (the reverse transition of EMT) where metastatic
cells recapitulate the pathology and became even less dedifferentiated
than are their corresponding primary tumors32. To gain insights into
the EMT and MET programs in HNSCC, we next determined EMT
scores in the 11 matched FFPE proteomes evaluated in the discovery
phase considering a 76-gene signature computed by Byers et al.33 (for
details, please see Methods section ‘Comparison between tumor and
metastasis proteomes’). As hypothesized, primary tumor malignant
samples had a more mesenchymal (‘Mes’) phenotype when compared
to the lymph node cells, which have a more epithelial (‘Epi’) profile
(p = 0.0391; two-sided Wilcoxon signed-rank test) (Fig. 3g). We then
verified if the abundances of three canonical EMT markers in the
proteomes of the discovery phase were associated with the sites from
where the malignant cells were isolated: E-cadherin (CDH1), fibro-
nectin (FN1), and vimentin (VIM) (11 matched FFPE tumor vs. metas-
tasis; q >0.05; two-sided unpaired Student’s t-test followed by
Benjamini-Hochberg correction or proteins detected exclusively in
one group; Supplementary Data 2-6). Because the abundance of these
proteins between groups was not statistically significant, we evaluated
the three proteins in the same cohort using PRM-MS due to its sensi-
tivity and accuracy. Elevated FN1protein andpeptide abundanceswere
observed in malignant populations from primary tumors, indicating
the predominance of ‘Mes’ cells, while CDH1 had higher abundances in
lymph nodes and implicated the presence of more ‘Epi’ phenotypes
(nine matched FFPE tumor and metastasis that passed the PRM-MS
quality control; p ≤0.05; two-sided paired Student’s t-test or two-sided
Wilcoxon signed-rank test) (Fig. 3h, i; Supplementary Data 4-1 and 4-4).
This analysis indicates a role of EMTprograms, as well as of the reverse
process of MET, in HNSCC spread.

Overall, we clarified the proteome composition that is asso-
ciated with locoregional metastasis in HNSCC, thus providing a
detailed view of potential processes and molecules that are impli-
cated in tumor invasion and spread. Again, the results achieved using
proteomics resemble the data obtained using scRNASeq for HNSCC5,
thus indicating that the methods applied in this study effectively
identified andquantified protein content patterns that can be used to
reveal the heterogeneity of the populations in the nodal and
primary sites.

Microenvironment proteomes group samples according to
metastasis and highlight candidate markers of locoregional
spread
We further investigated the potential ofmultisite proteomic profiles in
regard to grouping patients according to lymph node metastasis.
Hence, we first evaluated the ability of global HNSCC proteomes to
separate pN+ and pN0 patients. For that, the whole proteomic con-
tents identified for the multisites (Fig. 1b) were used to calculate the
hierarchical clustering in dendrograms, and the samples segregation
patterns (patients’ clusters C) were associated with clinical and
pathological features (2444; 1984; 2137; 2188; and 1154 proteins,
respectively, identified across 25 samples of malignant cells from the
primary tumor, 27 samples of non-malignant cells adjacent to the
primary tumor and lymph node, and 24 buffy coat and saliva samples)
(Fig. 4a). A single clustering criterionwas considered to group samples
from four out offive datasets (WardChebyshev), but a distinctmethod
and metric combination was used to segregate the proteomes of
malignant cells from primary tumors (Complete Canberra) due to the
formation of a highly unbalanced cluster pattern when applying Ward
Chebyshev. The cluster behavior provides insights into the analysis of
clinical data and, interestingly, C1 and C2 from lymph node micro-
environment cells were non-randomly associated with pN status
(p = 0.046; two-sided Fisher’s exact test) (Fig. 4b). Moreover, clusters
were significantly associated with smoking habits (primary tumor and
lymph nodes: non-malignant, buffy coat; p =0.028, p = 0.012, and
p =0.033, respectively), pT (primary tumor - non-malignant;
p =0.021), desmoplasia status (buffy coat; p =0.044), and overall
survival (saliva cells; p =0.042) (two-sided Fisher’s exact test or two-
sided log-rank tests) (Supplementary Fig. 5a, b). Based on the knowl-
edge that HPV plays a role in the etiology of HNSCC (primarily in
oropharynx squamous cell carcinomas)34, we also evaluated the pre-
sence of this virus in the 27 HNSCC primary tumors to determine its
associationwith patient clustering. HPV16 DNApositivity was detected
in 29.6% of HNSCC, including five larynx, two oral, and one orophar-
yngeal tumor (Supplementary Fig. 5c). Within this subgroup, three
tumors from the oropharynx (n = 1), oral (n = 1), and larynx (n = 1) sites
were positive for E6/E7 viral transcripts, thus indicating infection by
transcriptionally active HPV (Supplementary Fig. 5c). HPV DNA or RNA
positivity was not associatedwith patient clustering patterns (p >0.05;
two-sided Fisher’s exact test), thus revealing that other etiological
factors were associated with the observed proteomic profiles.

To further explore the proteomic differences between pN+ and
pN0, we employed principal component analysis (PCA) using the sets
of deregulated proteins from multiple sites (pN+ vs. pN0; p ≤0.05;
two-sided unpaired Student’s t-test or proteins detected exclusively in
one group; 201, 110, 85, 80, and 54 proteins from non-malignant cells

Fig. 3 | Comparative proteomics analysis of primary tumor and lymph node
sites formalignant and non-malignant cells. a Experimental design to define the
differential protein profile of the malignant and non-malignant populations
between the tumors and lymph nodes (matched malignant samples from primary
tumor and lymph nodes, n = 11 samples per site; matched non-malignant samples
from primary tumor and lymph nodes, n = 27 samples per site). Created with
BioRender.com. b Frequency of downregulated or upregulated proteins between
tumors and lymph nodes in malignant and non-malignant populations (malignant
vs. non-malignant; p ≤0.0001; two-sided Chi-square test). ****p ≤0.0001.
c Hierarchical clustering when considering the proteomic profile of malignant and
non-malignant cells from primary tumor and lymph nodes (n = 2478 and 2360
proteins, respectively). Clustering was performed using the Ward method with
Euclidean distance. *Samples that do not follow themain clustering pattern. d Top-
5 GO biological processes enriched for proteins that were differentially abundant
between lymph nodes and primary sites in malignant and non-malignant samples
(Enrichment FDR≤0.05; hypergeometric test followed by FDR correction). *Actin-
based cell movement processes modulated in malignant cells through the dereg-
ulation of nine proteins. These proteins were selected for verification. Box plots
representing the abundance of transcripts and proteins that are involved in actin-

based cell movement using RT-qPCR (e) and PRM-MS (f), respectively (primary
tumormalignant samples, n = 9 vs. lymph node matchedmalignant samples, n = 9;
two-sidedWilcoxon signed-rank test for PRM-MS and two-sidedMann-Whitney test
for RT-qPCR). The boxplots depict the 25–75% interquartile range (IQR) (box lim-
its), with the median shown as a central line; whiskers indicate the minimum and
maximumvalues. *p ≤0.05.g EMTscores ofHNSCCmalignant cells considering the
76-gene signature proposed by Byers et al.33 in the discovery datasets (primary
tumor malignant samples, n = 11 vs. lymph node (metastasis) matched malignant
samples,n = 11;p =0.0391; two-sidedWilcoxon signed-rank test). *p ≤0.05. The left-
sided data are mean ± standard deviation and the right image represent individual
samples. Box plots representing the abundance of EMTmarkers at protein- (h) and
peptide-levels (i) in malignant cells using PRM-MS (primary tumor malignant
samples, n = 9 vs. lymph node matched malignant samples, n = 9; two-sided Wil-
coxon signed-rank test or two-sided paired Student’s t-test). Only statistically sig-
nificant results are shown for peptides. Boxplots depict the 25–75% interquartile
range (IQR) (box limits), with the median shown as a central line; whiskers indicate
the minimum and maximum values. *p ≤0.05; **p ≤0.01. HNSCC head and neck
squamous cell carcinoma, EMT epithelial-mesenchymal transition. Source data are
provided as a Source Data file.

Article https://doi.org/10.1038/s41467-022-34407-1

Nature Communications |         (2022) 13:6725 8



from lymph nodes, malignant cells from primary tumor, non-
malignant cells from primary tumor, buffy coat, and saliva, respec-
tively) (Supplementary Data 2-1 to 2-5). The best segregation was
observed for the differentially abundant proteins determined for non-
malignant cells from lymphnodes that separated the groups according
to the first and second components with 22.4% and 15.3% of the total
data variation, respectively (Fig. 4c).

Based on the observation that non-malignant cells from lymph
nodes exhibited the most promising association with lymph node
metastasis status according to hierarchical clustering (global

proteome) andPCA (differential proteome) analysis, we applied FDR to
control for multiple hypotheses and to filter out proteins that were
strongly associated with the metastatic phenotype (pN+ vs. pN0;
q ≤0.05; Benjamini-Hochberg test or proteins detected exclusively in
one group). Eight downregulated and five upregulated proteins (pN+
vs pN0) had a highly significant differential abundance according to
the status of locoregional metastasis (q = 3.25E-03 to 4.91E-02 for nine
proteins; two proteins were exclusively detected in 50% of
pN0 samples: CD209 and TGFB1I1) (Fig. 4d; Supplementary Data 2-8).
This set of 13 proteins is primarily involved inmRNA splicing processes
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(enrichment FDR = 1.2E-07 to 2.0E-06) (Fig. 4e). FDR correction was
also applied to define proteins associatedwith locoregionalmetastasis
in the other four datasets; however, no significant results were
observed. We then performed an additional analysis to refine the 13
targets. Downregulation of this set of proteins was associated with
other poorprognostic features (p ≤0.05; two-sidedunpaired Student’s
t-test, ANOVA, and two-sided Fisher’s exact test) (Supplementary
Fig. 6a), and they were demonstrated to be physically or functionally
associated according to protein-protein interaction networks (Sup-
plementary Fig. 6b).

Finally, using an ML model, we predicted the power of the five
splicing proteins to distinguish pN+ and pN0 patients using data from
the discovery phase.We also included the protein CD209 inML analysis
due to the involvement of immune processes in HNSCC that are
described at several sites (please see Methods section ‘Selection of tar-
gets forMLanalysis’) (SupplementaryData 5-1). Distinct pairs <Signature
Si, Classifier Cj> could discriminate pN+ and pN0 HNSCC patients with
elevated AUCs (mean AUC=0.933), thus indicating the high perfor-
mance of the six proteins in distinguishing patients according to pN
(Fig. 4f; Supplementary Data 5-2). Similarly, transcripts of the six genes
also exhibited lower expression in pN+ compared to that in pN0 (RT-
qPCR; p= 1.14E-04 to 2.45E-02; two-sided unpaired Student’s t-test), and
this corroborates the proteomic pattern (Supplementary Fig. 6c, d).
Additionally, transcript pairs <Cj, Si> could discriminate pN+ and pN0
HNSCC patients with high AUCs (mean AUC=0.853) (Fig. 4f; Supple-
mentary Data 5-3). In summary, we demonstrated the importance of the
six metastasis markers in HNSCC clinics and then investigated their
relationship with the immune compartment.

Microenvironment and other splicing markers may be expres-
sed by immune populations
Based on our data and the knowledge that the lymph node metastasis
proteome was deeply associated with the immune response (Fig. 2b,
d–f; Supplementary Fig. 3f), we next investigated if the six selected
targets (SRSF1, SRSF2, SRSF3, SRSF5, TRA2A, and CD209) from non-
malignant cells from lymph nodes are likely to be expressed by the
immune cell types from the lymph node microenvironments. We also
evaluated the gene expression in non-immune populations. From the
publicly available scRNASeq data analysis, we observed that SRSF2 and
TRA2A were cluster markers of immune cells from lymph nodes
(Fig. 2e); additionally, we did determine that all the six targets are
expressed by the immunemilieu from pN+ lymph nodes in an immune
cell-type-specific manner (Fig. 5a). Globally, SRSF1 and SRSF2 genes
were highly expressed in CD8+ T effector cells from lymph node pN+
microenvironments (non-malignant cells) when compared to other cell
populations, while the splicing genes SRSF3, SRSF5, and TRA2A had
elevated transcript levels in regulatory T cells (Tregs) (Fig. 5a). CD209
exhibited the most elevated transcript levels in macrophages (Fig. 5a).
We also analyzed the differential expression of the six targets in pN+
versus pN0 single cell environments. Once the pN0 single cell

counterpart of lymph node non-malignant cells is not available in the
literature, we used primary tumor information (Supplementary
Fig. 3g)5. SRSF5wasdownregulated inmacrophages andTreg cells from
pN+HNSCC in relation topN0 samples, and this senseof alteration is in
accordance with the results obtained in proteomics (Fig. 5b) (adjusted
p ≤0.05; two-sided Wilcoxon test and Benjamini-Hochberg correc-
tion). Particularly, TRA2A was downregulated in the non-immune
population of CAFs (pN+ vs. pN0; p ≤0.05; two-sided Wilcoxon test
and Benjamini-Hochberg correction) (Supplementary Fig. 3h).

We then provided a deeper understanding of the modulation of
alternative splicing in the immune cells by evaluating the differential
expression patterns associated with metastasis in a larger set of spli-
cing genes. The gene expression of a list of 421 gene ontology (GO)
splicing factors (https://www.uniprot.org) was verified in immune cells
based on scRNASeq data from non-malignant cells of HNSCC primary
tumors5, as performed for the splicing genes SRSF1, SRSF2, SRSF3,
SRSF5, and TRA2A. From the 421, 41 GO splicing genes were sig-
nificantly down- or upregulated in immune populations from pN+
when compared to pN0 (adjusted p ≤0.05; two-sided Wilcoxon test
andBenjamini-Hochbergcorrection) (Fig. 5c; SupplementaryData 6-1).
As observed for the microenvironment markers, most of the 41 GO
splicing genes were downregulated in pN+ cells (28 downregulated
and 13 upregulated genes) and this is a significant and prevalent sense
of alteration for CD8+ T effector, CD8+ T exhausted, dendritic cells,
macrophages, Treg, and plasma cell populations (Fig. 5d) (p =0.021;
two-sided Fisher’s exact test).

In parallel, we searched the 421 splicing proteins in our bulk
proteome datasets from themultisites to have a viewof splicing across
HNSCCnon-malignant cells and fluids. Even thoughwe just considered
sites that contain immune cells, we unfortunately could not separate
the splicingmodulation at single-cell level because these are bulk data.
The datasets contained information of mixed subpopulations and
included metastasis-associated proteomes of non-malignant cells iso-
lated from primary tumor (n = 85 proteins differentially abundant in
pN+ vs. pN0) or lymph nodes (n = 201 proteins) and fluid cells (n = 80
proteins for buffy coat and n = 54 proteins for saliva), as presented in
Supplementary Data 2. A group of 21 GO splicing proteins was asso-
ciated with the metastatic phenotype (pN+ vs. pN0) across the multi-
sites, mostly in non-malignant cells from lymph nodes (Fig. 5e;
Supplementary Data 6-2). From these, downregulated splicing factors
prevailed in the pN+ phenotypes of non-malignant cells from lymph
nodes and buffy coat samples, which have the largest proportions of
immune cells, demonstrating again that thedownregulationof splicing
factors in immune cells is associated with the metastatic phenotype in
HNSCC (p = 0.0008; two-sided Fisher’s exact test) (Fig. 5f).

Altogether, we had 61 non-redundant splicing factors differen-
tially expressed between pN+ and pN0 when considering single cell
RNA and proteomic data, and these are mainly molecules down-
regulated in the pN+ phenotype. The 61 splicing factors can target 41
unique genes according to the SpliceAid-F database35. Interestingly,

Fig. 4 | Proteome-grouping pattern associated with nodal metastasis and
refinement of targets for ML analysis. a Clustering of tissues and fluids based on
the global proteomicprofile (C1 andC2 clusters) (n = 59patients). C1 andC2 groups
were generated using Complete Canberra (25 primary tumor –malignant samples:
2444 proteins), and Ward Chebyshev (27 primary tumor – non-malignant: 1984
proteins, 27 lymph node – non-malignant: 2137 proteins, 24 buffy coat: 2188 pro-
teins; 24 saliva samples: 1154 proteins). b Association between lymph node
metastasis and patient clustering for non-malignant cells from the lymph node
(p =0.046; two-sided Fisher’s exact test). *p ≤0.05. c PCA plots presenting clusters
of samples based on the abundance of proteins that were differentially abundant
between pN+ and pN0 (p ≤0.05; two-sided unpaired Student’s t-test or proteins
detected exclusively in one group; 201, 110, 85, 80, 54 proteins from non-malignant
cells from lymph nodes, malignant cells from primary tumor, non-malignant cells
from primary tumor, buffy coat samples, and saliva samples, respectively).

d Volcano plot for the differential protein abundance between pN+ and pN0 non-
malignant cells from lymph nodes. Differentially abundant proteins are presented
as blue and orange dots (pN+ vs pN0; q ≤0.05; two-sided unpaired Student’s t-test
followed byBenjamini-Hochberg test or proteins detected exclusively in one group
in at least 50%of samples). e Top-10 GObiological processes that were significantly
enriched for the 13 proteins associated with lymph node metastasis from
d (Enrichment FDR≤0.05; hypergeometric test followed by FDR correction). f AUC
distribution per classifier using ML analysis of SRSF1, SRSF2, SRSF3, SRSF5, TRA2A,
and CD209 proteins (upper panel) and transcripts (lower panel). Details about the
AUCs plotted for each classifier are available within Supplementary Data 5-2 and
5-3. Boxplots show the median (central line), the 25–75% interquartile range (IQR)
(box limits), and the ±1.5×IQR (whiskers). Source data are provided as a Source
Data file.
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two of these targets (HBB and TRA2B) were associated withmetastasis
in the proteome of non-malignant cells isolated from lymph nodes
with downregulation in the pN+ phenotype (Supplementary Data 6-3).
All these data reinforced the modulation of splicing in immune cells,
mainly through the downregulation of these factors, which may sig-
nificantly impact metastasis in HNSCC.

Metastasis-associated tissue targets can be detected in liquid
biopsies
Once the six selected metastasis-dependent markers (SRSF1, SRSF2,
SRSF3, SRSF5, TRA2A, and CD209) were all associated with clinics and

presented a value in the immune response and/or composition, they
were evaluated collectively with the nine immune markers that were
previously prioritized (CD3, CD4, CD8, CD11b, CD14, CD16, CD19,
CD45, and CD66b) for their ability to discriminate pN+ and pN0
patients in liquid biopsies using targeted methodologies followed by
an ML model (please see Methods section ‘Selection of targets for ML
analysis’). Liquid biopsies exhibit great potential for cancer manage-
ment, as they all for the assessment of markers in a minimally invasive
manner36. Moreover, lymph node cells can broadly circulate through-
out the body37, and nodal markers can be identified in body fluids as a
more convenient source of biomarkers. We used selected reaction

Fig. 5 | Molecular patterns of splicing factors in immune cell-type-specific gene
expression or multisite proteomes and their relationship with metastasis.
a Expression of the six selected targets (SRSF1, SRSF2, SRSF3, SRSF5, TRA2A, and
CD209) in immune populations from HNSCC that were identified by scRNASeq
public data5 in lymph node pN+ microenvironment. b Average fold change (y axis)
and adjustedp (x axis) betweenpN+andpN0 tumormicroenvironments5 for the six
targets evaluated in individual immune populations (two-sided Wilcoxon test fol-
lowed by Benjamini-Hochberg correction). The dashed lines represent a p thresh-
old of 0.05 and significant results are indicated by arrows. The differences could
not be tested for plasma and CD8+ T exhausted cells because there were not
enough cells for comparison. cHeat-map representing the average fold change for
GO splicing genes differentially expressed between pN+ and pN0 immune popu-
lations from tumormicroenvironments5 (pN+ vs. pN0; adjusted p ≤0.05; two-sided
Wilcoxon test followed by Benjamini-Hochberg correction). Blank cells indicate

transcripts without difference between pN+ and pN0. d Proportion of up- and
downregulated genes from (c) that are expressed by the immune cells. Gene
expression (up- and downregulation in pN+ when compared to pN0) was sig-
nificantly associated with the immune cell types (p =0.0210; two-sided Fisher’s
exact test). *p ≤0.05. e Heat-map representing the average ratio for GO splicing
proteins differentially expressed between pN+ and pN0 multisites (pN+ vs. pN0;
p ≤0.05; two-sidedunpaired Student’s t-test). The log2 LFQ ratios are shown for the
statistically significant proteins. Blank cells indicate proteins that were not differ-
entially abundant between pN+ and pN0. f Proportion of up- and downregulated
proteins from (e) expressed in the multisites. Protein abundance (up- and down-
regulation in pN+ when compared to pN0) was significantly associated with the
environments (p =0.0008; two-sided Fisher’s exact test). LN: lymph node; PT:
primary tumor. ***p ≤0.001. Source data are provided as a Source Data file.
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monitoring-mass spectrometry (SRM-MS) to measure the relative
abundance of selectedpeptides andproteins in 19buffy coat (7pN+, 12
pN0) and 25 saliva samples (16 pN+, 9 pN0) from a 36-HNSCC patient
cohort. Quality control revealed an average carryover of iRT and
heavy-isotope-labeled peptides of 0.16% (0.1%–0.45%) between SRM-
MS assays, and this is similar to the 0.1% reported in the literature38

(Supplementary Fig. 4c). Quality parameters (Methods section ‘Quality
control in SRM-MS and PRM-MS’) were satisfactory for all evaluated
samples (Supplementary Fig. 4d–g). Selected peptides from the 15
immune and microenvironment candidate markers were detected in
the buffy coat HNSCC cohort, whereas for saliva samples only the
peptides SRSF3_Pep1, SRSF5_Pep1, SRSF5_Pep2, CD45_Pep1, and
CD4_Pep1 could not be confidently measured due to low signal-
to-noise ratios (Supplementary Data 4-2–4-6; Supplementary Data 7-2
– 7-4). We also evaluated the gene expression of the six micro-
environment targets in a 24-patient cohort frombuffy coat samples (10
pN+, 14 pN0) and a 22-patient cohort from saliva cells (10 pN+, 12 pN0)
using RT-qPCR (Supplementary Data 7-1). All targets were identified in
both fluids (Supplementary Data 4-5 and 4-6). Thus, we demonstrated
that blood and saliva contain the metastasis markers that were pre-
viously detected for lymph nodes, and we next employed a multi-
parametric ML approach.

Machine learning predicts liquid biopsy-metastasis signatures
with high performance
Finally, we used ML to evaluate the power of candidate prognostic
markers in predicting nodal status in liquid biopsies (Fig. 6a). Twelve
individual (peptide, protein, or transcript) or combined (peptides +
proteins + transcripts) datasets from the 15 immune and micro-
environment markers (CD3, CD8, CD4, CD11b, CD14, CD16, CD19,
CD45, CD66b, SRSF1, SRSF2, SRSF3, SRSF5, TRA2A, and CD209)
assessed in saliva and buffy coat by SRM-MS or RT-qPCRwere tested in
ML analysis (Supplementary Data 4-2–4-6; Supplementary Data 5-1;
Supplementary Fig. 7a).

A strategy was defined to select high-performance signatures that
could stratify pN+ and pN0 patients among the pairs signature-
classifier <Si, Cj> defined by ML (for details, please see Methods sec-
tion ‘Definition of prognostic signatures using machine learning’)
(Supplementary Fig. 7b). Due to the sample size limitation for this ML
analysis, we did not intend to select onemodel, but to report a set with
many candidates’ high-performance signatures that could be used in
the decision-making process regarding future studies with larger
samples sizes. In summary, we first selected the pair <Si, Cj> with the
highest ROC AUC (named top-1) and equivalent pairs that statistically
did not discriminate from the best one (two-sided unpaired Student’s
t-test, p ≥0.05). Then, pairs with permutation p ≤0.05 and AUC ≥0.85
were prioritized for every dataset (Fig. 6b; Supplementary Fig. 7c;
Supplementary Data 5-4). An overrepresentation of the best pairs <Si,
Cj> was yielded when combining peptides, proteins, and transcripts
levels for the 15 targets evaluated in both buffy coat and saliva (Fig. 6b;
Supplementary Data 5-4). Thus, subsequent analysis considered the
112 and 1,727 signature pairs <Si, Cj> that were generated byML for the
combined datasets of buffy coat and saliva, respectively, and could
stratify pN+ and pN0 patients with elevated AUCs (Fig. 6b; Supple-
mentary Data 5-4). The individual markers SRSF5_Pep1, SRSF3_RNA,
and TRA2A_RNA were the most frequent targets present in the buffy
coat high-performance pairs <Si, Cj > , identified in around 15%of these
signatures, while SRSF1_Pep1, TRA2A_Protein and TRA2A_Pep1 were
highly identified among the high-performance signatures from saliva,
and occurred in 10% to 15% of the pairs <Si, Cj > (Fig. 6c).

Among the high-performance signatures generated for the com-
bined datasets, the most elevated AUCs (top-1 signature) included a
four-target signature for buffy coat (CD11b_Protein, CD11b_Pep3,
SRSF3_Pep1, and TRA2A_Pep2; linear discriminant; AUC =0.953; 95%
CI = 0.91 – 1.00; sensitivity = 0.933; specificity = 0.907) and a four-

target signature defined for saliva (CD16_Pep1, SRSF1_Pep1, TRA2A,
SRSF1 transcript; RBF SVM; AUC=0.919; 95% CI = 0.86 – 0.92; sensi-
tivity = 0.834; specificity = 0.936) (Fig. 6d). We then selected the top-1
signature for buffy coat to indicate the target circulating immune
populations responsible for this signature (SRSF3 and TRA2A pro-
teins). Flow cytometry was performed in blood samples from an
independent 20-HNSCC patient cohort (10N+; 10 N0) (Supplementary
Fig. 7d, e). Both proteins were highly expressed in an elevated pro-
portion of buffy coat’s myeloid immune populations (Fig. 6e, f; Sup-
plementary Data 8). N+ samples had a lower proportion of myeloid
cells expressing SRSF3 when compared to N0 (p =0.0004; two-sided
Mann-Whitney test) (Fig. 6e), as well as downregulation or a reduced
proportion ofmyeloid cells (p =0.050; two-sided unpaired Student’s t-
test), neutrophils (p =0.046; two-sided unpaired Student’s t-test and
p =0.050; two-sided unpaired Student’s t-test), and lymphocytes
(p = 0.030; two-sided unpaired Student’s t-test) expressing TRA2A
(Fig. 6f). Notably, the reduced levels of SRSF3 and TRA2A in the cir-
culating cells of N+ patients reflect the lower abundance of these
proteins found in the pN+microenvironment of lymph nodes (Fig. 4d;
Supplementary Fig. 6c, d; Supplementary Data 2-7). Moreover, the
relevance of neutrophils detected for TRA2A is in line with the
enrichment of neutrophils-dependent biological processes identified
for metastasis markers in buffy coat (Fig. 2b), strengthening the sig-
nificance of this immune population in the metastatic cascade.

Taken together, the results of this study depicted the framework
of the wired microenvironments in HNSCC and provide a promising
basis for understanding tumorbiology, indicating apotential signature
of metastasis for this disease.

Discussion
Cancer is a systemic disease, and the crucial contribution of multiple
environments to the regulation of HNSCC implicates a fundamental
role of varied populations in supporting a tumoral niche. Hence, fur-
ther progress in head and neck oncology will require a global under-
standing of the diverse molecular landscape of the neoplasm.
Additionally, molecular profiling of isolated cell populations from tis-
sues reduces the intrinsic heterogeneity caused by the mixing of cell
types and is essential for deciphering cancer. Therefore, we performed
a comprehensive mass spectrometry-based proteomic analysis of
isolated cell populations from tissues and fluids to character-
ize HNSCC.

Our key findings are in regard to the modulation of the immune
system retrieved from the global and metastasis-dependent HNSCC
proteomes (Figs. 1d, e, f; 2b, d, e). The tumor immune infiltrating
composition has been previously explored in HNSCC39–41; however, an
advance in our study is the identification of the overrepresentation of
immune processes in the multisite samples evaluated. The immune
response is coordinated across tissues, and its relationship to cancer
must encompass the peripheral immune system in addition to the
TME27. The association between the immune population and global
proteomes identified here is of special interest, as the immune context
exerts profound effects on the response to immunotherapies. Resis-
tance to immunotherapy remains a bottleneck in regard to the suc-
cessful treatment of cancer, and greater than 80% of HNSCC patients
with metastatic disease do not respond to PD-1 blockade42. Hence,
biomarkers for patient stratification or the identification of new
immune targets are urgently needed. Themultisite proteomic analysis
presented in this study elucidated the immune cell composition of
HNSCC TME and blood using CIBERSORTx version 1.0 (Fig. 1e, f), and
this is of paramount relevance to select targeted therapies against the
cell types individually in a clinical setting43. Even though the use of an
RNA signature to estimate cell types based on protein abundance in
CIBERSORTx version 1.0 might not be as accurate as using RNA data,
external validations showed that cell type estimation using transcript
matrix for proteomics data may not skew the prediction
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(Supplementary Fig. 3d, e), and it can be useful for future proteomics
studies. Besides defining the cell composition, our study revealed
three categories of biological processes that are highly enriched for
clusters of proteins, and these processes include neutrophil-mediated
immunity, antigen processing and presentation (APP), and the reg-
ulation of humoral response mainly through the Fc receptor signaling
pathway (Fig. 1d). It was just recently established that neutrophils have
an important contribution in the initiation, development, and pro-
gression of cancer, and targeting this populations clinically is an
emerging area of interest44. Alterations in the APP are known to be

associated with immune evasion and can result in impaired antitumor
responses and therapy resistance45. Additionally, the blockade of the
interaction between the inhibitory Fc receptor FcγRIIB and immune
complexes in mouse models has been proposed as an approach for
cancer immunotherapy46. Thus, we identified immune cell players and
components of specific pathways that can be further targeted to
enhance the immunogenicity in HNSCC or that can be explored as
markers of immunotherapy resistance.

Understanding the molecular principles underlying cancer inva-
sion and metastasis is a highly complex endeavor and is of special

Fig. 6 | Definition of thebest prognostic signatures in liquidbiopsies according
to machine learning. a Design used to determine the signatures of lymph node
metastasis with the best performance according to ML. Created with BioR-
ender.com. b High-performance signatures determined for buffy coat and saliva
individual and combined datasets after filtering for ROC AUC ≥0.85 and permu-
tation p ≤0.05. The solid line represents the means for each dataset. c Percentage
ofmarkers among the buffy coat (left panel) and saliva (right panel) signatures that
exhibited high performance in regard to discriminating pN+ and pN0 patients.
Combined datasets containing peptide, protein, and transcript data for the 15
markers were considered. d ROC curves indicating the top-1 pairs <Si, Cj> in buffy

coat (upper panel) and saliva (lower panel) samples that discriminated HNSCC
patients based on lymph node metastasis status (AUC>0.919). Shaded region
indicates 95% confidence interval for the AUC. Combined datasets containing
peptide, protein, and transcript data for the 15 markers were considered. Mean
fluorescence intensity (MFI) and percentage of immune cells expressing the pro-
teins SRSF3 (e) and TRA2A (f) in 10N+ and 10 N0 buffy coat samples. Significant
differences between groups are represented as black diamonds (two-sided
unpaired Student’s t-test or two-sided Mann-Whitney test; p ≤0.05). AUC area
under the curve. Source data are provided as a Source Data file.
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interest in HNSCC due to its association with poor prognosis2. Our
work revealed that pN status is related to immunity in HNSCC by using
a combination of our own proteome data, public RNASeq information,
and cell counts obtained from clinical laboratories (Figs. 2b, d–f; 5;
Supplementary Fig. 3f, h). We deciphered immune GO biological pro-
cesses associatedwithmetastasismarkers that are commonlyenriched
in multiple sites, thus indicating that the development of lymph node
metastasis depends upon an orchestrated interconnection of immune
system across multiple HNSCC environments (Fig. 2b, d). This inter-
connection may be necessary to maintain an immunosuppressive
systemic environment in HNSCC that is a prerequisite for preparing
the pre-metastatic niche and thus allowing for the establishment and
maintenance of cancerous cells in the pN+ lymph nodes7. Indeed, a
suppressed pN+ environment may be supported by splicing proteins
that are strongly associated with the metastatic phenotype in our
HNSCC dataset, and the genes associated with these proteins include
SRSF1, SRSF2, SRSF3, SRSF5, and TRA2A, and also the immune marker
CD209 (Fig. 4d). CD209 exhibits high transcript levels in pN+ macro-
phages (Fig. 5a) that canpotentially preventCD8+T cells fromexerting
their full cytotoxicity against tumor cells. Remarkably, a group of the
splicing genes are highly expressed in the immunosuppressive Treg
cell population and this expression is associated with the presence of
lymph node metastasis in HNSCC based on scRNASeq data (Fig. 5a, b;
Supplementary Fig. 3g). The Treg population exerts a potent immu-
nosuppressive function that plays a crucial role in tumor immune
escape47, suggesting the involvement of these splicing markers in the
suppressive environment associated with the metastatic phenotype.
We further extended our analysis and showed a group of 61 splicing
factors that is related to the metastatic phenotype in an immune cell-
type- or multisite-specific way (Fig. 5c–f). Our results in a global man-
ner suggest that downregulating splicing in immune cells can con-
tribute to tumor progression and a poor patient prognosis; thus,
targeting alternative splicing pathways might be a promising strategy
for therapy. As an example, the alternative splicing in the immune
system is known to generate a diverse repertoire of antigen receptors,
such as those expressed by B and T cells48, changing the endogenous
antigenicity and then also have clinical potential for using such
splicing-derived epitopes as checkpoint immunotherapy. Still other
studies must be developed to better understand the splicing effect in
RNA maturation and proteoforms, as well as functional changes.

Additionally, lymphatic metastasis is the primary route for the
development of distant metastasis in a subset of tumors49,50, and
blocking the spread of tumor cells via lymphatic vessels may prolong
the life of cancer patients and also mitigate the poor prognosis. By
comparing malignant and non-malignant cells between primary sites
and lymph nodes (Fig. 3a), we identified several proteins involved in
the metastatic spread, including EMT-, motility- and translation-
associated molecules (Fig. 3d-i). It was shown that the modulation of
specific biomarkers can inhibit the metastatic colonization51,52, and the
proteins associated withmetastasis herein shown are potential targets
to be further evaluated in animal models and considered to clinically
prevent the spread of HNSCC. Indeed, the hierarchical clustering
analysis revealed that non-malignant cells possess a more homo-
geneous proteomic profile across patients than do malignant cells
because the samples are grouped according to site instead of by
patient (Fig. 3c). The same pattern was observed at the scRNA level in
HNSCC5, thus indicating that targeting the microenvironment cells
may yield improved treatment responses due to its reduced dynamism
across patients. Interestingly, the non-malignant proteomes from
tumors and lymph nodes showed a differential profile for translation-
associated proteins that reflects the heterogeneous cellular composi-
tion between sites. This constitutionmay be associated to the intrinsic
function of lymph nodes in the immune response that harbors the
transition of naive to effector T lymphocytes and is characterized by
the high abundance of the translational machinery and enhanced

protein synthesis53,54. As previously reported, the higher translational
levels may also be related to the significant enrichment of B cells,
T cells, macrophages, neutrophils, plasma cells, myofibroblasts, and
specific CAF populations in breast cancer and HNSCC pN+ lymph
nodes compared to that at primary sites5,55, or these levelsmay even be
associated with the recruitment of neutrophils, monocytes, and mac-
rophages that are necessary for the preparation of pre-metastatic
niches in pN0 sites of metastasis56–58.

Although a long list of prognostic biomarker candidates can be
observed in the literature, no molecular marker has been widely
accepted for routine use in managing patients with HNSCC. Currently,
only HPV and p16INK4A are considered to be prognostic markers for
oropharyngeal cancer, and both are associated with an improved
prognosis59. Hence, it appears that a multiparametric assessment will
be necessary to dissect the complex tumor interactions and define
prognosis in HNSCC, and this assessment will primarily include lymph
node metastasis-dependent signatures that represent the primary
poor prognosis feature. In this scenario, themultisite analysis led us to
develop amultiparametricMLmodel that allowed for the indication of
high-performance signatures of peptides, proteins, and/or transcripts
in saliva or blood that can discriminate pN+ and pN0 HNSCC (Fig. 6;
Supplementary Fig. 7).We successfully combinedmultiple datasets for
ML analysis (peptides + proteins + transcripts for immune and
microenvironment markers), and the high-performance signatures for
buffy coat and saliva samples clearly outperformed signatures indi-
cated by individual datasets in regard to separating patients according
to pN status. Interestingly, evaluating the expression of the top-1 sig-
nature defined for buffy coat (SRSF3 and TRA2A proteins from the
signature ‘CD11b_Protein, CD11b_Pep3, SRSF3_Pep1, and TRA2A_Pep2’;
linear discriminant; AUC =0.953) (Fig. 6d–f) strengthened the para-
mountcy of the myeloid lineage, especially neutrophils, in the meta-
static phenotype of HNSCC (Fig. 2b). Nevertheless, herein we show a
disease snapshot andwhether themodulation of neutrophils is a cause
or effect of HNSCC dissemination needs further investigation. Overall,
the ML analysis served to understand our datasets and the complex-
ities and noises that differentiate the type of data sources evaluated,
revealing promising metastasis-dependent signatures that can non-
invasively guide the decision-making process for HNSCC patients.
Indeed, substantial work is still required before a possible clinical
application of these signatures, and this include the evaluation in lar-
ger independent cohorts together with assay optimizations.

In summary, our results explored the molecular mechanisms
underlying HNSCC carcinogenesis through a multisite quantitative
mass spectrometry-based proteomics analysis that identified potential
cell players and biological processes related to immune system that
can be further targeted for therapy or explored as prognosis markers.
High-performance locoregionalmetastasis-dependent signatures have
been depicted and are promising for future clinical implementation.
We investigated the HNSCC multisite landscape providing the clinical
and research communities with valuable information that may guide
the management of patients.

Methods
Patients and sampling
A 93-patient cohort with HNSCC obtained from the oral cavity (n = 81
patients), larynx (n = 11 patients), and oropharynx (n = 1 patient) was
included in this work. The study was compliant with the ethical stan-
dards and informed written consent was obtained from all individuals
as approved by the Ethics Committees of Carlos Van Buren Hospital
(Process 121), University ofValparaíso (ProcessCB051-14), University of
São Paulo Academic Biobank of Research on Cancer, Centro de
Investigação Translacional em Oncologia, Instituto do Câncer do
Estado de São Paulo (ICESP) (Protocol CAEE 30658014.1.1001.0065),
Faculty of Medicine of Jundiai (Protocol CAEE 45091715.1.0000.5412),
andA.C. CamargoHospital (Protocol 2532/18B). In total,we included in
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this study 184 samples collected from the 93 HNSCC-patient cohort
that were evaluated in a discovery and/or verification phase. The dis-
covery cohort consisted of 59 HNSCC patients from whom 27 FFPE
primary tumors, 27 FFPE lymph nodes, 24 blood, and 24 saliva samples
were collected and used in discovery proteomics (DDA). The verifica-
tion cohort comprised an 83-patient group, and 23 FFPE tissues, 47
blood, and 33 saliva samples were used in the PRM-MS, SRM-MS, RT-
qPCR, and flow cytometry experiments. Of the 83 patients used in the
verification, 34 were independent cohorts that were not evaluated in
discovery proteomics. Details of the HNSCC cohorts and methodolo-
gies used in this work are summarized in Supplementary Data 1-1. For
clarity, we also presented the sample sizes used in each methodology
below or throughout the text.

Saliva was collected as previously described4, and collection
occurred preferably in the morning from individuals who had not
eaten or ingested liquids (except water) and had undergone oral
hygiene at least 1 h prior to collection. Patients were instructed to rinse
their mouths with 5mL of drinking water, and saliva was subsequently
harvested without stimulation into a plastic receptacle. Four mL of
peripheral blood were collected in BD Vacutainer® tubes with EDTA as
an anticoagulant (BD Life Sciences, USA). The cases were histopatho-
logically classified according to the recommendations of the World
Health Organization60, the American Joint Committee on Cancer
(AJCC), and the International Union Against Cancer (IUAC)61. None of
the patients received neoadjuvant radiotherapy or chemotherapy
prior to sample collection. The clinical and pathological data are
summarized in Supplementary Data 1-2.

Isolation of cells from tissues
Malignant and non-malignant cells were harvested from FFPE pri-
mary tumor and lymph node samples using micro- or macrodissec-
tion. Histology-guided laser microdissection was used to recover
malignant and/or adjacent non-malignant portions from FFPE pri-
mary tumors (n = 27 samples) and metastatic lymph nodes
(n = 13 samples).Malignant cells from tumorswere retrieved from the
invasive front, an area with high prognostic potential where themost
invasive and aggressive cells reside62. The invasive front contains the
most advanced tumor cells that invade normal tissues such as mus-
cle, connective tissue, salivary glands, and blood vessels62. The tumor
invasive front was collected from the farthest area of the invasive
surface of the tumor, and it was collected up to a depth of onemm in
the histological section4. Hematoxylin and eosin-stained histological
slideswere cut into 5μmsections to guidemicrodissection. Slices (10
μm) were mounted on Arcturus PEN Membrane Glass Slides (Life
Technologies, USA), deparaffinizedwith xylene, hydrated in a graded
ethanol sequence, and stained with hematoxylin for 1min. An area of
approximately 3,000,000μm2was dissected fromone to three slides
per sample for (i) malignant cells from primary tumors, (ii) non-
malignant cells adjacent to primary tumors (mucosal margins), (iii)
malignant cells from lymph nodes, and (iv) non-malignant cells from
metastatic lymph nodes adjacent to themetastasis using Leica LMD6
equipment (Leica Biosystems, Germany). Samples were collected in
600 µL tubes. Non-malignant cells from non-metastatic lymph nodes
(n = 14 samples) were recovered from 10 μm slices mounted on
standard slides, and they were used as the unique site for macro-
dissection due to the population homogeneity of the tissue. A
3,000,000 μm2 area was selected according to a comparison to
parallel hematoxylin and eosin stained 5 μm sections, scraped into
600 µL tubes, deparaffinized with xylene, and hydrated in a graded
ethanol sequence. All dissected samples were stored at −80 °C until
MS analysis.

Isolation of cells from fluids
The buffy coat and saliva fractions were obtained using centrifugation.
Saliva samples (n = 38 samples) fromHNSCCpatientswere centrifuged

for 5min at 1500 × g and 4 °C to separate the cells. Peripheral blood
samples (n = 52) were centrifuged for 8min at 1000× g at room tem-
perature, and the cellular portion (buffy coat) was washed with lysis
buffer to eliminate red cells (10mM Tris-HCl pH 7,6, 5mM MgCl2,
10mM NaCl). For flow cytometry analysis, buffy coat samples were
fixed with 4% paraformaldehyde prior to red cell lysis. The cellular
portions from the fluids were frozen at −80 °C for further analysis. The
buffy coat is primarily composed of leukocytes and granulocytes63,
while saliva samples possess high levels of epithelial cells, leukocytes,
and microorganisms64.

Sample preparation for discovery proteomics
Malignant cells from tumors (n = 27 samples), non-malignant cells
from tumors (n = 27 samples), malignant cells from lymph nodes
(n = 13 samples), non-malignant cells from lymph nodes
(n = 27 samples), buffy coat samples (n = 24 samples), and saliva cells
(n = 24 samples), totalizing 94 tissues and 48 fluid samples, were
submitted todiscoveryproteomics. Two tissue sampleswere excluded
based on quality control analysis and the results for 92 out of the 94
tissue runs are presented in the manuscript. Proteins were isolated
from buffy coat samples and saliva cells using TRIzol reagent (Invi-
trogen, USA) and resuspended in 200μL of urea buffer (100mM Tris-
HCl pH 7.5, 8M urea, and 2M thiourea). Ultrasound treatment was
performed for 10min in an icedwater bath for homogenization.Micro-
or macrodissected tissue samples were transferred to an 8M urea
solution. All tissue and fluid samples were treated with 5mM dithio-
threitol for 25min at 56 °C and 14mM iodoacetamide for 30min at
room temperature for cysteine reduction and alkylation, respectively.
Urea was diluted to a final concentration of 1.6M with 50mM ammo-
nium bicarbonate, and 1mM calcium chloride was added to the sam-
ples. For protein digestion, a total of 2.5μg of trypsin (Promega, USA)
was added in three steps that included 1μg for 20 h, 1μg for an addi-
tional 20 h, and 0.5μg for the last 4 h at 37 °C. The reactions were
quenched with 0.4% formic acid, and the peptides were desalted with
C18 stage tips (3M, USA)65 and dried in a speed-vac instrument. Tissue
samples were reconstituted in 0.1% formic acid that was applied pro-
portionally to the dissected area (10μL of formic acid for 1,000,000
μm2), and iRT peptides were added to the digested tissue sample at a
final concentration of 11.1 fmol/μL for LC-MS/MS quality control
(Pierce™ Peptide Retention Time Calibration Mixture, Thermo Scien-
tific, USA). A volume of 4.5μL was used (50 fmol of iRT peptides).
Peptides from the buffy coat and saliva samples were quantified using
the Pierce™ Quantitative Colorimetric Peptide Assay (Thermo Scien-
tific, USA), and 2μg of these proteins were subjected to LC-MS/MS
analysis.

Discovery proteomics and data analysis
Tissue (n = 92 samples after excluding two samples based on quality
control) and fluid samples (n = 48 samples) were analyzed by LC-MS/
MS using an ETD-enabled Orbitrap Velos mass spectrometer (Thermo
Fisher Scientific, USA) connected to an EASY-nLC system (Proxeon
Biosystem, USA) through a Proxeon nanoelectrospray ion source. The
MS data was acquired using the Xcalibur software version 2.1 (Thermo
Fisher Scientific, USA). To prevent bias during DDA measurements,
samples were randomized in the R version 3.6.2 (Supplementary
Data 1-3). Peptides were subsequently separated in a 2–90% acetoni-
trile gradient in 0.1% formic acid using a PicoFrit analytical column
(20 cm× ID75, 5 µm particle size, New Objective) at a flow rate of
300nL/min over a 212min gradient (35% acetonitrile at 175min) for
tissue and buffy coat samples or a 170min gradient (35% acetonitrile at
123min) for saliva samples. The nanoelectrospray voltage was set to
2.2 kV, and the source temperaturewas 275 °C. All instrumentmethods
were configured for data-dependent acquisition (DDA) in the positive
ion mode. Full scan MS spectra (m/z 300–1600) were acquired in the
Orbitrap analyzer after accumulation to a target value of 1e6 ions.

Article https://doi.org/10.1038/s41467-022-34407-1

Nature Communications |         (2022) 13:6725 15



Resolution in the Orbitrap was set to r = 60,000, and the 20 most
intense peptide ions with charge states ≥ 2 were sequentially isolated
with an isolation window of m/z 3 to a target value of 5000 and then
fragmented in the linear ion trap by low-energy CID (normalized col-
lision energy of 35%). The signal threshold for triggering an MS/MS
event was set at 1000 counts. Dynamic exclusion was enabled with an
exclusion size list of 500, an exclusion duration of 60 s, and a repeat
count of 1. An activation of q =0.25 and an activation time of 10ms
were used. Proteins were identified usingMaxQuant version 1.5.8.066,67

against the Uniprot Human Protein Database (92,646 protein
sequences, 36,874,315 residues, release May 2017) using the Andro-
meda search engine. Carbamidomethylation was set as fixed mod-
ification, and N-terminal acetylation and oxidation of methionine were
used as variablemodifications.Maximum2Trypsin/Pmissed cleavage,
a toleranceof 4.5 ppm for precursormass, and a tolerance of 0.5 Da for
fragment ions were set for peptide identification. Protein groups (also
referred to as proteins in the text) were automatically inferred by the
Andromeda engine using the parsimony principle. A maximum of 1%
FDR calculated using reverse sequences was set for both protein and
peptide identification. Protein quantification was performed using the
LFQ algorithm implemented in MaxQuant software to reflect a nor-
malized protein quantity deduced from razor + unique peptide
intensity values. A minimal ratio count of one and a 2-min window for
matching between runs were both required for quantification. Protein
identifications assigned as ‘Reverse’ were excluded from further ana-
lysis. Contaminantswere not removed from thedataset, as keratins are
of special interest in the study of squamous epithelial cells. LFQ
intensities were log2 transformed in Perseus version 1.3.0.468 and used
in subsequent analyses.

Quality control in discovery proteomics
The quality of discovery proteomics assays for tissues and fluids was
evaluated by measuring deviations in the retention time for three
trypsin autolysis peaks at m/z 421.7584 + 2, 523.2855 + 2, and
737.7062 + 3. Moreover, four iRT peptides that were spiked into tissue
samples were selected for verification of the retention time, intensity
normalizedbymeanper sample, and intensity normalizedbymeanper
group (iRT_Pep1: SSAAPPPPPR; iRT_Pep2: HVLTSIGEK; iRT_Pep3: GIS-
NEGQNASIK; iRT_Pep4: IGDYAGIK) (Pierce™ Peptide Retention Time
Calibration Mixture, Thermo Scientific, USA; 50 fmol injected). The
peaks were evaluated in Skyline version 19.169 using the MSstats tool
version 3.13.670. Samples with deviated or recurrent absent intensities/
retention times were excluded from the analysis.

HPV genotyping
HPV genotyping was performed in 27 primary tumors from HNSCC
patients that were included in the discovery proteomics analysis using
the INNO-LiPA HPV Genotyping kit in an Autoblot 3000 system
(Fujirebio, Japan). HPV positivity was achieved for primary tumors and
used in all tissue analyses once matched tumoral and lymph node
samples from the same patients were included in this study. Viral
infection was not assessed in HNSCC patients used for buffy coat and
saliva analysis due to the unavailability of primary tumor tissues. Sec-
tions (10 µm) were cut from FFPE blocks, deparaffinized in xylene, and
rehydrated in a graded ethanol sequence. GenomicDNAwas extracted
using a standard protocol with proteinase K, phenol/chloroform, and
ethanol treatment. DNA samples were quantified by spectro-
photometry (NanoDrop ND-1000, NanoDrop Technologies, USA).
INNO-LiPA is a line probe assay based on the principle of reverse
hybridization for the identification of 32 different HPVs, including 13
high-risk genotypes. Biotinylated consensus primers (SPF10) were
used to amplify a 65-bp region within the L1 region of multiple HPV
types, and the resulting biotinylated amplicons were denatured and
hybridized with specific oligonucleotide probes. A primer set for the
amplification of human HLA-DPB1 was used to monitor sample quality

and extraction. The tests were performed according to the manu-
facturer’s instructions.

Expression profiling of HPV
HPV DNA-positive tumors (n = 8 samples) were evaluated for the
expression of viral transcripts using RT-qPCR. Total RNAwas extracted
from 10 µm FFPE sections using TRIzol reagent (Invitrogen, USA) and
quantified using a NanodropND-1000 spectrophotometer (NanoDrop
Technology, USA). RNA was reverse transcribed using the High-
Capacity cDNA Reverse Transcription Kit (Thermo Scientific, USA).
PCR amplification was performed in an ABI Prism 7500 Sequence
Detection System (Applied Biosystems, USA) using SYBRMix (Applied
Biosystems, USA). Data were acquired using the 7500 software version
2.3 (Applied Biosystems, USA). Two primer pairs were used to amplify
E6 gene expression, and two pairs were employed to analyze E7 tran-
scripts from HPV1671 (Supplementary Data 7-1). GAPDH was used as a
control for the sample quality. PCR reactions were performed in
duplicate. Samples with amplification of at least one primer pair for E6
or E7 were considered positive for HPV expression. Two out of the
8 samples could not be evaluated due to poor FFPE RNA quality.

Clustering global proteome datasets
The overlay among proteins identified in the proteomeswas visualized
by upset plots generated using the Intervene tool version 0.6.172.
Hierarchical clusters were generated in Python version 3.6 using log2
LFQ intensities from the tissues and fluids datasets. Missing values
were replaced by random numbers drawn from a normal distribution
with a width of 0.3 and a down shift of 1.8. The normal distributionwas
generated according to negative ranking of mean and standard
deviation (μ‘,σ‘) from columns using the formulasμ‘ =μ column– shift
× σ column, shift = 1,8; σ‘ = width × σ column, width = 0,3. Hierarchical
clustering measurements were performed using fastcluster version
1.1.27 and SciPy version 1.6 packages73,74. Methods (‘complete’,
‘weighted’, and ‘ward’) and metrics (‘bray-curtis’, ‘canberra’, ‘cheby-
shev’, ‘cityblock’, ‘correlation’, ‘cosine’, ‘dice’, ‘euclidean’, ‘hamming’,
‘jaccard’, ‘jensenshannon’, ‘kulsinski’, ‘mahalanobis’, ‘yule’, ‘matching’,
‘minkowski’, ‘rogerstanimoto’, ‘russellrao’, ‘seuclidean’, ‘sokalmich-
ener’, ‘sokalsneath’, and ‘sqeuclidean’) were combined, and dendro-
grams exhibiting the most evident clustering of proteins (protein
clusters PCn) or patients (clusters Cn) were selected for further analy-
sis. Once data generated from clustering were compared among the
six datasets, a single criterion (method/metric) was considered for the
multisites in PC or C analysis. Heat-maps were drawn using the clus-
termap tool from the seaborn package version 0.11.175.

Annotation of clusters and association with clinical data
Meaningful GO biological processes that were significantly enriched in
protein clusters (PCs; Fig. 1) for blood and tissue datasets were selec-
ted using the GSEApy package version 0.9.18 in Python version 3.7
against the ‘GO_Biological_Process_2018’ background and the two-
sided Fisher’s exact test followed by Benjamini-Hochberg for correc-
tion of multiple hypotheses (adjusted p ≤0.05). A two-sided Fisher’s
exact test was employed to associate patient clusters (Cs; Fig. 4) with
clinical and pathological features in the IBM SPSS Statistics software
version 28.0 (IBM Corp.), and the association with survival was eval-
uated using Kaplan-Meier survival curves and the log-rank test
(p ≤0.05). For fluids, we considered clinical characteristics for com-
parison that included age, sex, smoking habits, alcohol consumption,
vital status (dead or alive), pathologic N (pN)61, pathologic T (pT)61,
pathologic stage61, overall survival, lymphatic invasion, perineural
invasion, vascular invasion, depth of invasion, desmoplasia, inflam-
matory infiltrate, and surgical margin status. HPV DNA, HPV RNA, age,
sex, anatomical site of the tumor, vital status (dead/alive), smoking
habits, alcohol consumption, overall survival, disease-free survival,
surgicalmargin status, recurrence, pT61, pN61, pathologic stage61, depth
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of invasion, histological grade according to WHO60, invasion pattern,
inflammatory response, degree of keratinization, nuclear pleomorph-
ism, and perineural invasion were used for tissue analysis. Significant
associations were visualized using GraphPad Prism version 8.2.1
(GraphPad; https://www.graphpad.com).

Definition and annotation of metastasis signatures
Log2 LFQ intensity values were used to determine differentially abun-
dant proteins between pN+ and pN0 conditions in Perseus software
version 1.3.0.4 (p≤0.05; two-sided unpaired Student’s t-test or q≤0.05;
two-sided unpaired Student’s t-test with Benjamini-Hochberg
correction)68. The datasets that were analyzed included primary
tumor – malignant cells (11 pN+, 14 pN0 patients), primary tumor and
lymph node - non-malignant cells (13 pN+, 14 pN0), buffy coat samples
(11 pN+, 13 pN0), and saliva cells (13 pN+, 11 pN0). Differentially abun-
dant proteins exhibiting higher expression in pN+ compared to that in
pN0 or those exclusively detected in pN+ were termed ‘upregulated’,
while proteins exhibiting lower expression in pN+ compared to that in
pN0or those exclusively detected inpN0were termed ‘downregulated’.
The differences in protein abundances between the two groups were
termed ‘Ratio’ and calculated as mean LFQ intensity pN+/mean LFQ
pN0, followedby log2 transformation. The intersection amongdatasets
was visualized in upset plots using UpSet version 1.4.076. GO biological
processes were enriched using ShinyGO version 0.61 (FDR ≤0.05;
hypergeometric test followed by FDR correction)77, and the top-10
overrepresented GO terms or related biological processes were
visualized78. Samples were grouped according to the protein profile by
applying PCA using the FactoMineR package version 1.34 in R version
3.6.279. The statistical significance and magnitude of changes between
pN+ and pN0 conditions are represented in volcano plots (R version
3.6.2). STRING version 11.0 was employed to retrieve protein-protein
interaction networks80. The relationship between protein abundance
(SRSF1, SRSF2, SRSF3, SRSF5, and TRA2A) and clinicopathological data
wasdetermined for the following features:HPVDNA,HPVRNA, age, sex,
anatomical site of tumor, vital status (dead/alive), smoking habits,
alcohol consumption, overall survival, disease-free survival, surgical
margin status, recurrence, pT61, pN61, pathologic stage61, depth of
invasion, histologic grade WHO60, invasion pattern, inflammatory
response, degree of keratinization, nuclear pleomorphism, and peri-
neural invasion (IBM SPSS Statistics software version 28.0; IBM Corp.;
p ≤0.05; two-sided unpaired Student’s t-test or ANOVA).

Comparison between tumor and metastasis proteomes
To avoid deviations in protein identification and quantitation caused
by searches in individual datasets, RAWdata obtained fromMS runs in
malignant cells from the primary tumor and lymph nodes
(n = 11 samples/each dataset) and for the proteome of non-malignant
cells from both sites (n = 27 samples/each) were combined in a unique
search for malignant cells and a single search for non-malignant cells
usingMaxQuant software version 1.5.8.0 as described in the ‘Discovery
proteomics and data analysis’ subsection. Log2 intensities were com-
pared between tumor and lymph nodes using a two-sided unpaired
Student’s t-test and the p values were adjusted using the Benjamini-
Hochberg method (q ≤0.05). Differentially abundant proteins exhi-
biting higher expression in lymph nodes compared to that in primary
sites or those exclusively detected in lymph nodes were termed
‘upregulated’, while proteins exhibiting lower expression in lymph
nodes compared to that in primary sites or those exclusively detected
in the tumor site were termed ‘downregulated’. The differences in
protein abundances between the two groups were calculated as mean
LFQ intensity in primary tumor/mean LFQ intensity in lymph node and
termed ‘Ratio’. The frequency of deregulated proteins was compared
betweenmalignant and non-malignant populations in GraphPad Prism
version 8.2.1 (GraphPad, https://www.graphpad.com; p ≤0.05; Chi-
square test). Overrepresented GO biological processes were

determined using ShinyGO version 0.61 (Enrichment FDR ≤0.05;
hypergeometric test followed by FDR correction)77 and a group of
proteins enriched for actin-based cell movement (ACTA1, ACTN2,
CASQ1, GSTM2, MYH7, MYL1, MYO1G, NEB, TPM3) or associated with
EMT (VIM, FN1, CDH1) was selected for verification using PRM-MS and/
or RT-qPCR. LFQ intensities from discovery proteomics (DDA)
assigned for malignant cells were also used to calculate EMT scores
basedon a 76-gene expression signature reportedby Byers et al.33. This
method was developed using signatures of EMT identified from non-
small cell lung tumors and validated in additional cancer types81. The
proteome of malignant cells determined in the discovery phase was
matched with the 76 genes and the scores were calculated as the
average abundance level of ‘Mes’ proteins minus the average expres-
sion level of ‘Epi’proteins. The scoreswere comparedbetweenprimary
tumor and lymphnode sites using the two-sided paired Student’s t-test
(normal distribution determined by ShapiroWilk test) in the GraphPad
Prism version 8.2.1 (GraphPad, https://www.graphpad.com; p ≤0.05).
Samples with higher EMT scores are more ‘Mes’, whereas those with a
lower score are more ‘Epi’. Hierarchical clustering of malignant and
non-malignant populations was performed as reported in the ‘Clus-
tering global proteome datasets’.

Selection of targets for ML analysis
Using discovery proteomics, we determined sets of proteins in tissues
and fluids fromHNSCC patients that may be used asmarkers of lymph
node metastasis in a clinical context. Thus, we defined a series of cri-
teria to prioritize particular proteins for further verification using
targeted methodologies, including (i) global proteome datasets with
clustering patterns associated with nodal status, (ii) metastasis-
associated datasets with the best segregation pattern using PCA, (iii)
proteins detected exclusively in one group orwith p ≤0.05when using
FDR correction to compare pN+ and pN0 groups based on the
Benjamini-Hochberg test, (iv) significant association with other clinical
and pathological features (p ≤0.05; two-sided unpaired Student’s t-
test, ANOVA or two-sided Fisher’s exact test), (v) generation of high-
performance protein or transcript pairs <Si, Cj> to separate pN+ and
pN0 using ML (please see section ‘Definition of prognostic signatures
using machine learning’), and (vi) association with the immune con-
texturehighlightedbyanelevatedgene expression in lymphoid tissues
compared to that of other tissue types according to The Human Pro-
tein Atlas database (list of 1419 elevated genes in the lymphoid tissue
transcriptome available from http://www.proteinatlas.org). Six micro-
environment proteins satisfying most (if not all) of the criteria were
selected for verification in buffy coat and saliva samples using SRM-MS
and RT-qPCR for SRSF1, SRSF2, SRSF3, SRSF5, TRA2A (fulfilling criteria
[i] to [vi]), and CD209 (fulfilling criteria [i] to [iii] and [vi] to [vii]).
Moreover, due to the relevance of the immune system highlighted in
several analyses throughout this work, 19 immune markers were
selected for assessment in fluids using SRM-MS to quantify the pro-
teins associated with immune populations, including leukocytes
(CD45), myeloid cells (CD11b), T lymphocytes (CD3), CD4+ T lym-
phocytes (CD4), CD8+ T lymphocytes (CD8), Tregs (FOXP3 and CD25),
B lymphocytes (CD19), NK cells (CD56 and CD16), monocytes (CD14,
and CD64), non-classical monocytes (CD16), macrophages (CD64 and
CD163), neutrophils (CD16, CD66b, and CD15), dendritic cells (CD11c
and HLADR) and activated cells (CD80 and CD86).

Reverse transcription quantitative PCR
The expression of genes coding for proteins enriched for actin-based
cell movement (ACTA1, ACTN2, CASQ1, GSTM2, MYH7, MYL1, MYO1G,
NEB, TPM3) were evaluated in 11 paired FFPE malignant cells isolated
from HNSCC primary tumor and lymph nodes. Transcript levels of the
genes SRSF1, SRSF2, SRSF3, SRSF5, TRA2A, and CD209were evaluated in
a 19-patient cohort of lymph node tissues (9 pN+ and 10 pN0), a 24-
patient cohort of buffy coats (10 pN+, 14 pN0), and a 22-patient cohort
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of saliva cells (10 pN+, 12 pN0), and they were then associated with
nodal status. Total RNA was extracted using TRIzol reagent (Invitro-
gen, USA) and quantified using a Nanodrop ND-1000 spectro-
photometer (NanoDrop Technology, USA). RNA was reverse
transcribed using the High-Capacity cDNA Reverse Transcription Kit
(Thermo Scientific, USA). PCR amplification was performed in an ABI
Prism 7500 Sequence Detection System (Applied Biosystems, USA)
using SYBR Mix (Applied Biosystems, USA). Data were acquired using
the 7500 software version 2.3 (Applied Biosystems, USA). Primer set
sequences were designed using the Primer-BLAST tool (accessed inOct
2018 and Jun 2022; http://www.ncbi.nlm.nih.gov/tools/primer-blast/),
and IDT OligoanalyzerTM version 3.1 (http://www.idtdna.com/analyzer/
applications/oligoanalyzer) was used to predict the occurrence of
dimers and secondary structures (SupplementaryData 7-1). To improve
the assay success for FFPE samples, which are known to have high RNA
degradation, all the oligonucleotides were designed to amplify small
amplicons (50–100 pb in length)82. Serial dilutions (1:5) of a pool of
cDNA samples were used to evaluate the amplification efficiency (E)
according to the equation E = 10(−1/slope)−1. Primers possessing E
values ranging from 95% to 105% were used for further analysis. PCR
amplifications were performed in duplicate, and the specificity of the
products was verified based on melting curve analysis. Negative and
positive controls were included for each reaction. Positive controls
consisted of a pool of samples representative of each biological
material that was used as a ‘normalizing’ sample and allowed for the
evaluation of intra-assay variations. GAPDH and HPRT were used as the
reference genes for buffy coat experiments and GAPDH alone was
considered for saliva and FFPE analysis. Relative quantification was
calculated using the model proposed by Pfaffl83, and the appropriate
two-sided unpaired parametric (Student’s t-test) or non-parametric
(Mann-Whitney test) tests were applied to compare transcript levels
between lymph nodes and primary tumors or pN+ and pN0 samples
after evaluating the normality assumption by Shapiro-Wilk test (IBM
SPSS Statistics software version 28.0, IBM Corp.; GraphPad Prism ver-
sion 8.2.1, GraphPad, https://www.graphpad.com; p ≤0.05). From the
nine actin-based cell movement genes evaluated, only two (ACTA1 and
TPM3) had Cq-values detected across FFPE samples and were suitable
forRT-qPCRanalysis. Non-detectswere imputedby themaximumcycle
number (Cq = 40) for FFPE samples with satisfactory reference Cq.

Selection of proteotypic peptides and transitions for PRM-MS
A parallel reaction monitoring-mass spectrometry (PRM-MS) analysis
was carried using an EASY-nLC 1200 coupled to Orbitrap Exploris 240
mass spectrometer (Thermo Scientific, USA) to assess the regulation
seven actin-based cell movement proteins (ACTA1, ACTN2, GSTM2,
MYL1, MYO1G, NEB, and TPM3) and three EMT markers (CDH1, FN1,
and VIM), as indicated by discovery proteomics. To facilitate building
the method in a PRM-enabled platform based on DDA information
generated using the EASY-nLC-Orbitrap Velos, a retention time (RT)
predictorwas created using Skyline version 21.269 by converting the RT
of peptides from the discovery phase to an iRT matrix. The RT pre-
dictor was composed by 14 CiRT (Common internal Retention Time
standards) as reference, plus Pierce™ Peptide Retention Time Cali-
bration Mixture (Thermo Scientific, USA) and 73 targeted peptides.
Next, five pools of 2-3 random FFPE samples were analyzed by DDA in
the EASY-nLC 1200-Exploris 240 platform to build a HCD spectral
library and perform a retention time verification. In addition, a com-
plementary library of predicted HCD spectra was built using Prosit
(NCE = 27)84 allowing the selection of peptide peaks not readily
detected by the DDA run in the Orbitrap Exploris 240 (Supplementary
Data 7-2 and 7-3).

PRM-MS and data analysis
In total, 11 matched HNSCC FFPE samples from primary tumor and
lymph node malignant cells previously evaluated in the discovery

phase were analyzed via PRM-MS. A volume of 4μL of peptides was
injected (44 fmol of iRT peptides) into the LC system equippedwith an
Acclaim PepMap100 trap column (75 µm × 2 cm, 3 µm, 100A) and
PepMap RSLC analytical column (75 µm × 25 cm, 2 µm, 100A) for
reversed-phase chromatography using (A) 0.1% formic acid in water,
and (B) 0.1% formic acid in 80% acetonitrile / 20% water as mobile
phases. Peptides were resolved over a 120-min gradient (5–38% B) at
250nl/min, 50 °C. Elutingpeptideswere transferred to gas-phase using
an EASY-Spray source operating at 1.6 kV. Targeted ions were mon-
itoredwithin a 10-minwindow, with an isolation window set to 1.4m/z,
AGC target set to 50%, Maximum Injection Time of 54ms for CiRT and
Pierce peptides and 120ms for the peptides. Precursor ions were
activated by HCD with normalized collision energy (NCE) of 27, and
product ions analyzed in the Orbitrap at 30,000 resolution at 200/mz.
With these configurations an average 9.5 Hz scan rate across the gra-
dient was achieved. Even at lower scan rates (5Hz), when up to 20
concurrent precursors co-eluted, aminimumof 10 points per peakwas
measured per peptide (median peakwidth of 46 sec). TheMS data was
acquired using the Xcalibur software version 4.4 (Thermo Fisher Sci-
entific, USA) and samples were randomized in the R version 3.6.2
(Supplementary Data 1-3).

For label-free quantification of PRM-MS data, total area of each
peptide was calculated by integrating the XICs of top-ranking transi-
tions. Selection of peaks was directed by a 10-minwindowof either the
predicted RT times or the identification time from DDA runs on
Orbitrap Exploris 240. Peaks were inspected using Skyline version
21.269 and peptide signal was considered specific upon matching with
spectral libraries (DDA or Prosit; dotp > 0.7)84, and lowmass error (<10
ppm). Out of 1,430 datapoints (22 samples and 65 precursors), 90%
exhibited dotp > 0.8 and <10 ppm mass error (Supplementary
Data 4-1). The PRM-MS data was processed with the appropriate two-
sided parametric or non-parametric paired test selected after testing
normality of the data with the Shapiro-Wilk test (two-sided paired
Student’s t-test or two-sided Wilcoxon signed-rank test) in the
GraphPad Prism version 8.2.1 (GraphPad, https://www.graphpad.
com; p ≤0.05).

Selection of proteotypic peptides and transitions for SRM-MS
Proteotypic peptides were selected for each of the six microenviron-
ment markers and 19 immune targets based on the number of resi-
dues, their hydrophobicity, the presence in our DDA datasets of buffy
coat or saliva, and SRMAtlas (http://www.srmatlas.org/) evidence
when the peptide was not identified in our data85,86. The selection of
the best transitions was performed using spectral libraries built from
our own DDA data, and transitions retrieved from the SRMAtlas were
included when they were not detected with high reliability from DDA.
The most intense transitions were selected for the final SRM-MS
method. To monitor the microenvironment proteins associated with
lymph node metastasis (SRSF1, SRSF3, SRSF5, TRA2A, and CD209),
nine proteotypic peptides were selected and purchased as crude
heavy-isotope-labeled peptide standards (JPT Peptide Technologies,
USA) (Supplementary Data 7-2). SRSF2 did not possess proteotypic
peptides fulfilling the criteria mentioned above and was excluded
from the SRM-MS analysis. Stable isotope-labeled peptides were syn-
thesized with 13C6,

15N2- lysine or 13C6,
15N4-arginine (+8 or +10Da,

respectively) that were localized preferentially at the C-terminal of the
peptide. Three to four transitions were monitored in light and heavy
channels for each peptide for a total of 68 transitions (Supplementary
Data 7-4). The concentration of heavy peptides was optimized based
on serial dilutions in buffy coat (1:2 and 1:4 dilutions) and saliva (1:2,
1:10, 1:30, and 1:60 dilutions) samples to determine the best con-
centrationwith amaximum1:10 light/heavy ratio, and this resulted in a
range of 9 to 200 fmol/µg of matrix. Considering the 19 immune
markers (CD45, CD3, CD4, CD8, FOXP3, CD25, CD19, CD56, CD16,
CD11b, CD14, CD64, CD163, CD66b, CD15, CD11c, HLADR, CD80,
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and CD86), heavy peptides were not included in the analysis, and the
retention times were predicted by building a calculator in Skyline
software version 19.169 based on ACTB peptides retention times from
DDA data while considering spectral libraries built from lymph node
FFPE tissues, buffy coat, and saliva DDA information. When the cal-
culator couldnotbe applied due to the lack of peptidedetection in our
DDA libraries, transitions available from the SRMAtlas were mon-
itored. Two to four peptides were included for each of the 19 immune
proteins, and a total of 54 label-free peptides were monitored (Sup-
plementary Data 7-2). Of the 19 targets, nine were detected in the DDA
dataset (Supplementary Data 7-2). None of the peptides from 10out of
19markersmatched the retention times predicted from the calculator
or the transitions described in the SRMAtlas in one buffy coat and/or
one saliva sample fromHNSCC patients, and they were excluded from
further analysis. The remaining nine immune markers that included
CD3 (T lymphocytes), CD4 (CD4+ lymphocytes), CD8 (CD8+ lympho-
cytes), CD11b (myeloid cells), CD14 (monocytes), CD16 (neutrophils,
NK, non-classic monocytes), CD19 (B lymphocytes), CD45 (leuko-
cytes), and CD66b (neutrophils) were retained for subsequent analy-
sis, and four to six transitions were monitored in light channels per
peptide for a total of 80 transitions (Supplementary Data 7-4).

SRM-MS and data analysis
The relative abundance of six prioritizedmicroenvironment proteins
from lymph nodes (SRSF1, SRSF2, SRSF3, SRSF5, TRA2A, and CD209)
andnine immunemarkers (CD3, CD4, CD8, CD11b, CD14, CD16, CD19,
CD45, and CD66b) was evaluated in 19 buffy coat (7 pN+, 12 pN0) and
25 saliva (16 pN+, 9 pN0) samples from HNSCC patients. Sample
preparation was performed as described in the ‘Sample preparation
for discovery proteomics’ subitem. Samples were analyzed on a Xevo
TQ-XS triple quadrupole mass spectrometer (Waters, USA)4,14. Buffy
coat or saliva digests (1.6 µg) were resolved over a 60-min gradient
using anAcquity UPLC-ClassM equippedwith a trap column (Acquity
UPLC BEH C18 130 A, 5 μm, 300 μm× 50mm,Waters, USA) and a BEH
Shield C18 IonKey column (10-cm × 150-μm ID packed with 1.7-μm
C18 particles, Waters, USA) at 1.2 a flow rate and a temperature of
40 °C. The MeCN gradient started at 2% B (MeCN, 0.1% formic acid),
and this was followed by a linear ramp to 40%Bover 45min, then by a
step increase to 85% B for 47min, and finally conditioning at 2% B for
60min. Mass spectrometry analysis of eluting peptides was per-
formed via SRM-MS mode with quadrupoles Q1 and Q3 operating as
unitmass resolution (0.7 Th full width at halfmaximum). The optimal
collision energywas determined for each peptide using Skyline 19.169.
Scheduled SRM-MS acquisition was adjusted to a 3-min elution win-
dow with dwell times automatically set in MassLynx version 4.2
(Waters, USA) to achieve at least ten points per peak over a 30-s
elution profile. A blank sample (water) was injected between two
consecutive sample runs with the same gradient to minimize carry-
over. TheMS data was acquired using theMassLynx software version
4.2 (Waters, USA) and samples were randomized in the R version
3.6.2 (Supplementary Data 1-3). Peaks were inspected using Skyline
software version 19.169 and quantified by calculating the ratio
between light and heavy intensities for each peptide (intensity = sum
of transitions) for SRSF1, SRSF3, SRSF5, TRA2A and CD209. We
observed the alignment of elution times, co-elution of all transitions,
and relative intensity correlationwith the spectral library (dotp, close
to 1). The relative intensity correlation between light and heavy
transitions (rdotp) was also evaluated, resulting in (i) the inclusion of
peptides from samples exhibiting rdotp ≥ 0.9, (ii) exclusion of pep-
tides possessing rdotp ≤ 0.8, and (iii) manual evaluation of peptides
exhibiting rdotp varying from 0.8 to 0.9. For immune markers, light
intensities were considered for quantification and peaks for light
peptides were evaluated for the predicted elution time and co-
elution of all transitions.

Quality control in SRM-MS and PRM-MS
Several quality controls were used to evaluate the reliability of the
SRM-MS and PRM-MS analysis. A system suitability protocol was
implemented to assess the equipment performance by monitoring 18
peptides from a mixture of 200ng of digested bovine serum albumin
(BSA) and 5 fmol of iRT (Pierce™ Peptide Retention Time Calibration
Mixture, Thermo Scientific, USA) prior to each batch of four samples.
Tomonitor sample quality, an iRTmixture (32 fmol injected in SRM-MS
and44 fmol injected inPRM-MS)was spiked into each sample, and four
peptides with their respective three or four transitions each were
monitored as a control for retention time and intensity shifts in liquid
chromatography (Supplementary Fig. 4a, b; Supplementary Fig. 4d–g;
Supplementary Data 4-1 and 4-3; Supplementary Data 7-2). The per-
centage of carryoverwas assessed by comparing the absolute intensity
of 13 heavy peptides (Supplementary Fig. 4c) in a blank (water) injec-
tion with the absolute intensity of the same peptides in a preceding
matrix (buffy coat) run38.

Evaluation of external datasets
We herein used eight external datasets to verify the hypothesis raised
by HNSCC proteomic analysis, including (i) scRNASeq data of tumors
and lymph nodes from 18 HNSCC patients5, (ii) scRNASeq data of a
PBMC sample from a health donor (https://www.10xgenomics.com),
(iii) scRNASeq and proteomic data of an atlas of 28 health tissues21, (iv)
immune cell counts (hemograms) of blood from 25 HNSCC patients,
(v) RNASeq data of tumors from a 500 HNSCC patient-cohort (TCGA),
(vi) RNASeq data of tumors from a 428 HNSCC patient-cohort (TCGA),
(vii) proteomic data from 22 human PBMC subpopulations22, and (viii)
a list of reviewed proteins with their respective annotated gene
ontology (GO) biological processes from Uniprot. A summary of the
external datasets and their application in our study is presented in
Supplementary Data 9, and appropriate accessible links or accession
codes are provided under the ‘Data availability’ section.

Association of cell counts with metastasis
Immune cell countswereobtained from the clinical laboratories of São
Vicente de Paula and Sobam Hospitals, Brazil, for a 25 HNSCC-patient
cohort (9 pN+; 16 pN0). From these, buffy coat or saliva samples from
22 patients were also included in this study for discovery proteomics
(DDA), SRM-MS, and RT-qPCR analysis. The clinical laboratories
quantified cells from blood samples (cell count/mm3) and included
data for total leukocytes, lymphocytes, neutrophils, monocytes, eosi-
nophils, and basophils. Cell counts were compared between pN+ and
pN0 samples using a two-sided unpaired Student’s t-test and a p under
0.05 was considered to determine significance.

Searching for GO splicing factors related to metastasis
A list of reviewed proteins with their respective annotated gene
ontology (GO) biological processes was retrieved from Uniprot
(https://www.uniprot.org). Proteins annotated in GO processes con-
taining the term ‘splicing’ were filtered out and the 421 remaining GO
splicing proteins were selected to verify their gene expression in
immune cells from pN+ and pN0 HNSCC primary tumors5, as detailed
in the section ‘scRNASeq processing and differential expression’.
These proteins were also searched in the bulk proteomes herein
associatedwithmetastasis that are presented in Supplementary Data 2
for non-malignant cells isolated from primary tumor (n = 85 proteins
differentially abundant in pN+ vs. pN0), non-malignant cells from
lymph nodes (n = 201 proteins), and fluids (n = 80 proteins for buffy
coat and n = 54 proteins for saliva). A list of targeted genes that have
experimentally validated interactions between RNA sites and the GO
splicing factors associated with metastasis was recovered using the
SpliceAid-F database35. A two-sided Fisher’s exact testwas employed to
associate protein or gene expression (up- or downregulation in pN+

Article https://doi.org/10.1038/s41467-022-34407-1

Nature Communications |         (2022) 13:6725 19

https://www.10xgenomics.com
https://www.uniprot.org


when compared to pN0) with the immune cell type or microenviron-
ment in the IBM SPSS Statistics software version 28.0 (IBM Corp.)

Cross validation of protein and gene expression
RNASeq samples of 500HNSCCprimary tumor sampleswere retrieved
from TCGA (https://portal.gdc.cancer.gov) using the TCGA-HNSC
identifier. Gene expression was compared to the protein levels deter-
mined in our study for malignant cells from the primary tumor.
Spearman correlations were performed using the FPKM median from
RNASeq data and the log2 LFQ mean of proteomes.

scRNASeq processing and differential expression
A HNSCC scRNASeq dataset from 18 HNSCC patients was retrieved
from the Gene Expression Omnibus using the query number
GSE1033225. We followed the standard workflow from Seurat package
version 4.0.087 with parameters min.cells=0 and min.features=200 for
matrix import andnfeatures = 2000 for FindVariableFeatures(), and 30
dimensions were used after reduction with principal component ana-
lysis (PCA) followed by uniform manifold approximation and projec-
tion (UMAP) map construction. Clusters were identified using a
resolution of 1.2 and the cell types were annotated according to the
literature5. Additional annotation was made to subdivide fibroblasts
into CAFs (expressing FAP and THY1), myofibroblasts (expressing
ACTA2), and skeletal muscle cells (expressing DES), and to identify T
cell subtypes. The original annotation of plasma/B cells was curated
and updated based on B cell (MS4A1 and BANK1) and plasma cell
markers (MZB1 and IGLL5). For each population within the HNSCC
dataset,markers that define clusters via differential expression (cluster
markers) from previous analysis, the microenvironment markers
(SRSF1, SRSF2, SRSF3, SRSF5, TRA2A, and CD209) or a list of GO splicing
factors were tested for differential expression among subpopulations
using a two-sidedWilcoxon test within the FindMarkers() function and
Benjamini-Hochberg as p adjustment method. The PBMC 3k dataset
was retrieved at https://support.10xgenomics.com/single-cell-gene-
expression/datasets/1.1.0/pbmc3k and processed as previously
reported87. Clustermarkers in PBMCpopulations were identified using
the FindAllMarkers function with min.pct = 0.1 and logfc. threshold =
0.25. The differentially expressed proteins determined in our study for
the buffy coat, tumor microenvironment, and lymph node micro-
environment were selected and used to query the filtered cluster
markers.

Cell type deconvolution using CIBERSORTx
CIBERSORTx version 1.0 was used to infer cell types in our bulk
proteome data using the scRNASeq matrices from section ‘scRNA-
Seq processing and differential expression’ as reference. First, the
signature matrix from HNSCC used in CIBERSORTx version 1.05

generated from scRNASeq data was tested to check if the estimation
of a given cell type could be disfavored by using proteomic infor-
mation. For that, correlations were performed between protein
abundance and genes from this signature matrix using data from an
expression atlas of 28 out of 29 available healthy tissues (we
excluded testis)21. From the 2973 genes present in the CIBERSORTx
version 1.0 signature matrix, 1840 were found in the atlas. Gene
names with multiple isoforms were aggregated using the median
FPKM to match protein annotations. Spearman correlations
between protein abundance and gene expression were calculated
across the 28 tissues. Each gene was assigned to a single cell type
according to its highest value in the signature matrix. Additionally,
the deconvolution cross-validation of PBMC proteomes in a
scRNASeq matrix was performed using data generated by Rieck-
mann et al.22. Proteome LFQ intensities from steady-state cells were
aggregated by median for different replicates and log2 trans-
formed. A matrix containing the values from the genes associated
with the proteins were then given as a mixture to CIBERSORTx

version 1.0 using the previously generated PBMC scRNASeq matrix
(https://www.10xgenomics.com).

Cell type annotations provided in the processed matrix from the
literature5 were used to generate a scRNASeq signaturematrix specific
for HNSCC tissues and infer cell types in our tissue bulk proteomes
(non-malignant cells from primary tumor and lymph nodes). The sig-
nature matrix was created using the following parameters: Min.
expression = 0, replicates = 4, and sampling = 1. Proteomic data (log2
transformed LFQ intensities) from HNSCC non-malignant samples
were used to infer cell type abundance from the scRNASeq signature
matrix using CIBERSORTx version 1.020. The cell signature derived
from healthy PBMC subpopulations was used as a reference to
deconvolute whole blood proteome information using log2 LFQ
intensities. All runs were performedwith no batch correction, disabled
quantile normalization, absolute mode, and with 100 permutations.

Cell type enrichment with xCell and association with metastasis
xCell version 1.0, which performs Gene-set enrichment analysis in
previously defined immune and stromal cell types, was used to eval-
uate differences between pN+ and pN0 samples30. TCGA data available
on the xCell website (https://xcell.ucsf.edu/) were downloaded and
filtered using clinical information from cBioportal as Sample.Type =
Primary and excluding samples without lymph node stage annotation.
HNSCC pN+ and pN0 samples (n = 428 patients) were classified
according to information in Neoplasm.Disease.Lymph.Node.Stage.
American.Joint.Committee.on.Cancer.Code. Spearman correlations
were performed between the signature scores and pN+ /pN0 outcome
filtering for p ≤0.05.

RNASeq data analysis
Bioinformatics analysis of third-party RNAseq data was performed in R
environment version v 4.0.0 using Hmisc version 4.4-0 for correla-
tions, dplyr version 1.0.0, tibble version 3.0.1, data.table version 1.13.0,
and readxl version 1.3.1 fordatamanipulation, SummarizedExperiment
version 1.18.2, GEOquery version 2.56.088, and TCGAbiolinks version
2.16.089 for data retrieval, ggpubr version 0.3.0, ggplot2 version 3.3 for
plotting, and Seurat version 4.0.087 for scRNASeq analysis and
manipulation.

Definition of prognostic signatures using machine learning
The predictive power of peptides, proteins, and/or transcripts from
the microenvironment (SRSF1, SRSF2, SRSF3, SRSF5, TRA2A, CD209)
and immune targets (CD3, CD4, CD8, CD11b, CD14, CD16, CD19, CD45,
CD66b) to distinguish HNSCC patients based on locoregional metas-
tasis status was determined using an ML approach (pN+ vs. pN0). The
steps used to obtain and validate the signatures are presented in
Fig. 6a. First, (1) quantitation data acquired for the microenvironment
and immune targets in buffy coat and saliva using SRM-MSor RT-qPCR
were selected (individual datasets: n = 19 and 24 patients for SRM-MS
and RT-qPCR in buffy coat, respectively; n = 25 and 22 patients for
SRM-MS andRT-qPCR in saliva, respectively; combined datasets: n = 15
patients for buffy coat, n = 14 patients for saliva; only patient samples
that were evaluated by both SRM-MS and RT-qPCR were considered in
the combined datasets) (Supplementary Data 4-5 and 4-6). We also
performedML analysis of protein (DDA) and transcript (RT-qPCR) data
from lymph node microenvironment cells with the purpose of select-
ing targets (please see section ‘Selection of targets for verification’). In
total, we used 14 datasets representing the quantification of peptides,
proteins, transcripts, and their combinations (Supplementary
Data 5-1). The missing values were replaced with 0. For each dataset,
we ran a sequence of steps to capture a set of candidate signatures that
performed well in the classification task (pN+ vs. pN0) using ROC AUC
as measurement for prioritization, with the pN+ as the positive class.
Then, (2) variables were combined to create all possible signatures (Si)
of size (N) 1 to 5, where N is the maximum number of peptides/
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proteins/transcripts in each signature andwas arbitrarily set to 5. Next,
(3) each signature was used to create different classification models
(Cj) that included ridge, linear SVM, lasso, linear discriminant, per-
ceptron, decision tree, naiveBayes,GBM, random forest, andRBFSVM.
Each pair signature-classifier <Si, Cj> was evaluated within a repeated
stratified k-fold cross-validation. The total number of tested models
per pair <Si, Cj>was defined as R * K, with R = 10 repetitions and K = the
smallest class size. Finally, (4) a list of potential signatures <Si, Cj> to
discriminate pN+ and pN0 patients was selected for each dataset
considering the evaluation step (3). The pair <Si, Cj> with the highest
average ROC AUC was named top-1, and the respective curves were
represented. Hence, we identified pairs <Si, Cj> with potential
equivalent performance, comprising the pairs for which the distribu-
tion of AUC values observed in the repeated cross-validation was not
statistically different from the ones observed with the top-1 pair
(p ≥0.05; two-sided unpaired Student’s t-test). Specifically, if we could
not reject the hypothesis of a pair P possessing an equal average ROC
AUC to the top-1 pair, we included pair P in the final list of selected
pairs for each dataset. Furthermore, we executed a permutation test
(PT) to calculate a p-value against the null hypothesis that the data
from each pair and the classes pN+/pN0 are independent using the
sklearn programming kit version 0.23.190. Top-1 and all equivalent
selected pairs with ROCAUC ≥0.85 and PT p ≤0.05 were prioritized as
high-performance candidate signatures. In addition to AUC and PT p,
we report sensitivity, specificity, and precision for every high-
performance candidate pair <Si, Cj > (Supplementary Data 5-4). Heat-
maps were generated using GraphPad Prism v8.2.1 (GraphPad soft-
ware; https://www.graphpad.com).

Flow cytometry analysis
The expression of SRSF3 and TRA2A proteins was evaluated in a 20-
HNSCC patient cohort (10N+, 10 N0) using flow cytometry. Cell
suspensions were stained for surface markers using anti-CD45-
BUV805 (BD Horizon, USA; clone HI30; 1:500 dilution), anti-CD3-
BV421 (Biolegend, USA; clone UCHT1; 1:300 dilution), anti-CD4-
BV605 (BDHorizon, USA; clone SK3; 1:300 dilution), anti-CD8-BV650
(BD Horizon, USA; clone RPA-T8; 1:500 dilution), anti-CD25-BUV563
(BD Horizon, USA; clone 2A3; 1:500 dilution), anti-CD56-APC (BD
Horizon, USA; clone B159; 1:60 dilution), anti-CD19-BV750 (BD
OptiBuild; clone SJ25CI; 1:500 dilution), anti-CD209-PE-Cy7 (Biole-
gend, USA; clone 9E9A8; 1:20 dilution), anti-CD14-APC-Cy7 (Biole-
gend, USA; clone 63D3; 1:200 dilution), anti-CD15-PE (Biolegend,
USA; clone HI98; 1:20 dilution) and anti-CD11b-BV650 (BD OptiBuild;
clone ICRF44; 1:500 dilution) monoclonal antibodies by incubation
for 30min with antibody solutions, followed by washes. TRA2A
antibody (Sigma-Aldrich, USA; polyclonal; 1:100 dilution) was labeled
by Zenon™ Alexa Fluor™ 750 Rabbit IgG Labeling Kit (Thermo Sci-
entific, USA), as recommended by the manufacturer. The cells were
permeabilized using the BD Pharmingen™ Transcription Factor Buf-
fer Set (BD Biosciences, USA) for 40min at 4 °C and further stained
with anti-SRSF3-FITC (Abcam; clone EPR16976; 1:20 dilution) and
anti-TRA2A-Alexa Fluor 750 for 40min at 4 °C followed by washes.
Two PBMC samples from HNSCC patients were included as controls
for surface markers. The preparations were analyzed using a FAC-
SymphonyTM equipment (BD Biosciences, USA) and the FlowJo ver-
sion 10.8 software (BD Biosciences, USA). At least 30,000 gated
events were acquired assuring the reliability of positive populations.
Comparisons between N+ and N0 groups were performed using MFI
and proportion of cells in the GraphPad Prism v8.2.1 software
(GraphPad; https://www.graphpad.com). Data were tested for nor-
mality using Shapiro-Wilk test to further guide the selection of the
appropriate statistical test used to verify differences between N+ and
N0 samples (two-sided unpaired Student’s t-test or two-sided Mann-
Whitney test; p ≤0.05).

Statistical analysis
Statistical analyses of the data herein generated were performed using
R version 3.6.2, IBM SPSS Statistics version 28.0 (IBM Corp.) or
GraphPad Prism version 8.2.1 (GraphPad; https://www.graphpad.com)
and are indicated in the figure legends, results, and methods sections.
All proteomics quantitative datasets from the discovery phase were
log2 transformed to reduce skewness, and a parametric two-sided
unpaired Student’s t-test was used for group comparison (pN+ vs.
pN0). Multiple comparisons were adjusted using the Benjamini-
Hochberg correction when feasible. The relation of protein or tran-
script levels from targets evaluated by SRM-MS, PRM-MS, RT-qPCR, or
flow cytometry to the desired features was verified using the appro-
priate two-sided parametric or non-parametric test selected after
testing normality of the data with the Shapiro-Wilk test (unpaired or
paired Student’s t-test, Wilcoxon signed-rank test, or Mann-Whitney
test). The statistics for functional annotation or cell type enrichment
are presented in the respective sections. Statistical significance was
established at p ≤0.05.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The mass spectrometry proteomics data generated in this study are
available at ProteomeXchange via the PRIDE partner repository91 and
Panorama repository. DDA proteomics data are available at Proteo-
meXchange with the dataset identifier PXD027780. SRM-MS data and
machine learning results are available through the Panorama reposi-
tory at the link https://panoramaweb.org/16fpvB.url and Proteo-
meXchange dataset identifier PXD027984. PRM-MS data are available
at https://panoramaweb.org/0UwcEI.url in the Panorama repository
and ProteomeXchange dataset identifier PXD036311.

The following public RNASeq and proteomic data were down-
loaded and analyzed in this study: scRNASeqdata of tumors and lymph
nodes from 18 HNSCC patients (Gene Expression Omnibus, dataset
identifier GSE103322)5, scRNASeq data of a PBMC sample from
a health donor (https://support.10xgenomics.com/single-cell-gene-
expression/datasets/1.1.0/pbmc3k), scRNASeq and proteomic data of
an atlas of 28 health tissues (RNA-Seq data: Array Express, dataset
identifier E-MTAB-2836; Mass-spectrometry based proteomic data:
ProteomeXchange Consortium, dataset identifier PXD010154)21, RNA-
Seq data of tumors from a 500 HNSCC patient-cohort (TCGA; https://
portal.gdc.cancer.gov), RNASeq data of tumors from a 428 HNSCC
patient-cohort (TCGA; https://portal.gdc.cancer.gov), and proteomic
data from 22 human PBMC subpopulations (ProteomeXchange Con-
sortium, data set identifier PXD004352)22. A list of proteins with their
respective annotated gene ontology (GO) biological processes was
retrieved from Uniprot (https://www.uniprot.org). The remaining data
are available within the Article, Supplementary Information. Source
data are provided with this paper.
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