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Inflammatory and infectious upper
respiratory diseases associate with 41
genomic loci and type 2 inflammation

Elmo C. Saarentaus 1,2, Juha Karjalainen1,3,4, Joel T. Rämö 1,5,
Tuomo Kiiskinen 1,6, Aki S. Havulinna1,6, Juha Mehtonen 1,
Heidi Hautakangas 1, Sanni Ruotsalainen 1, Max Tamlander 1, Nina Mars1,7,
FINNGEN*, Sanna Toppila-Salmi8, Matti Pirinen 1,9,10, Mitja Kurki1,3,4,
Samuli Ripatti 1,7,10, Mark Daly1,4,7, Tuula Palotie11,12, Antti Mäkitie 2 &
Aarno Palotie 1,3,13

Inflammatory and infectious upper respiratory diseases (ICD-10: J30-J39), such
as diseases of the sinonasal tract, pharynx and larynx, are growing health
problems yet their genomic similarity is not known. We analyze genome-wide
association to eight upper respiratory diseases (61,195 cases) among 260,405
FinnGen participants, meta-analyzing diseases in four groups based on an
underlying genetic correlation structure. Aiming to understand which genetic
loci contribute to susceptibility to upper respiratory diseases in general and its
subtypes, we detect 41 independent genome-wide significant loci, distin-
guishing impact on sinonasal or pharyngeal diseases, or both. Fine-mapping
implicated non-synonymous variants in nine genes, including three linked to
immune-related diseases. Phenome-wide analysis implicated asthma and ato-
pic dermatitis at sinonasal disease loci, and inflammatory bowel diseases
and other immune-mediated disorders at pharyngeal disease loci. Upper
respiratory diseases also genetically correlated with autoimmune diseases
such as rheumatoid arthritis, autoimmune hypothyroidism, and psoriasis.
Finally, we associated separate gene pathways in sinonasal and pharyngeal
diseases that both contribute to type 2 immunological reaction. We show
shared heritability among upper respiratory diseases that extends to several
immune-mediated diseases with diverse mechanisms, such as type 2 high
inflammation.

Inflammatory and infectious upper respiratory diseases (IURD) affect
the sinonasal tract, pharynx, and larynx, and include diseases such as
chronic tonsillitis, allergic rhinitis, and chronic rhinosinusitis (CRS).
They lead to increased morbidity1,2 and costs3, and to the highest
public health burden in the world4 by serving as the main route of
infection to the body, and by their connection to non-communicable

diseases, such as asthma5–7, autoimmune diseases8,9, cardiovascular
diseases10, and obesity11. Genetic predisposition12–15 together with
environmental megatrends such as the COVID-19 pandemic16–18, Wes-
tern lifestyle19, urbanization20,21, global warming22, and dysbiosis23,24

influence the burden of IURDs. IURDs often co-exist25–28, and they have
shownoverlappingmechanisms5,6,29,30. Understanding the genetic (dis)
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similarities behind IURDs can remarkably improve preventive
actions and therapies, and reduce the burden of IURDs and related
diseases2,31.

IURDs are characterized by an etiology related to recurrent
infections and dysbiosis20,21,24 leading to chronic and treatment-
resistant diseases32 with acute and even life-threatening exacerba-
tions. IURDs involve inflammation in the nasal cavity, such as vaso-
motor and allergic rhinitis (VAR), both characterized by
hyperresponsiveness to stimuli33; non-specific chronic rhinitis, naso-
pharyngitis and pharyngitis (CRNP) and nasal septal deviation (NSD);
and in the adjoining paranasal sinuses, such as CRS with or without
nasal polyps (NP)6. Allergic rhinitis (AR) is a part of an allergic disease
entity involving allergic asthma, atopic dermatitis, allergic con-
junctivitis and food allergy27,34,35. IURDs also encompass other diseases
of the pharynx such as chronic laryngitis and laryngotracheitis (CLT),
chronic diseases of tonsils and adenoids (CDTA), and peritonsillar
abscess (PA). Previous genetic studies of non-allergic IURDs and rela-
ted immune responses have largely focused on rare variants36 and the
HLA region37,38. IURD-related GWAS have been reported of CRS and
NP39, tonsillectomy and childhood ear infections40,41, cold sores,
mononucleosis, strep throat, pneumonia and myringotomy40, and of
infective diseases caused by specific airway-related microbes such as
pneumococcus42 and staphylococcus aureus43. The common variant
burden of allergic diseases such as AR have been more extensively
studied41,44–48. However, no prior research has analyzed shared genetic
contributions of IURDs.

The FinnGen study is a large biobank study including both genetic
and lifelong health record data from all participants, thus allowing the
investigation of potentially shared and distinct genetic landscape
associated to IURDs. This provides an opportunity both for GWASs as
well as for cross-disease analyses tobetter understandpotential shared
genetic contributors. We aimed to study genetic predispositions to
recurrent, chronic and complicated IURDs. We hypothesized that, on
one hand, shared genetic variants contribute to IURD susceptibility in
general, and some variants contribute more to distinct IURD pheno-
types. To test this hypothesis, we analyzed genome-wide associationof
IURD cases in the FinnGen study (release 6 Aug 2020), a nation-wide
collection of genotyped samples from Finnish individuals. Our study
sample included 260,405 individuals of all ages, where we focused on
cases of specialist-diagnosed IURDs (n = 61,197), including their more
specific diagnosis. We tested the genetic associations across IURDs to
highlight shared and distinct genetic contributions among IURDs.
Finally, we compared the genome-wide association of IURDs and
phenotypes to other anatomically related and systemic immunological
disorders (such as chronic periodontitis; CP) linked with the same
genetic loci.

Results
Genome-wide association of IURD
We performed genome-wide association analysis of all IURD cases
(n = 61,197, ranging from 2623 to 29,135 per phenotype) in FinnGen
(Table 1). We genotyped and imputed 16,355,289 single-nucleotide
genetic variants in 260,405 Finnish individuals of all ages. We used a
logistic mixed model with the SAIGE software49 (see Methods) to
detect genome-wide association between 61,197 cases of different
IURD diagnoses (Table 1, Supplementary Figure 1) using the same
199,208 controls for all IURDs, and set as covariates age, genetic sex,
principal components (PCs) 1–10, and genotyping batch. In addition to
the main phenotypes linked to the upper respiratory tract, we also
analyzed genome-wide association to two oral inflammatory diseases
that have been associated50–52 with IURDs: diseases of pulp and peria-
pical tissues (DPPT; ICD-10 K04, 48,687 cases vs 211,718 controls) and
CP (ICD-10 K05.30-.31, 14,631 cases vs 245,774 controls). We set the
level of multiple testing significance (MTS) at p < 5e-09 for ten inde-
pendent phenotypes. Using the FinnGen study sample the eight dif-
ferent IURD GWASs detected 907 MTS variant associations in 25
independent loci in total (Supplementary Data 1).

IURD shared heritability
To explore the shared genetic risk landscape for different upper
respiratory diseases, we analyzed the potentially shared heritability
between different diagnostic entities. Thirteen of the 25 loci showed
similar impact among different IURDs (Fig. 1A). We used hierarchical
clustering of lead variant effect estimates to group loci and pheno-
types. The variant effects largely correlated among VAR and CRS as
one group, and the two tonsillar diseases, CDTA and PA, as another.
Hierarchic clustering also distinguished broadly shared impact among
VAR, CRS, and NP in four loci (2q12.1, 5q22.1, 9p24.1, 10p14b). The
2q33.3 locus was broadly associated with upper respiratory diseases
with a concordant impact among CDTA, VAR, CRS, and NP. In total, 13
of 24 non-HLA IURD loci had a co-directional association (p <0.00027)
with at least oneother IURDphenotype in linewith the hypothesis for a
shared genetic background.

We next used LD Score regression53 based genome-wide correla-
tion analysis to explore the shared genetic background of IURDs. This
distinguished three IURD phenotype clusters from the GWAS results
(Fig. 1B). A high genetic correlation (rg > 75%) distinguished two clus-
ters: (I) VAR, CRS, NP, and NSD (rg ≥ 78%); (II) CDTA and PA (rg = 79%),
in line with results from the hierarchical cluster analysis. Using a
threshold of rg > 90% further distinguished a genetically linked sub-
group of known comorbid disorders26: (III) VAR, CRS, NP. We denoted
these IURD groups as “sinonasal diseases” (I), “pharyngeal diseases”
(II), and “chronic inflammatory sinonasal diseases” [CISDs, (III), Fig. 2].

Table 1 | Description of genome-wide association studies

Abbr. Phenotype ICD-10 Cases λGC Loci CS

VAR Vasomotor and allergic rhinitis J30 8975 1.0772 3 3

CRNP Chronic rhinitis, nasopharyngitis, and pharyngitis J31 6518 1.0354 0 0

CRS Chronic rhinosinusitis J32 10,435 1.0864 4 3

NP Nasal polyps J33 3919 1.0618 9 9

NSD Nasal septal deviation J34.2 7716 1.0584 0 0

CDTA Chronic diseases of tonsils and adenoids J35 29,135 1.1908 14 14

PA Peritonsillar abscess J36 4863 1.0527 3 3

CLT Chronic laryngitis and laryngotracheitais J37 2623 1.0204 0 0

DPPT Diseases of pulp and periapical tissues K04 48,687 1.1175 1 1

CP Chronic periodontitis K05.30-1 14,631 1.0610 0 0

The cases were identified using registry data from hospitals and specialized out-patient clinics. Abbr. Abbreviation for phenotype. The same set of controls (n = 199,208) was used in all IURDGWASs
(ICD-10 category J3). Control counts were 211,718 for DPPT and 245,774 for CP. λGC is the genomic inflation factor. ‘Loci’ is the number of multiple testing significant (MTS; p < 5e-9) loci (incl HLA). P
values were calculated using upper tail chi-square testing (one degree of freedom). CS is the number of credible sets from fine-mapping with at least one MTS SNP (the HLA region was not fine-
mapped). For details see Supplementary Fig. 1 and Supplementary Data 1.
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The CRNP phenotype had high genetic correlation with both phar-
yngeal diseases (rg ≥ 67%) and VAR and CRS (rg ≥ 87%), but not
NP (p = 0.051).

Using the same GWAS pipeline as described above, cross-trait
analysis using these IURD clusters identified six additional MTS loci.
We performed cross-trait GWASs of sinonasal diseases (n = 25,235,

Supplementary Table 1, Supplementary Figure 2A), pharyngeal dis-
eases (n = 33,157, Supplementary Data 2, Supplementary Figure 2B),
and CISD (n = 19,901, Supplementary Table 2, Supplementary Fig-
ure 2C). In addition, we performed a GWAS of cases with any IURD
(n = 61,197, Supplementary Data 3, Supplementary Figure 3). The
genome-wide significant (GWS, p < 5e-08) VAR-associated locus 9q33.3

BA

Fig. 1 | Shared heritability among inflammatory and infectious upper respira-
tory diseases (IURDs). A (left): effect sizes of lead variants of 24 non-HLA loci
across IURD phenotypes. Red indicates a positive and blue a negative effect size
estimate (in log-odds) using logistic regression (Methods). P values were calculated
using upper tail chi-square testing (one degree of freedom) from a t-statistic under
a normal approximation. Variants and phenotypes are ordered according to hier-
archical clustering (Methods). The clusters show shared genetic heritability for
variant clusters between recognized phenotype groups of sinonasal (NSD, VAR,

CRS, NP) and pharyngeal diseases (CDTA, PA). *p <0.00027, **p < 5e-8, ***p < 5e-9.
B (right): genetic correlation of IURDs distinguishing vasomotor and allergic rhi-
nitis (VAR), chronic rhinosinusitis (CRS), and nasal polyposis (NP) as a near-
completely genetically correlated cluster. The color of the circle indicates genetic
correlation with red indicating positive correlation and blue indicating negative
correlation. P valueswere calculatedusing upper tail chi-square testing (one degree
of freedom) from a z statistic. *p <0.05, **p <0.005, ***p < 8.4e-5.
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Fig. 2 | The IURD phenotype structure, based on genetic correlation between
phenotypes. The boxes represent a GWAS of a IURD phenotype or group, stating
the name, case count, and a number ofMTS loci, indicating in parenthesis theMTS
loci that were not detected in any directly preceding (“child”) GWAS. E.g., there
were two loci in sinonasal disease GWAS that had not been detected in NSD, CISD,
VAR, CRS, or NPGWASs. The hierarchical structure shows the phenotypes included

in the parent phenotype. The IURDGWAS also included ICD codes J38 and J39 (not
depicted); for these, no separate GWAS was performed. Sinonasal disease pheno-
types (NSD, VAR,CRS, andNP) had agenetic correlation 78%orhigher, as estimated
using LD Score regression. Pharyngeal diseases (CDTA and PA) had a genetic cor-
relation of 79%. The observed genetic correlations between chronic inflammatory
sinonasal diseases (VAR, CRS, and NP) were 90% or higher.
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(nearNEK6) wasMTS associatedwith all IURDs [OR =0.95 (0.93–0.97),
p = 1.75e-10]. Similarly, the GWS CDTA-associated loci 1p36.23 and
16p11.2 were MTS associated with pharyngeal diseases, and the NP-
associated locus 2q22.3 near ZEB2 was MTS associated with sinonasal
diseases. The GWAS of CISD identified the 15q22.33 locus near SMAD3
[OR = 1.08 (1.05–1.11), p = 9.38e-10], previously associated45 with aller-
gic disease, that was not observed in GWASs of VAR, CRS or NP. GWAS
of sinonasal diseases additionally identified the locus 14q31.1 near
NRXN3 [OR = 1.13 (1.08–1.18), p = 3.47e-09], not detected by CISD or
NSDGWASs andnotpreviously implicated. The six additional loci from
cross-trait analyses brought our yield to 31 IURD-associated non-
HLA loci.

To provide further robustness of our cross-trait analyses, we ran
the MultiTrait Analysis of GWAS (MTAG54, see Methods) software. The
MTAG analysis on all IURD traits supported three (near SMAD3, IL7R,
and IKZF3) of the six loci observed in the cross-trait analysis above,
providing additional confidence for these associations (Supplemen-
tary Data 4). Among the IURD traits with no MTS loci (CRNP, NSD and
CLT),MTAG supportedCRNP association for four loci, of which 9q33.3
near NEK6 [OR =0.99 (0.98–1.00)] replicated (p =0.0081) in UKB (see
below). NSD was associated with eight loci also detected inVAR and
CRS GWASs. MTAG analysis additionally identified four GWS loci not
seen in the association analyses described above. One of these four
MTAG hits replicated (p =0.028) in UKB: the 11q12.2 locus near FADS2
associated with NP [OR =0.98 (0.97–0.99), p = 2.7e-8]. Together with
the 31 independent MTS loci from IURD and cross-trait GWASs, the
11q12.2 locus brought our yield to 32 genomic loci.

IURD distinct heritability
Weestablished the locus-specific shared anddistinct genetic impactby
comparing the associations in phenotype-specific GWAS using a

Bayesian framework (see Methods) for lead variants. Briefly, this fra-
mework tests the probability of hypothesized associationmodels for a
variant using summary statistics of the GWASs being compared, taking
into account the overlapping cases and controls between
phenotypes55. The framework allowed us to evaluate the following
models: the nullmodel, where the variant explains nopart of any of the
phenotype variation; the fixedmodel, where the variant has one fixed-
effect that is the same for all phenotypes; the correlatedmodel, where
the variant has a correlating effect on all phenotypes; and models
where the impact is to one phenotype only.

The Bayesian framework distinguished a subdivision for the
detected loci in most cases, providing evidence that some of the var-
iant associationsweremoredisease-specific thanothers. Among the 19
non-HLA GWS lead variants detected in IURD GWAS (Fig. 3A, B), a
shared effectwas supported (P(Fixed or Correlated) >75%) for five loci.
Six loci were likely only impacting pharyngeal diseases; two only
sinonasal diseases; and four likely both pharyngeal and sinonasal dis-
eases. Thus 9/19 loci were considered shared between sinonasal and
pharyngeal diseases,withpossible effectonCL andCRNP fromfive loci
—the remaining loci likely beingmore specific in their impact. Two loci
remained uncertain: rs11406102 had a less clear general impact
(P(Fixed or Correlated) = 73.3%), and rs1837253 impacted sinonasal
diseases with an uncertain effect on other phenotypes. In a similar vein
for sinonasal diseases (Fig. 3E, F), consisting ofCISD andNSD, all tested
models supported an impact on CISD for all variants, and possible
impact on NSD for three lead variants. The pharyngeal disease analysis
showed a shared impact for 20 variants, with two variants being likely
CDTA-specific and three variants impacting CDTA and possibly PA
(Fig. 3C, D). Strikingly, all CISD lead variants were either consistent or
highly correlated in their effect among the three subphenotypes VAR,
CRS, and NP (Fig. 3G, H).
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Fig. 3 | Shared impact between phenotypes for cross-trait analysis lead var-
iants. A (upper left): Bayesian posterior probabilities of hypothetical models dis-
played on the x-axis for IURD lead variants (y-axis; locus in parenthesis). Models
correspond to NULL= null model; SHARED= Fixed or correlated effect model
across phenotypes (CRNP, sinonasal disease, pharyngeal disease and CLT);
CRNP =CRNP only; Sinonas. = sinonasal disease only; Pharyng. = pharyngeal dis-
ease only; CLT=CLT only; Sn.&P. = Sinonasal AND pharyngeal disease (fixed-
effect). A model with PIP > 70% was considered likely. B (upper left): Odds ratio
point estimates of IURD lead SNPs for phenotypes, with 95% confidence intervals [n
(sinonasal) = 25,235 cases, n (pharyngeal) = 33,157 cases, n (CRNP) = 6518 cases, n
(CLT) = 2623 cases]. C (upper right): Bayesian posterior probabilities of hypothe-
ticalmodels displayedon the x axis for pharyngeal disease leadSNP (y axis).Models
correspond to NULL= null model; CORR = Fixed or correlated effect model across

phenotypes (CDTAandPA); CDTA=CDTAonly; PA = PAonly.D (upper right):Odds
ratio point estimates of pharyngeal lead variants for CDTA and PA, with 95% con-
fidence intervals [n (PA) = 4863 cases; n (CDTA) = 29,135 cases]. E (lower left):
Bayesian posterior probabilities of hypothetical models for each lead variants from
the sinonasal disease GWAS.Models as inA; additionally CISD=CISDdiseases only;
and NSD=NSD only. F (lower left): Odds ratio point estimates of sinonasal disease
lead variants for the two phenotypes, with 95% confidence intervals [n (NSD) = 7716
cases, n (CISD) = 19,901 cases]. G (lower right): Bayesian posterior probabilities of
hypothetical models for each lead variants from the sinus disease GWAS. Models
NULL and SHARED as in A; additionally VAR VAR only, CRS CRS only, NP NP only.
H (lower right): Odds ratio point estimates of sinus disease lead variants for the
three phenotypes VAR, CRS, and NP, with 95% confidence intervals [n (VAR) = 8975
cases; n (CRS) = 10,435 cases; n (NP) = 3919 cases].
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Replication and meta-analysis in other cohorts
For replication and meta-analysis, we analyzed association of all GWS
non-HLA loci lead variants identified in the FinnGen study sample in
the UK Biobank (Supplementary Table 3, Supplementary Data 1 and 5).
We mapped the IURD phenotypes to corresponding UKB read codes
(Methods), and meta-analyzed variants with co-directional effects
between the cohorts. Meta-analysis resulted in GWS association for 29
co-directional loci (Table 2). In addition to loci significant in meta-
analysis, there remained eight loci with MTS association in FinnGen
(Table 3). We also observed three loci with a co-directional impact
(p < 0.05) in UKB that were considered replicated despite not reaching
GWS in meta-analysis (Table 3). In this way, in addition to the 31 MTS
loci detected in single-phenotype and cross-trait analyses (the FinnGen
discovery phase), meta-analysis and replication supported ten addi-
tional associations. This brought our results to a grand total of 41 loci
with robust IURD associations.

All five VAR associations replicated in UKB, including the NEK6
locus, albeit at a significantly (pz = 0.0020) milder impact. Three loci
linked with CRS replicated in UKB. In addition to the eleven NP-
associated loci overlapping ten previously reported loci in UKB, we
replicated two NP loci at 1q21.3 (ARNT) and 2q22.3 (ZEB2) not pre-
viously reported.

Most loci linked to pharyngeal diseases showedhigh concordance
in the UKB analysis despite significantly lower case counts. Lead

variants of 13 of the 19 CDTA-associated non-HLA loci showed co-
directional and similar impact (pz > 0.05) between UKB and FinnGen,
and ten of the 13 loci were GWS in meta-analysis (Table 2, Supple-
mentaryData 1). Five otherMTSassociatedCDTA loci showed counter-
directional effects in UKB despite adequate power (>70%), including
the high-impact (ORfg = 1.43) 17p11.2 locus near TNFRSF13B, previously
associated with tonsillectomy in 23andMe40 (Table 3). This apparent
incosistency highlights the occasional challenges in replicating find-
ings between large biobank studies, when phenotype definitions
between studies are not easily translateable. Three additional loci
associated with PA were GWS in meta-analysis with UKB, with the
3q21.2 locus (SLC12A8) also formally replicating (ORukb = 1.23, pukb =
0.00054). Statistical power for replication was <80% for seven of the
CDTA lead variants as CDTA and PA had far lower effective sample
sizes in UKB compared to FinnGen (4.6% for CDTA, 13.3% for PA). An
additional restriction was that the single-variant CDTA locus
(rs774674736-D at 19q13.43) has not been genotyped in UKB. As only
one of the seven lead variants with low power did not replicate,
failure to replicate is likely linked to the non-representative case
count in UKB (n = 1180), differences in LD structure, and Finnish-
specific low-frequency variants, rather than false positives in FinnGen.

We also investigated the association of previously reported
GWAS of similar traits (Supplementary Data 6). We identified as
‘replicated’ any previously reported locus with a similar directional

Table 2 | Inverse-variance-weighted meta-analysis of loci lead variants with similar effect in FinnGen and UKB

LOCUS RSID Nearest gene Consequence MAF Phenotype OR 95% CI P-value

9q33.3* rs3758213-T NEK6 intronic 38.2% VAR 0.95 (0.93–0.97) 4.81E-08

11q13.5 rs11236795-T EMSY intergenic 26.2% VAR 0.93 (1.06–1.14) 6.16E-12

1q21.3* rs2089081-T ARNT intronic 44.5% NP 1.10 (1.11–1.20) 9.55E-10

2q12.1 rs56117144-C IL18RAP intergenic 28.8% NP 1.15 (0.76–0.87) 8.32E-16

2q22.3* rs66484168-G ZEB2 intergenic 8.8% NP 0.81 (0.76–0.87) 2.95E-12

5q22.1 rs34962275-G WDR36 downstream 31.3% NP 1.20 (1.16–1.25) 7.60E-28

5q31.1a rs11738827-T CDC42SE2 intronic 27.3% NP 0.88 (0.85–0.92) 7.82E-13

5q31.1b rs56399423-C SLC22A4 intronic 31.7% NP 0.87 (0.83–0.90) 4.65E-18

9p24.1 rs2095044-T IL33 upstream 23.9% NP 1.34 (1.29–1.39) 1.20E-58

10p14a rs10905284-C GATA3 intronic 42.0% NP 0.88 (0.85–0.91) 2.44E-15

10p14b rs962993-T GATA3 regulatory 30.3% NP 0.83 (0.80–0.86) 2.58E-28

12q13.2 rs705702-G RAB5B upstream 30.3% NP 1.15 (1.10–1.19) 5.24E-16

16p13.13 rs34540843-G CLEC16A intronic 21.2% NP 0.86 (0.83–0.90) 4.90E-14

19q13.2 rs338593-T CYP2S1 intronic 42.8% NP 0.87 (0.84–0.90) 2.25E-18

1p36.23 rs12082271-T SLC45A1 upstream 30.2% CDTA 0.94 (0.91–0.96) 2.65E-09

2p13.2* rs35668054-T DYSF regulatory 9.5% CDTA 1.10 (1.06–1.14) 2.30E-08

2q33.3 rs189411872-G ADAM23 intronic 1.3% CDTA 1.53 (1.39–1.68) 1.13E-20

4q24a rs4648052-T NFKB1 intronic 39.9% CDTA 0.94 (0.91–0.96) 1.99E-11

4q24b rs5860793-D TET2 intergenic 28.4% CDTA 0.93 (0.90–0.95) 1.60E-12

8p11.21* rs73631760-C SLC20A2 intronic 9.4% CDTA 1.11 (1.07–1.15) 1.65E-09

9q34.2 rs612169-G ABO intronic 43.6% CDTA 1.07 (1.04–1.09) 6.45E-11

12p13.31 rs10849448-A LTBR 5’ UTR 24.5% CDTA 1.11 (1.08–1.14) 3.77E-19

19p13.3 rs74178437-G ZBTB7A intronic 26.3% CDTA 0.94 (0.91–0.96) 3.83E-09

22q12.2 rs713875-G HORMAD2 intronic 47.9% CDTA 1.09 (1.07–1.12) 2.40E-20

3q12.3* rs1456200-A NFKBIZ upstream 37.5% PA 1.13 (1.08–1.17) 8.69E-09

3q21.2 rs1980080-C SLC12A8 intronic 34.7% PA 1.15 (1.09–1.20) 8.57E-11

13q21.33 rs9542155-T KLHL1 intronic 35.6% PA 1.16 (1.11–1.21) 4.11E-14

15q22.33 rs17293632-T SMAD3 intronic 26.2% VAR** 1.07 (1.05–1.10) 2.09E-11

7p12.2* rs55935382-A IKZF1 intergenic 31.4% CDTA** 0.94 (0.92–0.97) 1.16E-08

MAFminor allele frequency in FinnGen. “Consequence” reports the most severe predicted variant impact: 5’ UTRUntranslated region in 5’ end of gene, non-codingexon of non-coding gene,
regulatory regulatory region. Odds ratios (OR) were estimated using logistic regression (Methods). P-values were calculated using upper tail chi-square testing (one degree of freedom) from a
t-statistic under a normal approximation. 95% CI were derived using normal approximation. Loci shared among phenotypes are denoted for the phenotype with the lowest p value, such that, e.g.,
2q12.1 wasMTS associated with VAR, CRS, andNP, and is shown here for NP. *locus has no previous association with IURDs **detected from cross-trait analysis andmeta-analyzed using the specific
IURD with smallest p value in FinnGen.
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OR and p < 0.01 in our analyses. In this way, our VAR GWAS repli-
cated 18 of the previously reported41,44–48 34 allergic rhinitis loci with
lead variants genotyped in FinnGen. Similarly, all 10 loci previously
associated39 with CRS and NP were replicated in our respective
GWASs. This included the protective missense variant rs34210653-A
in ALOX15, associated with NP [OR = 0.52 (0.38–0.71), p = 1.62E-05]
and CRS [OR = 0.81 (0.67–0.97), p = 0.016]. Of the 35 tonsillectomy-
associated loci, 26 had a corresponding variant genotyped in
FinnGen, and of these 26 loci, our CDTA and PA analyses replicated
22. Finally, 2 of 2 loci associatedwith strep throat40 also replicated in
our CDTA and PA analyses.

Characterization of loci
Thenasal GWASs includedfive diagnostic groups: VAR, CRNP, CRS,NP,
and NSD. Combined these identified 16 loci (Tables 2–3), of which four
[2q12.1, 5q22.1, 6p21-22 (HLA), and 9p24.1] were MTS associated with
VAR, CRS, andNP. These four loci have alsobeen previously associated
with asthma, allergic rhinitis, and eczema44,45. VAR also associated with
the previously reported vitiligo locus56 9q33.3 near NEK6 (lead variant
rs3758213-T). CRS was associated with three non-HLA loci previously
linked39 with chronic rhinosinuitis without polyps (CRSwNP) and one
with childhood ear infections40. NP was associated with thirteen loci,
two of which have not been previously reported39 (1q21.3 [ORfg = 1.16
(1.11–1.23) (ORuk = 1.06)] near ARNT and 2q22.3 [ORmeta = 0.81
(0.76–0.87)] near ZEB2). In addition, a missense variant in GAS2L2
(rs3744374-A), with no previous associations, was protective of CRS
[ORfg = 0.90 (0.86–0.93)].

In the laryngotracheal area, we analyzed three diagnostic groups:
CDTA, PA, and CLT. CDTA was associated with 15 non-HLA loci
(Tables 2–3), of which eight have been previously linked with
tonsillectomy40, and one (1p36.23, near SLC45A1) with strep throat40.
We also detected six CDTA loci not previously reported with tonsillar
endpoints. These included two credible sets at the locus 2q13 with
exonic variants in the long non-coding RNA MIR4435-2HG, previously
shown to regulate myeloid cell proliferation in mouse models57,58. PA
was associated with three loci linked with tonsillectomy40, and two
GWS associations not previously reported: 3q12.3 near NFKBIZ
[ORmeta = 1.13 (1.08–1.17)] overlapping a previously reported psoriasis
locus59 and proximal to a COVID-19 susceptibility locus18.

In the oral diseases, we observed one MTS locus for DPPT impli-
cating HORMAD2 with a credible set overlapping that of CDTA at the
same locus (Supplementary Data 1). GWAS of DPPT subphenotypes
repeated the 22q12.2 lead variant as GWS in pulpitis (K04.0, n = 18,139)
and necrosis of pulp (K04.1, n = 10,168).

Non-synonymous variants
To identify non-synonymous coding variants, we used SuSiE software60

to fine-map credible sets of causal variants in the associated loci. Fine-
mapping of IURD GWASs identified 42 credible sets with at least one
GWS variant. We detected three loci with more than one such credible
set. The fine-mapped credible sets included non-synonymous variants
in nine protein-coding genes (Table 4). The IL1RL1 and ZPBP2missense
variants have been previously associated with Type 2 high childhood
asthma61 and adult-onset asthma62, respectively. The SLC22A4 and FUT2
variants have been linked with Crohn’s disease63,64 with no previous
IURD association. The GSDMB variant (rs2305479-T) was part of the
same credible set as the asthma-linked ZPBP2 missense variant
rs11557467-T with high LD (r =95%) and lower posterior probability
(1.5% for GSDMB vs 4.0% for ZPBP2).

Non-synonymous variants are also mapped to three known
immune deficiency genes. The CDTA-associated 17p11.2 locus, pre-
viously also linked with tonsillectomy40, identifies the non-
synonymous variant rs72553883-T. This Finnish-enriched missense
variant in the geneTNFRSF13B (encoding the proteinTACI)65,66 is linked
to common variable immune deficiency (CVID) (variant MIM noTa
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604907.0002) and primary antibody deficiency67. The missense var-
iant rs2272676-T in CVID-linked NFKB168 decreases risk for CDTA. A
missense variant in exon 6 of the severe combined immunodeficiency-
linked69 IL7R (phenotype MIM no. 608971) decreases risk for IURDs
[OR =0.96 (0.94–0.98)]. In total, IURD-associated non-synonymous
variants in three genes—NFKB1, IL7R, and TNFRSF13B—are included in
the IUIS list of Mendelian immune disorder genes15.

in silico analyses
Next, we used an in-house pipeline based on eCAVIAR70 to evaluate the
impact on gene expression (Methods). In brief, we colocalized fine-
mapped credible sets of IURD GWAS summary statistics with similarly
fine-mapped credible sets of eQTLs inGTExv871 and the eQTL catalog72

databases (Supplementary Data 7). Out of the 40 non-HLA IURD loci,
eight paired with eQTLs in 42 tissues (excluding the CNS and gonads)
with greater than 60% posterior agreement. Of interest is that three
loci had at least 80% causal posterior agreement with credible sets of
eQTLs in immunological cell types: the CDTA-associated (ORfg = 1.10)
2q13 locus decreased expression of MIR4435-2HG in lymphoblastoid
cells and CD14+ CD16− classical monocytes; the CDTA- and PA-
associated (ORfg = 1.16) 12p13.31 increased LTBR expression in macro-
phages, CD14+ CD16− classical monocytes, lymphoblastoid cells and
T cells; and the NP-associated (ORmeta = 1.15) locus 12q13.2 associated
with increased RAB5B expression in CD4+αβ-T cells and neutrophils.
These links to the immune system are in line with identified shared
IURD loci, and provide clues for an expected impact on gene expres-
sion in the relevant tissues themselves (tonsillar lymphoid tissue and
upper respiratory epithelium).

We also tested gene enrichment with MAGMA73 using summary
statistics for all IURD phenotypes (Methods). We detected 96 gene-
phenotype associations (Supplementary Data 8) for 74 genes, after
correcting for multiple testing. MAGMA detected significant variant
enrichment within 44 genes that were within the non-HLA GWS loci
identified in the IURDGWASofFinnGen (see above). Elevengeneswere
enriched in more than one IURD phenotype. Two genes, WDR36 and
TSLP, were associatedwith VAR, CRS, and NP through the shared locus
on 5q22.1. Thirteen associated genes were not close to any of the GWS
loci, including IL2RB (linked with NP and CRS), ST5 and ESR1 (both
linked with CDTA), and a cluster of four genes at 20q13.33 associated
with VAR.

We next tested for enrichment of genes in 4,761 curated gene sets
and 5,917 GO terms. Enrichment of MAGMA-identified genes high-
lighted gene sets involved with immune function (Table 5), including
major histocompatibility class II receptor activity, and regulation and
production of interleukins 4 and 13. The tumor necrosis factor 2
pathway, which spans 16 recognized genes, includes 10 genes asso-
ciated with CDTA. The recognized associations encompass variants in

genes TRAF2, TRAF3, TANK, TNFRSF1B, and RIPK1, all involved in pro-
ducing the intracellular components of TNF receptor 2.

Shared heritability with extended phenotypes
Toevaluate shared impact onnon-IURDphenotypes, we alsohereused
an in-house pipeline based on eCAVIAR70 to evaluate colocalization of
IURD loci and 2,861 endpoints in the FinnGen PheWeb. We observed
overlapping SNPs between credible sets of 19 non-HLA IURD loci, and a
total of 319 credible sets from 95 FinnGen endpoints (Table 6). Causal
posterior probability was >80% for colocalization between the NP
locus 5q22.1 (TSLP/WDR) and asthma endpoints, and between the
CDTA locus 12p13.31 (LTBR) and acute appendicitis. In addition, pos-
terior probability was >20% between the CDTA locus 17p11.2
(TNFRSF13B) and non-suppurative otitis media, and the NP locus
9p24.1 (IL33) and asthma. Beyond these, causal posterior agreement
was >50% for ten IURD loci and 56 non-IURD phenotypes. These 56
phenotypes include infectious and inflammatory disorders of the
upper respiratory tract that were not included in our definition of
IURD: acute sinusitis (9p24.1 near IL33 and 17q21.1 near IKZF3) and
acute respiratory infections (5q22.1 near TSLP/WDR and 9p24.1 near
IL33). Asthma endpoints colocalized with seven non-HLA loci asso-
ciated with NP, CRS, and VAR—similar to previous observations
(CRSwNP)39. Association to type 1 diabetes and hypothyroidism was
observed near RAB5B (12q13.2) and HORMAD2 (22q12.2), and associa-
tion to inflammatory bowel disease near EMSY, with overlapping
credible sets near SLC22A4 and IKZF3. The CDTA-associated locus near
ABO colocalizedwith deep vein thrombosis, gastroduodenal ulcer, and
type 2 diabetes. Broad colocalization was also observed for the VAR
locus 11q13.5 (near EMSY), which colocalized with atopic dermatitis,
conjunctivitis, and inflammatory bowel diseases in addition to asthma.

Genetic correlation analysis beyond IURD highlighted genome-
wide links with susceptibility to infection, asthma, and allergic dis-
eases. We analyzed genetic correlation using LD Score regression53,
estimating correlating impacts between IURD phenotypes and dis-
eases associated in PheWAS analysis (Supplementary Figure 4). Sino-
nasal diseases in particular formed a cluster of genetic correlationwith
asthma, allergic conjunctivitis, and atopic dermatitis (Supplementary
Figure 4A). The recurring links to autoimmune diseases in several loci
translated to genetic correlationwith rheumatoid arthritis,mainlywith
the oral DPPT phenotype [rg = 58.6% (95%CI 27.7–89.5%); p = 0.00020]
and CRS [rg = 57.6% (27.4–87.1%); p = 0.00020] (Supplementary Fig-
ure 4B). Other tested diseases, such as non-suppurative otitis media
and sleep apnea, largely clustered separately despite significant cor-
relations to specific IURD phenotypes (Supplementary Figure 4C).
Finally, when comparing to PheWAS-linked inflammatory intestinal
diseases, CRS and CDTA showed genetic correlation with diverticular
disease and appendicitis (Supplementary Figure 4D).

Table 4 | Nine non-synonymous variants in protein-coding genes included in 95% credible sets with at least one GWS SNP

LOCUS GWAS RSID OR 95% CI P value EAF FE Gene CONSEQ PP

2q12.1 CRS rs1041973-A 0.90 (0.87–0.94) 6.21E-08 20.5% 0.91 IL1RL1 missense 1.7%

4q24a IURD rs2272676-T 0.96 (0.94–0.98) 7.84E-09 34.9% 1.10 NFKB1 splice donor 0.3%

4q24b CDTA rs2454206-G 0.94 (0.92–0.96) 5.59E-09 34.1% 0.89 TET2 missense 0.4%

5p13.2 IURD rs6897932-T 0.96 (0.94–0.98) 3.26E-08 33.1% 1.28 IL7R missense 4.5%

5q31.1b NP rs1050152-T 0.86 (0.81–0.91) 3.73E-09 31.7% 0.72 SLC22A4 missense 3.2%

17p11.2 CDTA rs72553883-T 1.43 (1.33–1.53) 2.39E-26 2.4% 3.52 TNFRSF13B missense 48.2%

17q12 CRS rs3744374-A 0.90 (0.86–0.93) 9.94E-10 23.0% 0.95 GAS2L2 missense 99.9%

17q21.1 CISD rs11557467-T 0.94 (0.91–0.96) 1.60E-08 55.9% 1.14 ZPBP2 missense 4.0%

17q21.1 CISD rs2305479-T 0.94 (0.91–0.96) 2.69E-08 54.8% 1.14 GSDMB missense 1.5%

GWAScolumndenotes thegenome-wideassociation studywhere the variant is identified.Odds ratios andp-values arewith regard to thephenotype inGWAScolumn; themost specificphenotype is
represented if the variant appears in several GWAS.Odds ratios (OR)were estimated using logistic regression (Methods). P-values were calculated using upper tail chi-square testing (one degree of
freedom) from a t-statistic under a normal approximation. 95% CI were derived using normal approximation. EAF effect allele frequency, FEenrichment in FinnGen (Finnish-enriched variant is
bolded), i.e., allele frequency compared with non-Finnish participants in gnomAD, CONSEQmost severe consequence annotated with (VEP), PPPosterior probability in fine-mapped credible set.
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Since our investigation focusedon host susceptibility to infection,
we also compared our results to the summary statistics of the COVID-
19 host genetics initiative18, noting two shared loci atNFKBIZ and ABO.
We investigated the genetic correlation of IURDs and their associated
FinnGen endpoints, based largely on pre-pandemic diagnoses, with
three COVID-19 endpoints. COVID-19 hospitalization (B2) in particular
linked with CPs [rg = 57.2% (10.7–100.0); p =0.016], DPPT [rg = 41.8%
(12.5–71.0); p = 0.0051], all pneumonias [rg = 34.9% (3.2–66.7);
p =0.031], CRNP [rg = 42.6% (11.7–73.4); p = 0.0068] and hospital dis-
charge record of unspecified acute upper respiratory infections [rg =

55.8% (16.3–95.3);p =0.0055] (Supplementary Figure 5). Pharyngeal or
sinonasal diseases were not significantly associated.

Discussion
To understand the genetic predisposition landscape of infectious and
inflammatory upper respiratory diseases, we genome-wide analyzed
thesediseases both individually and ingroups. In total, we identified41
loci, of which twelve have not been previously reported to associate
with any of the IURDs. Among the 41 loci, our fine-mapped credible
sets identified nine coding variants. Cross-disease analyses combined

Table 5 | Gene sets enriched in MAGMA analyses

Phenotype Gene set Genes β Padj

CRS MHC class II receptor activity 9 1.6939 0.036904

NP MHC class II receptor activity 9 2.5209 1.96E-07

NP MHC class II receptor complex 14 1.7043 0.000367

NP Positive regulation of interleukin 13 production 15 1.2187 0.000453

NP Regulation of interleukin-4 production 28 0.90161 0.003912

NP Interleukin 13 production 24 0.88367 0.004649

NP MHC protein complex 22 1.0476 0.008563

NP Interleukin-4 production 34 0.78389 0.011623

CDTA Cytokine-mediated signaling pathway 748 0.16085 0.005677

CDTA TNFR2 pathway 16 1.0288 0.00569

CDTA Reactome cytokine signaling in immune system 835 0.14811 0.006434

CDTA Peptidyl serine autophosphorylation 8 1.3374 0.027797

PA Negative regulation of morphogenesis of an epithelium 16 1.12272 0.025657

Gene sets were identified based on genes identified as phenotype-associated in MAGMA analysis. β is the effect size in the MAGMA gene set enrichment analysis. The considered gene sets
encompassed a set 4761 curated gene sets and 5917 GeneOntology terms, as used in the FUMApipeline. P valueswere calculatedusing upper tail chi-square testing (onedegree of freedom) froma
t-statistic under a normal approximation. P values have been adjusted for these sets (10,678 tests).

Table 6 | IURD genomic loci credible sets shared with other FinnGen endpoints

Locus Gene IURD Colocalized Overlapped

1q21.3 ARNT NP - Malignant neoplasm of skin (1)

2q12.1 IL18RAP NP, VAR, CRS Asthma (12); Allergic conjunctivitis (2) Acute upper respiratory infections (2)

2q13 MIR4435-2HG PA - Asthma (13); Umbilical hernia (2)

4q24a NFKB1 CDTA, PA - Other diabetes (E13; 1)

5q22.1 WDR36 NP, VAR, CRS Asthma (15) Polyp of the female genital tract (1)

5q31.1b SLC22A4 NP - Asthma (9); Dermatitis (3); Breast cancer (2); IBD (2);
Chalazion (1)

9p24.1 IL33 VAR, CRS Asthma (7); Acute sinusitis (1) Asthma-related infections (4)

9q33.3 NEK6 NP - Arthropathies (2)

9q34.2 ABO CDTA DVT of lower extremities and PE (3); Gastric ulcer (2); Type 2
diabetes (1)

Type 2 diabetes (3)

10p14a GATA3 NP - Asthma (1)

10p14b GATA3 NP, CRS Asthma (5) -

11q13.5 EMSY VAR Asthma (7); IBD (7); Allergic conjunctivitis (4); Atopic Dermatitis (4);
Mucosal proctocolitis (1)

IBD (1)

12p13.31 LTBR CDTA, PA Appendicitis (2) -

12q13.2 RAB5B NP Type 1 diabetes (4); Hypothyroidism (1) Type 1 diabetes (4); Hypothyroidism (5)

15q22.33 SMAD3 VAR Asthma (5); Coronary revascularization (1); Haemmorrhoids (1);
Allergy (1)

Asthma (8); Thyroid cancer (4)

16p13.13 CLEC16A NP Asthma (6) Asthma (5); Type 1 diabetes (1)

17p11.2 TNFRSF13B CDTA Non-suppurative otitis media (1) -

17q21.1 IKZF3 CRS Cervical cancer (2); Acute sinusitis (1) Asthma (18); IBD (8); Mucosal proctocolitis (1)

22q12.2 HORMAD2 CDTA - Type 1 diabetes (6); Hypothyroidism (4)

Using an in-house colocalization pipeline (Methods), the phenotypes in the “IURD” column credible sets had significant causal posterior probability/agreement with non-IURD FinnGen phenotypes
(“Colocalized”), or otherwise overlapping variants in credible sets with non-IURD FinnGen phenotypes (“Overlapped”). Non-IURD phenotypes in “Colocalized” and “Overlapped” columns are
grouped according common traits, such that “Asthma” refers to endpoints such as “allergic asthma” or “childhood asthma”, with the number of parallel endpoints included in a parenthesis. Broader
categories (e.g., “Diseases of the respiratory system”) are omitted. “Gene” reports the gene nearest to the lead variant, as reported in Tables 2 and 3. Full colocalization results are reported in
Supplementary Data 9. NP Nasal polyposis, VAR vasomotor and allergic rhinitis, CRS chronic rhinosinusitis, CDTA chronic diseases of tonsils and adenoids, PA peritonsillar abscess, DVT deep vein
thrombosis, PE pulmonary embolism, E13 ICD-10 code for “Other specified diabetes mellitus”.
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chronic diseases of the sinonasal, oral and pharyngeal regions. We
showed that genetic structure distinguished sinonasal diseases and
pharyngeal diseases, with a partly overlapping genetic background.
Our study also includes the first GWASs of CDTAs, PA, and DPPT.

Our findings indicate overlapping genetic etiologies that extend
beyond the previously reported genetic links between CRS and nasal
polyps39 to tonsillar endpoints as well. We observe both locus-specific
and genome-wide correlations between sinonasal, oral, and phar-
yngeal inflammatory and infectious conditions. The associations
implicate immunological pathways and links to immune-mediated
diseases beyond the confines of the upper respiratory system.

Of the 40 reported non-HLA loci, 17 were uniquely observed in a
single IURD phenotype GWAS. The remaining 23 loci had highly similar
oddsratiosintwoormorephenotypes,evenifthesignaldidnotreachthe
genome-wide significance threshold in all diseases. This is in line with
previousepidemiologicalandhistopathologicalevidencethathighlights
links between inflammatory sinonasal diseases5,6,26,44. Similarly, phar-
yngeal diseases associate with eleven loci previously linked to
tonsillectomy40,41 aswell as one locus associatedwith self-reported strep
throat and childhood ear infections40. While there is a shared genetic
contribution for three loci to all IURDs, the underlying genetic structure
distinguishes between sinonasal diseases and pharyngeal diseases. This
is supportedbyseveral linesof evidence, fromgenome-widecorrelation
to loci-specific log-odds-based hierarchical clusters and Bayesian meta-
analysis. InadditiontotheknownlinksamongCISDs,weobserveashared
heritabilitybetweentheclinicallydistinct chronic (CDTA)andacute (PA)
pharyngeal diseases, including sixteen loci with shared impact.

Overall, genetic correlation analysis illustrated the genetic land-
scape linking IURDs with asthma, reflecting the co-existence of IURDs
and asthma; about half of AR, CRS, and NP patients have asthma6. We
detected shared genetic risk for NP and CRS, which is in line with
previous observations39. In subjects with NP, gene set enrichment
associated pathways related to regulation and production of inter-
leukins4and13,whicharehallmarksofType2 inflammation74andhave
shown tobeassociatedwithasthma75 and tobe functionally relevant in
CRSwNP patients76. Ex vivo cultured nasal basal cells have been shown
to retain intrinsic Type 2 high memory of IL-4/IL-13 exposure, which
could be decoded via clinical blockade of the IL-4 receptor α-subunit
in vivo76. We demonstrated a genetic landscape linking IURDs (such as
NP, CRS, and AR) with asthma and allergic diseases39,44–46. We found
that CISDs associate with the 17q21 locus (GSDMB/ZPBP2) as well as
TSLP, IL33, and the gene encoding the IL33 receptor, IL1RL, which all
have previously shown to be associatedwith asthma77,78, and have also
shown to be functionally relevant in asthma models79–82.

Pharyngeal diseases implicate genes linked with immune defi-
ciency. Non-synonymous variants were implicated in eight loci, high-
lighting three genes linked with immune deficiency and immune-
mediated disorders. Interestingly, in two of these genes (NFKB1 and
IL7R) with previously established risk variants for immune deficiency15,
we identify non-synonymous variants with decreased risk for IURDs.

Beyond the above-described trends, there were also associations
with autoimmune disorders. Diseases such as rheumatoid arthritis
correlated genome-wide with CRS and DPPT, highlighting the multi-
tude of immunopathological mechanisms with manifestations in the
upper respiratory tract. Links to immune-mediated disorders, such as
asthma and inflammatory bowel diseases, were also observed in
colocalization analysis. Among specific pathways, we implicate the
tumor necrosis factor 2 pathway as a viable target for further study in
the analysis of CDTAs. This furthers the findings of Tian et al.40, who
previously identified genetic links between tonsillectomy and the
intestinal immune network for IgA production. We also replicated a
shared locus near HORMAD2 between CDTA and type 1 diabetes, and
extend IBD-associated83 CDTA loci to SLC45A1 and PIM3. Beyond spe-
cific loci, we reported enrichment of CDTA-associated variants in 10
out of 16 genes involved with the TNFR2 pathway, and many

intracellular genes of the canonical NFκB pathway84. Notably, the
TNFR2 pathway has been found to modulate allergic inflammation85.

We observed shared impact with other infectious disorders. The
immune deficiency was also evident in loci-specific impact on infec-
tious disorders, specifically non-suppurative otitis media, and appen-
dicitis. These two infections are also genetically correlated with CRS
and CDTA. Two of the loci described herein—the ABO cluster that
associates with CDTA and the PA locus closest to the gene NFKBIZ—
have been implicated with COVID-19 severity18,86. Phenome-wide
colocalization analysis of the ABO gene cluster shows wide-ranging
phenotypic implications (Supplementary Data 9), in line with its well-
described pleiotropic effects87. The fine-mapped set of CDTA-linked
variants near ABO includes rs923383567-C [a.k.a. rs657152-C, linked
with COVID-19 severity86] and rs879055593-C, the latter of which was
linked with interleukin-4 driven pathogenesis in a recent multitrait
analysis88. The NFKBIZ locus has two SNPs with near-equal posterior
inclusion probability in fine-mapping: rs1456200-A and rs1456202-G
(Supplementary Figure 6). The cryptic LD structure suggests that fur-
ther work is needed to fine-map this region.While pharyngeal diseases
showed little general genetic correlation with COVID-19 in this analysis
(Supplementary Figure 5), it is interesting to note the genetic corre-
lation with oral infections and CRNP, although only a few loci could be
identified in these disorders. The implications of these results require
further study and replication.

This study has some limitations. Firstly, the FinnGen study cohort
is collected based on legacy samples variably representing certain
aspects of the population, with new participants being recruited
mainly in theUniversityHospital health care setting. For these reasons,
the study cohort is not a true population sample and thus comorbidity
analyses should not be interpreted from an epidemiological angle.
Second, the IURD phenotypes are diagnosed by specialists, often in
hospital settings, and thus likely quite accurate but are therefore
subject to ascertainment bias (collider bias) with other disorders—a
feature of studydesign that can inflate correlation estimateswith other
diseases. Thirdly, the ICD-10-based disease endpoints used here differ
somewhat from current clinical practice (e.g., non-allergic rhinitis and
AR, CRSsNP, and CRSwNP). Also, phenotypic coding definitions dif-
fered somewhat between FinnGen vs. UKB studies. However, as the
genetic association to disease biology does not necessarily follow
clinicalmanifestations, and there is notable previous success using this
approach39, we, therefore, find these categories appropriate to high-
light the genetic similarities and differences. Finally, while the VAR and
NP analyses in the UKBwerewell-powered for replication, the effective
sample sizes for other IURDswere not sufficient for reliable replication
analysis of many of the lead variants. An inherent feature of genetic
association analysis in population isolates is that loci identified with
population-specific enriched variants are hard or impossible to be
analyzed adequately in more mixed populations. A non-replication
does not necessarily mean a false positive.

Using lifelong national register data, we identified 41 loci asso-
ciated with different upper respiratory diseases. These loci identified
genes involved in immunological (such as Type 2) mechanisms and
immune-mediated diseases. We observed both shared and distinct
genetic contributions among different chronic inflammatory upper
respiratory diseases, between IURDs and other systemic immune-
mediated disorders, and between IURDs and two oral inflammatory
diseases, providing genetic insight into earlier clinical and epidemio-
logical observations.

Methods
Study design
The FinnGen study is an on-going nationwide collection of Finnish
genetic samples, combining genome information with digital health
care and registry data. Participants include legacy samples from pre-
vious studies recruited for on-going research, maintained by the
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Biobank of the Finnish Institute for Health and Welfare (THL), and
recentbiobanksamples recruitedatuniversityhospitalsacrossFinland.
In the present study, we included samples from 271,341 participants
released in August 2020. Registry data used here included disease
diagnoses andperformedoperations from theCareRegister forHealth
Care (THL), thePrimaryHealthCareRegister (THL), theCausesofDeath
Register (Statistics Finland), and the Drug Reimbursement Register
(KELA, the Social Insurance Institution of Finland). The co-occurrence
of the IURD diagnoses is summarized in Supplementary Data 10.

Participants in FinnGen provided informed consent for biobank
research, based on the Finnish Biobank Act. Alternatively, separate
research cohorts, collected prior to the Finnish Biobank Act came into
effect (in September 2013) and the start of FinnGen (August 2017),
were collected based on study-specific consents and later transferred
to the Finnish biobanks after approval by Fimea, the National Super-
visory Authority for Welfare and Health. Recruitment protocols fol-
lowed the biobank protocols approved by Fimea. The Coordinating
Ethics Committee of the Hospital District of Helsinki and Uusimaa
(HUS) approved the FinnGen study protocol Nr HUS/990/2017. The
FinnGen study approval permits are listed in Supplementary Table 4,
and biobank access decisions are listed in Supplementary Table 5.

Genotyping and sample quality control
Samples were genotyped using called for a total of 271,341 individuals.
In total, 12 different type of DNA chips were used to analyze partici-
pants in 78 batches. In genotyping, we removed SNPs with high miss-
ingness (>2%),minor allele count <3, andHardy–Weinberg equilibrium
(pHWE < 1e–6). We removed samples with non-Finnish heritage in PC
analysis, duplicated/twins, incomplete phenotypic information, or
mismatch between reported and imputed genetic sex. The final post-
QC sample count was 260,405 (147,061 females and 113,344 males).
Genotypes were imputed based on a Finnish reference panel detailed
elsewhere89, using deep whole-genome sequencing data from 3775
Finns in the SISu90 reference panel.

Genome-wide association analyses
We used the SAIGE software49 for running mixed model logistic
regression genome-wide on 16,355,289 variants. We used age, sex, the
first 10 PCs, and genotyping batch as covariates. We analyzed the
genome-wide association of cases of eight IURDs (Table 1; total
n = 61,197) against 199,208 controls with no IURDs in the FinnGen
dataset. The IURD phenotypes did not include J38 (“Diseases of vocal
cords and larynx, not elsewhere classified”) and J39 (“Other diseases of
upper respiratory tract”), which were included in the larger IURD
category but were not separately analyzed. Two oral phenotypes,
DPPT andCP,were separately analyzeddue to epidemiological overlap
with pharyngeal and sinonasal IURDs. The study-wide level of sig-
nificance (MTS) was set at 5e-9 to correct for the simultaneous analysis
of ten different diseases. Non-MTS GWS loci (5e-9 < p < 5e-8) were
considered significant only if they replicated in UKB or meta-analysis.

Cross-trait analysis
To investigate the shared heritability across multiple IURDs, we per-
formed cross-trait GWASs of the three disease clusters identified
through genetic correlation (Fig. 2). These disease groups were sino-
nasal diseases (n = 25,235 cases vs 199,208 controls), pharyngeal dis-
eases (n = 33,157 cases vs 199,208 controls), and CISD (n = 19,901 cases
vs 199,208 controls). In addition, we performed a GWAS of cases with
any IURD (n = 61,197 vs 199,208 controls). The cross-trait analyseswere
run using the same SAIGE pipeline as the main analyses, with the same
covariates.We performedMultiTrait Analysis of GWAS (MTAG)54 using
GWAS summary statistics from all IURD phenotype GWASs jointly.
Only variants with MAF > 1% were considered (n = 6,868,381). As the
approach has an elevated type II error rate, loci identified by MTAG
were only considered meaningful if replicated in the UKB analysis.

Bayesian analysis of shared variant effects
In order to estimate the shared and distinct phenotypic impacts of
specific loci in ourGWAS results, we used aBayesian framework,where
we assessed for a shared effect between phenotypes. This framework
adjusted for overlapping controls using a previously reported
variance-based adjustment55. The framework considered three types of
impact: none (the “null model”), unique (“one phenotype only”), and
shared. Shared impact combined a hypothesized “fixed”model, where
the variant has the same effect size for all phenotypes, and a “corre-
lated” model, where the variant has similar, but not necessarily the
same, effects for all phenotypes. The posterior probability of
the “fixed” and “correlated” models were added together and called
the “shared” model when comparing with the null model and the
unique effectsmodels. Theprior probability of “fixed” and “correlated”
models were half of that of “null” and “one phenotype only”models so
that each of the compared models (null, shared, and one phenotype
only models) had the same prior probability. We interpreted a model
with at least 70% posterior probability as “most probable” model.

Shared impact between IURDs was analyzed in four tiers, corre-
sponding to the four phenotype groups (IURDs, and sinonasal, phar-
yngeal, and allergic sinonasal diseases). The first tier analyzed
heterogeneity of GWS SNPs identified in IURD GWAS based on their
impact on CRNP, sinonasal diseases, pharyngeal diseases, and CLT.
The second tier analyzed heterogeneity of GWS SNPs identified in the
sinonasal disease GWAS on their impact to NSD and CISD. The third
tier analyzed the heterogeneity of GWS SNPs of the tonsil disease
GWAS on CDTA and PA. The fourth and final tier analyzed the het-
erogeneity of GWS SNPs of the CISD GWAS on VAR, CRS, and NP.

Comparison with UK Biobank
For replication, we analyzed the association of lead variants of all 59
GWS non-HLA loci in the UK Biobank (Supplementary Data 1). We
mapped the IURD and oral endpoints in FinnGen to corresponding
UKB read codes (Supplementary Data 11) using ICD-to-Phecode map-
ping (in addition to manual curation of these codes based on
description) using hospital data, cause of death registry, and for a
subset (n = 230,000) also GP data. UKB variants were aligned to var-
iants in FinnGen. In case of no exact match between SNPs (ref and alt
differ between studies), matching was tried by flipping strand and/or
switching ref->alt and alt->ref for the UKB variant. Variants were tested
against the constructed endpoints in the UKB European population
using using logistic regression. Covariates were reported gender,
baseline age, and PCs 1–10. We used as controls all UKB participants
with no identified IURD or oral endpoint (n = 298,846). To estimate
heterogeneity of effect between the cohorts, a test statistic was cal-
culated with the formula

z =
β1 � β2

� �2

SE2
1 + SE

2
2

ð1Þ

where βi is the effect size of study i, and SEi is the standard error of the
effect estimate in study i. The test statistic zwas assumed to follow a χ2

distributionwith one degree of freedom. Variants with a pz < 0.05were
considered heterogeneous. Only co-directional variants were meta-
analyzed. We used inverse-variance-weighted meta-analysis under a
fixed-effect assumption. Variants were considered significant if they
had aGWS impact aftermeta-analysis withUKB, had aGWS association
in FinnGen, and replicated a co-directional association (p < 0.05) in
UKB, or MTS impact in FinnGen alone.

Characterization of loci
After the initial detection of GWS (p < 5e-8) associated SNPs, we chose
lead SNPs based on lowest p value, and GWS SNPs in the same locus
were groupedbasedongenomic distance<2Mb, r2 > 0.1with lead SNP.
We used SuSiE60 for detection of credible sets of causal variants, with a
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Finnish-based reference panel [Sequencing Initiative Suomi90] for LD
structure and imputation. Only credible sets with at least one GWS
(p < 5e-8) SNP were considered.

Colocalization analyses
We used an in-house pipeline based on eCAVIAR70 to evaluate colo-
calization with GWAS summary statistics. The pipeline uses SuSiE-fine-
mapped CSs as inputs, and calculates a causal posterior probability
(CLPP) that the same locus is causal in both studies. CLPP is defined as
the sum of the products of SuSiE-fine-mapped posterior probabilities
(PIP; x for phenotype 1, y for phenotype 2) for each variant i shared in
credible sets of both phenotypes, such that for credible set k:

CLPPk =
X

i2CS
xi*yi ð2Þ

CLPPwas considered significant if it was higher than 20%.Another
colocalizationmetric, causal posterior agreement (CLPA), was devised
as a metric independent of CS size. CLPA represents the agreement
between the fine-mapping results in both studies, and is defined as the
sumofminimumPIP of shared variants betweenCSs fromphenotype 1
and 2. CLPA was considered significant if higher than 50%. For gene
expression, the GWAS summary statistics were derived fromGTEx v871

and the eQTL catalog72. Phenotype summary statistics were derived
from the FinnGen PheWeb.

LD score regression
We estimated both the SNP-based observed scale heritability and
genetic correlation (rg) by performing LD Score Regression using the
LDSC toolset53. This method works by using an “LD score” to estimate
the amount of linkagedisequilibrium (LD) each SNPhaswith the restof
the genome under the polygenic model, and regresses the χ2-statistic
from a GWAS on the LD score, which also allows the estimation con-
founding bias. For our analysis, we used a previously calculated LD
structure distributed by the ldsc.py software package. The distributed
LD structure is based on the 1KG Phase 3 European dataset, and was
merged to LD scores with the HapMap v3 variants91. The GWAS sum-
mary statistics were merged with 1,217,311 SNPs for which the LD
scores were precalculated. 1073 SNPs were removed due to being
strand-ambiguous, 1328 SNPS were removed due to duplicated rs-
numbers, and 594 SNPs due to differing FinnGen and HapMap anno-
tation. The remaining 1,190,282 SNPs were used in all FinnGen genetic
correlation calculations.

LD score regression is developed for use in logistic and linear
regression GWAS, while a GWAS using the SAIGE mixed model is not
applicable for heritability estimates49. Therefore, the observed scale
SNP-based heritability estimates were calculated using summary sta-
tistics from separate GWASs, in turn, run using independent subsets
for all phenotypes and using standard logistic regression. For the
heritability analyses, a total of 54,784 SNPs were removed from the
initial 1,217,311 SNPs used for reference, and the observed scaled her-
itability estimate was calculated from the remaining 1,162,527 SNPs. In
the logistic regression GWASs, we again used age, sex, PCs 1–10, and
genotyping cohort as covariates.

We analyzed genetic correlation using LD Score regression to
recognize shared heritability among IURD phenotypes. We grouped
together phenotypes based on previously used thresholds, starting at
rg > 75%. This grouped six of the eight IURD phenotypes into two
groups: one group formed by VAR, CRS, NP, and NSD; another group
being formed by CDTA and PA. Raising the threshold even further, to
rg > 75%, distinguished a third group consisting of VAR, CRS, and NP.
These groups were labeled “sinonasal diseases”, “pharyngeal diseases”
and “chronic inflammatory sinonasal diseases”, respectively. We
additionally analyzed genetic correlation to phenotypes detected in
the phenome-wide analysis. Summary statistics for endpoints were

from FinnGen release 6, with the exception of inflammatory bowel
disease where a previously published analysis92 was used.

Multi-marker Analysis of GenoMic Annotation (MAGMA)
We investigated gene- and gene-set enrichment separately using
MAGMA73. Briefly, the pipeline calculates the mean χ2 statistic from
IURD GWAS summary statistics per gene, and thus obtains a p value
for the gene. MAGMA was analyzed using the FUMA pipeline that
tests association for 19,535 curated genes; thus, the adjusted p value
threshold was set to p < 0.05/19,535 = 2.56e-6. Genes with p value
below this threshold were considered to associate with the relevant
phenotype. We again employed the UK Biobank release 2 reference
panel, with 1000 randomly selected individuals for reference to
reduce runtime. Gene analysis was performed with default FUMA
parameters, only considering SNPs that overlap genes. The HLA
region was not omitted from MAGMA runs. We next tested for
enrichment of genes involved in 4761 curated gene sets and 5917 GO
terms included in the FUMA pipeline. Here the level of statistical
significance was set with Bonferroni correction at p < 0.05/
(4761 + 5917) = 4.68e-6.

Data availability
The summary statistics data generated in this study have been
deposited in the FinnGen database (https://www.finngen.fi/en/access_
results and http://r6.finngen.fi/). Individual-level genotypes and regis-
ter data from FinnGen participants can be accessed by approved
researchers via the Fingenious portal (https://site.fingenious.fi/en/)
hosted by the FinnishBiobankCooperative FinBB (https://finbb.fi/en/).
Data release to FinBB is timed to thebiannual public releaseof FinnGen
summary results, which occurs twelve months after FinnGen con-
sortium members can start working with the data. Freely available
summary statistics data was obtained from the GWAS catalog (https://
www.ebi.ac.uk/gwas/), the GTEx database (https://www.gtexportal.
org/) and the eQTL catalog (https://www.ebi.ac.uk/eqtl).

Code availability
Software used in this analysis is publicly available software distributed
by the respective websites (SAIGE v0.39.1: https://www.leelabsg.org/
software; SuSiE: https://github.com/stephenslab/susieR; LDSC v1.0.1:
https://github.com/bulik/ldsc/) with developer pages on github. The
Bayesian analysis framework is publicly detailed in the cited work, in
addition to the website (https://github.com/trochet/metabf). Please
see https://finngen.gitbook.io/documentation/ for a detailed descrip-
tion of data production and analysis including code used to run ana-
lyses. Please see https://github.com/FINNGEN/ for further code
repositories used to run analyses in FinnGen. R code to reproduce
figures is available upon request.
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