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CAR-T cell therapy-related cytokine release
syndrome and therapeutic response is
modulated by the gut microbiome in hema-
tologic malignancies

Yongxian Hu1,2,3,4,12, Jingjing Li 5,6,12, Fang Ni1,2,3,4,12, Zhongli Yang5,6,12,
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Yiyun Wang1,2,3,4, Mingming Zhang1,2,3,4, Ruimin Hong1,2,3,4, Linqin Wang1,2,3,4,
Wenjun Wu1,2,3,4, Mohamad Mohty7,8, Arnon Nagler9, Alex H. Chang 10 ,
Marcel R. M. van den Brink 11 , Ming D. Li5,6 & He Huang 1,2,3,4

Immunotherapy utilizing chimeric antigen receptor T cell (CAR-T) therapy
holds promise for hematologic malignancies, however, response rates and
associated immune-related adverse effects widely vary among patients. Here
we show, by comparing diversity and composition of the gut microbiome
during different CAR-T therapeutic phases in the clinical trial
ChiCTR1800017404, that the gut flora characteristically differs among
patients and according to treatment stages, and might also reflect patient
response to therapy in relapsed/refractory multiple myeloma (MM; n = 43),
acute lympholastic leukemia (ALL; n = 23) and non-Hodgkin lymphoma (NHL;
n = 12). We observe significant temporal differences in diversity and abun-
dance of Bifidobacterium, Prevotella, Sutterella, and Collinsella between MM
patients in complete remission (n = 24) and those in partial remission (n = 11).
Furthermore, we find that patients with severe cytokine release syndrome
present with higher abundance of Bifidobacterium, Leuconostoc, Steno-
trophomonas, and Staphylococcus, which is reproducible in an independent
cohort of 38 MM patients. This study has important implications for under-
standing the biological role of the microbiome in CAR-T treatment respon-
siveness of hematologic malignancy patients, and may guide therapeutic
intervention to increase efficacy. The success rate of CAR-T cell therapy is high
in blood cancers, yet individual patient characteristics might reduce ther-
apeutic benefit. Here we show that therapeutic response in MM, ALL and NHL,
and occurrence of severe cytokine release syndrome in multiple myeloma are
associated with specific gut microbiome alterations.
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B-cell-derived hematologic malignancies, including acute lympho-
blastic leukemia (B-ALL), non-Hodgkin lymphoma (B-NHL), and mul-
tiple myeloma (MM), carry a high probability of relapse after
conventional chemotherapy1. With novel therapeutic strategies
incorporating monoclonal antibodies, bispecific T-cell engager (BiTE)
antibodies, and hematopoietic stem cell transplantation (HSCT),
treatment outcomes have greatly improved2–4. However, some
patients progress to relapsed/refractory (r/r) status, with a poor
prognosis5. For patientswith r/rB-ALL, themedianoverall survival (OS)
is 3–6 months6, 7. The median OS is 6.2 months for patients with r/r
diffuse large B-cell lymphoma (DLBCL)8. For r/r MM patients, the
median OS is 3–9 months9. There is an urgent need to explore novel
treatment strategies for these malignancies.

Chimeric antigen receptor (CAR) T-cell therapy (approved by the
U.S. Food andDrugAdministration) recently emerged as promising for
r/r B-ALL, DLBCL, and mantle cell lymphoma (MCL)10–12. In multiple
myeloma, investigations targeting the B-cell maturation antigen
(BCMA) yielded encouraging outcomes with reversible toxic effects
such as cytokine release syndrome (CRS) and pancytopenia13–17. How-
ever, the efficacy and toxicity have been inconsistent. No biomarker
has been identified that canpredict outcomes and associated toxicities
after CAR-T therapy in patients.

Several studies have reported that the differences in diversity and
composition of the gut microbiome might influence cancer immu-
notherapy response18–21. After analyzing fecal samples from 43 mela-
noma patients treated with anti-programmed cell death 1 protein (PD-
1) immunotherapy, significantly higher alpha diversity and abundance
of Clostridiales/Ruminococcaceae were found in responders, whereas
Bacteroidales were significantly enriched in non-responders19. In
hematologicmalignancies, intestinal bacteria alsomodulate the risk of
graft-versus-host disease (GVHD) and infection after allogeneic
hematopoietic stem cell transplantation (allo-HSCT). Greater bacterial
diversity and abundance of the genus Blautia were associated with
reduced GVHD-related death and improvedOS22, 23. However, no study
has shown a potential role for the intestinal microbiota in the efficacy
and toxicity of CAR-T therapy for B-cell malignancies.

Here we show the intestinal microbiome changes in patients with
r/r B-cell-derived hematologic malignancies undergoing CAR-T cell
treatment and investigating associations of themicrobiotawith clinical
responses and CRS severity. Further, the potential of the gut micro-
biome to predict treatment outcomes and CRS severity was also
explored. Our results indicated that CAR-T cell therapy-related cyto-
kine release syndromeand therapeutic responsewasmodulatedby the
gutmicrobiome in hematologicmalignancies. These findings highlight
the role of gut microbiome in CAR-T therapy.

Results
Clinical trial outcomes
Previously we reported the safety and efficacy of interim results of the
trial (61 patients)24. Here after completion of the trial, 99 patients with
relapsed/refractory multiple myeloma (r/r MM) were included (Fig. 1a).
The primary outcome was to evaluate the safety of BCMACAR-T cells in
the treatment of r/r MM. All patients were evaluated for safety analysis.
Cytokine release syndrome (CRS) was observed in 97% (96/99) patients,
including 50 (52.1%)patientswithgrades 1–2CRS, 42 (43.8%) and4 (4.1%)
with grades 3 and 4 CRS. None grade 5 CRS occurred. The neurotoxi-
cities were reported for 11 patients (11.1%), of whom 10 (10.1%) and 1
(1.0%) had grade 1 and grade 2 events, no grade 3 or higher neurotoxic
effect was observed. After treatment, all episodes of CRS and neuro-
toxicity were resolved. The secondary outcome was to evaluate the
efficacy and characterization of BCMACAR-T cells in the treatment of r/r
MM. Within 1 month after BCMA CAR-T cell infusion, 2 patients died of
cerebral hemorrhage and4diedof severe infections.Of the 95 evaluable
patients, 91 (95.8%) had an overall response. In all, 55.8% (53/95), 15.8%
(15/95), and 24.2% (23/95) of patients achieved a complete remission

(CR), very good partial response (VGPR), or partial response (PR),
respectively. With a median follow-up time of 21.2 months (95%
CI, 18.4–32.1), the median progression free survival (PFS) was 12.0 (95%
CI, 8.1–15.7) months. The 1-year OS and PFS rates were 0.70 (95% CI,
0.61–0.80) and0.48 (95%CI, 0.39–0.59), respectively. BCMACAR-T cells
expanded dramatically in vivo. The BCMA CAR-T/CD3+ T-cell percen-
tages in peripheral blood (PB) peakedonday 11 (range: 5–31) afterCAR-T
cell infusion. The median BCMA CAR-T/CD3+ T-cell percentages was
81.95% (range: 6.07–97.30%).

Patient samples included for gut microbiome analysis
Microbiome samples were not available from 12 patients and 16S
sequencingdepthwas not sufficient for analysis on6patients. Finally, a
total of 81 patients with r/r MM was included for gut microbiome
analysis, which included 43 patients for experiment group and 38
patients for validation group (Fig. 1a). Number of samples collected,
and sequencing depth were summarized in Supplementary Data 1–2.
Clinical and sequencing information of patients used in the study are
presented in Supplementary Table 3 and Supplementary Data 3.

The median age of the MM patients was 59 (range 39–75) years,
and 55.8% were male (Table 1). The median number of prior lines of
therapy was 4 (range 2–8), with all receiving proteasome inhibitor
therapy and 95.3% immunomodulatory agents. At enrollment, 39.5%
had received autologous stem cell transplantation, and 55.8% had
extramedullary disease(s).

Three months after infusion of a median dose of 4.4 × 106/kg
(range 1.2–6.9 × 106/kg) of BCMA CAR-T cells, 55.8%, 14%, and 25.5% of
patients had a CR, VGPR, or PR, respectively. All 43 MM patients
showed CRS, grade 1 in 8 patients (18.6%), grade 2 in 16 (37.2%), and
grade 3 in 19 (44.2%). No higher grade was observed (Fig. 1d). The CRS
was fully controlled andmanaged for all patients. Of these patients, 24
received only supportive care, 6 received supportive care plus tocili-
zumab treatment (IL-6 receptor-blocking monoclonal antibody), 10
received supportive care and corticosteroid treatment, and 3 received
supportive care accompanied with tocilizumab and corticosteroids
treatment. The antibiotics used before or during treatment were β-
lactam (41 patients), Carbapenems (26 patients), Quinolone (26
patients), Aminoglycosides (1 patient), Macrolide (1 patient), Tetra-
cyclines (4 patients), Cephalosporins (3 patients), andGlycopeptides (6
patients). Although we included age, gender, number of prior lines of
therapy, CAR-T cell dose, autologous stem cell transplantation, anti-
biotic use before or during treatment as covariates into our analyses,
no significant differences were observed among different efficacy
groups or CRS grade groups (Supplementary Tables 1–2). Two patients
died: one fromsepsis causedby Pseudomonas aeruginosa and theother
from intracranial hemorrhage (Fig. 1d). Both the BCMA CAR-T/CD3+

T-cell percentages in peripheral blood (PB) and serum concentrations
of interleukin (IL)−10 increased during CRS and differed significantly in
the CR and PR groups (Fig. 1e). Patients’ temperature and C-reactive
protein (CRP), ferritin, and lactic dehydrogenase (LDH) concentrations
were elevated, and IL-6 and IFN-γ concentrations were significantly
different in grade 3 vs grade 1CRS (Fig. 1f andSupplementary Fig. 1a–c).
The serum immunoglobulins (IgG, IgA) and immunoglobulin κ and λ
light chain concentrations decreased dramatically after CAR-T (Sup-
plementary Fig. 1d–f). Figure 1g shows the differences of positron
emission tomography–computed tomography (PET-CT) scans and
plasma cells detected byWright’s stain of a bonemarrow smear (43.5%
vs. 0), as well as flow cytometry (68.9% vs. 0) of bone marrow cells
before and after CAR-T infusion for a representative subject.

Changes in the intestinal microbiome during CAR-T cell therapy
To detect changes in the gut microbiota during CAR-T therapy, we
collected fecal samples fromeachpatient atfive times (FCa, FCb, CRSa,
CRSb, and CRSc; Fig. 1c), where FCa denotes the baseline before che-
motherapy; FCb after chemotherapy; CRSa after CAR T-cell infusion
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but before the onset of CRS; and CRSb and CRSc denote the peak and
during the recovery phase of CRS, respectively. The median date of
FCa was 4 days (range 2–7) before CAR-T cell infusion in MM patients,
the median date of FCb was 0 days (range 0–7) before CAR-T cell
infusion, and the median dates of CRSa, CRSb, CRSc after CAR-T cell
infusion were 2 days (range 1–5.3), 6 days (range 2.5–17.4), and 14 days
(range 8–37.5), respectively.

We first evaluated the diversity of the gut microbiota in all sub-
jects during CAR-T cell therapy in MM patients. Compared with early
stage, there was a significant decrease in diversity (measured by the
Shannon index) after the CAR-T therapy (Fig. 2a). This decrease was
observed in themicrobiomeof patients receivingCAR-T therapy for r/r
ALL (Supplementary Fig. 4a) or r/r NHL (Supplementary Fig. 4b). Refer
to Supplementary Table 3 for details on the characteristics of r/r B-ALL
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and B-NHL patients. In addition, we analyzed diversity change in an
independent MM sample with 38 patients included and found a
decreased Shannon index along different therapy stages (Supple-
mentary Fig. 4c). To further assess the similarity of composition
between different therapy stages, we performed pairwise Spearman
correlation analysis of operational taxonomic unit (OTU) level bac-
terial abundance (Fig. 2b) and found that stronger correlations
emerged during the early stages with a ρ value of 0.71, 0.73, and 0.68,
respectively, at FCa, FCb, and CRSa. Correlations between late stages
(CRSb and CRSc) and early stages were weaker, suggesting that
changes in microbiome composition might be related to CRS.

We next explored community structure and temporal shift of
bacterial abundance atmultiple taxonomic levelsduringCAR-T therapy.
In these myeloma patients, bacterial communities were dominated by
Firmicutes and Bacteroidetes at the phylum level (Fig. 2c). Abundance

of Firmicutes increased but that of Bacteroidetes decreased at later
stages compared with the baseline (Wilcoxon rank-sum test, p <0.05,
Supplementary Fig. 4d). By applying the longitudinal analysis in the
Qiime2 microbiome analysis platform, we detected changes in the gut
microbial communities at taxonomic levels from phylum to genus
(Fig. 2d and Supplementary Data 3). We further employed a negative
binominal (NB) regressionmodel-based time-course analysis to identify
genera with significant temporal changes (Supplementary Data 4). Five
genera were detected by both Qiime2 andmaSigPro procedures, which
included increases in Enterococcus, Lactobacillus, and Actinomyces and
decreases in Bifidobacterium and Lachnospira (bolded genera in
Fig. 2d). Most changes were aggravated during the late stages (Sup-
plementary Fig. 4e). Additionally, for repeated measure data (Sub-
jects = 10), we applied Friedman’s test and found nine genera affected
significantlybyCAR-T therapyamongwhich thegenusEnterococcushad
the largest difference between stages (Fig. 2e).

Moreover, by checking changes in the five genera in ALL and NHL
patients, we observed consistent shift trends in NHL (two genera;
Supplementary Fig. 4f) and ALL (four genera; Supplementary Fig. 4g),
respectively. These results were further verified in another indepen-
dent MM sample, showing that CAR-T therapy correlated significantly
with decreased Shannon diversity (Supplementary Fig. 4c) and
increased abundance of genus Enterococcus and Actinomyces (Sup-
plementary Fig. 4h).

Association between microbial communities and clinical
response to CAR-T therapy
Wenext determinedwhethermicrobial compositions or changes were
associated with the response to CAR-T therapy. Because we wanted to
identify maximum differences and only six subjects presented in the
VGPR group, we performed comparisons only between the CR and PR
groups.

In MM patients, notable differences in microbial alpha and within-
sample diversitywere observed in patients with CR and PR at CRSb stage
(Fig. 3a, b). Although no differences were detected at baseline, PR
patients descended more dramatically in alpha diversity and had sig-
nificantly lower Shannon indices than CR patients after CAR-T infusion
(Fig. 3a). As the degree of differences between CR and PR groups chan-
ged across therapeutic stages, we characterized the periods with greater
differences by summarizing the amount of CR/PR-enriched OTU at each
timepoint. Themost pronounced differences occurred at CRSb (Fig. 3c).

To explore longitudinal differences between CR and PR across all
therapeutic stages,we identifiedOTU featureswithdifferential dynamic
profiles by applying negative binominal regression-based time-course
differential analysis with the maSigPro package. In total, 125 OTUs were
found to have differential time-course patterns between CR and PR
patients (Fig. 3d and Supplementary Data 5). The significant OTUs were
further grouped into three clusters according to profiles of their
abundance.Most of theseOTUswere in clusters 1 and2 (Fig. 3e). Cluster
1, characterized by enrichment in the CR group, was comprised mainly

Fig. 1 | Trial profile and clinical response in r/rMMpatients treated with CAR-T
cell infusion. a Patient enrollment. b Anti–BCMA single-chain variable fragment
(scFv), a hinge and transmembrane regions, and 4-1BB costimulatory moiety, and
CD3ζ T-cell activation domain. c Blood and fecal sample collection. d Clinical
response; CRS grade distribution in 43 r/rMMpatients. eNumbers of BCMACAR-T
cell percentages in PB assessed by FACS in different therapy stages after CAR-T cell
infusion and serum concentrations of IL-10 and IFN-γ in different therapy stages
among the CR (n = 24 biologically independent patients), VGPR (n = 6 biologically
independent patients), and PR (n = 11 biologically independent patients) groups.
Blue, green, and red colors indicate CR, VGPR, and PR group, respectively. Data are
presented as mean values ± SEM. Significance determined by two-sided Kruskal-
Wallis test and adjustmentsweremade formultiple comparison. P values forCAR-T
percent in PB, serum IL-10 and IFN-γ between CR and PR groups inCRSb stage were
0.004, 0.048, 0.085, respectively. *p <0.05, **p <0.01. f Body temperature and

serum concentrations of IL-6 and IFN-γ in different therapy stages among CRS
grade groups. (Grade 1 CRS group: n = 8 biologically independent patients, Grade 2
CRS group: n = 16 biologically independent patients, and Grade 3 CRS group: n = 19
biologically independent patients). Data are presented as mean values ± SEM. Sig-
nificance determined by two-sided Kruskal-Wallis test and adjustments were made
for multiple comparison. P values for serum IL-6 and IFN-γ between Grade 1 CRS
and Grade 3 CRS were 0.002 and 0.006, respectively. *p <0.05, **p <0.01.
g Representative MM patients with impressive antimyeloma response. Positron
emission tomography-computed tomography scans before and 5 months after
CAR-T cell treatment showing complete elimination of large number of MM bone
metastases. Before receiving CAR-T cell infusion, 43.5% of bonemarrow cells of the
patient were plasma cells, but after 1.5 months of infusion, dramatic eradication of
MM from the bone marrow was observed; and MM cells became undetectable by
flow cytometry. The bar indicates a length of 5μm.

Table 1 | Baseline characteristics of MM patients and valida-
tion MM patient samples included in final fecal microbiome
analysis

Total N = 43 (%) Validation sample N = 38 (%)

Age

Median 59 60

Range 39–75 16-74

Gender

Male 24 (55.8) 17 (44.7)

Female 19 (44.2) 21 (55.3)

Number of prior lines of therapy

Median 4 4

Range 2–8 2–7

CAR-T cell dose (×106/kg)

Median 4.4 2.1

Range 1.2–6.9 0.74-6

Autologous stem cell transplantation

No 26 (60.5) 25 (65.8)

Yes 17 (39.5) 13 (34.2)

Extramedullary disease

No 19 (44.2) 17 (44.7)

Yes 24 (55.8) 21 (55.3)

Prior PI therapy

No 0 0

Yes 43 (100) 38 (100)

Prior IMiD therapy

No 2 (4.7) 2 (5.3)

Yes 41 (95.3) 36 (94.7)

PI Proteasome inhibitors (Bortezomib/Carfilzomib/Ixazomib), IMiD immunomodulatory agent
(Lenalidomide/Thalidomid/Pomalidomide).
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of OTUs, which belong to the phyla Firmicutes and Bacteroidetes and
the orders Clostridiales and Bacteroidales. Cluster 2 was comprised of
OTUs from a broader taxonomy, which included the orders Clos-
tridiales, Bacteroidales, Lactobacillales, and Actinomycetales (Fig. 3f).

In genus level, we identified 30 genera with differential time-
course patterns in MM patients with CR and PR (Fig. 4a left panel,
Supplementary Data 6). To explore these differences further, we
divided the therapeutic period into before and after CAR-T infusion
and performed genus-level class comparisons using linear dis-
criminant analysis (LDA) of effect size (LEfSe)25 and generalized linear-
mixed model (Fig. 4a middle and right panel). Consistent with the
results from OTU-level pattern analysis, most of the significant genera
such as Faecalibacterium, Roseburia, and Ruminococcus were enriched
in CR patients after CAR-T. The genera Bifidobacterium, Prevotella,
Sutterella, Oscillospira, Paraprevotella, and Collinsella had a higher
abundance in CR versus PR patients both before and after CAR-T
(Fig. 4a and Supplementary Fig. 5a). We also took patients with VGPR
into consideration and analyzed the above-mentioned genera before
and afterCAR-T infusion. Thebacterial abundance inVGPRpatients fell
somewhere between CR and PR patients, but no statistical significance
was evident for most of genera (Fig. 4b and Supplementary Fig. 5b).

To explore whether early bacterial abundance was indicative of
therapeutic response, we used RF feature selection to identify key dis-
criminatory genera for responses26. By defining the stages before CAR-T

infusion as early, we applied feature selection procedures individually at
both baseline (FCa) and post-chemotherapy (FCb) and identified gut
microbiome signatures comprising 8 and 14 discriminatory genera
separately for baseline and post-chemotherapy (Fig. 4c, d and Supple-
mentary Fig. 5c). The area under the receiver operating characteristic
curve (ROC) of the two RF models using these discriminatory features
was 0.73 and 0.85, respectively (Fig. 4e, f). Prevotella, Collinsella, Bifi-
dobacterium, and Sutterella were enriched in CR versus PR both before
and after CAR-T infusion andwere identified byRF analysis as significant
at baseline andpost-chemotherapy. This indicates potential associations
between these genera and the response to CAR-T.

We also checked the abundance of these genera in r/r NHL
and ALL patients. In NHL, Faecalibacterium, Bifidobacterium, and
Ruminococcus were significantly (or almost significantly) enriched in
CR versus PR and in patients not having a remission (NR), consistent
with our results in myeloma (Supplementary Fig. 5e). However, for
ALL, we observed enrichment of Bifidobacterium, Roseburia, and Col-
linsella in NR (Supplementary Fig. 5f), which differed from the results
for MM and NHL but might be determined by the small NR sample.

In the independent 38 validation MM patients, no significance of
Shannon diversity was observed between CR and PR (Supplementary
Fig. 5g). Given that genus Sutterella, Prevotella, Collinsella, and Bifido-
bacterium were detected to be significant by both differential analysis
and RF analysis at baseline and post-chemotherapy, we then examined

Fig. 2 | Changes of microbial composition during CAR-T therapy in MM
patients. a Shannon diversity indices of gut microbiome across CAR-T stages in all
myeloma patients. Differential tests by Friedman’s tests and two-tailed Wilcoxon
rank-sum tests for 10 pairwise comparisons of the five timepoints (n = 14). Bon-
ferroni correction was applied for multiple testing; *FDR<0.05, **FDR <0.01. For
FCa versus CRSc, adjusted p =0.023; FCb versus CRSc, adjusted p =0.009; CRSa
versus CRSc, adjusted p =0.017. Boxplots indicate the median (thick bar), first and
third quartiles (lower and upper bounds of the box, respectively), lowest and
highest data value within 1.5 times the interquartile range (lower and upper bounds
of the whisker). b Pairwise Spearman correlation of OTU-level bacterial abundance
across different timepoints. Rho value for each significant correlation is labeled
inside box. c Stacked bar plot of mean phylum-level phylogenetic composition of
bacterial taxa in myeloma patients across different therapy stages. d Significant

features identified by longitudinal analysis in Qiime2 “feature-volatility” plugin to
identify taxonomic features associated with therapy stages. Scatter plot shows
importance and average change of each important features by the longitudinal
analysis. Genus-level features are labeled in the figure. Genus identified by both
longitudinal analysis inQiime2 andmaSigPro are bolded and underlined. e Bar plot
in the left shows significantly changed genera across the therapy identified by
Friedman’s tests (FDR <0.05, n = 14). Effect size was estimated by Kendall’s W Test.
Heatmap in the right side denotes difference of each genus between two therapy
stages. Red represents significant enrichment while blue represents significant
depletion of the genus in the posterior stage comprising with the anterior stage.
Significant p values were labeled in the boxes. Significances by two-tailedWilcoxon
rank-sum tests with FDR correction.
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abundance of these significantly changed bacteria of interest in an
independent 38 MM validation sample. We found that abundance of
genera Sutterella and Prevotella were higher in CR group than that in
non-CR group at multiple stages. No significance was observed for
Collinsella and Bifidobacterium (Supplementary Fig. 5d).

To further demonstrate the association between these taxa and
outcome, we assessed PFS following CAR-T therapy. By stratifying
patients by tertile of bacterial abundance, we observed that for Sut-
terella, patients in the highest-abundance tertile had significantly
prolonged PFS (Fig. 4g). Even after stratification by timepoints, this
association remained significant (Supplementary Fig. 6a). However, for
genus Faecalibacterium, which was reported to be significantly asso-
ciated with PFS and anti-PD-1 therapy19, we did not observe an asso-
ciation (Supplementary Fig. 6b, c).

Associations between gut microbiome and CRS
Manifestations of severe CRS, namely high fever and greater amounts
of cytokines, typically develop within several days after CAR-T cell

infusion andmaycause death if untreated27.We scaledCRS from level 1
to 528. To analyze associations between bacterial communities asso-
ciated with CRS, we compared patients with severe (level 3) versus
mild (level 1) CRS and severe and moderate CRS (level 2) in MM
patients. We found 146 OTUswith different time patterns in the severe
and mild groups (Supplementary Fig. 7 and Supplementary Data 7),
and 99 OTUs with different patterns in the severe and moderate CRS
groups (Supplementary Fig. 8 and Supplementary Data 8). The profiles
of the OTU clusters for the comparisons were similar, with OTUs in
clusters 1 and 3 having a higher abundance during late therapy in
patients with severe versus mild CRS (Supplementary Figs. 7b and 8b).

By analyzing associations between CRS grade and taxa at the
genus level, we identified signatures discriminating severe from mild
CRS, including decreases in amount of Bifidobacterium and Leuconos-
toc in patients with severe CRS (Fig. 5a and Supplementary Data 9).
Bifidobacterium was increased in patients with worse CRS, not only
during the window of CRS, but also at early stages (Fig. 5a, b). Leuco-
nostoc was significantly enriched during the window in patients with

Fig. 3 | Association of compositional differences in gut microbiome with
responses to CAR-T therapy in MM patients. a Shannon diversity indices of gut
microbiomediffered between CR and PRgroups across CAR-T stages. Significances
were assessed by two-sided Wilcoxon rank-sum test (n = 35). P values were 0.077,
0.040, 0.036 for FCb, CRSa, and CRSb, respectively. Boxplots indicate the median
(thick bar), first and third quartiles (lower and upper bounds of the box, respec-
tively), lowest and highest data value within 1.5 times the interquartile range (lower
and upper bounds of the whisker). b Principal coordinate analysis of fecal samples
in CRSb stage by response (CR versus PR) using Canberra distance. P value was
calculated by PERMANOVA (n = 35). c Summary of number of PR or CR-enriched
OTUs in different therapy stages. Difference between CR and PR groups was
assessed by two-sided Wilcoxon rank-sum test. P value significant cutoff was 0.05

(n = 35). d Heatmap for abundance of OTUs with significant temporal differences
between CR and PR groups identified by maSigPro (FDR <0.05). Rows denote
bacterial OTUs grouped into three sets according to regression coefficients and
sortedbymeanabundancewithin each set. Individual fecal sampleswereorganized
in columns andgroupedby therapy stages. Columns in theblue and reddashedbox
show abundance and longitudinal changes of these OTUs in CR and PR groups
across the five timepoints. Color of the heatmap is proportional to OTU abundance
(red indicates higher abundance and blue indicates lower abundance). e Profiles of
significant gene clusters correspond to d. Solid lines denote median profile of
abundance of OTUs within cluster for each experimental group through time. Fit-
ted curve of each group is displayed as dotted line. f Phylogenetic composition of
OTUs within each cluster in d at phylum and order levels.
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high CRS grade (Fig. 5a, b). In the 38 validation MM patients, no sig-
nificance was observed for Bifidobacterium or Leuconostoc among
different CRS grade groups (Supplementary Fig. 9).

Correlation of gut microbial functions with CAR-T therapy
Todetermine if gutmicrobial functions correlatedwithCAR-T therapy,
we first inferred community function of MM patients using Phyloge-
netic Investigation of Communities by Reconstruction of Unobserved

State (PICRUSt2). By applying time-course differential analysis, we
identified differential pathways related to fatty acid metabolism, glu-
tathione metabolism, quinone biosynthesis and glycan degradation
(Supplementary Fig. 10) in the MM cohort. Further, we compared
pathways across different CRS groups. Microbial function of
fecal samples from patients with severe CRS had high metabolism
or biosynthesis related to inflammatory compounds, including
several pathways associated with phosphonate and its metabolism,

Fa
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rium

Fig. 4 | Determination of correlated genera with clinical response to CAR-T
therapy in MM patients. a Differentially abundant genera between CR and PR
group. Bubble plot in the left represents p values by maSigPro. Bar plots in the
middle and right show significances and coefficients by generalized linear-mixed
models (GLMMs) before and after CAR-T infusion (n = 35). Blue bars indicate sig-
nificant enrichment in CR group while red bars indicate significant enrichment in
PR group (FDR <0.05). Red stars marked genera that was identified to be differ-
entially abundant by linear discriminant analysis (p <0.05 for Kruskal–Wallis H
statistic and LDA score >2). P values by linear discriminant analysis for Sutterella,
Collinsella, Paraprevotella, Bifidobacterium, Anaerotruncus, Prevotella, and Oscil-
lospira before CAR-T were 0.0017, 0.0014, 0.038, 0.0015, 0.0064, 0.030, and
0.006, respectively; P values by linear discriminant analysis for Sutterella, Col-
linsella, Paraprevotella, Bifidobacterium, Anaerotruncus, Prevotella, Oscillospira,
Faecalibacterium, Gemmiger, Clostridium, Odoribacter, Roseburia, Dialister,
Enhydrobacter, Ruminococcus, and Dorea after CAR-T were 0.00012, 0.00076,
0.0060, 0.0.0067, 0.042, 0.0049, 0.011, 0.00017, 0.0035, 0.0058, 0.0073, 0.0013,
0.000038, 0.021, 0.0056, and 0.017, respectively. b Mean bacterial abundance
[log2 (percentage + 1)] of CR, VGPR, and PRmyeloma patents before and after CAR-
T cell infusion (n = 43). Red stars indicate significant difference between CR and PR
group by all three methods in panel a. P values for Sutterella by maSigPro were
1.17e-06, by generalized linear-mixed model were 7.86e-12 and 1.51e-14 before and
after CAR-T, by linear discriminant analysis were 0.0017 and 0.00012 before and
after CAR-T, respectively; P values for Faecalibacterium bymaSigPro were 0.0093,

by generalized linear-mixed model and linear discriminant analysis were 1.22e-10
and 0.00017 after CAR-T, respectively; P values for Bifidobacterium by maSigPro
were 2.19e-06, by generalized linear-mixed model were 5.67e-08 and 1.51e-08
before and after CAR-T, by linear discriminant analysis were 0.0015 and 0.0067
before and after CAR-T, respectively; P values for Ruminococcus bymaSigPro were
1.49e-08, by generalized linear-mixed model and linear discriminant analysis were
0.00031 and 0.0056 after CAR-T, respectively. c Relative abundance [log2 (per-
centage + 1)] of top discriminative signatures at baseline (FCa) timepoint identified
by RF feature selection procedure (n = 35). Genera with highest scores of mean
decreases in Gini were selected. Importance scores in RF classification model and
fold-change levels in log2 scale are noted below plot for each genus. Blue and red
colors indicate CR and PR group, respectively. d Same as panel c for post-
chemotherapy (FCb) timepoint (n = 35). Only signatures enriched in CR patents are
displayed. Those depleted in CR patents are displayed in Fig. S2C. e Receiver
operating characteristic (ROC) curve of RF model using discriminatory genera as
predictors for baseline timepoint. f Same as panel e for post-chemotherapy time-
point. g Kaplan–Meier (KM) plot of PFS curves by log-rank test for patients with
high (dark blue), median (green), or low (red) abundance of Sutterella. Abundance
of genus Sutterella was in terms of median abundance of all timepoints. Boxplots
indicate themedian (thick bar), first and third quartiles (lower and upper bounds of
the box, respectively), lowest and highest data value within 1.5 times the inter-
quartile range (lower and upper bounds of the whisker).
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amino acid metabolism, lipoic acid metabolism, amino sugar, and
nucleotide sugar metabolism and antibiotic synthesis (Supplemen-
tary Fig. 11).

Likewise, we performed differential analysis of PICRUSt2 pre-
dicted functions in the 38 validation MM cohort. Comparing PR with
CR, differential pathways concerning glutamate (D-Glutamine and D-
glutamatemetabolism), glycan (Glycan biosynthesis andmetabolism),
arginine, proline (D-Arginine and D-ornithinemetabolism, Arginine and
proline metabolism) and phenylalanine (phenylpropanoid

biosynthesis) were revealed (Supplementary Fig. 12a), among which
the pathways related to glutamate andphenylalaninemetabolismwere
endorsed in differential analysis of predicted KEGG pathways between
PR and CR groups in the discovery MM sample (Supplementary
Fig. 10a). Lipopolysaccharide and steroid biosynthesis pathways were
also consistently found to be differ between the CR and PR group by
differential analysis of predicted pathways (Supplementary Fig. 10a)
and metabolites (Supplementary Fig. 12a). Referring to the CRS grade-
related pathway, difference in glycerolipid metabolism pathway was

Fig. 5 | Compositional differences between subjects with different CRS grades
in MM patients. a Correlation of differentially abundant genera with CRSgrade.
Bubble plot in the left shows significant genera between severe and mild CRS
groups by maSigPro (n = 27). Bar plots in the middle and right show significances
and coefficients by generalized linear-mixed models (GLMMs) before and during
CRS. Orange bars indicate positive correlation with CRS. Green bars indicate
negative correlation. Red stars marked genera that was identified to be differen-
tially abundant by lineardiscriminant analysis (p <0.05 for Kruskal-WallisH statistic
and LDA score >2). P values by linear discriminant analysis for Bifidobacterium and
Butyricicoccus before CAR-Twere 0.003 and 0.027, respectively; P values by linear
discriminant analysis for Leuconostoc, Bifidobacterium, Lactococcus, and Enhy-
drobacter after CAR-T were 0.016, 0.029, 0.0029, and 0.037, respectively. bMean
bacterial abundance in MM patients with different CRS grades before and during
occurrence of CRS (n = 43). Red stars indicate significant difference between Grade
1 CRS and Grade 3 CRS group by all three methods in panel a. P values for Bifido-
bacteriumbymaSigProwas8.9e-08, by generalized linear-mixedmodelwere9.75e-

06 and 1.42e-08 before and after CAR-T, by linear discriminant analysis were 0.003
and 0.029 before and after CAR-T, respectively; P values for Leuconostoc by
maSigPro was 1.29e-14, by generalized linear-mixed model and linear discriminant
analysis were 3.14e-11 and 0.016 after CAR-T, respectively. Boxplots indicate the
median (thick bar), first and third quartiles (lower and upper bounds of the box,
respectively), lowest and highest data value within 1.5 times the interquartile range
(lower and upper bounds of the whisker). c Network representing correlations
between gut microbes (gray nodes), immune cells and inflammatory markers
(green nodes) at FDR<0.05. Correlations were measured by repeated measure
correlation analysis (rmcorr). Red edges indicate positive correlations and blue
edges negative correlations. Edge width is proportional to correlation coefficient
(ρ) calculated by Spearman correlation test. Only genera identified as associated
with clinical response and CRS grade were included in correlation analysis. d Top 2
positive and negative correlations in repeated measure correlation analysis. Data
are presented as mean ± SEM.
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reproducible detected in both the discovery (Supplementary Fig. 11a)
and validation MM samples (Supplementary Fig. 12c).

In addition, we applied metabolic Liquid Chromatography Mass
Spectrometry (LC-MS) to quantify concentration of fecal metabolites
during CRS. Intermediates (Choline, L-Cysteine, S-Sulfo-L-cysteine,
Rosmarinic acid, L-Phenylalanine, and 2-Phenylacetamide) involved in
multiple amino acid metabolism pathways were differentially abun-
dant between CP and PR group when during CRS (p-value < 0.05). We
also identifiedmetabolites concerning phosphonate and phosphonate
metabolism (Bialaphos) and steroid biosynthesis (Desoxycortone) to
be differ between CR and PR (Supplementary Fig. 13). In differential
analysis between CRS groups, we identified phosphocreatine which
annotated to arginine andprolinemetabolism (Supplementary Fig. 14).
Moreover, three abovementioned pathways (i.e., tyrosinemetabolism,
phenylalanine metabolism, phosphonate, and phosphonate metabo-
lism) were also indicated to have differentially abundances between
the CR and PR group in the predicted pathway analysis (Supplemen-
tary Fig. 10). Two pathways (tyrosine metabolism and phenylalanine
metabolism) were also differed among patients with different CRS
grades (Supplementary Fig. 11). Additionally, we performed pathway
enrichment analysis of differentially abundant metabolites between
the CR and PR subjects to reveal distinction on metabolic functions
(Supplementary Fig. 15a). Two pathways (Phenylalanine, tyrosine and
tryptophan biosynthesis; Riboflavin metabolism) reached marginal
significance (p = 0.07). These concordant findings strengthened the
results of functional prediction analysis and highlighted the impor-
tance of amino acid metabolism during the CAR-T therapy.

Correlation of CRS-related cytokines with gut microbes
Primary inflammatory markers of CRS are cytokines, such as IL-6, IL-2,
IL-10, interferon gamma (IFN-γ), and tumor necrosis factor-α (TNF-α).
Various cytokines are elevated in the serum of patients experiencing
CRS after CAR-T cell infusion29. By assessing serum cytokine con-
centrations and immune cell numbers during CAR-T, we observed
significantly increased amounts of serum inflammatory cytokines (IL-
6, CRP, IFN-γ, D-dimer, ferritin) but low numbers of immune cells
(monocytes, lymphocytes, neutrophils, leukocytes) in severe CRS
(Fig. 5c). We also compared serum cytokine concentrations and
immune cell numbers in CR and PR, observing significant differences
for many of them (see Supplementary Fig. 16).

To explore further associations between the gut microbiome and
CRS during CAR-T therapy, we determined whether serum cytokine
concentrations and numbers of PB immune cells correlated with the
abundance of gut microorganisms (Fig. 5d). By assessing common
within-individual correlation for repeated measures30, we constructed
correlation network between gut microbes, cytokines, and immune
cells (Fig. 5c). The top significant correlation pairs were MCP-1 and
Lactobacillus, lymphocyte and Clostridium, IL-15 and Lactobacillus,
leukocyte and Veillonella (Fig. 5d). In addition, serum level of lym-
phocyte was negatively correlated with 11 genera, including multiple
genera related to CRS level such as Bifidobacterium, Butyricimona and
Oscillospira. M1 and M2 macrophages, which play a key role in CRS
initiation, did not show significant correlation with any microbes.

Discussion
Although several studies have revealed the critical role of the gut
microbiome in treatment responses and survival after administration
of another important immunotherapy — immune checkpoint inhibitor
(e.g., PD-1, PD-L1) therapy20, no study has reported on the association
between the gut microbiome and CAR-T therapy. In this study, we
describe the changes of the gutmicrobiomeduringCAR-T therapy and
associations with treatment responses and CRS severity in CAR-T-
treated patients with B-cell malignancies. Although neurotoxicity is
anothermajor toxicity associatedwith CAR-T cell therapy, wewere not
able to analyze the microbiome in relation to neurotoxicity incidence

and severity because of very limited patients presented in the MM
patients. Futureworkwith larger number ofpatients is needed in order
to explore the relationship between microbiome and neurotoxicity
after CAR-T cell treatment.

Some of the bacterial genera with differences in abundance in CR
versus PR patients have been reported to be involved in the regulation
of the immune response, including to immunotherapy. Faecalibacter-
ium, reported to enhance antitumor immune responses and survival
after anti-PD-1 therapy in melanoma19, 31, was in this study associated
with CR. Multiple species within the genera Bifidobacterium and Col-
linsella increased in responders to anti-PD-1 therapy for melanoma32,
resulting in depleted peripherally derived colonic regulatory T cells,
increased Batf3-lineage dendritic cells (DC), and augmented T-helper 1
cell (Th1) responses and thus better immune-mediated tumor
control33. Here, we observed an increased abundance of these two
bacteria in CRpatients, suggesting a similar response-associated effect
of these taxa on the immune system across cancer types and ther-
apeutic strategies. Moreover, in a recent study, taxonomic analysis by
16 S sequencing of the fecal microbiome showed that members of
Ruminococcus, Faecalibacterium, and Bacteroideswere associated with
response to CD19 CAR-T cell therapy. Higher abundances of microbial
taxa with the class Clostridia, including the genera Ruminococcus,
Faecalibacteriumwere associatedwith day 100 complete response and
no toxicities in patients with ALL and NHL after receiving CD19 CAR-T
cell treatment were observed34.

Nevertheless, some taxa might have effects that are specific for
cancer or therapy types. For example, high abundance of genus Sut-
terellawas associatedwith bothCR andprolonged survival after CAR-T
therapy. However, previous studies reported higher numbers of Sut-
terella in non-responders versus responders in non-small-cell lung
cancer (NSCLC) treated with nivolumab35. Besides, in this study, we
observed contradictory results for the genus Bifidobacterium, Rose-
buria, and Collinsella in three types of hematologic malignancy (Sup-
plementary Fig. 2f). This indicates a potentially distinct involvement or
function of somebacteria indifferent cancer types and treatments. But
these findings require confirmation in studies with larger cohorts.

Gut microbial communities contribute to inter-individual varia-
tion in cytokine responses36. In this study, Bifidobacterium and Leuco-
nostoc were enriched in myeloma patients with severe CRS while
Butyricicoccus were enriched in patients with mild CRS. Bifidobacter-
ium is a commonly used probiotics to enhance host immune. Another
report demonstrated that Bifidobacterium correlated with the pro-
duction of multiple cytokines (e.g., IFN-γ) in a stimulus-specific
pattern36. Other oral supplementation tests concluded that Bifido-
bacterium could enhance nonspecific cellular immune response by
activation of immune cells and release of various cytokines37. More-
over, it is worth noting that species composition of theBifidobacterium
flora will affect cytokine production. Cultivation of murine
macrophage-like cells with divergent Bifidobacterium strains differen-
tially stimulated production of proinflammatory TNF-α, IL-1β, and IL-
638. Thus, we proposed that the increased Bifidobacterium abundance
in patients with server CRS may compose of more diverse Bifido-
bacterium strains predisposing toward CRS in CAR-T therapy. Further
studies should pay attention to species and strain level composition of
Bifidobacterium and their association with CRS. Besides, all patients
with severe CRS in this study were treated with tocilizumab and/or
corticosteroid. In future work, we will apply the CRS mice model to
investigate the effects of Tocilizumab and corticosteroid on gut
microbiome after CAR-T cell treatment.

The mechanisms through which gut microbes modulate host
immunity are largely unknown. Gut microbial communities modulate
host defenses mainly through the release of intermediary metabolites
rather thanby direct interaction between specificmicroorganisms and
immune cells36. Multiple bioactive gastrointestinal metabolites pro-
duced by gut microbes, such as amino acids, short-chain fatty acids
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(SCFAs; e.g., butyrate), and bile acids, exert immunomodulatory
functions through immune cell metabolic reprogramming or tran-
scriptional and epigenetic modulation of immune-related genes39.
Lipopolysaccharide (LPS) from some pathogens is a well-known
endotoxin that can stimulate the release of a variety of cytokines/
chemokines40, 41. Peptidoglycans in bacterial cell walls are a conserved
PAMP that trigger innate inflammatory responses throughout the
body42.

By comparing community functions inferred from PICRUSt2, we
found pathways concerning amino acid metabolisms to have differ-
entially abundances in samples with distinct treatment outcomes and
CRS grades in myeloma patients. Phenylalanine metabolism pathways
were suggested to be differentially abundant between CR and PR
patients in both discovery and validation MM patients through dif-
ferential analysis of predicted functions and metabolites. Differential
analysis of LC-MS-based fecal metabolites revealed that intermediate
metabolites of phenylalanine metabolism, L-Phenylalanine and 2-Phe-
nylacetamide, were all enriched in the CR versus PR patients. The roles
and underlying mechanisms of intestinal phenylalanine in regulating
immunotherapy worth further investigating. Amino acids, such as
cysteine, glutamine, phenylalanine, tryptophan, and arginine, play an
important role in regulating immune responses by activating T lym-
phocytes, B lymphocytes, natural killer cells and macrophages, reg-
ulating cellular redox state, gene expression and lymphocyte
proliferation, and stimulating production of antibodies, cytokines, and
other cytotoxic substances43,44. Gutmicrobiota is anessentialmediator
that keeps homeostasis of host amino acids. In the intestine, gut
microbes help to metabolize amino acids from food or synthesize
several essential amino acids de novo and, in turn, regulate innate and
adaptive immunity of hots45. Compositional difference of gut micro-
biome may thus lead to disparate clinical outcomes and CRS for the
CAR-T therapy. However, arginine and tryptophan metabolism, which
correlated with CRS in COVID-1946, were not identified in this study.
This might be due to technical limitation of amplicom sequencing and
function inference of PICRUSt2. Metagenomic sequencing is thus
recommended to further explore association of bacterial functions
with CAR-T therapy.

In this report, we observed significant correlation of gut
microbiome with treatment outcome and CRS grade of CAR-T ther-
apy. To further demonstrate the correlation and investigate under-
lining mechanisms, more wet-lab experiments are needed in future.
Germ-free mice are helpful tools to validate function of gut micro-
biome. For example, fecal microbiota transplantation (FMT) from CR
and PR patients into germ-freemice to constructmouse colonized by
donor microbiota. Then physiological and biochemical response of
these FTM-treated mice to myeloma cells and CAR-T cells could be
surveyed. Moreover, gut microbiota could be damaged by antibiotic
treatment and rescued by FMT, which could help to validate the
function of gut microbiome in immunotherapy. On the other hand,
genus Sutteralla was found to be important biomarkers for treatment
outcome. Further study should demonstrate the predictive role of
Sutteralla in a larger cohort of myeloma and explore its predictive
capacity in CAR-T therapy of other types of tumors. To study cor-
relation of genus Bifidobacterium with CRS grade, probiotic sup-
plement of Bifidobacterium species to myeloma or CAR-T mouse
model could help to reveal immune responses caused by Bifido-
bacterium. Other oral supplement strategies include bacterial
metabolites, such as amino acids, fatty acids, cytotoxin, could also be
used to demonstrate mechanism underlying the effect of gut
microbes on the CAR-T therapy.

In addition to myeloma, CAR-T therapy has been applied to other
blood cancers and solid tumors. The link between the gutmicrobiome
and different cancer types needs to be studied systematically. Our
research describes associations between changes in the gut micro-
biome of CAR-T patients and clinical responses and survival. This will

open anavenue for investigating the interactionof the gutmicrobiome
and CAR-T cells and lead to novel ways to improve the therapeutic
efficacy of CAR-T therapy by targeting the gut microbiome.

As one of the most prominent treatment strategies for hemato-
logic malignancies, CAR-T cell therapy has recently received great
attention. Here for the first time, we found that the dynamic changes in
the gutmicrobiome correlated significantly with therapeutic response
and CRS during CAR-T treatment of hematologicmalignancies (B-ALL,
B-NHL, and MM). These findings will aid the development of novel
biomarkers for predicting treatment outcome and CRS severity,
thereby optimizing the management of these patients while reducing
potential toxicities.

Methods
Study design and protocol
The study was approved by the Institutional Review Board of the First
Affiliated Hospital, School of Medicine, Zhejiang University and was
registered in the Chinese Clinical Trial Registry (ChiCTR1800017404).
All patients provided written informed consent for participation in
accordance with the guidelines of the Declaration of Helsinki and
signed agreement for collection and analysis of microbiome samples.
Patient inclusion criterias were: (1) age <75 years; (2) relapsed or
refractory BCMA–positive MM before CAR-T cell treatment; and (3)
expected survival > 12 weeks and adequate performance status and
organ function to tolerate treatment. Exclusion criteria were: (1)
pregnancy or lactation; (2) having received systemic (except inhaled)
steroids in the previous 2 weeks or gene therapies; (3) having medical
conditions such as severe mental illness, clinically significant cardio-
vascular disease, severe renal or hepatic dysfunction, or active
infection; and (4) any conditions that might increase treatment risks.
Data and sample collection were carried from 1 July 2018 to 30 Sep-
tember 2021. Patient information and the methods related to two
types of cancer (ALL and NHL) are presented in the Supplementary
Materials.

Peripheral blood mononuclear cells (PBMCs) were obtained
from each patient by leukapheresis for CAR-T cell preparation. The
purified CD3+ T cells were transduced with lentiviral vector to
express BCMA CAR (Fig. 1b). Then the engineered T cells were
expanded ex vivo under interleukin-2 stimulation. All patients
received lymphodepletion with fludarabine (30mg/m2 of body sur-
face area daily on days −4, −3, and −2) and cyclophosphamide
(500mg/m2 daily on days −3 and −2) followed by an infusion of
BCMA CAR-T cells on day 024. The primary response outcome,
defined by the guidelines from the International Myeloma Working
Group (IMWG) as a complete response (CR), very good partial
response (VGPR), or partial response (PR) in the third month after
CAR-T treatment47, 48. CRS was graded by the Lee criteria28.

Microbiome sample collection and restoration
Gutmicrobiome samples were collected at five timepoints (Fig. 1c). All
fecal samples were collectedwith theGUHE Flora Storage kit (Zhejiang
Hangzhou Equipment Preparation 20190682, GUHE Laboratories,
Hangzhou, China), which maintains microbial DNA stability at room
temperature for as long as 1 month. All samples were frozen at −80 °C
prior to DNA extraction. The stages of FCa, FCb, and CRSa were
defined as early stages and CRSb and CRSc as late stages. The CRS
grade 1 was defined asMild, CRS grade ≤2 as Moderate, and CRS grade
≥3 as Severe.

Assessment of serum cytokine concentrations
All blood samples were stored at 4 °C until centrifugation at 5000 rpm
for 6min. The supernatant liquids were quantified with the BD Cyto-
metric Bead Array Human Th1/Th2/Th17 Cytokine Kit and its corre-
sponding software (BD Biosciences) according to the manufacturer’s
instructions. Plasma levels ofMIP-1α, GM-CSF,MCP-1, IL-15, IL-1β, IL-1α,
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and IL-17α were determined by the Bio-Rad human Multi-cytokine
detection array.

Assessment of CAR-T cell expansion and persistence
Serial PB samples were collected in BD Vacutainer K2EDTA tubes (BD
Biosciences) before and after CAR-T cell infusion. The expansion of
CAR-T cells in vivo was determined by detecting the CAR-T ratio
continuously in PB as described49, 50. BCMA CAR-T expression was
assessed using biotin-SP-conjugated F(ab’)2 fragment goat anti-mouse
IgG, F(ab’)2 fragment-specific antibody, and the secondary staining
reagent streptavidin-FITC (BioLegend, 405202) or streptavidin-PE
(BioLegend,405204) using a dilution of 1:50. The flow cytometry gat-
ing strategy is presented in Supplementary Fig. 17.

DNA extraction
Totalbacterial genomicDNAsampleswereextractedusing theMOBIO
PowerSoil DNA Isolation Kit (MOBIOLaboratories, Carlsbad, CA, USA).
The quantity and quality of extractedDNAwas assessed using both the
NanoDrop ND-1000 Spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA) and agarose gel electrophoresis.

Bacterial 16S rRNA gene sequencing
The V4 region of the 16S rRNA gene was amplified with bacterial
universal primers: 515 F (5′-GTGCCAGCMGCCGCGGTAA-3′) and
806R (5′-GGACTACH VGGGTWTCTAAT-3′). The primers used for
amplification contain adapters for the HiSeq platform and single-end
barcodes allowing pooling and demultiplexing sequences of PCR
products. Amplified sequences were purified with AMPure XP beads
(Agencourt, Inc, Beverly, Manchester, MA, USA) and AxyPrep DNA
Gel Extraction Kit (Axygen, Inc, Union City, CA). Qualified PCR pro-
ducts were sequenced with the HiSeq platform (Illumina, Inc, San
Diego, CA, USA) using the 2 × 150-bp paired-end sequencing
protocol.

Amplicon data processing
Sequenced reads were demultiplexed according to barcodes. Paired-
end reads were merged with the fastq_mergepairs command from
VSEARCH (v. 2.4.4)51.Theminimum length of overlap between paired-
end reads was set to 5. Merged reads were then imported into Qiime2
(v. 2020.2)52. Jointed reads were processed by the qiime quality-filter
q-score-joined command to filter sequences with low-quality scores.
Sequences were denoised with the Deblur workflow53. Amplicon
sequence variants (ASVs) were summarized with the feature-table
summarize command. To calculate phylogenetic diversity, a rooted
phylogenetic tree was constructed using the align-to-tree-mafft-fas-
ttree pipeline from the q2-phylogeny plugin within Qiime2. The
pipeline performed a multiple sequence alignment of the ASV
sequences and then masked the alignment to remove positions that
are highly variable. The masked alignment was used to generate a
phylogenetic tree by FastTree program54. Alpha and beta diversity
matrices were generated through the q2-diversity plugin using the
above-mentioned ASV feature table and rooted phylogenetic tree. De
novo clustering of ASVs was performed with the cluster-features-de-
novo command within vsearch plugin51. Input features were
collapsed at 97% identity, resulting in new OTU features that are
clusters of the ASV features. To annotate the OTUs, we downloaded
the pre-trained Naive Bayes classifier trained on the Greengenes 13_8
99% OTU database, which was provided by developers of Qiime2
(https://docs.qiime2.org/2020.2/data-resources/). Representative
OTU sequences were then annotated with pre-trained Naive Bayes
classifier trained on the Greengenes 13_8 99%OTUdatabase using the
feature-classifier plugin55. The sequences used for training were
trimmed to include only the V4 region. Taxonomic composition was
summarized with the collapse method from the taxa plugin within
Qiime2.

Functional prediction
We used the OTU feature table generated from Qiime2 to predict
microbial community function with PICRUSt2 (v.2.3.0-b)56. PICRUSt2
integratedmore than40,000bacterial and archaeal genomes fromthe
IntegratedMicrobialGenomes (IMG)database andpre-calculatedgene
contents for each organism to generate a table of predicted gene
family abundances for each organism. Then functional prediction
procedure was performed based on the precalculated gene content
table and 16 S rRNA marker gene sequencing profile of each sample.
The algorithm searched for the most closely related organisms with
annotated genomes in the gene content table for each 16 S rRNA
marker gene sequence to infer gene contents per sample. Gene family
abundance per sample was summarized and grouped into KEGG
orthologs (KOs). To facilitate the interpretation of functional results,
KOs were further summarized into KEGG pathways on the basis of
structured pathway mappings. For differential pathway analysis, we
applied the two-sided Welch’s t-test to identify discriminative KEGG
pathways concerning clinical responses (PR versus CR) and CRS level
(level 1 versus level 3).

Bioinformatics and statistical analysis
Comparisons of alpha diversity and taxonomic abundances between
two groups were conducted with the Wilcoxon rank-sum test, while
comparisons among three or more groups were conducted using the
Kruskal-Wallis rank-sum test. For beta diversity analysis, a PCoA plot
was generated with weighted Unifrac distances. To test the sig-
nificance of between-sample diversity alternation, permutational ana-
lysis of variance (PERMANOVA) was performed with the adonis
function within the R (v. 3.6.2) package vegan (v.2.5-6). Clinical data
were analyzed using SPSS software (v. 23.0). Flow cytometry data were
analyzed using FlowJo 10 software.

The feature-volatility plugin57 within Qiime2 was applied to
implement longitudinal analysis to identify features that are associated
with therapy stages. In this pipeline, supervised learning regressor was
used to identify important features and assess their ability to predict
therapy states. Unclassified taxonomic features, features absent in
more than 90% of all samples, and features with low abundance
(<0.01%) were all excluded from the analysis. Net average change
scores and importance scores, which denote the correlation between
input features and therapy stages, were exported and visualized in a
volcano plot. Only features with net average change scores more than
0.2% and importance scores within the first tertile of distribution were
retained. Considering repeated measurements, we additionally per-
formed Friedman’s test (Stats package v.3.6.2) with post-hoc multiple
comparison testing of pairwise combinations for longitudinal analysis
of diversity and bacterial taxa. For multiple testing correction, false
discovery rate (FDR) was calculated (Stats package v.3.6.2).

For time-course differential analysis, the R package maSigPro
(v.1.58.0)58, 59 was used to find taxonomic features with significant
temporal changes and significant differences between experimental
groups (e.g., clinical response and CRS grade groups). Specifically, the
maSigPro algorithmdefined a generalized regressivemodel by dummy
variables followed by two regression steps: the first one selects fea-
tures with non-flat profiles by the least-squared technique and the
second step creates best regression models for each feature by using
stepwise regression to identify featureswith different profiles between
experimental groups. We used as input, the normalized relative
abundance (scaled to 100 million) and excluded features that did not
occur in more than 90% of all samples. We employed a negative
binominal regressive model for the microbial counts data and ran
maSigPro on therapy stages with a degree of 4. All features with a
significant group difference were exported. The significant features
were further clustered together using the hclust function (Stats pack-
age v.3.6.2) method according to the patterns of their relative abun-
dance. For each cluster, a median profile and fitted curve of all

Article https://doi.org/10.1038/s41467-022-32960-3

Nature Communications |         (2022) 13:5313 11

https://docs.qiime2.org/2020.2/data-resources/


included featureswere summarized to visualize the profile pattern. For
genera that was identified by maSigPro, we applied generalized linear-
mixed models (GLMMs, Stats package v.3.6.2)) to identify genera with
different abundances before and after CAR-T infusion. For multiple
testing correction, FDR was applied.

The Linear Discriminant Analysis (LAD) effect size (LEfSe, v.1.1)
algorithm25 was employed to identify differentially abundant features
between groups (e.g., between clinical response and CRS grade). The
method first detected features with significant differential abundance
using the non-parametric factorial Kruskal–Wallis rank-sum test with
pre-defined α of 0.05. Significant features were then used to build a
LDA model for estimating the effect size of each differentially abun-
dant feature. The LDA score threshold for discriminative features was
set to 2.0.

To identify early predictive biomarkers with respect to clinical
response (PR vs. CR), we implemented a random forest (RF) feature
selection procedure within the R package caret (v. 6.0-85). The recur-
sive feature elimination (RFE) algorithm in caret package with 5-fold
cross validation was applied for feature selection. An optimized
number of feature sets was determined by performance of 5-fold cross
validation. To depict the receiver operating characteristic (ROC) curve
and calculate the area under the curve (AUC), the pROC package
(v.1.16.1) was utilized.

For PFS analysis, subjects were classified as high, medium, or low
based on tertiles of the distribution of specific taxa abundance (e.g.,
genus Sutterella). Time to progression was defined as the interval (in
days) from the date of CAR T-cell infusion to the date of disease pro-
gression. Survival curves were estimated using the Kaplan–Meier
product-limit method and compared using the log-rank test within the
R package survminer (v.0.4.7).

We applied repeated measures correlation (rmcorr, v.0.4.5) ana-
lysis to test the association between bacterial abundance and con-
centration of immune cells and inflammatory factors. Only genus-level
features deemed to be associated with clinical response and CRS
grades were included in this analysis. Associations with FDR less than
0.05 were depicted using Cytoscape (v.3.9.0)60.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw sequence reads used in this study have been deposited in the
Sequence Read Archive (SRA) of the NCBI under accession number
PRJNA813944 All software packages used for the study are publicly
available. Source data are provided with this paper.

Code availability
Scripts used to produce figures, alongside scripts used in data analysis
are available at: https://github.com/jjlea/CART-microbiome.
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