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Substrate multiplexed protein engineering
facilitates promiscuous biocatalytic
synthesis

Allwin D. McDonald 1,2, Peyton M. Higgins 1,2 & Andrew R. Buller 1

Enzymes with high activity are readily produced through protein engineering,
but intentionally and efficiently engineering enzymes for an expanded sub-
strate scope is a contemporary challenge. One approach to address this
challenge is SubstrateMultiplexed Screening (SUMS), where enzyme activity is
measured on competing substrates. SUMS has long been used to rigorously
quantitate native enzyme specificity, primarily for in vivo settings. SUMS has
more recently found sporadic use as a protein engineering approach but has
not been widely adopted by the field, despite its potential utility. Here, we
develop principles of how to design and interpret SUMS assays to guide pro-
tein engineering. This rich information enables improving activity with mul-
tiple substrates simultaneously, identifies enzyme variants with altered scope,
and indicates potential mutational hot-spots as sites for further engineering.
These advances leverage common laboratory equipment and represent a
highly accessible and customizable method for enzyme engineering.

Biocatalysts are prized for their ability to perform well-defined trans-
formations. Unfortunately, the use of enzymes in chemical synthesis is
often hampered by their small or poorly understood substrate scopes1.
Using traditional protein engineering approaches, activity can readily
be increased on a model compound2–4. Most engineering advances
have centered on smart library design5–8 and screening speed9–12, and
engineering campaigns using diverse approaches have, at times, led to
promiscuous catalysts2,12–14. However, the substrate scopes of inter-
mediates along evolutionary lineages are typically unknown. Conse-
quently, when protein engineering does yield a catalyst with a limited
scope, evolution is tediously repeated to generate activity with addi-
tional substrates8,15–17. Screening for activity on a single substrate
necessarily overlooks mutations that are activating for substrates not
included in the screen and can inadvertently lead to enzymeswith high
activity but narrow substrate scopes16–18. Methods that directly assess
catalyst promiscuity would overcome this recurring pitfall and enable
the development and application of biocatalysts for organic synthesis,
both as single enzymes and in multi-enzyme cascade settings.

An alternative to single-substrate screening is to obtain informa-
tion on catalyst promiscuity by screening with multiple substrates,

either iteratively or in competition. Previously, these approaches have
gone by various names including fingerprinting, substrate cocktail,
multi-substrate, or multiplexed assays18–22. To avoid confusion as to
whether substrates were assayed in separate parallel reactions or in
competition, we use the term substrate multiplexed screening (SUMS)
to specifically refer to methods where substrates are in direct com-
petition (Fig. 1a). A classic application of SUMS has been for char-
acterization of native enzyme specificity, defined as the extent to
which an enzyme distinguishes between substrates21,23,24. In pioneering
work, the Reymond group showed how careful assay design to main-
tain initial velocity conditions can enable the high-throughput char-
acterization of lipase and esterase substrate specificities without
measuring kinetic parameters for each individual substrate19. Similarly,
the Kries group has advanced the use of a multiplexed assay the sub-
strate specificity of the adenylation domains of non-ribosomal peptide
synthetases21. In each of these cases, enzymologists take exquisite care
to maintain initial velocity conditions, else the connection between
product abundance and the underlying kinetic parameters is lost.

Within the broader bioengineering community, there are some
scenarios where SUMS is the default mode of operation. Specifically,
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all screens and selections that take place under in vivo conditions, or
with simulated mixtures of cytosolic metabolites, necessarily incor-
porate substrate competition. By monitoring formation of multiple
products, some groups have directly read out on catalyst specificity in
order to avoid variants with undesirable off-target activity21. For
example, theWilliams group engineered the acyltransferase domain of
a modular polyketide synthase to alter the substrate specificity away
from the native substrate25. Alternatively, Weeks and Wells intention-
ally engineered more promiscuous subtiligase variants by screening
with a peptide mixture that simulates the proteome of E. coli and
detecting product formation using mass spectrometry (MS)26. Criti-
cally, in these and other cases27–31, each enzyme’s envisioned use is in
an environment where substrate competition will occur.

Direct measurement of substrate specificity is a less prominent,
but recurring, feature of protein engineering for organic synthesis.
Although not commonly described as such, all screens with racemic
substrates are, in fact, substrate multiplexed screens. Resolution of
enantiomeric products requires chiral chromatography or subsequent
product functionalization, which are often too cumbersome for high-
throughput screening. A standard approach, then, is to first screen
variants for total activity on a racemicmixture and enantiospecificity is
only measured for highly active variants32. To circumvent this limita-
tion, researchers have made clever use of pseudo-enantiomers to
directly determine the enantioselectivity of variants in higher
throughput formats33,34. These screening efforts focused on stereo-
specificity are conceptually related to, but distinct from, the more
general case where researchers might screen enzymes on non-
stereoisomeric substrates with the intention of monitoring changes
in scope.

To date, examples of SUMS methods to expand the substrate
scope of an enzyme remain comparatively rare. Jakoblinnert et al.
screened carbonyl reductase variants using mixtures of three to four
substrates and identified a single mutation that improved activity on

four previously poor substrates. In this case, NADH depletion was
measured and changes to substrate specificity were established in
subsequent single substrate assays35. Junker et al. successfully applied
a two-substrate SUMS method to simultaneously evaluate aldolase
variants for changes in both activity and specificity with aldehyde and
ketone-derived nucleophiles36. Recently, Knorrscheidt et al. demon-
strated howa SUMSmethodusingMISER-GCMSand a cocktail of three
substrates could successfully identify mutations that altered
the activity, specificity, and regioselectivity of an unspecific
peroxygenase37. Given the ubiquity of SUMS in metabolic engineering
and chemical biology, the success of these examples for biocatalysis,
and the increasing interest in engineering enzymes for organic
synthesis, it is striking that SUMS remains a specialized and uncom-
mon approach in this field.

The transition from using a single substrate to screening with
multiple substrates introduces significan and poorly understood
complexities that we hypothesize have hindered wider adoption of
SUMS. The kinetics of substrate competition impact assay results, as
both substrates and products may act as inhibitors of the enzyme
being engineered38. Because competing substrates exit the initial
velocity regime at different rates, quantitative specificity information
may be lost. Relatedly, it is not immediately apparent how well mea-
surements in a multiplexed setting will correlate with synthetic utility
for single substrate reactions. Although data from SUMS are intrinsi-
cally richer and might be leveraged in unique ways to guide engi-
neering, data analysis and presentation additionally become more
challenging as the number of potential products increases36,37.

We set out on a systematic exploration of the We set out on a
systematic exploration of the advantages and disadvantages of using
SUMS to engineer enzymes for organic synthesis. We chose two
enzymes for this investigation. The first enzyme is the L-tryptophan
(Trp) decarboxylase from Ruminococcus gnavus (RgnTDC), an enzyme
that natively catalyzes the decarboxylation of Trp to form tryptamine
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Fig. 1 | Overview of substratemultiplexed screening (SUMS). a In SUMS, activity
is measured for multiple competing substrates simultaneously. b SUMS can be
leveraged to address a rangeof goalswhenengineeringbiocatalysts. Here,weapply

SUMS to a model biosynthetic cascade, forming tryptamines from indoles using
Ruminococcus gnavus tryptophan decarboxylase (RgnTDC) and Pyrococcus furiosus
tryptophan synthase β-subunit (PfTrpB).
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(Fig. 1b)39,40. RgnTDC is an exceptional decarboxylase with many Trp
analogs but struggles with the highly bioactive 4- and 5-substituted
substrates40. The second enzyme we screen is a previously-engineered
β-subunit of tryptophan synthase from the thermophilic archaeon
Pyrococcus furiosus (PfTrpB2B9, or 2B9), which catalyzes the bimole-
cular condensation of Ser and indole13,16,41,42. It has been demonstrated
that 2B9 possesses a broad substrate scope, and is capable of produ-
cing diverse Trp analogs.

Here we directly compare the effectiveness of SUMS and single
substrate screening for site-saturation mutagenesis and show that
SUMS reveals counter-intuitive trends in substrate promiscuity. We
show that SUMS can derive new information from random mutagen-
esis libraries in comparison to single substrate screens, further
increasing the utility of randommutagenesis approaches.We combine
the engineered TrpB and TDC enzymes to synthesize substituted
tryptamines from L-serine (Ser) and indole. Together, these efforts
show how SUMS can be used to immediately assess the substrate
scope of variant libraries, form new hypotheses about enzyme func-
tion, and lead to synthetically useful enzymes for the efficient con-
struction of bioactive molecules.

Results
Consideration of kinetics underlying substrate competition
Before we began screening libraries, we investigated the many vari-
ables of SUMS, such as substrate choice, relative substrate con-
centrations, and assay duration, that can impact the observed product
profiles. To connect the SUMS output to the underlying kinetics on
single substrates, we used RgnTDC as a model system. For a unim-
olecular reaction under initial velocity conditions with equimolar
substrates in competition with one another, the product abundances

will be exactly proportional to the catalytic efficiencies (kcat/KM) of the
individual reactions in isolation (Fig. 2a)38,43,44. As has been described,
this relationship holds true even when the individual substrate con-
centrations exceed their KM’s

38,43. We measured traditional Michaelis-
Menten parameters for RgnTDC with a variety of substituted Trp
analogs (Supplementary Table 1). Comparison of these data to results
from multiplexed reactions showed that the ratio of the catalytic effi-
ciencies is indeed deterministic of the product ratios (see SI discus-
sion). As has long been appreciated in enzymology, such multiplexed
activity measurements are a true measure of specificity and provide
rich kinetic information about enzyme function19. However, these
relationships are restricted to initial velocity conditions and are an
incomplete measure of synthetic utility.

To capture enzyme stability effects and achieve high conversions,
effective screening conditions for biocatalysis applications often uti-
lize longer reaction times beyond the initial velocity regime. When
reactions are run to higher conversion, the product profile becomes
uncoupled from the Michaelis-Menten kinetics and is, instead, a
heuristic readout of reactivity. Additionally, both substrates and pro-
ducts can inhibit enzyme activity. Often, but not always,more reactive
substrates act as strong competitive inhibitors of activity on poor
substrates43,44. Regardless, we posit that by screening on a mixture
with both highly and poorly reactive substrates, we can identify cata-
lysts that retain the ability to operate at high turnover numbers as well
as identify desirable increases in activity with multiple sluggish sub-
strates. This information is useful for organic synthesis, where
enzymes would ideally react with a wide range of substrates and drive
reactions to high yield. By altering the substrate composition and
reaction time, screening conditions can quickly be tuned to match
diverse engineering goals (Fig. 2a, see SI discussion).
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Fig. 2 | Substrate multiplexed screening (SUMS)-based engineering of Rumi-
noccus gnavus tryptophan decarboxylase (RgnTDC). a i. Substrate competition
model with equation describing relative rates of product formation. ii. Timecourse
of a substratemultiplexed reaction of RgnTDCwith 2-Me-, 4-Br-, 6-Cl-, and Trp. Full
reaction conditions found in Supplementary Fig. 42. bGeneral reaction ofRgnTDC,
with the labile bond highlighted. R = halo, alkyl, nitro, ether, etc. See ref. 40 for
detailed scope of the wild-type enzyme. c SUMS results from aW349X library using

a mixture of Trp substrates where R = 5-OEt-, 5-acetyl-, 5-CONH2-, 5-OMe-, and 5-
OMe-2-Me-. Colored bars indicate relative abundances of each product, and black
diamonds indicate total intensity of single ion retention (SIR) for each product’s
unique m/z. No product was observed from 5-OMe-2-Me-Trp. d Fold-activity rela-
tive to wild-type from a single-substrate screen of the W349X library with 5-OMe-
Trp corresponding to classical protein engineering techniques. Retention of
function curves with full sequence analyses are shown in Supplementary Figs. 3–4.
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SUMS can directly identify mutations that impact substrate
promiscuity
We set out to apply a SUMSmethod to screen RgnTDC libraries; our
engineering goal was to identify mutations that either increased
activity on a single substrate or on multiple Trp analogs. We began
by engineering for higher RgnTDC activity on 5-substituted Trp
analogs, and structure-based modeling suggested the active site
residue W349 forms preclusive steric interactions with these sub-
strates (Supplementary Fig. 2). We screened a site-saturation
mutagenesis (SSM) library, which exchanges the native residue for
each other proteinogenic amino acid, at W349 with amixture of five
Trp substrates. For most of the substrates, we found that many
mutations increased activity, and that increases in activity varied
among the different substrates (Fig. 2c). The structurally con-
servative mutations W349Y andW349F increased activity most with
5-OMe-Trp relative to other substrates, whereas the W349S muta-
tion had the highest activity increase with 5-OEt-Trp and produced
the most total product. From this screen, W349K was identified as
the most generally improved variant because it produced only
slightly less 5-OEt-tryptamine than W349S and formed the most
product with all other substrates.

To contrast the promiscuity information from SUMS with tradi-
tional approaches, we performed a single-substrate screen with 5-
OMe-Trp on the same W349 library (Fig. 2d). As before, we found that
mostmutations increased activitywith 5-OMe-Trp. However, therewas
a poor correlation between activity on 5-OMe-Trp and general activa-
tion on 5-substituted Trp analogs. Although W349K was the most
activating mutation in both screens, mutations such as W349Y
appeared to be highly reactive with 5-OMe-Trp but only poorly toler-
ated other Trp analogs. These results illustrate how SUMS can imme-
diately identify shifts in both substrate promiscuity and activity with

no greater screening effort than would be required for a comparable
single substrate screening approach.

While detailed structural analysis revealedW349 as a conspicuous
site for improved activity on 5-substituted Trp analogs, such detailed
hypotheses are not readily formed with all enzymes. We reasoned that
SUMS could also be deployed in a setting where there is no specific
hypothesis as to which residues govern activity with specific sub-
strates. To simulate this common scenario, we screened a mixture of
Trp analogs that were each substituted at a different position against a
set of nine active site SSM libraries (Fig. 3a, Supplementary Fig. 5).
From these screens, we found thatmutation at two positions, L126 and
H120, had only modest impacts on activity and promiscuity. Mutation
at L336 and T356 resulted in many catalytically feeble enzymes, and
the variants that retained activity had promiscuity profiles that were
similar to wild-type. For the other sites,mutation caused large changes
to apparent promiscuity while retaining significant catalytic activity.
For example, we observed >50-fold activity increases with several
enzyme-substrate pairs, such as L355M with 4-Br-Trp and F98V with 2-
Me-Trp (Fig. 3b). Screening with this more diverse substrate mixture
also revealed that W349K maintains high activity with non-5-
substituted Trp substrates like 6-Cl-Trp. Other mutations, such as
V99A and L339V, were less strongly activating for 2-Me-Trp and 4-Br-
Trp but retained broad activity for substituted Trp analogs.

Variants identified from SUMS have improved single substrate
activity
An essential step during protein engineering is to validate the activity
of any hits detected during library screening. Since our ultimate goal
was to use engineered RgnTDC variants to synthesize tryptamine
analogs under single substrate conditions, we validated library hits
using single substrate reactions and purified enzymes. Importantly,
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although there are many confounding factors that make activity in
competition distinct from activity on pure substrates, we found that
turnover numbers from these single substrate reactions trended well
with multiplexed screening results, with the engineered variants
showing large increases in single substrate activity (Fig. 3c, Supple-
mentary Table 2). Hence, in the same effort necessary to improve
activity with one substrate, SUMS enabled the parallel engineering of
RgnTDC variants for improved activity with multiple challenging
substrates.

Kinetic characterization of RgnTDC variants identified
from SUMS
Tounderstand the kinetic determinants of substrate promiscuity shifts
for RgnTDC variants, we measured Michaelis-Menten parameters for
single substrates (Fig. 3d, Supplementary Table 1). All activated var-
iants showed higher kcat values with their more reactive substrates
when compared to wild-type. Notably, there was also significant var-
iation in KM values for activated RgnTDC variants, and such effects
were difficult to rationalize from simple structural analysis. TheW349K
mutation, for example, accelerates decarboxylation of 5-OMe-Trp
exclusively by increasing kcat, with minimal impact to KM values
(Fig. 3d). Molecular modeling indicates 4-substituted Trp analogs
would form deleterious steric clashes with L355, and rational approa-
ches to engineering would prescribe mutation to smaller sidechains.
One such mutation, L355A, improved activity on 4-Br-Trp, but the
L355Mmutation was evenmore activating and had a decreased KM for
both Trp and 4-Br-Trp compared to wild-type RgnTDC (Fig. 3d). We
highlight these unexpected findings as an advantage of interrogating
active site libraries with SUMS, as such mutations could have been
missed entirely by screening with the wrong pairings of substrate and
mutational site.

SUMS can identify distally activating mutations for a bimole-
cular reaction
To further develop SUMS for biocatalysis, we next turned our attention
to improving the activity of the engineered tryptophan synthase β-
subunit variant 2B913 on diverse indole analogs (Fig. 4a). Whereas
RgnTDC catalyzes a relatively simple unimolecular reaction, tryptophan
synthase catalyzes a bimolecular reaction that is not well-described by
simple kinetic models45. The ratio of the products from direct substrate
competition can differ significantly from the ratio of the catalytic effi-
ciencies measured in isolation43. Irrespective of the underlying kinetic
phenomena, we reasoned stoichiometry could be leveraged to facilitate
assay design of bimolecular reactions. By holding the invariant sub-
strate (Ser) as the limiting reagent and providing an excess of the
multiplexed reagents (indole analogs), information about specificity is
maintained throughout the course of the reaction.

Because theparent enzyme, 2B9, alreadypossessesmodest activity
on 4- and 5-substituted indole analogs, our engineering goal was to
identify mutations that broadly increase activity with multiple indole
substrates. RgnTDC engineering (above) utilized active site mutagen-
esis, where small structural perturbations are expected to have large
effects on kcat andKM. However, residues that influence enzyme activity
and substrate promiscuity can be distributed throughout the enzyme
scaffold46, and such distal mutations are known to modulate PfTrpB
function13,41,47. We, therefore, elected to screen a globally random
mutagenesis library of 2B9 variants to determine whether a SUMS
approach could lead to the identification of residues beyond the active
site that alter either activity or substrate promiscuity.

To screen the 2B9 library, we selected a panel of commercially
available indole analogs bearing substituents with diverse steric and
electronic properties (see SI for in-depth discussion of assay optimi-
zation). Decades of studies have shown that most mutations to an
enzyme have a neutral to deactivating impact on function48,49. Corre-
spondingly, we observed that nearly all variants displayed total activity

that was either similar to or lower than 2B9 (Supplementary
Figs. 23–25). A handful of variants appeared to increaseoverall product
formation with little change in promiscuity (Fig. 4b). We purified the
most activated variant, I102T,which contains a singlemutation outside
the active site, and found it was as good as or better than 2B9 with a
variety of indole analogs under single substrate conditions (Supple-
mentary Fig. 26). SUMS can thus achieve a traditional goal of globally
random mutagenesis—identifying distal, activating mutations—while
simultaneously providing insights into the substrate scope of the
improved enzymes.

Mutational hot-spots can be identified through a shift in the
product profile
A unique strength of SUMS is that the promiscuity of all variants,
activated or deactivated, is assessed, providing an additionalmetric by
which to evaluate variants. For example, we observed a variant with
lower overall activity but with a significant shift in product distribution
towards 2,3-dihydroiso-L-tryptophan (DIT), which is generated by C-N
bond formation with indoline (Fig. 4a). Under multiplexed screening
conditions this variant, H275R, reproducibly generated more DIT than
2B9. Curiously, under single substrate conditions, H275R was not an
activated variant and instead produced DIT more slowly than 2B9,
leading us to investigate this apparent contradiction between SUMS
results and activity on single substrates.

We turned to single substrate kinetic analysiswith indole, PfTrpB’s
native substrate, and indoline to probe why, in some cases, improved
activity in a multiplexed screen does not translate to improved cata-
lysis with a pure substrate. When only these two substrates are present
(with indoline in a 10-fold excess), H275R disfavors Trp formation
relative to 2B9, causing a prominent shift in the product ratio by
impacting the relative activity with each substrate asymmetrically
(Fig. 4c). Compared to 2B9, H275R shows a dramatic >100-fold
decrease in kcat/KM with indole but only a modest ~3-fold decrease in
kcat/KM with indoline (Fig. 4g, see SI discussion). This analysis affirmed
that the discrepancy between SUMS results and single substrate
activity can be resolvedby considering the substrates’ relative catalytic
efficiencies in a multiplexed system. More importantly, the change in
the H275R product profile immediately implies that the mutation
impacts activity through cooperative interactions with the active site,
rather than a global enzymatic property like protein stability. In other
words, since variants of interest can be identified from a heuristic
SUMS product profile, measurement of single substrate catalytic effi-
ciencies is not necessary to identify sites that impact specificity.

We hypothesized that a different mutation at H275 might increase
activity, rather than reduce it. This hypothesis was furthermotivated by
the location of H275, which is a ‘second-sphere’ residue situated near
the entrance to the enzyme’s active site (Fig. 4d). We screened a SSM
library at H275 with the same substratemixture as before and observed
a range of enzyme activities and product distributions (Supplementary
Fig. 27). Several variants possessed activity and promiscuity similar to
2B9. Other variants resembled H275R, exhibiting an overall decrease in
product formation and a shift in distribution to favor DIT. We also
observedmutations that resulted in a general increase in activity across
all substrates screened, with H275E displaying the largest boost
(Fig. 4e).We subsequently validated thatH275E has increased activity in
single substrate reactions, and these improvements extend to sub-
strates thatwere not present in the original screen, such as the sterically
bulky nucleophile 5-OEt-indole (Fig. 4f). Notably, H275R was deacti-
vated for all tested substrates, meaning that no single substrate screen
could have identified the original H275R as a mutation of any interest.
Critically, it was only by screening on a mixture of substrates and
observing a shift in product distribution that the H275 site’s role in
substrate discrimination was identified. Hence, information from SUMS
enabled use of a low-activity variant, H275R, as an intermediate to
access a broadly activated enzyme, H275E.
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SUMS leads to mechanistic insights
As we found with RgnTDC, SUMS-based engineering yielded thought-
provoking results that raised new mechanistic questions about the
causes of altered activity. Here, we were motivated to determine
whether the activation afforded by H275E mimicked the same effects
that were previously found in the engineering campaign that yielded
2B913,50.

In the absence of substrates, the PLP cofactor of PfTrpB is bound
to K82 as an internal aldimine, E(Ain) (Supplementary Fig. 30). We
solved the structure of H275E-E(Ain) at 2.1-Å resolution, which showed
a significant conformational change of a subdomain of PfTrpB, called
the COMM domain, relative to the parent 2B9 (Fig. 5a). Mutation at
H275 disrupts a hydrogen bond network between two residues (Y181,
Y301) that flank the active site and shifts the structure into the most
extended-open conformational state of a TrpB observed to date50.
Catalysis is initiated by addition of Ser, which for the parent 2B9 results
in accumulation of a mixture of the Ser external aldimine, E(Aex1), and

the electrophilic amino-acrylate intermediate, E(A-A). The activating
H275Emutation shifts the ratio of intermediates to favor E(A-A), which
is poised to reactwith a nucleophilic substrate, such as indole (Fig. 5b).
Notably, the E(A-A) intermediate is also subject to a competing
hydrolysis reaction. This shunt-reaction is 2.5-fold slower for H275E
than 2B9 (Supplementary Fig. 31), indicating that the H275E mutation
kinetically shields the reactive intermediate, affording more time for
nucleophiles to react.

Todeterminehowproductsfit within the active site, we solved the
structure of H275E with two ligands bound, Trp and 4-Cl-Trp, at 2.39
and 2.25-Å resolution, respectively (Fig. 5c). The Trp-bound structure
of H275E showed a new ligand binding pose, with theα-amine oriented
for nucleophilic attack into the PLP. The structure of H275E with 4-Cl-
Trp bound showed no major conformational change is required to
accommodate the 4-Cl group. Instead, there is a 3.0-Å halogen bond to
G298. Titrations monitored by UV-vis spectroscopy show H275E
decreases the KD for Trp while simultaneously promoting a non-
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covalent product binding mode (Supplementary Fig. 32). Previously,
tighter binding has been associated with an increased population of
covalently bound adducts50. Together, these data show that the H275E
mutation activates PfTrpB through a molecular mechanism that is
distinct from previously characterized PfTrpB variants, and would be
difficult to identify even through contemporary, mechanism-based
computational design approaches51.

Cascade catalysis is empowered by enzymes with com-
plementary substrate scopes
Last, we sought to demonstrate the practical utility of the enzymes
produced via SUMS.Many enzymes aremore synthetically usefulwhen
employed in tandem reactions or cascades, which can overcome
thermodynamic limitations and obviate the need for purification of
intermediates52. While the use of multiple enzymes in concert can

magnify the benefits afforded by biocatalysis, catalysts must have
complementary substrate scopes to synthesize a diverse set of
products52–54. To this end, we demonstrate efficient cascade catalysis
through the mmol-scale syntheses of tryptamine analogs, including 5-
OMe-tryptamine and 5-OEt-tryptamine, known serotonin receptor
agonists55, and 2-Me-tryptamine and 4-Br-tryptamine, which were
particularly challenging products for cascade reactions using the
parent enzymes40. For example, 5-OMe-tryptamine was isolated in
double the yield and at larger scale than our previously reported
synthesis, while using only a tenth as much RgnTDC catalyst. Each
product wasmade in a telescoped biocatalytic cascadewithH275E and
an engineered RgnTDC variant and isolated with improved yields
compared to reactions with the parent enzymes (Fig. 6)40. Although no
RgnTDC variant was identified with improved activity for all Trp ana-
logs, the direct assessment of substrate scope provided by SUMS
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allowed us to rapidly select an improved catalyst for each tryptamine
product. These reactions proceeded smoothly and afforded access to
a variety of desirable tryptamines on preparative scale.

Discussion
A central limitation to the synthetic application of many enzymes is
their hard-to-predict and too-often poor substrate scopes when com-
pared to organic methodologies56. Application of traditional protein
engineering efficiently increases activity on model substrates, but
provides no selective pressure to improve activity with a broad sub-
strate scope. A handful of examples have demonstrated the efficacy of
SUMSmethods for identifying enzymeswith alteredpromiscuity, but a
lack of readily accessible explorations of SUMS for biocatalyst devel-
opment has limited its general adoption. Here, we elaborated princi-
ples of SUMS assay design and data interpretation for protein
engineering. We detail how factors such as relative substrate con-
centration, stoichiometry, and the time course of a reaction all influ-
ence the resultant product profile (see SI discussion). By thoughtfully
constructing screening conditions, we showed that SUMS provides
exceptional advantages when screening for increases in activity on
multiple substrates and facilitates the discovery of desirable
biocatalysts.

Because activity in competition is not identical to activity on iso-
lated substrates, the information gleaned from SUMS ismore than the
sum of its parts. The application of SUMS here does not rely on
accurate measurements of absolute substrate specificity, as screening
does not necessarily take place under initial velocity conditions.
Instead, we use SUMS to identify changes in the ratios of the products.
Although some substrates were fully converted to product under our
reaction conditions (i.e., tryptamine with RgnTDC), we identified var-
iants with retained or improved activity on these compounds in single
substrate reactions. Additionally, we frequently observed mutations
that appearedneutral or even deactivatingwith respect to one ormore
substrates in the reaction but were activating on another substrate in
the mixture. Even when mutations result in lower activity on all sub-
strates, anasymmetric loss in activity is direct evidence that amutation
is influencing the active site. This information would be laborious to
obtain via a series of single substrate reactions but is inherent to each
multiplexed measurement in a screen. Consequently, SUMS increases
the utility of random mutagenesis libraries by providing intrinsically
richer information about every variant. We leveraged this information
to identify the PfTrpB 2B9 variant H275R. This mutation lowered
overall activity with each substrate and, under traditional single sub-
strate conditions, would have been indistinguishable from mutations
that destabilize the protein or reduce catalyst concentration. Instead,
SUMS shows this position of the protein was a potential ‘hot-spot’ for
mutagenesis and led to generally activating mutations at this site.

Using the additional information measurable through SUMS,
researchers will be enabled to make more informed choices about
which variant(s) to carry forward during directed evolution. A variant
that is highly active and selective for a single substrate may be
well-suited for subsequent rounds of engineering when a specific
reaction is the desired goal. In contrast, mutations that are broadly
activating are often more desirable for general synthetic applications.
Because the selection of activating mutations has historically been
made without regard to the potential impact on the scope of an
enzyme, the consequences of mutational choice with respect to pro-
miscuity are unknown. It is generally held that there is an activity-
specificity tradeoff, but this hypothesis has seldom been tested
by intentionally engineering for promiscuity57. More importantly,
because catalytic perfection is not needed for an enzyme to be useful,
it remains to be determinedwhat practical limits there are to evolution
for both broad scope and high catalytic efficiency. We anticipate that
SUMS methods will facilitate answering these fundamental questions.
More immediately, SUMS remains an easy-to-implement strategy for

biocatalyst engineering where enzymes with a broad and/or well-
defined substrate scope are desired for efficient chemical synthesis.

The exploration of SUMS described here used LC-MS for detec-
tion of products, but any method that enables parallel resolution of
products is compatible with SUMS. Indeed, even though LC-based
screening methods tend to be slow, their versatility has led to the
widespread adoption for screening libraries2,4,9,15,37,58,59. The substrate
mixtures used here featured compounds with which the parent
enzyme already had detectable baseline activity. Although it is ideal to
conduct assays with rigorous standard curves for product quantifica-
tion, SUMS can identify variants based on relative changes in product
distribution. Consequently, SUMS data can be analyzed without
quantitation of absolute product concentration. This feature is of
practical importance, as access to products can be limited at the
beginning of directed evolution campaigns when enzymatic activity is
low. SUMScould even be appliedwith substrates thatdo not reactwith
the parent enzyme, facilitating the discovery of altogether new
reactions.

SUMS methods can also provide insight into whether an
improvement in activity is due to changes in protein expression, for
example, due to inter-well variation in a screen or a genuine change in
soluble expression. If a significant shift in the SUMS product dis-
tribution is observed, this is indicative of a change in the catalytic
properties of the enzyme, not protein concentration. Previously, high-
throughput screening methods incorporated a normalization or tag-
ging procedure to account for the effects of variation in protein
concentration60,61.

The work here focused on engineering enzymes with broad sub-
strate scopes for biocatalytic applications. However, SUMS is not
limited to only searching for enzymes with highly promiscuous activ-
ities; in some cases, enzymes that discriminate against particular
substrates – such as different stereoisomers – are desirable. While the
enzymes deployed here did not generate new stereocenters, there is
no intrinsic limitation that prevents using SUMS to evolve for scope
and stereoselectivity at the same time. Such multiplexed approaches
for enantioselective small-molecule catalysis have seen sporadic use20,
and a similar need to identify core principles of multiplexed assay
development was recently identified62. For these reasons, we antici-
pate that SUMS will become a valuable methodology for the broader
catalysis community.

We provide here an exploration of how to use SUMS to engineer
enzymes with improved activity on multiple compounds simulta-
neously. By directly assessing enzyme activity on substrates in com-
petition, SUMS provides uniquely rich promiscuity information that
has hitherto been underutilized. Importantly, just as knowledge of
enzymemechanism is not a prerequisite for the effective applicationof
directed evolution, a priori kinetic knowledge is not required for the
design and interpretation of effective multiplexed screens. These
results, and the generality of the assay design principles described
here, suggest the potential for SUMS to be applied to virtually any class
of enzyme. Hence, the ease of implementing SUMS should minimize
barriers to adoption of this budding approach.

Methods
Screening of RgnTDC site-saturation libraries
Cell pellets were thawed and then resuspended in lysis buffer: 50mM
potassium phosphate buffer (pH= 8.0), 1mg/mL Hen Egg White
Lysozyme (GoldBio), 0.2mg/mL DNaseI (GoldBio), 1mM MgCl2, and
300μM pyridoxal 5′-phosphate (PLP). A volume of 600 µL lysis buffer
per well was used. After 45min of shaking at 37 °C, the resulting lysate
was then spundown at 4000×g to pellet cell debris. Then, 180 µL of the
resulting supernatant was added to 20 µL of a substrate mixture in a
separate reaction plate. Final substrate concentrations are as follows:
W349X 5-substituted Trp screen: 2mM each of 5-methoxy-
tryptophan, 5-ethoxytryptophan, 5-methoxy-2-methyltryptophan, 5-
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carboxamidotryptophan, and 5-acetyltryptophan; W349X single-
substrate screen: 2mM 5-methoxytryptophan; active site site-
saturation mutagenesis screens: 2mM each of 2-methyltryptophan,
4-bromotryptophan, 5-methoxytryptophan, and 6-chlorotryptophan;
0.2mM 7-iodotryptophan and 0.2mM tryptophan. Reactions were
incubated at 37 °C for 4 h, quenched via addition of 150 µL 1:1 acet-
onitrile:1M HCl, and centrifuged at 4000×g for 10min. 200 µL of the
quenched reaction mixture supernatant was filtered into a 96-well
plate for UPLC-MS analysis. Data were collected on an Acquity UHPLC
with an Acquity QDA MS detector (Waters) using an Intrada Amino
Acid column (Imtakt). Tryptamine product m/z ion counts were used
to quantify product formation from the tryptophan reaction mixture
from corresponding standard curves (Supplementary Fig. 15).

Screening of PfTrpB libraries
Lysis buffer was prepared as described above and used to resus-
pend cells expressing PfTrpB variants. Cells were lysed for 1 hour at
37 °C then heat treated at 75 °C for 15 min. After cooling on ice,
lysate was spun down at 4000×g at 4 °C for 20min. A 96-well plate
was loaded with 20 µL substrate mixture (final concentration of
5mM each 2-methylindole, 4-cyanoindole, 5-methoxyindole, 6-
hydroxyindole, and indoline, plus 2.5mM 7-chloroindole). All
indole stocks were prepared in DMSO. For globally random muta-
genesis library plate A, potassium phosphate buffer (50mM, pH =
8.0, 160 µL) containing L-serine (5 mM final concentration) was
added, followed by heat-treated lysate (20 µL). For subsequent
plates, lysate volume was increased to 50 µL and buffer volume
reduced to 130 µL. Reactions were set up such that the DMSO
cosolvent comprised 10% of the final reaction volume (200 µL).
Reactions were run at room temperature (25 °C) for 2.5 h and were
quenchedwith 200 µL of acetonitrile containing 0.1 MHCl and 1mM
tryptamine (as internal standard). Plates were spun down at 4000×g
at 4 °C for 20min. A 200 µL aliquot of each quenched reaction was
filtered into a 96-well plate for analysis by UPLC-MS. Product for-
mation was quantified by integration of peaks on single ion reten-
tion (SIR) channels corresponding to each expected product,
normalized against the tryptamine internal standard.

Cascade synthesis and isolation of tryptamines
4–6mmol (1.4mmol for 6-chloroindole) of the corresponding indole
analog was added to a 1 L Erlenmeyer flask and dissolved in 20mL
MeOH. 12mmol Ser was added, and the resulting solution was diluted
up to just under 500mL with 50mM potassium phosphate buffer
(pH = 8.0). PLP was added such that the final concentration was
300μM. Then, H275E was added at 0.05% mol catalyst relative to the
indole analog. The solutionwas incubated at 75 °C for 16 h. (H275Ewas
found to be activating at 75 °C, Supplementary Fig. 33). Following
UPLC-MS analysis of conversion, the solution was cooled to 37 °C,
upon which RgnTDC was added at 0.02–0.2% mol catalyst relative to
the indole. The solutions were incubated at 37 °C for 24h. Solutions
were then evaporated down to 50–100mL. To break emulsions, the
solutions were acidifiedwith 6MHCl until pH < 1, 100mL ethyl acetate
(EtOAc) was added, and the resulting mixtures were centrifuged at
4000×g for 10min. These solutionswere added to a separatory funnel,
the aqueous layer was drained, and the organic layer removed. This
was repeated twice more, with 2mL 6M HCl added in between
extractions. Then, the aqueous layer was alkalizedwith 6MNaOHuntil
pH > 12. Tryptamine products were then extracted 3× with 150mL
EtOAc, with 2mL 6M NaOH added in between extractions to the
aqueous layer. Organic layers were pooled, dried with sodium sulfate,
filtered, and evaporated down to 5–10mL. Solutions were transferred
to 20mL scintillation vials, evaporated to near dryness (some trypta-
mines were observed as liquids at 50 °C), and dried under vacuum
overnight. Dried samples were weighed and submitted for 1H and 13C
NMR analysis.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Structural data that support the findings of this study have been
deposited in the Protein Data Bank with the PDB accession codes
[7ROF, 7RNQ, 7RNP]. All other data that support the findings of this
study are available from the corresponding author upon request. DNA
and primer sequence information are available in Supplementary
Table 5. Supplementary data supporting the scientific claims, supple-
mentary figures, as well as a supplemental discussion, can be found in
the Supplementary Information file.
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