
nature communications

Article https://doi.org/10.1038/s41467-022-32567-8

Temporally restricted activation of IFNβ
signaling underlies response to immune
checkpoint therapy in mice

Rachael M. Zemek 1,2,3,8, Wee Loong Chin3,4,5,8, Vanessa S. Fear 1,2,3,
Ben Wylie 3, Thomas H. Casey1,2, Cath Forbes1,2,3, Caitlin M. Tilsed1,2,
Louis Boon6, Belinda B. Guo 7, Anthony Bosco3, Alistair R. R. Forrest7,
Michael J. Millward4,5, Anna K. Nowak 1,4,5, Richard A. Lake 1,2,
Timo Lassmann 3,9 & W. Joost Lesterhuis 1,2,3,9

The biological determinants of the response to immune checkpoint blockade
(ICB) in cancer remain incompletely understood. Little is known about
dynamic biological events that underpin therapeutic efficacy due to the
inability to frequently sample tumours in patients. Here, we map the tran-
scriptional profiles of 144 responding and non-responding tumours within two
mouse models at four time points during ICB. We find that responding
tumours display on/fast-off kinetics of type-I-interferon (IFN) signaling. Phe-
nocopying of this kinetics using time-dependent sequential dosing of
recombinant IFNs and neutralizing antibodiesmarkedly improves ICBefficacy,
but only when IFNβ is targeted, not IFNα. We identify Ly6C+/CD11b+ inflam-
matorymonocytes as theprimary source of IFNβ and find that active type-I-IFN
signaling in tumour-infiltrating inflammatory monocytes is associated with T
cell expansion in patients treated with ICB. Together, our results suggest that
on/fast-off modulation of IFNβ signaling is critical to the therapeutic response
to ICB, which can be exploited to drive clinical outcomes towards response.

The response to immune checkpoint blockade (ICB) in cancer is highly
variable, with a majority of patients experiencing disease progression.
Although the targets of ICB antibodies are known, the downstream
therapeutic effector mechanisms are incompletely understood1,2.
While specific aspects of the pre-treatment tumour microenviron-
ment, such as PD-L1 expression, immune cell infiltration3 or tumour
mutation burden4 have been shown to correlate with response5, none
of these biomarkers are sufficiently robust to guide clinical decisions
regarding treatment across cancers6 nor has their characterization yet

resulted in approved treatments that improve the efficacy of ICB7. As a
consequence, the development of novel combination therapies to
improve outcomes is mainly empiric8.

When perturbing complex systems, some important effects may
only become apparent over time. For example, in the course of an
immune response, some inflammatory mediators need to be switched
off, not only to resolve inflammation but also to mediate a transition
from innate to adaptive immunity9. Similar time-dependent mechan-
isms may underpin an effective anti-tumour immune response6.
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However, it is not possible to identify these dynamic events in human
studies due to the difficulty to sample the same tumour at multiple
time points during treatment, usually limiting the number of samples
to two; one pre-treatment and one on-treatment sample several weeks
after start of ICB10,11. In addition, it is exceedingly difficult to identify
discrete biological differences between responding and non-
responding patient tumours due to inter-individual variation in
germline and cancer genetics, tumourmicroenvironment composition
and environmental influences12–15.

For these reasons, we optimized murine models with bilateral
tumours, derived from syngeneic cancer cell lines7. In these models,
the response to ICB with antibodies against CTLA4 and PD-L1 is sym-
metric, leading to either a bilateral response or a failure to respond in
both tumours7,16,17. This means we can remove one tumour for mole-
cular analysis while tracking the therapeutic fate of the other. Because
both responders and non-responders are exposed to identical treat-
ments, this enables the characterization of the time-dependent
response to ICB in entire tumours in a highly homogenous back-
ground. These bilateral models have been used previously to identify
transcriptomic ICB response signatures in the early tumour micro-
environment, which was extensively validated in separate patient
cohorts of bladder cancer and melanoma patients treated with ICB7,17.
In addition, our results using these models have been independently
validated by other research groups in preclinical models and patient
cohorts with various tumour types, underscoring their translational
relevance18–21.

Here, we aimed to discover time-critical events in the tumour
microenvironment that underlie ICB efficacy.We characterisedynamic
changes in gene regulatory networks associated with response to ICB
and use that information to rationally develop new schedule-
dependent combination therapies.

Results
On/fast-off dynamics in IFN signalling are associated with
response to ICB
To map the dynamic processes underlying the response to ICB, we
utilized our bilateral tumour model to remove responsive and non-
responsive tumours at 1 h prior and at 2-, 4- and 6-days following
administration of anti-CTLA4/anti-PD-L1 therapy (Fig. 1a, b and Sup-
plementary Fig. 1) and examined the transcriptomes of these tumours
using RNA-sequencing. To avoid bias towards one tumour type, we
utilized two different tumour models, AB1 mesothelioma and Renca
renal cell carcinoma, and explored dynamic trends that were con-
sistently differentially regulated between responders and non-
responders in both models.

We first assessed whether there were differences in cellular
composition between responders and non-responders at each time
point using CIBERSORTx analysis (Fig. 1c and Supplementary Fig. 1)22.
Renca and AB1 tumours showed a large difference in cellular makeup,
yet they displayed a similar therapeutic response to ICB, underscoring
that cellular composition alone is not a robust predictor. Furthermore,
although some differences between responders and non-responders
were observed, none of these differences were consistent between the

Fig. 1 | Dual tumour models allow time-course analyses of tumours from
responders and non-responders to ICB, demonstrating increased lymphoid
cellular infiltration following treatment, irrespective of response. a One
tumour from mice with bilateral AB1 or Renca tumours was harvested for
RNAseq either 1 h prior to, or 2, 4 or 6 days after ICB, whilst the remaining
tumour was monitored for response (n = 144 biologically independent samples
from 19 independent experiments). b Growth curves of the removed right and
remaining left tumour, allowing classification of the responder (red) or non-

responder (blue) to ICB. cCIBERSORTx cell deconvolution analysis of responder
(RS) and non-responder (NR) tumours over time. Error bars represent standard
deviation. d CD8+ T cell score in responders (RS) and non-responders (NR) over
time in the AB1 (top) and Renca (bottom)models. Statistical analysis by one-way
ANOVA with Benjamini-hochberg correction for multiple comparisons. Data
presented as mean ± standard deviation. The number of samples per model/
timepoint/group is depicted in (a). Source data are provided in the Source
Data file.
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two models, except for a significantly higher proportion of NK cells in
responders prior to treatment, which has been reported previously17.
We observed an increase inCD8+ T cells after ICB, consistent with CD8+

T cell gene signatures as predictors of response in patient samples
reported in the literature23–25. Although CD8+ T cell infiltration was
more prominent in responders (Fig. 1d), it was not significantly dif-
ferent between responders and non-responders at any time point. As
thephenotypeof the cells couldbe a factor, particularly the expression
of other checkpoints, we analysed the bulk RNAseq data to test whe-
ther responders had lower expression of checkpoints compared to
non-responders. We found that checkpoint markers Tim3, Lag3, Ox40,
Icos, Ctla4, Pd1, Pdl1 andPdl2gene expressionwas higher in responders
and increased after ICB, suggesting that T cell activation state rather
than their numbers per se were more predictive of a response (Sup-
plementary Fig. 2).

To understand gene expression kinetics during treatment with
ICB, we clustered genes based on their dynamic expression using
TCSeq26 and analysed the resulting clusters for enriched biological
pathways. We discovered four clusters that showed consistent time-
dependent behaviour between the two models. Clusters 1 and 2 con-
tained genes associated with activation of myeloid cells and T cells,
including IFNγ production (Fig. 2a, b). The expression of these genes
gradually increased over time, and the trend was the same in both
responders and non-responders (Supplementary Fig. 3), albeit to a

greater magnitude in responders, which was in agreement with the
CIBERSORT results (Fig. 1d). Genes associated with cancer cell signal-
ling (cluster 3) decreased in expression over time, but again in both
responders and non-responders (Fig. 2c and Supplementary Fig. 3). In
contrast, cluster 4, demonstrated a kinetic profile that was strikingly
different between responders and non-responders (Fig. 2d and Sup-
plementary Fig. 3). Cluster 4 contained genes associated with IFN
signalling, which showed a gradual increase in expression over time in
non-responders, while in responders it was initially highly expressed,
followed by a rapid decrease in both AB1 and Renca (Fig. 2d).

To understand the transcriptional regulation of these genes, we
constructed gene regulatory networks in our ICB responders and non-
responders, using the GENIE3 algorithm (Supplementary Fig. 4a)27. For
each gene, the algorithm calculates an importance score reflecting the
inferred effect of the gene on all other genes. A high importance score
denotes a strong effect of a gene (putative regulator) on the dynamics
of expression of a downstreamgene (target) in thenetwork.We ranked
putative regulators by the sum of their outgoing importance scores
and plotted the top 100 regulators per mouse in time by the response
(Fig. 3a) to give an overview of the dynamics of regulators during ICB.
This analysis confirmed different dynamic regulations between
responders and non-responders, and therefore we proceeded to focus
on the top 10 known transcription factors (TF) that formed central
hubs in the network. For each of these TFs, we explored downstream

Fig. 2 | Responders and non-responders have similar reactions to ICB, but
responders shut off genes related to IFNβ signalling. TCseq analysis was used to
cluster genes with similar expression over time, identifying clusters shared by both
AB1 and Renca. Gene expression over time and pathway analysis of overlapping

genes betweenAB1 andRencawasperformed for cluster 1 (a), cluster 2 (b), cluster 3
(c) and cluster 4 (d). Gene lists are provided in Supplementary Data File 3. Source
data are provided in the Source Data file.
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Fig. 3 | Time-dependent changes in expression of a common subset of IFN
regulatorsdisplayingon/fast-off kinetics distinguish ICB responders fromnon-
responders. a Expression of the top 100 regulators ranked by GENIE3 importance
scoreplottedpermouse in timeby the response, genesweregrouped by hierarchal
clustering.bGENIE3 subnetworkof direct interactions betweenTFs and their target
genes in AB1 and (c) in Renca, separated into responders and non-responders,
depicting gene expression over time, with on/fast-off IFN genes highlighted within

theboxes.dTop 10TFswith highestGENIE3 scores between ISGs forAB1 andRenca
responders (left sub-panel), with average expression for ISGs in responders (centre
sub-panel) and non-responders (right sub-panel) across time points. Hive plots of
direct networks for AB1 (e) and Renca (f) with TF-to-ISG edges situated in the right
upper quadrant. The top 10% of (high valued) edges by GENIE3 score are high-
lighted in red.

Article https://doi.org/10.1038/s41467-022-32567-8

Nature Communications |         (2022) 13:4895 4



genes that were differentially expressed between responders and non-
responders, and that contained a binding site for the TF within their
promoter (Supplementary Fig. 4b). When we visualized the most
connected TFs and their first order neighbours in these networks, we
identified multiple gene modules with increased expression early
during treatment (Fig. 3b, c). A module containing IFN-related genes
exhibiting an on/fast-off dynamic response over time was found in
both AB1 and Renca responders (Fig. 3b, c). This suggested that
dynamic regulation of the IFN pathway is a determinant of ICB
response, with a fast reduction in expression levels over the time
course of the experiment.

Next, we investigated candidate upstream regulators of the IFN
module. Because functional annotations of thismodule suggested that
both type I and type II IFN contributed to the responder phenotype, we
obtained a list of interferon-stimulated genes (ISGs) for both type I and
type II IFN from theMolecular Signatures Database hallmark gene sets
and isolated a “fast-on/off” subset of genes which showed on/off
dynamics in responders. We analysed direct edges from TFs to these
ISGs weighted by GENIE3 importance scores28, which demonstrated
that both AB1 and Renca showed similar on/fast-off kinetics of IFN
signalling in responders, with on/fast-off changes by day 2 in AB1 and
day 4 inRenca (Fig. 3d). In contrast, non-respondersdisplayed a slower
and less intense activation of ISGs which remained chronically active
over time (Supplementary Fig. 4f). We confirmed that ISG expression
segregated into an early and late phase, with the on/fast-off compo-
nent containing genes stimulated by IFNγ, IFN α/β or a combination of
both (Supplementary Fig. 4g).

For both models, GENIE3 scores indicated that these ISGs were
regulated by a common set of TFs, namely IRF1, STAT1, STAT2, IRF7
and IRF9, (Fig. 3d), independent of tumour type. When the strength of
these regulatory interactions are compared to all other interactions
using hive plots29, these TF to ISG connections dominate (Fig. 3e, f) in
both models, reinforcing the essential contribution of these IFN-
associated TFs to the dynamic response. Taken together, these results
show that on/fast-off dynamics in IFN signalling are associated with
response to ICB, driven by common transcription factors across dif-
ferent tumour models.

Dynamic on/fast-off targeting of IFNβ improves response to ICB
Because there is a large overlap in ISGs that are induced by type I or
type II IFNs, we were unable to resolve which IFN type was driving the
response based on the transcriptomic data alone and therefore inter-
rogated this experimentally. To phenocopy the active IFN signature
in vivo, prior to ICB,wepre-treatedmicewith intra-tumoural injections
of poly(I:C), which is known to induce both type I and II IFNs, parti-
cularly IFNβ (Supplementary Fig. 5a, b)30. Tomimic the subsequent on/
fast-off-IFN signature, ICBwas followed three days later by functionally
blocking either type I or type II IFN signalling, using antibodies against
the IFNα/β receptor (IFNAR1), IFNγ, or both (Fig. 4a). These studies
were first done in AE17 mesothelioma, which is relatively resistant to
ICB17. Pre-treatment with poly(I:C) improved the response rate to ICB
(0% vs. 26.7% complete responders), which was significantly enhanced
by the subsequent blockade of type I IFN (53.3% complete response,
p =0.034, Logrank test), but not type II IFN (Fig. 4b). We confirmed
these findings in the AB1 mesothelioma model (33.3% vs 53.3% com-
plete responders, Supplementary Fig. 5c). In both models, the bene-
ficial effect of blocking type I IFN after administration was negated by
blocking type II IFN simultaneously, which is in line with reports in
patients with tumour defects in IFNγ signalling associated with
acquired resistance to ICB31. These results demonstrate not only that
type I IFNwas responsible for the observed on/fast-off dynamics of IFN
signalling in responders, but that these dynamics indeedmediated the
therapeutic response. To explore the biological relevance of these IFN
dynamics,we assessed the effectof blocking IFNAR1 before rather than
after ICB initiation, or concomitantly with poly(I:C) prior to ICB. This

treatment completely abrogated both the response to ICB and the
priming effect of poly(I:C). However if IFNAR was blocked after treat-
ment with poly(I:C) alone, there was no detriment to the anti-tumour
response, confirming the crucial time-dependent nature of IFN sig-
nalling underlying the therapeutic response to ICB (Supplementary
Fig. 5d–g).

To further dissect these on/fast-off type I IFN dynamics, we first
looked for signatures to computationally deduce the IFN subtype
present in the responder tumour microenvironment. We used
single-cell RNAseq data from cells stimulated with a diverse array of
cytokines, including IFNβ32, to construct a reference matrix using
CIBERSORT33. We used this reference matrix to perform a decon-
volution analysis on our bulk RNAseq data, which demonstrated
that genes associated with IFNβ signalling, but not other cytokines,
followed the on/fast-off IFN pattern in responders in both AB1 and
Renca tumour models, suggesting IFNβ rather than IFNγ was
responsible for these observed dynamics (Fig. 4c, d and Supple-
mentary Fig. 6a, b). To confirm this, we treated AE17 tumour-bearing
mice 3 days after administration of ICB with antibodies against
either IFNβ, IFNα (subtypes A, 1, 4, 5, 11, and 13) or their shared
receptor IFNAR134. Mice treated with the antibody against IFNβ had
a similarly increased response rate following ICB as themice treated
with the anti-IFNAR1 antibody (60% and 55.6% complete response
vs. 10%), while mice treated with anti-IFNα displayed no increase in
response versus controls (Fig. 4e). We repeated these experiments
in the Renca model, which exhibited the same benefit of blocking
IFNAR1 or IFNβ (22.2% and 40% complete response vs 0%), but not
IFNγ or IFNα (Fig. 4f). We conclude that the beneficial effect of on/
fast-off kinetics in type I IFN signalling after ICB is entirely depen-
dent on switching off IFNβ.

As intra-tumoural administration of poly(I:C) is not approved for
use in clinical practice in combination with ICB, we tested whether
similar results could be achieved in the absence of initial IFN induction
by poly(I:C). Time staggered blockade of type I IFN again improved ICB
efficacy in AB1-bearing mice, which was dependent on IFNβ (Fig. 4g
and Supplementary Fig. 6c), and we confirmed these findings in the
AE17 and Renca models (Supplementary Fig. 6d, e). Although the
response could be increased by blocking IFNβ after ICB, priming with
poly(I:C) first to mimic the “on” IFN signature gave optimal results.
Having established that blocking IFNAR1 abrogated the effect of
poly(I:C) (Supplementary Fig. 5f), we investigated whether IFNα or
IFNβ activity was driving the “on” signal in responders using recom-
binant cytokines. We found that priming with IFNβ, but not IFNα,
increased the response to ICB (p =0.012, Logrank test), andmimicking
the on/off IFN signature targeting IFNβ was superior to targeting IFNα
(p = 0.027, Logrank test) (Fig. 4h). Notably, the temporal aspect of
scheduling the respective treatments was crucial, as treatment with
anti-IFNβ concomitantly with ICB did not offer any therapeutic benefit,
in contrast to administration 3 days after the first dose of ICB (Fig. 4i).
These results confirm that temporal restriction of IFNβ activation
underlies response to ICB.

To further define how these early kinetics of IFNβmodulates the T
cell response later on during the therapeutic response, we dosed
tumours with either recombinant murine IFNβ for 6 days (chronic) or
for 3 days followed by an anti-IFNβ antibody (on/off), and analysed
tumours by flow cytometry. On/off IFNβ signalling resulted in
enhanced recruitment of CD8+ and CD4+ T cells (Fig. 4j, l), which were
highly proliferative as defined by Ki67 expression Fig. 4k, m and Sup-
plementary Fig. 7). While having little effect on the expression of
checkpoints TIM3 and LAG3, on/off IFNβ activity upregulated PD-1
expression on CD8+ T cells, suggesting these are activated but not
terminally exhausted T cells35. Chronic IFNβ did not cause upregula-
tion of any immune checkpoints (Fig. 4k,m and Supplementary Fig. 7).
We did not observe any effect on Tregs (Fig. 4n), but cannot fully
exclude their involvement based on the literature regarding anti-
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CTLA4 in mice36. Together, these data suggest that the dynamics of
IFNβ signalling early-on during ICB affect T cell recruitment and
activation.

Inflammatory monocytes are the primary source of IFNβ in ICB
responders
To further understand where the on/fast-off IFN signal was derived
from, we performed single-cell transcriptome sequencing 1 h prior to
ICB (Fig. 5a). We interrogated responder and non-responder samples
using gene set enrichment analysis (Fig. 5b). We identified that parti-
cularly monocytes displayed elevated type I IFN signalling in respon-
ders (Fig. 5b). In particular, a specific monocyte sub-population drove
the on/fast-off-IFN gene signature found in our bulk RNAseq data

(Fig. 5b, c). These monocytes (cluster 1, Fig. 5d) displayed high Ly6c
expression (Fig. 5e), consistent with an inflammatory monocytic
phenotype37. Repeating gene regulatory network inference on this
single cell data confirmed that IRF1, IRF7, STAT1, IRF9 and STAT2 were
major transcription factors driving the response in these cells (Fig. 5f,
Supplementary Fig. 8a), supporting our network analysis results in
bulk samples. In addition, we confirmed CD11b+/Ly6Chi monocytes
attributed the highest expression of Irf1, a key ISG regulator, in tumour
samples by flow cytometry (Fig. 5g).

We performed RNA velocity analysis and observed a trajectory
from cluster 1 to cluster 2 monocytes characterized by a diminished
activation of ISGs (Fig. 5h). Individual ISGs velocities along this tra-
jectory are markedly diminished in non-responders compared to
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responders (Supplementary Fig. 8b). We, therefore, examined gene
velocities for IFN-relatedTFs and ISGs in the on/fast-off gene signature.
Hierarchical clustering showed separation of responder versus non-
respondermonocytes basedon ISG velocities (Supplementary Fig. 8b).
Along this trajectory, velocity analysis showed that monocytes down-
regulated transcription of ISGs such as Irf1, and this was more pro-
nounced in responders than non-responders (Supplementary Fig. 8c).
Both these results are consistent with the on/fast-off IFN dynamic we
observed in bulk RNAseq data (Supplementary Fig. 8d–f). In addition,
we saw a change in expression from Ly6chi to Ly6clo monocytes along
this trajectory (Supplementary Fig. 9a, b) and these changes at single
cell level were compatible with Ly6c expression over time observed in
the bulk RNAseq data (Supplementary Fig. 9c, d). As Ly6C1/2 is a
marker of blood derived inflammatory monocytes37, this suggests that
these transcriptionally dynamic cells are likely infiltrating the tumour
and differentiating. To further support this notion, we assessed the
expression dynamics of the blood-derived monocytic marker CCR238,
and found it followed the same kinetics as the Ly6c and on/fast-off
gene expression patterns (Supplementary Fig. 9e, f).

To confirmwhethermonocytes were indeed the source of IFNβ in
the tumour microenvironment, we used B6.129-Ifnb1tm1Lky/J mice,
which co-express IFNβ1 and eYFP from the Ifnb1 locus, bearing AE17
tumours39. Tumours were analysed by flow cytometry, one day after
intra-tumoural poly(I:C), which showed YFP-positive cells were all
CD45+, CD11b+, MHC-II−, F4/80−, CD11c− with the majority expressing
Ly6C, consistent with the single cell RNAseq results (Fig. 5i). To
establish if these IFNβ cellswere associatedwith response, we used the
bilateral tumour model in B6.129-Ifnb1tm1Lky/J mice, and analysed
tumours 2 days after ICB by flow cytometry. This data confirmed, on
the protein level, that responders hadmore IFNβ, whichwas expressed
by CD11b+Ly6C+CCR2+ cells (Fig. 5j). Together, these results pinpoint
CD11b+ monocytes as the key IFNβ producing cells in the tumour
microenvironment.

On/fast-off IFN signature inmonocytic cells correlate with T-cell
response in patients treated with ICB
Tovalidate our preclinicalfindings, we testedwhether activationof IFN
signalling also occurred in patients given ICB therapy, using single cell
RNAseq data from a cohort of treatment naïve breast cancer patients,
subsequently treated with anti-PD-1 and with paired T cell expansion
data25. In this dataset, biopsies were taken prior to treatment with ICB
and couldbe correlatedwith T cell expansion after treatment, a known
indicator of clinical efficacy. In our analysis, we interrogated expander
(responsive) and non-expander (non-responsive) samples pre-
treatment using gene set enrichment analysis which confirmed a
globally elevated on/fast-off IFN signature in expanders, which was
highest inmyeloid cells (Fig. 5k and Supplementary Fig. 10).Within the
myeloid cell cluster, we found the CCR2+ subpopulation in expanders

highly expressing the on/fast-off-IFN gene signature, consistent with
our findings in the murine models of tumour-infiltrating inflammatory
monocytes being the predominant source of type I IFN activity and
IFNβ in particular (Fig. 5i, j, l and Supplementary Fig. 10). Furthermore,
we demonstrate that our on/fast-off-IFN signature was superior in
predicting response (Supplementary Fig. 10e), supporting the gen-
eralisability of our signature to human data.

Discussion
Here, we report that on/fast-off activation of IFNβ in cancer is required
for the therapeutic response to ICB, we dissect the contribution of
IFNβ versus IFNα in the anti-tumour immune response, andweprovide
an example of time-dependent activation and inhibition of a drug
target being required to achieve optimal anti-cancer effect.

Clinical studies have shown that an IFN gene signature is asso-
ciatedwith treatmentwith ICB, and that an IFN-mediated signature can
predict response13,19,40,41. However, the dynamic nature of an orche-
strated innate and adaptive immune response against cancer cannot
be adequately interpreted from a single snapshot6,9. Ideally, tumour
biopsies would be frequently obtained early during ICB treatment to
identify underlying mechanisms of response, but perhaps with the
exception of some bone marrow cancers, this is usually not feasible
due to anatomical tumour location and the requirement for invasive
procedures. In addition, given the presence of intra-patient tumour
heterogeneity, repeat biopsies may not provide a consistent repre-
sentation of the tumour microenvironment42. Moreover, inter-patient
heterogeneity makes it difficult to identify small yet meaningful bio-
logical differences underlying the response to ICB. Preclinical studies
using cell line-derived tumours in syngeneic mice can negate some of
these issues, including patient and tumour heterogeneity. Typically,
comparisons are made between responsive and non-responsive
tumour mouse models, or between untreated and treated mice43,
sometimes with suboptimal dosing as not to destroy the biological
read-out of the perturbed tumour microenvironment44. We further
refined this approach by comparing responders and non-responders
to ICB within the same tumour model, sampling entire tumours over
time7. Specifically, the bilateral models that we used are fully internally
controlled; responders and non-responders are equally exposed to the
relevant experimental variables, including potential inflammation
associated with cancer cell inoculation, tumour size, surgical tumour
removal (with sham surgery having no effect on symmetry7,16) and
anaesthesia, in addition to the inherent genetic and environmental
homogeneity of using inbredmice. Yet,micedisplay a stark dichotomy
in response within themodels. This difference in outcome is likely due
to the stochastic nature of the induction of an effective anti-cancer
immune response, which contains many switches, thresholds and
feedforward and feedback loops45. Importantly, these models allowed
us to identify dynamic immune response-intrinsic changes that govern

Fig. 4 | Targeting IFNβ in a directionally opposite, time-dependent manner
improves the response to ICB. a Treatment strategy. b Survival curves of AE17-
bearingmice treatedwith poly(I:C), ICB followed by antibodies blocking type I and/
or II IFN (n = 15 per group). c, d Deconvolution analysis on bulk RNA seq data from
AB1 (c) andRenca (d) using an IFNβ-stimulatedT cell signaturebetween responders
(red) and non-responders (blue). N = 8 to 12 biologically independent samples per
group. Data presented as mean, bars represent standard deviation. *p ≤0.05,
**p ≤0.01, ****p <0.0001 from two-way ANOVA with Tukey’s multiple comparisons
test. e Survival curves of AE17 bearing mice treated with poly(I:C), ICB followed by
antibodies against the type I IFNs, IFNα or IFNβ compared to blocking their
receptor IFNAR (n = 5 per group). f Survival curves of Renca-bearing mice treated
with poly(I:C), ICB followedby antibodies against the type I and/or II IFN (n = 5 or 10
per group). g Survival curves of AB1 bearing mice treated with ICB followed by
antibodies against type I and/or II IFN (n = 5 to 15 per group). h Survival curves of
AE17-bearing mice treated with recombinant IFNα or IFNβ and ICB followed by
antibodies blocking IFNα or IFNβ (n = 6 to 10 per group). i Survival curves of AE17-

bearing mice treated with poly(I:C) and ICB, with antibodies blocking IFNβ given
concurrently or 3 days after the first dose of ICB (n = 5 per group). b, e–i; p values
from Logrank test, compared to control “Poly(I:C) + ICB + isotype” or “ICB +
isotype”. Dashes on x-axis represent day of dosing: black = poly(I:C) or rIFN, yel-
low= ICB, red = anti-IFN antibody. j–nMice bearing AE17 tumours were given PBS,
recombinant IFNβ i.t. daily for 6 days (chronic) or daily for 3 days followed by an
anti-IFNβ antibody (on/off). Tumours were harvested and analysed by flow cyto-
metry. j Proportion ofCD8+ T cells.k Proportionof CD8+ T cells expressing immune
checkpoints shown as%ofCD45+ cells. lProportion of CD4+ T cells.mProportion of
CD4+ T cells expressing immune checkpoints shown as % of CD45+ cells.
n Proportion of Treg (FoxP3+) or T-helper (FoxP3-) CD4+ T cells as % of CD45+ cells.
N = 5 biologically independent samples per group. j and l Box boundaries are the
25th and 75th percentiles, the horizontal line across the box is the median, and the
whiskers indicate theminimumandmaximumvalues. P values calculated from two-
way ANOVA with Tukey’s multiple comparisons test. Source data are provided in
the Source Data file.

Article https://doi.org/10.1038/s41467-022-32567-8

Nature Communications |         (2022) 13:4895 7



the therapeutic outcome in a highly homogenous genetic and envir-
onmental background.

Our results show that the on/fast-off dynamics of IFNβ signalling
are crucial to the response to ICB, which can be therapeutically
exploited using antibodies against IFNβ or its receptor IFNAR1,
resulting in enhanced tumour clearing. Others have shown that sec-
ondary ICB-resistant cancers, which are cancers that initially respon-
dedbut then relapsed, display chronically active IFN signalling46,47. This

has resulted in the suggestion to co-treat patients with JAK inhibitors,
which block both type I and II IFN signalling46. We extend these find-
ings by demonstrating in intrinsically responsive tumours that type I
IFN only, and more specifically IFNβ only has a dual function and that
the response rate and depth of response can be improved by ther-
apeutically mimicking these on/fast-off dynamics. We did not observe
these effects when we blocked IFNα using an antibody that is specific
for 5 subtypes34. We cannot exclude that other IFNα subtypes have an
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equally inhibitory effect on the therapeutic response. In contrast to
previous studies that showed that chronically active IFN signalling
causes relapse following ICB treatment46,47, our data do not indicate
that chronic IFNβ causes resistance, as such, but rather that a robust
amplitude and short on/off timing are required for the initial ther-
apeutic response.

Validation of these preclinical findings in patient samples is diffi-
cult, given the aforementioned issueswith obtaining repeated samples
in patients. However, using our bilateral mouse models, a previously
identified gene expression signaturepredictive for response16 has been
extensively and independently validated by others by directly com-
paring the mouse data with multiple patient cohorts across different
tumour types and different ICB antibodies19–21. In addition, we con-
firmed the presence of known indicators of clinical efficacy following
ICB, such as increased CD8 T cell infiltration24. Lastly, several other
groups have now independently demonstrated that bilateral models
identify important and translationally relevant biology in the context
of ICB18,48. We identified the requirement for on/off IFNβ activity in the
context of ICB in three mouse models, across two strains, but further
future validation in other tumour models is warranted.

In order to further validate our preclinical findings, we used single
cell RNAseq data from a cohort of breast cancer patients treated with
anti-PD-125, which confirmed that inflammatory tumour-infiltrating
monocytes were mainly responsible for the on/fast-off IFN signal in
these patients, and that enrichment of these cells was correlated with T
cell expansion. Although these patient samples do not provide the
temporal granularity of four-time points or definitive clinical response
data, like our murine study does, which limits the ability to identify
kinetic mechanisms underlying ICB efficacy, they do highlight the
contribution of monocytes in the response to ICB. Whether the down-
regulation of IFNβ is involved in driving the T cell response, or whether
chronic IFNβ signalling provides cancer cells with a survival advantage
under immune pressure remains to be established. Interestingly, in that
context, it has been reported that cancer cells that are unable to
downregulate the IFNAR1 receptor during melanoma development
respond better to ICB compared to normal melanoma cells49. Although
the validation of the results in clinical samples provides confidence that
the therapeutic targeting of IFNβ in a time-dependent manner could
improve the response to ICB in patients, future clinical trials are needed
to assess IFNβ as a biomarker and dynamic drug target to define the
optimal time to start blocking after ICB.

The finding that time-dependent aspects of type I IFN signalling
contribute to a powerful anti-tumour immune response resonateswith
findings from viral immunology, where type I IFN is required for acute
clearance of viral infections such as hepatitis C, and it is even used
therapeutically in that context50. Yet, paradoxically, blocking IFNAR1
can be beneficial for the control of chronic viral infections, as has been
shown for LCMV or coronavirus infections34,51–53. We propose that the
anti-tumour response following ICB mimics aspects of the acute or
chronic anti-viral immune response, resulting in either swift regression

or non-response, respectively. This notion is also in line with recent
findings showing inflammatory monocytes as major responders to
type I IFNproduction in viral immunity, aswell as our results and those
from others in the context of ICB in cancer54,55.

The interaction between the immune system and cancer cells is
often conceptualized as a cycle, which can be pushed at any level, at
any given time, to induce the appropriate momentum56. Instead, our
data suggest a continuous changing landscape of the immune
response, where interventions have a time-dependent effect, even to
the point that the exact same target must be modified in a diame-
trically opposite manner; by providing excess recombinant IFNβ first,
followed by blocking antibodies against IFNβ later. In oncological
treatments in general, drugs, including in combination, are typically
administered empirically until they are no longer effective or toxicities
preclude continuation. Our results challenge this approach and could
have important implications for drug discovery research, demon-
strating that in order to obtain optimal clinical effect, some targets
need to be therapeutically modulated in a time-dependent, bidirec-
tional manner. As recombinant IFNβ has been FDA approved for
multiple sclerosis and antibodies targeting the IFNβ/IFNAR1 pathway
have been fully developed in the context of autoimmunity57, these
results can be readily translated into the clinic.

Methods
Statement
All animal experiments described in this study were performed
according to animal protocols approved by the Harry Perkins Institute
for Medical Research animal ethics committee. This article does not
contain any studies with human subjects performed by any of the
authors.

Mice
BALB/cArc, Balb/cAusB, C57BL6/J or Ifnb1tm1Lky/J mice (C57BL6/J back-
ground) 8–12weeksof agewereused for all experiments. BALB/cArc or
C57BL6/J mice were obtained from the Animal Resource Centre
(Murdoch, WA), Balb/cAusB mice were obtained from the Harry Per-
kins Institute for Medical Research Bioresources Centre South (Mur-
doch, WA). Ifnb1tm1Lky/J mice, generated by knock-in of a yellow
fluorescent protein (YFP) reporter cassette into the endogenous Ifnb
locus39, were imported from The Jackson Laboratory (Bar Harbour,
Maine) and maintained at the Harry Perkins Institute for Medical
Research Bioresources Centre South (Murdoch, WA). All mice were
housed at theHarryPerkins Institute ofMedical ResearchBioresources
Facility North under specific pathogen-free conditions. Mice were fed
Rat andMouse cubes (Specialty Feeds, Glen Forrest, Australia) and had
access to water ad libitum. Cages (Techniplast, Italy) were individually
ventilated with filtered air, contained aspen chips bedding (Tapvei,
Estonia) and were supplemented with tissues, cardboard rolls and
wood blocks as environmental enrichment, and were changed every
14 days. Mice were housed at 21–22 °C, 60% humidity with 12 h light/

Fig. 5 | Single cell analysis identifies inflammatory monocytes as the primary
source for IFNβ and on/fast-off type I IFN signalling in the responsive tumour
microenvironment. a UMAP visualization and annotation of cell subtypes from
AB1 tumours prior to ICB (n = 6; 3 responders, 3 non-responders, 17935 cells).
b Differential enrichment of type I interferon production in different cell subsets
between responders and non-responders, the white line represents mean. c UMAP
showing a gradient of diminishing on/fast-off ISG enrichment located in the
monocyte cluster.d Identificationof 3distinctmonocyte sub-clusters, highglighted
on the UMAP plot, with conserved markers e for each cluster, separated by
response. f IFN-related TF activation across AB1 monocyte clusters. g Flow cyto-
metry of Irf1 expressing cell populations (n = 6, p-value from two-sided
Mann–Whitney U test, data presented as mean with error bars represent standard
deviation). h Velocity analysis across monocyte clusters projected onto the UMAP
plot. Arrows denote transcriptional gradient from cluster 1 to cluster 2. i Flow

cytometry of poly(I:C) treated AE17 tumours from Ifnb1tm1Lky mice to identify the
phenotype of IFNβ producing cells (representative sample). j Flow cytometry on
AE17 tumours from Ifnb1tm1Lky mice two days after ICB, with response defined using
the bilateral tumour model (n = 4 responders, 2 non-responders), to show the dif-
ference in IFNβ production from CD11b+Ly6C+CCR2+ cells. p-value from unpaired
t-testwithWelch’s correction. Box boundaries are the 25th and75th percentiles, the
horizontal line across the box is the median, and the whiskers indicate the mini-
mum and maximum values. Source data are provided in the Source Data file.
k Enrichment of the on/fast-off signature in different cell subsets from patient
breast carcinoma pre-treatment biopsies, comparing patients with and without T
cell expansion after PD-1 therapy, black line represents mean. (n = 9 expanders, 20
non-expanders, 75790 cells). l Enrichment of the on/fast-off signature in a subset of
patient tumour-derived myeloid cells (CCR2+), comparing expanders and non-
expanders pre-treatment (n = 9 expanders, 20 non-expanders).
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dark cycle (06:00–18:00). Sentinel mice (n = 3) in the animal facility
were screened monthly for a standard panel of bacteria and fungi,
ectoparasites, endoparasites, non-pathogenic protozoa and viruses
(Cerberus Sciences, Australia). All experiments were conducted in
compliance with the institutional guidelines provided by the Harry
Perkins Institute for Medical Research animal ethics committee
(approval numbers AE047, AE091, AE157, AE201).

Cell culture
Cell lines AB1 andAE17were obtained fromCellBankAustralia. Cell line
Renca was kindly donated by Dr. E. Sotomayor and Dr. F. Cheng
(University of South Florida, Tampa, FL). Cell lines were maintained in
RPMI 1640 supplemented with 20mM HEPES, 0.05mM 2-mercap-
toethanol, 100 units/ml penicillin/streptomycin (Thermo Fisher), and
10% FCS (Invitrogen,Mulgrave, Australia). Cells were grown to 70–80%
before passage and passaged 3–5 times before inoculation. Cells were
frequently tested for mycoplasma by PCR and remained negative. Cell
lineswerevalidated yearlybyflowcytometry forMHCclass Imolecules
H2-Kb (consistent with C57BL/6) and H2-Kd (consistent with BALB/c),
and for fibroblast markers E-cad, EpCam and PDGFRα (negative) and
by PCR for mesothelin (positive for AB1, negative for Renca).

In vivo treatments
When cell lines were 70–80% confluent, they were harvested and
washed 3 times in PBS. 5 × 105 cells in 100μl were inoculated sub-
cutaneously (s.c.) onto the lower right-hand side (RHS) flank (for single
inoculations) or both flanks (for dual tumour inoculations) using a
single 26G needle per injection. Micewere randomized when tumours
became palpable, approximately 3–5 days after tumour inoculation.

Surgery experiments
A detailed protocol for the surgery experiments has been previously
described17. For the pre-treatment samples, tumours were resected
eight (AB1) or 10 (Renca) days post tumour inoculation, when tumours
were ∼9mm2, and mice were administered ICB 1 h after surgery. For
the post-treatment samples, tumours were resected 2, 4 or 6 days after
the first administration of ICB. Mice were dosed with 0.1mg/kg
buprenorphine in 100 μl s.c. (30min prior) and anesthetized using
isoflurane (4% in 100% oxygen at a flow rate of 2 L/min). Whole
tumours and the corresponding draining inguinal lymph node on the
right-hand side were removed by surgical excision and immediately
immersed in RNAlater (Life Technologies, Australia). The wound was
closed with staples (Able Scientific, Australia). Mice were placed in a
heat box for recovery. The remaining tumour was monitored for the
response as an indicator of response for the removed tumour. Mice
were designated as responders when their tumour completely
regressed, and they remained tumour free for up to 4 weeks after
treatment. Mice were designated as non-responders if their tumours
grew to 100mm2 within 4 weeks after start of treatment, similar to
saline-treated controls (Supplementary Fig. 1). Mice that had a delay in
tumour growth or partial regression were designated as intermediate
responders and excluded from the analysis. For internal consistency,
we only used experiments in which mice displayed a dichotomous
response, i.e. in any cage, there had to be at least one non-responder
amongst responders or vice versa.

In vivo ICB treatment
The anti-PD-L1 hybridoma (cloneMIH5) and the anti-CLTA4hybridoma
(clone 9H10) were cultured in IMDM containing 1% of FCS and genta-
mycin at Bioceros (Utrecht, The Netherlands). Clarified supernatants
were used to purify the antibody using affinity chromatography. The
antibodies were sterile and formulated in PBS. Alternatively, anti-
bodies from the same clones were obtained from BioXcell (New
Hampshire, US). Mice received an intraperitoneal (i.p.) dose of 100μg
of anti-CTLA4 and 100 μg anti-PD-L1 combined in 100μl phosphate-

buffered solution (PBS). Mice received additional doses of 100μg anti-
PD-L1 two and four days later. In previous experiments58, no difference
in the effect of control IgG versus PBSwas found, and therefore vehicle
controls received PBS alone.

Tumour preparation for RNA sequencing
Whole tumours and lymph nodes were surgically resected, the sur-
rounding tissuewas removed and immediately submerged in RNAlater
(Life Technologies, Australia). Samples were stored at 4 °C for 24 h,
after which supernatant was removed and samples transferred to
−80 °C. Frozen tumours were dissociated in Trizol (Life Technologies,
Australia) using a TissueRuptor (QIAgen, Australia). RNAwas extracted
using chloroform and purified on RNeasy MinElute columns (QIAgen,
Australia). RNA integrity was confirmed on the Bioanalyzer (Agilent
Technologies, USA). Library preparation and sequencing (50 bp, sin-
gle-end) was performed by AustralianGenome Research Facility, using
Illumina HiSeq standard protocols.

Alignment and differential expression
We processed a total of 144 RNA-seq single-end read samples across
four-time points in twomousemodels. After reviewing quality control
on all samples using FastQC software, we used Kallisto59 (v0.43.0) for
transcript abundance estimation. Following alignment, we performed
differential expression analysis with Sleuth (v0.29.0)60. We compared
responders and non-responders using a model containing time-point
and response as covariates using a likelihood ratio test.We aggregated
p-values from transcript differential expression to gene-level results
with transcript-to-gene mapping relying on the latest Gencode refer-
ence M25 (GRCm38.p6) using Lancaster’s method61. Genes were
deemed differentially expressed at a false-discovery rate of less than
5%, regardless of fold change (Supplementary Data 1).

RNAseq analysis of dynamic gene expression data
We used a deconvolution approach to deduce the cell subtypes pre-
sent in the responder and non-responder tumour microenvironment
at each time point. The CIBERSORTx33 algorithm was used to estimate
the relative proportions of 22mouse hematopoietic immune cell types
based on the transcriptomic profiles of each sample, using the LM22
matrix as a reference.We broadly classified the 22 cell sub-types into 9
major populations by collapsing several related subpopulations as
follows: B cells include memory, naïve, and plasma cells; CD4 T cells
include CD4 memory resting, memory activated, naïve, follicular
helper; macrophages include M0, M1, and M2 phenotypes; NK cells
include activated and resting cells; dendritic cells include activated
and resting cells; granulocytes include neutrophils, mast cells resting,
mast cells activated and eosinophils. Before analysis, transcript-level
data were library-sized, and gene length normalized to TPM. Raw data
for all subpopulations is available in the Source Data File. Comparison
of CD8+ T cell score in responders and non-responders for each time-
point was done by one-way ANOVA with Benjamini–hochberg cor-
rection for multiple comparisons (Supplementary Data 2).

We clustered time course RNAseq data using the fuzzy c-means
(FCM) clustering algorithm Mfuzz62 in the TCseq package26. Z-normal-
ised/scaled counts were used in the algorithm and expression profiles
were grouped clusters (k =6) based on their dynamic patterns.We used
a Pearson correlation score on trend lines to compare trends of each
cluster between responders and non-responders, to identify which
patternswere unique to responders. Eachmatching cluster between the
two models had overlapping genes extracted (Supplementary Data 3)
and enrichment of per-cluster genes was performed using Enrichr63.

To acertain transcription factors involved in these processes, we
constructed two networks, one for Renca responders and one for AB1
responders. We used the GENIE3 algorithm27, which achieved the best
performance on the DREAM5 network inference challenge64. To con-
struct each gene regulatory network, we used 36 responder samples
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across all time points as input to the GENIE3 algorithm. Since GENIE3
requires gene counts as input, we summarized transcript abundances
derived from Kallisto as gene counts using the Bioconductor
tximport65 package. We ran GENIE3 (v1.8.0) with default parameters
(treeMethod = “RF”, k = “sqrt”, nTrees = 1000).

We pruned GENIE3 output to isolate biologically relevant edges,
incorporating DE information and transcription factor binding site
predictions from JASPAR66 (Supplementary Fig. 4). We identified and
retained “direct connections”, defined as connections between a
transcription factor (TF) to differentially expressed genes only if the
TFBS for the TF was situated in a genomic window 400 base pairs
upstream or 300 base pairs downstream of a DE gene’s transcription
start site (TSS). TSS sites for differentially expressed genes were
obtained from the UCSC genome browser67. The BEDtools68 “window”
function was used to obtain all direct regulatory interactions and
GENIE3 importance scores appended to these interactions using the R
data.table package (v1.12.2). We plotted the top 100 regulators ranked
by GENIE3 importance score per mouse in time by response. Genes
were grouped by k-means clustering, resulting in 4 main modules
based on based on expression profiles across time (Supplemen-
tary Data 4).

Network visualization and analysis of IFN-stimulated genes
We visualized the induced subgraph of the top ten nodes and their
first-order neighbours in both AB1 and Renca using the R igraph
package with the Kamada-Kawai69 layout. We assigned colour to genes
in the network by their average gene expression across time, normal-
ized by Z-score. From inspection of these graph visualizations, we
confirmed in both AB1 and Renca that these subnetworks were enri-
ched for interferon-related transcription factors (Irf1, Stat1, Stat2, Irf7,
Irf9) and their direct downstream targets. Pathway analysis on these
hubs using Enrichr showed statistically significant enrichment of terms
relating to both Type I and Type II interferon signalling, suggesting
that dynamic changes in these two pathways were crucial to the
checkpoint blockade response.

To identify ISGs involved inType I andType II interferon signalling
in these direct networks, we first constructed gene list from gene sets
for interferon alpha/beta signalling and interferon gamma signalling
from the Molecular Signature Database (MSigDB)28,70 converted into
theirmouse equivalents using BioMart71. After conversion, we retained
88/97 genes from the alpha dataset and 186/200 genes from the
gamma dataset (Supplementary Fig. 4).

To obtain the fast-on/off signature used in our analysis, we refined
the gene list described above by leveraging expression data for AB1
and Renca data. Specifically, we performed K-means clustering on
these genes across the 4 experimental time points, isolating a “fast-on/
off” subset of genes which showed upregulation in Day 0 in AB1 and
Day 2 in Renca responders. The complete on/fast-off IFN gene sig-
nature mapped to human orthologs is given in Supplementary Data 5.

We confirmed, based on GENIE3 scores, that regulation of these
on/fast-off genes was confined to just 5 key interferon-related tran-
scription factors - Irf1, Stat1, Stat2, Irf7 and Irf9, with minimal reg-
ulatory impact from other transcription factors in these networks
(Supplementary Fig. 4 and Fig. 3). To visualize TF-to-ISG GENIE3 scores
and expression profiles for ISGs common to both AB1 and Renca net-
works, we used the RComplexHeatmap72 package. GENIE3 scoreswere
extracted from each direct regulatory network, setting any non-
existent interactions in the matrix to zero prior to visualization.

Hive plot generation
To overcome visual biases from traditional network layouts, we used a
hive plot visualization29. For each network, we used a 4-axis hive plot in
the HiveR package, allowing us to partition edges to visualize
interferon-related signalling in our networks. The following axes were
used, colour coded in the following way (Fig. 3d, e): Red axis –

interferon related TFs (IRF1, STAT2, STAT1, IRF7 and IRF9); Green axis
– non-interferon related important TFs, comprising the union set of
top TFs from both networks in Supplementary Fig. 4; Purple – Down-
stream gene targets in the “on/fast-off ISG set”; Blue – Other genes in
the direct networks not in 1, 2 or 3. For axis 3, the fast-ISG set was
derived fromk-means (k = 2) clustering on time course expressiondata
from theAB1 responder data set. This node topology allows us tomore
easily visualize the “quadrant” of graph edges from IFN-related TFs to
on/fast-off-ISGs, demonstrating that this quadrant contained edges
with high valueGENIE3 scores (above0.9quantile) denoting important
dynamic regulatory links in the network.

Single cell sample pre-processing
AB1 and renca tumours were surgically removed 1 h prior to ICB
administration and immediately submerged in cold PBS, cut into
1–2mm pieces with a scalpel blade and dissociated using the Gentle-
MACS system (Miltenyi). Cell suspensions were frozen in RPMI med-
ium containing 50% FCS and 10% DMSO. Cryopreserved single cell
suspensions were rapidly thawed in a 37 °C water bath and prepared
for single cell library construction as previously described73. Libraries
were constructed using the 10X Chromium 3’ workflow (version 2
chemistry) as per the manufacturer’s directions. We aimed to capture
9000 cells per sample. Libraries were quantified using the TapeStation
D1000 kit (Agilent). Sequencing was performed by Novogene, using
NovaSeq S2 flowcell sequencing protocols.

For single cell analysis, weprocessed FASTQfiles from6AB1 and 6
Renca samples using cellranger v3.0 (10X genomics). For each sample,
we performed demultiplexing and read alignment using the cellranger
count function, using cellranger’s pre-supplied mm10 reference with
an expect-cells parameter of 6000.

Clustering, visualization and cell annotation
We used the Seurat74 (version 3.14) R package to combine samples for
downstream analysis. Gene counts were normalized against both
sequencing depth and also against the percentage of mitochondrial
DNA in each cell using negative binomial regression. The resulting
Pearson residuals from these processing steps were used for down-
stream PCA, cluster identification and UMAP embedding and
visualization.

To avoid subjective biases in cell identification, we used an auto-
mated labelling strategy based on bulk RNAseq references. The R
package SingleR75 was used in “cluster mode” using species-specific
annotation references provided with the package. For annotation of
human single-cell data, we used the human primary cell atlas ref. 76.
For annotation of mouse data, we used the mouse RNAseq dataset
from Benayoun et al.77.

Clusters were defined from Seurat’s FindClusters function at
default (0.8) resolution. Similarly, labelled clusters were merged. We
confirmed that this approach was robust to cluster size by showing
that labels were consistent even when cluster size was modified by
changing resolution parameter in the FindClusters function. We per-
formed annotation diagnostics by checking cell cluster identities in
our AB1 and Renca samples against the ImmGen78 reference. We found
both references to be in agreement. The distribution of cell types and
monocyte clusters between responders and non-responders is pro-
vided in Supplementary Data 6 visualised using the scCODApackage79.

Single cell differential expression analysis and conserved mar-
ker analysis
We performed differential expression using the FindMarkers function
in Seurat. Genes were deemed differentially expressed at an absolute
log-fold change of 0.5 and a q-value of below 0.05 using the non-
parametric Wilcoxon test. In Renca, we observed far fewer differen-
tially expressed genes between responders and non-responders at Day
0 across all cell types, consistent with our bulk RNAseq data.
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Label transfer and interspecies integration of single-cell data
samples
We used Seurat’s “label transfer” functions, allowing cell identities
from a reference sample to be projected onto our target dataset to
identify tumour cells and to compare monocytes from mouse and
human single-cell data. To construct a reference sample of mesothe-
lioma cells, we sequenced samples fromAB1mesothelioma tumours in
which the tumour cells were tagged with influenza hemagglutinin80.
The cellranger indexwas rebuilt to incorporate the tag sequence. After
alignment, any cell containing the HA-tagwas labelled as a tumour cell
and used as a reference for label transfer. Clusters containing more
than 10% tumour cells were deemed to be putative tumour clusters.

To label Renca tumour cells, we used a referencedataset ofmouse
kidney single cells81 in which the authors identified gene markers
mapping to anatomical elements of the mouse renal tubular system,
since these Renca tumours recapitulate renal tubule elements. We
selected clusters that expressed the highest average expression of
markers specific proximal and distal tubules (Lrp2, Slc27a2). Cells in
these reference clusters had their identities projected onto the Renca
dataset.

Copy number variation analysis in tumour cells
Tumour cells usually display evidence for somatic large-scale chro-
mosomal copy number alterations, such as gains or deletions of entire
chromosomes or large segments of chromosomes. We used the
inferCNV R package82 to check tumour cell identity after label transfer.
In both AB1 and Renca, tumour clusters labelled by Seurat’s projection
strategy were in good agreement with clusters of cells deemed to be
tumour clusters based on the existence of copy number changes
inferred by inferCNV.

Gene set enrichment analysis on single cell data
We used the SCDE/pagoda83 package, which detects statistically sig-
nificant coordinated variability at the single cell level. Briefly, from the
original 38 K cells in our AB1 samples, we constructed KNN error
models for the 17 K surviving default SCDE’s library size filters. For
gene sets,we testedGO terms for interferonproduction and interferon
response extracted from theorg.Mm.eg.db Bioconductor package and
also our “custom” gene set of fast-ISGs derived from bulk expression
data. We visualized enrichment scores using python’s Seaborn scatter
plot with a colour scale mapped to enrichment score intensity.

Single cell analysis on the validation dataset of human breast can-
cer patients25 was conducted using the escape84 R package (v1.3.1),
which provides convenience functions for the GVSA algorithm85. Ran-
domsubsampling (without replacement)wasperformed to create input
batches of 20,000 cells to the GVSA algorithm, and the results were
pooled for visualization with the R ggplot2 package86. Filtering, nor-
malization and scaling were performed as outlined in the original
paper25. Cell clusters were labelled using the labels assigned by the
authors. The statistical significance of “global” pathway enrichment in
both the mouse and human data and magnitude of cell-specific differ-
ential pathway enrichment (comparing responders vs. non-responders
across cell types) is shown in Supplementary Data 7. Pagoda2 over-
dispersion analysiswasused to compare enrichment scores of gene sets
(Supplementary Data 7). We used the interferon gene signature from
Bassez et al.25. We used pre-ranked GSEA to compare signature enrich-
ment between responders and non-responders (Supplementary Data 7)
using the product of log fold-change and p-value as a metric87.

SCENIC network analysis
We performed network inference to analyse our single-cell data using
SCENIC88.We summarized the result of these analyses using adifference
heatmapbetween responders and non-responders of average binarized
TF activity per Seurat cluster. Specifically, the regulon binarization
scoreswereaveragedacross clusters, separatedby the response and the

difference between responder and non-responder averages were
visualized using the R pheatmap (v1.0.12). To visualize these results, we
created a heatmap showing the difference in percentage of TF activa-
tion per cluster for the IRF-related TF (Irf1, Stat1, Stat2, Irf7 and Irf9)
(Fig. 5f). The full heat map of differential transcription factor activation
in AB1 monocytes is displayed in Supplementary Fig. 8.

Velocity analysis
RNA velocity quantifies cell transcriptional activity by modelling the
time derivative of gene expression states. We used the velocyto89

package for this analysis. Per-sample loomfiles, containing quantified
spliced vs. unspliced transcripts were combined using the python
loompy (v3.0.6) package. After count normalization, filtering and
feature selection on these genes, approximately 2.5 K genes survived
these filtering steps to be used for gene velocity modelling.

We compared “transcriptional momentum” of AB1 monocytes,
which we defined as the squared L2 norm for each cell’s embedding
vectors with respect to their UMAP90 coordinates. We compared KDE
distributions for momentum in various AB1 clusters, separated by the
response (Supplementary Fig. 8). To compare Renca and AB1 mono-
cytes, we repeated our velocity analysis on using an embedding of all
12 samples from both AB1 and Renca single-cell data. On this common
embedding, momentum calculations show that AB1 responders have a
higher transcriptional velocity than Renca monocytes in responders
(Supplementary Fig. 8).

As an additional check that differences in transcriptional
momentum were, in part, due to differences in interferon signalling,
we examined gene velocities for IFN-related TFs and ISGs in the on/
fast-off component gene set which survived the above-mentioned fil-
tering. We extracted the normalized velocities of 42 of these genes,
which survived data preprocessing. Hierarchical clustering showed
separation of responder versus non-responder monocytes based on
ISG velocities (Supplementary Fig. 8).

Cytokine stimulation estimation
We aimed to verify whether there was evidence of an IFNβ-induced
signature, irrespective of the cell type involved. We used the only
available dataset which compared known cell differentiation cytokines
under co-stimulatory conditions including IFNβ stimulation.Weused a
deconvolution approach to deduce the IFN subtype present in the
responder tumour microenvironment to share the weighting of genes
conserved across the different stimulatory conditions. The CIBER-
SORT algorithm31 was used to estimate the relative proportions of 7
cytokine-induced T cell signatures based on the transcriptomic pro-
files of each sample, where the induced T cell gene signature devel-
oped by Cano-Gamez et al.32 was used as a reference (Supplementary
Fig. 6). We broadly classified the 94 samples into 7 major populations
by collapsing several related sub-populations by their cytokine treat-
ment: IFNβ, Resting, Th17, Th2, Th1, Th0, iTreg to generate the refer-
ence file (Supplementary Data 8). Prior to analysis, gene count data for
both AB1 and Renca was normalized to TPM. The data were filtered to
retain genes with an TPM value >0.3 in at least 8 samples (being the
smallest experimental group size). CIBERSORT was run on AB1 and
Renca separately, with quantile normalization disabled as recom-
mended for RNAseq data.

IFN modulation drug dosing schedules
As we aimed to boost the IFN response using poly(I:C) in the tumour
microenvironment prior to administration of ICB to improve response,
the timing of administrationof ICB antibodieswas scheduled late, as to
have a low background response rate to ICB. Dosing with drugs com-
menced on day 12. Poly(I:C) (HMW, Invivogen) was dosed intratu-
mourally at 50μg daily for 3 days. Recombinant murine IFNα or IFNβ
(Biolegend) was dosed intratumourally at 40,000 U daily for 3 days.
ICB dosing began 3 days after the final dose of poly(I:C) or
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recombinant IFN, on day 17. For treatment arms which had ICB only,
dosing began the same day as poly(I:C) or recombinant IFN. Anti-
IFNAR1 (Bioxcell, clone MAR1-5A3, 0.5mg i.p.), anti-IFNγ (Bioxcell,
clone XMG1.2, 0.5mg i.p.), anti-IFNα (Leinco, clone TIF-3C5, 1mg i.p.,
which blocks subtypes A, 1, 4, 5, 11 and 13), anti-IFNβ (Leinco, clone
HDß-4A7, 0.6mg i.p.), or IgG2a isotype (Leinco, clone C1.18.4, 0.6mg
i.p.). Treatment began 3 days after the first day of ICB administration,
onday 20, and dosed every 3rd day for a total of 3 doses. For treatment
schedules without poly(I:C), treatmentwith ICB commenced onday 10
for AE17 or day 12 for AB1 and Renca, followed by anti-IFN treatment
3 days after. Treatments were administered by one investigator (RMZ),
while tumours weremeasured at least 3 times weekly using calipers by
another researcher (TC) who was blinded for treatment allocation, to
guarantee blinded assessment of the primary endpoint.

Flow cytometry of Irf1+ cells
For flow cytometric analysis of Irf1 gene expression in different cell
subsets, AB1 tumours (n = 6) were harvested 6 days after inoculation
and immediately submerged in cold PBS, cut into 1–2mmpieceswith a
scalpel blade and dissociated using the GentleMACS system (Miltenyi).
Fc block (anti-CD16/CD32, BD) was used for 10minutes on ice. Cells
were stained with Fixable Viability Stain 780 (BD) for 30minutes at RT,
to discriminate live cells. Cells were stained using antibodies for sur-
face markers for 30minutes at 4 oC (Supplementary Table 1). To
identify Irf1+ cells, we used the PrimeFlow Kit (cat # 88-18005-204,
Invitrogen). Briefly, cells were fixed in RNA fixation buffer 1, permea-
bilized with RNA Permeabilization buffer with RNase inhibitors, then
fixedwith RNA fixation buffer 2 before using Target Probes against Irf1.
The signalwas then amplified, followedby addition offluorescent label
probes (Alexa Fluor 647). Data were acquired on a BD Fortessa flow
cytometer and analysed using FlowJo software (TreeStar). Cells were
gated on Irf1+, followed by CD45+ to identify immune infiltrating cells,
and CD45− non-immune cells (e.g. tumour cells). Immune cell popu-
lations were analysed by their expression of CD11b and Ly6C: Ly6C−

Monocytes (CD11b+, Ly6C–); Ly6C+ Monocytes (CD11b+, Ly6C+, also F4/
80−, CD3−, CD335–); Other Ly6C+ cells (CD11b+/–, Ly6C+); and remaining
cells (CD11b−, Ly6C–). See Supplementary Fig. 11 for gating strategies.

Flow cytometry of YFP+ cells
For flow cytometric analysis to find which cells express IFNβ, we used
B6.129-Ifnb1tm1Lky/J mice, which co-express IFNβ1 and eYFP from the
Ifnb1 locus35. AE17 tumours (n = 3) were treated with poly(I:C) i.t.
21 days after inoculation and harvested 24 h later. To compare
responder and non-responder tumours, Ifnb1tm1Lky/J mice were given
bilateral AE17 tumours, treated with anti-CTLA4 and anti-PD-L1, and
one tumour was surgically removed 2 days after initiation of therapy.
Tumours were cut into 1–2mm pieces with a scalpel blade and dis-
sociated using the GentleMACS system (Miltenyi). Fc block (anti-CD16/
CD32, BD) was used for 10minutes on ice. Cells were stained with
Fixable Viability Stain 780 (BD) for 30minutes at RT, to discriminate
live cells. Cells were stained using antibodies for surface markers for
30minutes at 4 oC (Supplementary Table 1). To detect YFP+ cells, cells
were fixed using a cytofix/cytopermkit (cat # 554714, BD), then stained
using antibodies against GFP (YFP cross-reactive) in perm buffer
overnight. Data were acquired on a BD Fortessa flow cytometer and
analysed using FlowJo software (TreeStar). Cells were gated for single
and live cells. Cells were then gated on YFP + , which were also CD45+

indicating they are immune infiltrating cells. Immune cell populations
were analysed by their expression of CD11b and Ly6C. YFP+ CD11b+

immune cells were MHC-II–, CD11c−, F4/80–, Ly6G–, CD19–, CD3– and
NK1.1−. See Supplementary Fig. 12 for gating strategies.

IFNβ RT-PCR on sorted cell populations
To analyse IFNβ gene expression in different cell subsets, AB1 tumours
were treated with 50ug of Poly(I:C) (HMW, Invivogen) i.t. (n = 5) or

untreated (n = 5), 5 days after inoculation, then harvested 24h later.
Tumours were immediately submerged in cold PBS, cut into 1–2mm
pieces with a scalpel blade and dissociated using the GentleMACS sys-
tem (Miltenyi). Fc block (anti-CD16/CD32, BD) was used for 10minutes
on ice. Cells were stained with UV Zombie live/dead (Biolegend) for
30minutes at RT, to discriminate live cells. Cells were stained using
antibodies for surface markers for 30minutes at 4 °C. Cells were then
sorted into RNAlater (Invitrogen) for the following populations: non-
immune cells (CD45−); Ly6Chi monocytes (CD45+ CD11b+ Ly6Chi CD3−

CD335−), Ly6Clo/− monocytes (CD45+ CD11b+ Ly6Clo/− CD3− CD335−), and
the remaining immune cell (CD45+ CD11b−). RNA was extracted using
the RNAqueous-Micro Kit (cat# AM1931, Life Technologies). The
resulting purified RNA was reverse transcribed using a High-Capacity
cDNA Reverse Transcription Kit (cat# 4368814, Applied Biosystems).
Next, we performed RT-PCR using TaqMan Fast Advanced Master
Mix (Applied Biosystems) and TaqMan Assay mouse IFNβ1
(Mm00439552_s1, ThermoFisher) or mouse GAPDH (Mm99999915_g1,
ThermoFisher) in triplicate for each sample in aMicroAmp optical plate
(Applied Biosystems) using QuantStudio 7 Flex Real-Time PCR System
(Applied Biosystems). Ifnb1 expression was calculated as dCT of the
housekeeping gene GAPDH. ΔCt = Ct (Ifnb1) – Ct (GAPDH).

Power calculation
The sample size calculation for in vivo mouse experiments was based
on prior experiments in which we found that the median survival time
on the control treatment (ICB alone) was 35 days15,16. Using a propor-
tional hazards model we determined that, if the true hazard ratio
(relative risk) of control subjects relative to experimental subjects is 5,
we would need to study 10 experimental subjects and 10 control
subjects to be able to reject the null hypothesis that the experimental
and control survival curves are equal with probability (power) 0.8. The
type I error probability associated with this test of this null hypoth-
esis is 0.05.

Statistics
Differences in population frequencies in responders and non-
responders using flow cytometry were assessed using Mann-Whitney
U testing on means. Prism software (GraphPad) was used to analyse
tumour growth and for statistical significance of differences between
groups by applying a Mann–Whitney U test. P-values were adjusted for
multiple comparisons using the Benjamini-Hochberg (B-H) method;
those <0.05were considered significant. The Kaplan-Meiermethodwas
used for survival analysis, and p-values were calculated using the log-
rank test (Mantel–Cox). For comparison of tumour size when complete
response was not achieved, growth curves were analysed using the
TumGrowth package91. For comparison of deconvolution estimations,
we used two-way ANOVA with Tukey’s multiple comparisons test.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The RNA-Seq generated in this study have been deposited in the Gene
ExpressionOmnibus database under accession codeGSE153941 for the
bulkRNAseqdata, andGEO:GSE153942 for the single cell RNAseqdata.
The human breast cancer single-cell data (https://doi.org/10.1038/
s41591-021-01323-8) used in this study ispublicly available todownload
as read count data per individual patient at http://biokey.
lambrechtslab.org. Source data are provided with this paper.

Code availability
Code for the analysis in the main manuscript and the supplementary
data is available through GitHub (https://github.com/wlchin/
IFNsignalling, https://doi.org/10.5281/zenodo.6635312).
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