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Diverse cell-specific patterns of alternative
polyadenylation in Drosophila

Seungjae Lee 1, Yen-Chung Chen 2, FCA Consortium*, Austin E. Gillen3,4,5,
J. Matthew Taliaferro5,6, Bart Deplancke 7, Hongjie Li8,9 & Eric C. Lai 1

Most genes in higher eukaryotes express isoformswith distinct 3’ untranslated
regions (3’ UTRs), generated by alternative polyadenylation (APA). Since 3’
UTRs are predominant locations of post-transcriptional regulation, APA can
render such programs conditional, and can also alter protein sequences via
alternative last exon (ALE) isoforms. We previously used 3’-sequencing from
diverse Drosophila samples to define multiple tissue-specific APA landscapes.
Here, we exploit comprehensive single nucleus RNA-sequencing data (Fly Cell
Atlas) to elucidate cell-type expression of 3’UTRs across >250 adultDrosophila
cell types. We reveal the cellular bases of multiple tissue-specific APA/ALE
programs, such as 3’ UTR lengthening in differentiated neurons and 3’ UTR
shortening in spermatocytes and spermatids. We trace dynamic 3’ UTR pat-
terns across cell lineages, including in the male germline, and discover new
APApatterns in the intestinal stemcell lineage. Finally, we correlate expression
of RNA binding proteins (RBPs), miRNAs and global levels of cleavage and
polyadenylation (CPA) factors in several cell types that exhibit characteristic
APA landscapes, yielding candidate regulators of transcriptome complexity.
These analyses provide a comprehensive foundation for future investigations
of mechanisms and biological impacts of alternative 3’ isoforms across the
major cell types of this widely-studied model organism.

It is common practice to refer colloquially to “the genemodel”, a term
that implies a single isoform is generated following transcription and
processing of a given locus. In reality, the actions of alternative pro-
moter selection, alternative exon choices, and alternative cleavage and
polyadenylation sites – often in combinatorial fashion – can yield a
dizzying array of distinct isoforms from an individual gene. As such,
transcript isoforms can be subject to distinct regulatory regimes and/
or encode distinct proteins. The biogenesis of transcript isoforms is
regulated by diverse cis-motifs and trans-acting factors. Ongoing

challenges of many current investigations are to understand the
mechanistic bases of isoform generation, and the biological impor-
tance of generating multiple isoforms from a given locus.

Of these strategies that diversify isoforms, the breadth of alter-
native polyadenylation (APA) sites was recognized in the past decade.
Once considered as oddities of mRNA processing1–3, the advent of
deep sequencingmade it abundantly clear that amajority ofmetazoan
genes express multiple 3’ UTR isoforms4,5. Moreover, the relative
abundance of 3’ UTR isoforms is neither fixed nor haphazard. Instead,
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genomic analyses have documented myriad APA dynamics that coor-
dinately affect substantial cohorts of genes across development,
organogenesis and cell types, e.g. in invertebrates6–9 and
vertebrates10–14. As well, there are numerous instances where APA is
globally altered according to cellular behavior and external stimuli15–18.
Collectively, such studies implicate the existence of discrete reg-
ulatory mechanisms that can adjust the efficacy of cleavage and
polyadenylation at particular sites during primary transcript proces-
sing, and/or post-transcriptional mechanisms that selectively stabilize
or destabilize specific isoforms to bias the final pool of isoforms.

Although APA isoforms can be recognized and quantified from
conventional RNA-seq data19–21, most RNA-seq protocols tend to
undersample data at transcript termini (both 5’ and 3’). Instead,
nucleotide-resolution of the positions of transcript polyadenylation
can be obtained by utilizing some form of an oligo-dT primer to
enhance priming near polyadenylation sites4,5. These “3’-seq” strate-
gies, which collectively encompass a number of variant protocols6,22–25,
have been the major means by which genomewide alterations in APA
have been studied.

A limitation of current 3’-seq methods is their reliance on sub-
stantial quantities of RNA for library preparation. This has limitedmost
atlases of “cell-specific”APA to reflect cells that can begrown in culture
(e.g. immortalized cell lines or certain stem cells). Otherwise, most 3’-
seq profilings of in vivomaterials comprise whole animals or dissected
tissues, which inevitably comprise many constituent cell types. Thus,
for many tissue-specific APA trends, there is often only correlational
evidence for the underlying cell type affected. For example, we char-
acterized widespread neural 3’ UTR lengthening and testis 3’ UTR
shortening in Drosophila8,9,26, but the underlying cell types affected
were not directly assayed using genomic techniques. A small subset of
3’ UTR isoforms were tested using in situ hybridization8,26, which can
provide cellular resolution. However, while this technique has utility to
resolve cell-restricted 3’ UTR elongation, it does not distinguish
shorter isoforms that might be coexpressed with longer isoforms.

The recent advent of single cell profiling techniques has radically
upgraded possibilities to detect and quantify cell-specific chromatin
features, transcripts, and even proteins. Of these, the techniques for
single cell RNA-sequencing (scRNA-seq) are currently the most
advanced and widely used. Although scRNA-seq platforms have been
aroundnow for several years and arebroadly available in core facilities,
outsourced services, and a growing number of individual labs, the vast
majority of publications utilize single cell transcriptome data solely to
classify marker gene expression to distinguish cell types. That is,
scRNA-seq reads are collapsed into single values per gene per cell, and
isoforms are not distinguished in downstream analyses. There is a
practical consideration for this, as the sparse nature of single cell
measurements hinder accurate assessments of gene expression,
especially when attempting to quantify alternative isoforms27,28.
Nevertheless, the availability of methods that permit scRNA-seq pro-
filing across transcript bodies (e.g. Smart-seq229), has encouraged
single cell isoform analysis30–33. However, the majority of current
scRNA-seq datasets do not sample across transcripts, but instead
comprise 3’-biased sequence tags (e.g., 10X Genomics platform),
conceptually similar to previous 3’-digital gene expression (3’-DGE)
approaches34,35. While this does not permit assessment of 5’ or internal
isoform variants, in principle this may permit interrogation of 3’ iso-
forms. Indeed, several mammalian-focused studies recently illustrated
how scRNA-seq data can be applied to study APA at cellular
resolution36–38.

We utilized the powerful Drosophila system to dissect APA
landscapes9, mechanisms39,40 and biology41,42. Accordingly, we were
motivated to address whether scRNA-seq data could elucidate cell-
specific isoforms and programs. Although the number of Drosophila
scRNA-seq studies is modest compared to those in mammals, they are
growing. One major focus of fly single cell studies has been on

characterizing neuronal diversity43–47, with additional studies addres-
sing specific developmental stages and/or dissected tissues48. Clearly,
though, scRNA-seq is rapidly becoming amore standard technology in
Drosophila, as in mammals. In order to provide a unified and broad
basis of assigning Drosophila cell types, we recently systematically
characterized hundreds of distinct adult cell types across constituent
tissues49. The efforts of the Fly Cell Atlas (FCA) consortium (https://
flycellatlas.org/) provide a strong foundation to investigate 3’ isoforms
in individual Drosophila cell types.

Here, we report that diverse patterns of 3’ isoform variation,
including both tandem 3’ UTRs and alternative last exons (Fig. 1a), can
be detected in Drosophila single cell expression data. We are able to
resolve the specific cell types that underlie multiple previously
reported tissue-specific 3’ isoformprograms, reveal new cell-specific 3’
isoform programs, and provide evidence for multiple candidate trans-
acting regulators that may implement broad programs of 3’ isoform
variation. Notably, in several settings, isoform-level information of
broadly-expressed genes can distinguish cell types, providing a new
layer formarker classification. Thesedata opennewdirections to study
the regulation of mRNA processing, and comprise a transcriptome
annotation resource for the Drosophila community that complements
existing cell type annotations.

Results
Two classes of Drosophila 3’ isoforms are resolved in single cell
RNA-seq data
Recently, the Fly Cell Atlas (FCA) consortium conducted large-scale
profiling of 17 dissected Drosophila tissues and organs, and subjected
these to broad community-based annotation efforts involving >100
experts49. The resulting Tabula Drosophilae is built upon ~580,000
cells and includes ~250defined cell types with high resolution settings.
As in most single cell studies, the main FCA analysis effort aggregated
reads across each locus, and therefore did not differentiate isoforms in
assigning cell types from marker genes.

The FCA dataset was generated using nuclei and the 10X Geno-
mics 3’ v3.1 kit (sNuc-seq). We manually inspected these data on gen-
omebrowsers by aggregatingdata by eachof the cell types assignedby
the FCA. Genes that expressed a single terminal isoform in our 3’-seq
profiling similarly exhibit stable 3’ ends across diverse individual cell
types (Supplementary Fig. 1a). However, by inspecting genes that we
previously recognized to undergo tandem 3’ UTR-alternative poly-
adenylation (TUTR-APA, Fig. 1a) in specific tissues, we could see that
FCA data revealed individual cell types that express distinctive tandem
3’ UTR isoforms. For example, mei-P26 is an archetypal gene that uti-
lizes a short 3’ UTR in testis, an intermediate one in ovary, and a set of
highly elongated 3’ UTRs in the head. We previously documented this
variety of 3’ UTR isoforms using RNA-seq data and Northern blotting8

as well as 3’-seq libraries from these dissected tissues9. Now, we could
find individual cell types in eachof these tissues that recapitulate this 3’
UTR diversity (Fig. 1b). Similarly, tissue profiling showed that Hrb27C
expresses a large number of TUTR-APA isoforms, which are also
revealed in individual FCA cell types (Supplementary Fig. 1b).

Besides TUTR-APA 3’ isoforms, a substantial set of genes express
alternative last exon isoforms (ALE-APA, Fig. 1a). These comprise a type
of alternative splicing, but in some cases, the isoform choice is
determined via the choice of 3’ cleavage sites40,50. For these genes, ALE-
APA can generate isoforms with distinct C-termini and fully non-
overlapping 3’UTRs.We noticed that ALE isoforms could also be easily
distinguished in single cell data. For example, shaggy (sgg) is subject to
complex 3’ processing including three major ALE-APA isoforms, sev-
eral of which also undergo TUTR-APA (Fig. 1c). While standard
experimental techniques using rt-PCR from dissected tissues cannot
resolve the cell-of-origin of tissue-specific 3’ isoforms, we were able to
confirm distinct utilization of expected TUTR-APA and ALE-APA iso-
forms in head, ovary and testis for mei-P26 and sgg (Fig. 1d, e,
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respectively). The power of single cell approaches to reveal cell-
specific APA patterns encouraged us to conduct detailed analyses of
both 3’ isoform classes in the FCA data.

Characteristics of 3’-directed clusters in 10XGenomics data that
permit reliable assessment of 3’ isoforms
It is expected thatRNA-seqprotocols that are not designed toprecisely
recover polyadenylated junctions will tend to undersample transcript
termini. For example, aggregate analysis of FCA SMART-seq2 data
shows severe depletion within the last few hundred nucleotides (nts)
of mRNA, based on cleavage sites defined from our 3’-seq atlases9

(Fig. 1f). Even though the 10XGenomics kit is biased to capture 3’ ends,
individual FCA 3’ UTR clusters were some distance upstream of
experimentally determined cleavage sites (Fig. 1b, c).

Nevertheless, we reasoned that such upstream shifts may still be
acceptable to quantify 3’ isoforms, as long as they exhibit character-
istic shifts. We plotted the distribution of 10X data in the vicinity of
sites fromour 3’ atlas, and found that aggregate FCA data were reliably
shifted ~100-300 nt upstream of experimentally determined cleavage
sites (Fig. 1f). A recent analysis of sciRNA-seq3 data reported that
aggregate clusters peaked ~50 nt upstream of characterized mRNA
cleavage sites36, which is closer than with 10X FCA data. We recapitu-
lated this result using our analysis pipeline (Fig. 1f). The reason for the

greater shift between 10X Genomics and sciRNA-seq3 data is not clear,
since the fragment sizes are similar (10X v3.1: 91 bp; sciRNA-seq3:
100bp) and both strategies involve paired-end sequencing but use
only R2 for alignment. In any case, as the 10X Genomics platform is
utilized much more frequently than sciRNA-seq3, we reason that the
advantage of sciRNA-seq3 data for more precise mapping of 3’ ends is
counteredby the sheer abundanceof 10XGenomicsdata. Inparticular,
since there is still a long tail of read distribution in sciRNA-seq3 data,
the recent APA study elected to parse sciRNA-seq3 only in the vicinity
of known 3’ termini, and grouped reads from −200 to +20 of cleavage
sites to individual 3’ termini36. Since 10X-3’ clusters also exhibit a pre-
dictable shift with respect to 3’ ends, a similar approach to analyze the
FCA data seemed justified.

In principle, the enhanced cellular resolution of single cell data
might permit the study of unannotated, cell-restricted, isoforms that
were not apparent in bulk cell/tissue analyses. Inspection of mapped
FCAdata showednumerous clusterswithin 3’UTRs or other gene body
regions that were not associated with annotated 3’ ends (e.g. Supple-
mentary Fig. 1b). While some of these might correspond to additional
APA or intronic polyadenylation (IPA) sites (which might generate
unannotated ALE isoforms), in practice we found these challenging to
interpret. First, an enhanced frequency of intronic clusters from non-
specific dT priming on primary transcripts is expected for nuclear
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Fig. 1 | 10X sNuc-seq data reveals cell-specific programs of 3’ isoforms. a Two
classes of 3’ mRNA isoforms generated by alternative polyadenylation (APA). Left,
tandem 3’ UTR (TUTR) isoforms encode the same open reading frame, but express
different 3’ UTRs. Here, a gene model incorporates three different TUTR isoforms.
Right, alternative last exon (ALE) isoforms harbor different C-terminal coding
potential, in addition to non-overlapping 3’ UTR contents. While ALE isoforms
could be generated as a result of splicing regulation, in at least some cases, ALE
isoforms are determined via APA. Here, two examples of exon layouts that can
generate distal ALE switching are shown. b Exemplar gene (mei-P26) with highly
alternative TUTR isoforms evidence in bulk 3’-sequencing from the indicated tis-
sues (black tracks), for which corresponding varieties of TUTR isoforms can be
found in individual cell types originating from the same tissues (red tracks).
c Exemplar gene (sgg) with diverse ALE isoforms (three distinct coding potentials),

of which several of these are also subject to TUTR isoform generation; these col-
lectively generate many different 3’ UTRs. Again, individual cell types from each of
these tissues recapitulate the ALE and TUTR diversity seen in bulk 3’-seq data.
d, e Semi-quantitative RT-PCR validation for tissue-specific expression of different
3’ UTR isoforms ofmei-P26 (d) and sgg (e). Data is representative of 2 independent
experiments; amplicons are 100–200bp. Sourcedata areprovided asa SourceData
file. f Aggregate density of expression data in the vicinity of known mRNA 3’ clea-
vage sites, across various library types. Top three plots, Drosophila data; bottom
plot;mouse data. Single cell SMART-seq2 data is globally depleted in the vicinity of
cleavage sites, whereas bulk 3’-seq data peak at polyadenylation sites. Single
nucleus (10X-3’ kit) data alsopeak in the vicinity ofmRNA3’ termini, but clusters are
shifted ~200–250nt upstream of 3’-seq data. Single cell sciRNA-seq3 mouse data
peak closer to 3’ ends than does the fly 10X-3’ data.
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sequencing51. Second, as introns sometimes lie close to transcript
termini, some 10X clusters that genuinely reflect 3’ ends appear within
coding regions that can be separated from the 3’ UTR by an intron
(Supplementary Fig. 1c). Third, certain loci exhibited substantial
populations of antisense reads that were not obviously related to
known transcription (Supplementary Fig. 1d). Although these might
reflect unrecognized transcripts, antisense reads are known artifacts of
single cell and 10X data52,53. Since a substantial number of Drosophila
gene models overlap, particularly within their 3’ UTRs54, this raised
further concerns for interpreting sNuc-seq clusters thatwere not in the
vicinity of known 3’ ends.

For these reasons, we did not further attempt de novo discovery
of 3’ termini in the FCA 10X data. Instead, we focused analyses on 10X
FCA clusters in the vicinity (up to 300 nts upstream) of 3’ ends in our
extensive reference atlas of Drosophila mRNA cleavage sites9.

Global analysis of 3’ isoforms across annotated Drosophila
cell types
With an appreciation of how best to leverage sNuc-seq data to eluci-
date cell-specific 3’ APA and ALE isoforms, we proceeded to a sys-
tematic analysis of the FCA data.We recently used LABRAT to quantify
alternative 3’ isoform usage40,55, and we since updated this package to
handle single cell transcriptomic data (LABRATsc)56. We used LABRAT
to analyze the aggregated data in each cell cluster, and reserved
LABRATsc for single-cell level quantifications in UMAP plots shown in
subsequent Figs. We began with our previous comprehensive anno-
tations of experimentally defined Drosophila polyadenylation sites9,
and analyzed sNuc-seq reads within 300 nt of annotated 3’ ends. For
each gene in each cell type, we calculated its psi (ψ) value, which
reflects the relative usage of 3’ isoforms. A ψ value of 0 indicates
exclusive usage of the most upstream pA site, whereas ψ values of 1
indicate exclusive usage of the most downstream pA site. This quan-
tification strategy is easily generalized to handle genes withmore than
2 pA sites. For example, for a gene with 3 pA sites, exclusive usage of
themiddle site would yield aψ value of 0.5. In all cases, a singleψ value
is assigned to a gene without the need to do multiple pairwise com-
parisons between pA sites; smaller ψ values indicate more usage of
upstream pA sites and larger ψ values indicate more usage of down-
stream pA sites.

Figure 2 provides a birds-eye view of the analysis. For this high-
level perspective, we used 1305 genes that show APA isoform usage
differences in one or more settings with distinctive APA landscapes
(neurons, ovary, and testis cells), with alteration in average ψ value
change of >20% between cell types. This circular plot displays hier-
archical clustering of constituent cell types of each of the 16 tissue
datasets, by their ψ values across genes with alternative 3’ ends. We
color-coded individual genes based on ψ value on a red (1) to blue (0)
gradient, and also plotted the average ψ value for each cell type in the
central portion of the schematic.

Even with these levels of data compression, several broad trends
are easily visible, and clearly relate to our previous 3’ atlases based on
tissue profiling9. For example, certain tissues stand out as having large
sectors of cell types bearing “red”genes, reflecting their bias to express
distal 3’ isoforms. The most striking tissues are the head and antenna
(Fig. 2), which have the largest numbers of annotated neuron types
across Drosophila tissues49. Thus, neurons are the predominant con-
tributor to the expression of highly extended 3’ UTRs across the fly, a
situation previously inferred from sequencing of bulk tissues8,9.

Conversely, the testis is a tissue with predominant cell type sec-
tors of “blue” genes, meaning that they are biased to express proximal
3’ isoforms. This is easily visualized in the inner circle plot where the
overallψ status shows that testis cell types comprise the shortest of all
adult Drosophila cell types. This is consistent with our previous
observation that the testis broadly expresses short 3’ UTRs8,9. When
inspecting the inner ring summarizing overall ψ values for each cell

annotation, we see that other “blue” cell types comprise testis/male
germline cells that happen to be present in other tissue dissections,
but that the ovary also contains many cells with shortening profiles
(Fig. 2).We previously noted that the ovary invokes a shortened 3’UTR
program for distinct genes than testis9. Thus,male and female gonadal
cell types collectively express the shortest 3’ UTRs of all adult Droso-
phila cell types.

Overall, the FCA dataset provides a rich perspective for the cell
type-specific expression patterns of 3’ isoforms. The underlying data
for all cell types and genes analyzed in Fig. 2 are provided in Supple-
mentary Data 1. Note that this overview does not exclude any FCA
annotations, but some of these are based on very few cells (Supple-
mentary Data 2). Such sparse clusters have less power to discriminate
isoform expression especially for lower-expressed genes, but all the
data are provided for the benefit of community investigations. We
proceeded to examine someof these in greater detail, to highlight how
regulated 3’-isoforms can be analyzed in the FCA data. As we docu-
ment, this approach provides additional layers of information to
conventional cell-type expression data.

Parallel implementation of TUTR-APA andALE-APAprograms in
diverse neuron types
Our prior studies of neural-specific APA were largely inferences, based
on the behavior of total RNAs obtained fromwhole heads or dissected
larval CNS8,9. As noted, the global APA analysis across all individual cell
types (Fig. 2), alongwith inspection of individual neuron-type RNA-seq
tracks (Fig. 1), generally supports the notion that it is indeed neurons
that express the distinctive distal ALE isoforms and 3’ UTR extensions,
in both the CNS and PNS. We note that PNS neurons have not pre-
viously been specifically analyzed for 3’ isoforms in Drosophila, since
unlike the CNS, PNS neurons are dispersed amongst their constituent
tissues and are thus inconvenient for bulk RNA-seq analyses. We
examined this further by plotting the behavior of APA genes in various
cell types isolated from the body (Fig. 3a, b). This starting material
contains both CNS (ventral nerve cord, VNC) and PNS neurons,
including other cell types (muscle and follicle cells shown here;
selected other cell types are analyzed in Supplementary Fig. 2). These
plots show a highly directional shift towards extended tandem 3’ UTR
isoforms as well as distal ALE isoforms, in both VNC and PNS neurons,
compared to other non-neural cell types. This emphasizes that diverse
neuron types express downstream 3’ isoforms compared to many
other cell types. Examples of individual genes that express distinctive
neural TUTR-APA (Dscam1) and ALE-APA (Vrp1) isoforms in CNS and
PNS are shown in Fig. 3c, d. Lists of genes that undergo TUTR
lengthening and/or distal ALE switching in neurons are provided in
Supplementary Data 3.

All analyses thus far were based on sNuc-seq data aggregated
according to marker genes of cell types defined by the FCA49. We
further exploredwhetherwecould determine specific 3’ isoformusage
within individual cells. This places further constraints on gene
expression, since there are obviously many dropouts and the numbers
of distinct reads that can be mapped to differential isoforms might be
relatively few. Nevertheless, a subset of genes consistently express
distinct 3’ isoforms at the level of individual cells, particularly in neu-
rons. Examples from the adult body sNuc-seq data are shown in
Fig. 3e–g.Dscam1 andVrp1 are relatively broadly expressed, consistent
with their behavior in cell-specific sNuc-seq tracks (Fig. 3f, g); thus,
these genes would not normally contribute substantially to cell clas-
sification. However, most individual VNC and PNS neurons specifically
express the 3’ extension of Dscam1 and the distal ALE isoform of Vrp1
(Fig. 3f, g). Therefore, there is a subset of broad-expressed genes that
do not inform cell type by conventional analysis, but whose isoforms
are differentially expressed in discrete cell types and therefore could
inform cell identity. Presumably, as sequencing depth increases, the
ability to resolve 3’ isoforms in individual cells will similarly increase.
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Highly dynamic expression of TUTR-APA and ALE-APA isoforms
in the male germline
Although we were pleased with transcriptome-wide evidence for
neurons as the source of elongated 3’ UTRs and distal ALE isoforms,
the FCA has a limitation for studying neural 3’ UTR dynamics. As the
adult fly head is mostly post-mitotic, except following specific

traumatic manipulations57,58, this setting is not amenable to study
dynamic isoform changes that may occur during the course of cell
specification and differentiation. Perhaps a more appropriate setting
might be in the germline, where adults continuously generate gametes
from germline stem cells (GSCs)59. With current FCA data, the ovary is
not very promising for this goal, since it lacks sufficient GSCs or

Fig. 2 | Summary of global 3’ UTR utilization across ~250Drosophila cell types.
The circular plot summarizes APA trends across 1305 genes that exhibit differential
3’ UTR utilization from neurons, ovary, and testis cells. We used the LABRAT
package to calculate ψ across these genes in each of the 242 adult Drosophila cell
types annotated by the FCA, grouped according to their tissue origin. Because
some cell types are found inmultiple tissues, the number of sectors is greater than
242 (e.g., muscle cells, epithelial cells, hemocytes and fat body are present broadly
across tissues). We describe the plot features from outside in. The tissue and cell
types are shown at the perimeter. Inside this, the behavior of individual genes is

shown in heatmap sectors, using theψ color key shown in the center. The cell types
in each tissue are organized by hierarchical clustering. The next ring inside high-
lights selected general cell types in these colors: neurons (red), testis (blue) and
ovary (purple). Finally, the inner sectors plot the average ψ value (re-scaled 0 to 1,
two grey dashes demarcate 0.3 and 0.7, respectively) for each cell type across the
selected APA genes. From these analyses, several general features regarding cell
type-specificAPA areevident.Ofnote, neurons globally express longest/most distal
3’ UTRs of all cell types (red). Reciprocally, the testis contains cell types that utilize
the shortest/most proximal 3’ UTRs of all cell types (blue).
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annotated oocytes to provide a coherent germline trajectory49. How-
ever, recent studies characterized testis transcriptomes at single cell
resolution60,61, and the FCA reveals even greater resolution of cell
states within the testis49. For example, an initial scRNA-seq study of the
adult testis (~5000 cells) divided the male germline into 6 cell types:
stem cells/early spermatogonia, late spermatogonia, early/late sper-
matocytes, and early/late spermatids61. Mature spermatids appeared
to be depleted, possibly because of their highly elongated shape. In
contrast, the FCA datasets contain ~45,000 nuclei, which permitted
greater resolution of testis cell states, including during meiosis and
subsequent maturation of gametes. For example, the FCA annotated
about 40 testis cell types in total and at least 9 spermatocyte-related
stages alone49 (Fig. 4a).

We analyzed the testis germline lineage in greater detail. Notably,
global analysis of 3’ UTR isoforms in individual cells revealed

progressive shortening along the lineage from germline stem cell to
maturing spermatids (Fig. 4b). We inspected a number of these RNA-
seq tracks to ensure that ψ values truly reflected the expected shifts in
3’ isoforms, as represented by oaf (TUTR-APA) and lig (ALE-APA)
shown in Fig. 4c, d. For these examples and many others, the isoform
switches occurred predominantly in early spermatocyte stages (Sup-
plementary Fig. 3). However, some loci transitioned their 3’ isoforms in
later spermatocytes, e.g. milt (Fig. 4c). We used conventional rt-PCR
analysis of total testis RNA, compared to ovary and head RNA, to
confirm dominant trends of TUTR-APA shortening and proximal ALE-
APA shifts in testis for oaf and lig (Fig. 4e, f, respectively). Of note, these
loci exhibit strong signatures of 3’ isoform shifts in single cells, even
though they are broadly expressed (Fig. 4g, h). This further highlights
how isoform information can bolster discrimination of cell states in
scRNA-seq data.
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Fig. 3 | Diverse neuron types broadly implement distal ALE isoforms and
extended 3’UTRs. a, bUsing the body sNuc-seq dataset, we used classifications of
ventral nerve cord (VNC) (part of the central nervous system, CNS) and peripheral
nervous system (PNS) and compared these to non-neural cell types (muscle and
follicle cells shown here, others are shown in Supplementary Fig. 2). In all these
comparisons, it is apparent that CNS (a) and PNS (b) neurons have unidirectional
preference to express longer tandem 3’ UTRs as well as distal ALE isoforms.
c, d Genome browser tracks of individual genes highlights that the preferential

expression of extended 3’UTRs (Dscam1, c) or distal ALE (Vrp1, d) isoforms in head
3’-seq data ismirrored by their expression inCNS and PNS neurons. e–g Expression
of 3’ isoforms can provide cell type information, where intrinsic gene expression
patterns do not. e UMAP of dominant cell types in the Drosophila body. f, g APA
analysis in individual cells. Dscam1 and Vrp1 are broadly expressed genes that do
not intrinsically contribute to cell classification. However, expression of theDscam1
extended 3’ UTR (f) and the Vrp1 distal ALE isoform (g) are indicative of neurons,
even in individual cells.
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When considering all loci undergoing TUTR-APA shortening
(n = 168) andALE-APAproximal switching (n = 16) in the testis germline
in aggregate, the progressive nature of 3’ isoform changes across
spermatocyte stages became even more apparent (Fig. 4i, j). We
illustrate the behavior of several representative genes in both cate-
gories of 3’ isoforms across all testis cell types (germline and somatic)
in Fig. 4i, j. Lists of genes that undergo TUTR shifts and/or ALE

switching during spermatogenesis are provided in Supplemen-
tary Data 4.

Our previous bulk 3’-seq analyses9, along with these rt-PCR tests,
were suitable for extracting overall trends with large isoform differ-
ences between tissues. However, cell-specific resolution of 3’ proces-
sing enabled fine dissection of isoform changes. In particular, when
analyzing genes with dynamic ALE-APA isoform usage in the testis, we
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unexpectedly identified three genes that undergo opposite proximal-
to-distal 3’ isoform switching in specific spermatocyte stages (Sup-
plementary Fig. 4). Not only is this opposite from the expected distal-
to-proximal ALE switching pattern, the timing of these ALE isoform
switcheswas clearly offset, with proximal-to-distal switching occurring
during spermatocyte-5 to −7a stages. A particularly complex set of
isoform switches is evident at the SPoCk locus, which undergoes TUTR
shortening and distal-to-proximal ALE switching during the transition
from stem cells to early spermatocytes, but then switches back to
partial utilization of the distal ALE isoform in late spermatocytes and
spermatids (Supplementary Fig. 3b).

Overall, while evidence fromgeneticmanipulations indicated that
3’UTRshortening occurs inDrosophila spermatocytes62, this is thefirst
large-scale mapping of 3’ isoforms along the full male germline tra-
jectory. These findings reveal strong parallels with mammalian sper-
matogenesis, where 3’ UTR shortening in spermatocytes and
spermatids was previously inferred from temporal analysis of murine
testis development63–65. Moreover, these observations point to addi-
tional unknown mechanisms for 3’ isoform regulation, and more
generally, also support the notion of a high multiplicity of spermato-
cyte states. These are defined not only by differential gene
expression49 but also by multiple programs of differential mRNA pro-
cessing (Fig. 4).

Novel programs of 3’ isoform switches during differentiation of
intestinal stem cells
Having gained insights into the cell type-specific bases of several tis-
sues associated with distinctive 3’ isoform landscapes, we sought new
programs of 3’ isoform regulation. Since stem cell lineages proved
auspicious for this purpose, we turned to the intestinal stem cell (ISC)
lineage. The Drosophila midgut contains multipotent stem cells that
maintain the gut during homeostasis and regeneration66–68. In parti-
cular, ISC division renews the stem cell and/or generates differentiated
cell types, namely enteroblasts (EBs) that subsequently yield absorp-
tive enterocytes (ECs), or hormone-producing enteroendocrine (EE)
cells (Fig. 5a). All four major cell types were annotated in the FCA data
(Fig. 5b); although the EB subtypes were not resolved, several EC
subtypes were resolved49.

We analyzed 3’ isoform patterns in ISCs and its derivative cell
types, and realized that ISCs preferentially express numerous exten-
ded 3’ UTRs and distal ALE isoforms compared to their daughter cells.
Representative examples with cell-type read coverage are shown in
Fig. 5c, d and Supplementary Fig. 5. Based on these observations, we
classified 73 genes that shift to shorter TUTR-APA isoforms upon dif-
ferentiation of ISCs, and 8 genes that shift from distal to proximal ALE-
APA isoforms (Supplementary Data 5). We summarize the collective ψ
value shifts in APA isoforms for both classes of 3’ isoforms, along with
illustrative examples of individual genes (Fig. 5e, f). The distinct 3’
isoforms expressed by ISCs are further notable, as it is commonly
thought that EBs and ISCs are quite similar in gene expression (Fig. 5b).
These dynamic changes in 3’ isoforms are nominally similar to whatwe

observed in the testis germline stem cell lineage, where many genes
switch to more proximal 3’ isoforms during stem cell differentiation
(Fig. 4). In particular, these trends in Drosophila stem cells seem
opposite to notions that proliferating cells are correlated with shorter
3’UTRs15,69, perhaps to avoidpost-transcriptional regulatory sites. Here
in the ISC lineage, as in the male GSC lineage, the multipotent/mitotic
stem cell expresses distal 3’ isoforms, which are lost in its differ-
entiated/post-mitotic daughters (e.g., ECs and EEs).

The 3’ isoform programs of ISCs are especially notable as they
would have been extremely difficult to parse without single cell tran-
scriptomes.Wewondered if it reflected alternative processingof genes
that we recognized from other tissue/cell-specific APA settings, or
perhaps unannotated loci. Inspection of individual genes showed that
some of the isoforms indicative of ISCs were detected in head or testis,
but it was not difficult to identify genes for which the dominant 3’
isoform in ISCs was not similarly dominant in these other settings with
distinctive APA landscapes. For example, the major extended 3’ UTR
isoform of SCCRO can be detected in several tissues, but is pre-
dominant in ISCs (Fig. 5c), while expression of the distal ALE isoformof
CG31955 is characteristic of ISCs (Fig. 5d). For these loci, heads and
neurons do not correspondingly prefer the downstream 3’ isoforms,
suggesting that themechanismof downstream3’ isoformusage in ISCs
is distinct from the recently described strategy for ELAV-mediated
downstream 3’ isoform usage in the nervous system39,40,70.

To better gauge the tissue-specificity of 3’ isoform shifts, we
performedoverlap analysis of genes that undergo characteristic TUTR-
APA or ALE-APA shifts in neurons, male germline and ISC lineage.
Although some genes exhibit reciprocal processing in different set-
tings, the majority of genes are subject to cell-specific 3’ processing
events, in both TUTR-APA and ALE-APA classes (Fig. 5g, h). Overall,
these observations suggest there are likely multiple mechanisms
involved to generate the variety of endogenous cell-specific 3’ isoform
landscapes.

APA programs correlate with specific RBPs
Amongst numerous tissue-specific, perturbation-induced, and/or
disease-associated programs and alterations in 3’ isoform programs
documented, much remains to be understood about their underlying
molecular mechanisms4,5. One reasonable inference is that changes in
global APA may involve trans-acting regulators. For example, we and
others showed that multiple members of the neural-specific ELAV/Hu
family of RNA binding proteins (RBPs) are responsible for global
induction of 3’ UTR extensions as well as of proximal-to-distal ALE 3’
isoform switching in the nervous system39,40,70,71.

Given that neurons have associated functional data on APA
mechanisms, we used this as a test case. In a recent mouse scRNA-seq
analysis, the global expression of distal 3’ UTRs in neurons was cor-
related with the elevation of a few RBP families, including ELAV/Hu
factors36. Accordingly, we assessed FCA data for the presence of dis-
tinctive RBPs that were both substantially specific and broadly
expressed in neurons (since diverse neuron types alone exhibit strong

Fig. 4 | Deconvolution of 3’ isoform programs in the testis germline lineage.
a UMAP of testis germline cell types in a trajectory from germline stem cells (sper-
matogonium), meiotic spermatocytes, to post-meiotic spermatids; several inter-
mediary stages are also designated by the FCA. b Average 3’ isoform usage of
dynamic 3’ isoform switching genes during spermatogenesis in individual cells.
c, d Previously, we observed that bulk testis transcripts exhibit globally shorter 3’
UTRs thanmost other tissues and cell types (comparewith ovary, head and S2 cells),
suggesting that a dominant cell type(s) in testis preferentially utilize proximal pA
sites. sNuc-seq data pinpoint transitions of 3’ isoforms in the testis germline.
c Tandem 3’ UTR (TUTR) processing at oaf, which utilizes a longer 3’ UTR in sper-
matogonium and early spermatocyte stages but transitions to a shorter 3’ UTR in
spermatocyte stages 1-2, which ismaintained into spermatids.dAlternative last exon
(ALE) processing at lig, whichutilizes adistal ALE isoform in stemcells but transitions

to a proximal ALE isoform in early spermatocytes. e, f Semi-quantitative RT-PCR
validation for testis-specific expression of different 3’UTR isoforms of oaf (e) and lig
(f). Data is representative of 2 independent experiments; amplicons are 100–200bp.
Source data are provided as a Source Data file. g, h APA analysis in individual cells.
oaf and lig maintain similar expression across spermatogenesis. However, expres-
sion of the oaf extended 3’UTR (g) and the lig distal ALE isoform (h) are exclusive to
early spermatogenesis. i Global TUTR shortening in testis occurs during early sper-
matocyte stages (left, n = 168). Examples of TUTR shortening profiles for three
representative genes (right) (j) Global proximal ALE isoform switching in testis
similarly occurs in early spermatocytes (left, n= 16). Examples of proximal ALE
switching profiles for three representative genes (right). The boxes are shown on the
left side of the panels represent the interquartile ranges, the center lines represent
medians, and the whiskers denote the ranges of minima and maxima.
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Fig. 5 | Novel 3’ processing programs in the intestinal stem cell (ISC) lineage.
a Schematic for differentiation of self-renewing ISCs into enterocytes or enter-
oendocrine cells.bUMAPof the ISC lineage from intestinal FCAdata. c Exampleof a
gene (SCCRO) that undergoes 3’UTR shortening as ISCs differentiate. d Example of
a gene (CG31995) that undergoes distal-to-proximal ALE switching as ISCs differ-
entiate. Note in both examples (c, d), neurons do not dominantly express the
isoforms found in ISCs, suggesting this reflects a distinct mechanism to adjust 3’

isoform choice in ISCs. eGlobal tandem3’UTR lengthening in ISCs (n = 73). fGlobal
distal ALE isoform usage in ISCs (n = 8). The boxes are shown on the left side of the
panels represent the interquartile ranges, the center lines represent medians, and
the whiskers denote the ranges of minima and maxima. *P <0.05, **P <0.01,
***P <0.001 compared with ISC (Wilcoxon test) (g, h) Overlap analysis amongst
neurons, spermatocytes and ISCs confirms that the cell-specific programs of tan-
dem APA (g) and ALE-APA (h) are substantially distinct across these settings.
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shifts to 3’ isoforms across adult cell types, Fig. 2), and that were
expressed reasonably well (since they presumably need to be abun-
dant enough to rewire transcriptomeprocessing). At the sametime,we
did not want to fully exclude candidate factors with certain non-neural
expression. For example, the ELAV member Rbp9 is capable of indu-
cing neural APA39, but in addition to predominant expression in CNS it
is also moderately detected in the fat body, where its function is
unknown (https://flybase.org/reports/FBgn0010263). In addition,
while Elav protein is famously used as neuronal marker, we reported
that its transcripts are ubiquitous (albeit to lower levels than in neu-
rons) but restricted by post-transcriptional regulation by miRNAs72.

We collected annotatedRBPs fromEuRBPDB73, and supplemented
these with additional loci from FlyBase (https://flybase.org) for anno-
tated RNA binding domains (Supplementary Data 6). Hierarchical
clustering across the body FCA dataset identified major clusters of
neural-enriched RBPs (Fig. 6a and Supplementary Data 7). We plotted
the expression of these in both CNS and PNS populations, comparing
them to all other non-neuronal body cell types. Although some RBPs
were preferentially enriched in one or the other group, a subset was
upregulated in both neural populations (Fig. 6b, c). These included
ELAV/Hu family RBPs; fne and elav in particular, with modest enrich-
ment of rbp9. To emphasize their expression specificity and differ-
ential in neurons vs. other cell types, we compared the levels of these
RBPs across multiple neuron types and in non-neural cell types in the
body FCA data (Fig. 6d). These other RBPs are candidates to regulate
neuronal RNA processing, potentially including selection of 3’ iso-
forms. Certain factors such as CG10077 were commonly upregulated
in CNS and PNS, but exhibited substantial non-neuronal expression
(Fig. 6d); we provisionally consider these as less likely to underlie
neural APA given the gain-of-function regulatory properties of ELAV
factors39. Others seemcompelling, such asbru-3, aflyCELF genewhose
orthologs are also enriched in mammalian neurons36.

Similarly, we find that a limited number of RBPs are specifically
upregulated in ISCs, and thus correlate with their extended 3’ UTR
profile relative to their differentiated progeny (Supplementary Fig. 6).
These include several factors that are known to influencemRNA levels
and/or processing (e.g., brat, musashi). These may represent candi-
dates for future studies of the newly-recognized program of cell-
specific isoform control in the ISC lineage.

Testis 3’ shortening correlates with specific miRNAs, RBPs and
loss of CPA machinery
In the testis, we documented broad switching from longer to shorter
tandem 3’ UTRs, and switching from distal to proximal ALE isoforms
(Fig. 4). We identified clusters of RBPs that progressively decrease or
increase from spermatogonia and spermatocytes, and are corre-
spondingly low in other somatic cell types (Fig. 6e and Supplementary
Data 7). Comparison of stem cells to different spermatocyte stages
indicates progressive shifts in RBP expression, particularly amongst
those that increase in spermatocytes (Supplementary Fig. 7a and
Supplementary Data 8). The changes are particularly overt from
spermatocyte 1–3 stages, which is when many 3’ isoforms begin to
switch (Fig. 4). Although gene expression is known to generally
undergo massive changes at this point in spermatogenesis60,61,74, pre-
sumably via transcriptional mechanisms75,76, the existence of sub-
stantial alteration in RBP contents indicates additional regulatory
layers that shape the germline transcriptome.

Wenext sought to identify regulatory consequences of directional
APA shifts. We previously analyzed the presence of miRNA and RBP
binding sites within 3’UTR extensions that are predominant within the
nervous system9. However, we have not previously analyzed a setting
of 3’ UTR shortening, such as is characteristic of the male germline. As
noted, this is problematic using bulk 3’-seq analysis, since the rarity of
male GSCs means that their 3’ UTR status was previously unchar-
acterized. Using our newly annotated dynamic 3’ UTRs in the male

germline (Fig. 4), we searched the 168 3’ UTRs that are specifically
longer in GSCs compared to spermatids (Supplementary Fig. 7b) for
presence of seed matches to testis-expressed miRNAs77 or to RNA
binding proteins with defined target sites78. This revealed a subset of
miRNAs with preferential targeting within GSC 3’ UTR extensions
(including miR-277 and miR-987, Fig. 6f and Supplementary Fig. 7c),
and a major RBP candidate that preferentially targets these regions
(bru1, Fig. 6f and Supplementary Fig. 7d). Notably, examination of
individual testis celltypes shows that bru1 tracks with this APA
dynamic, since it is well-expressed in spermatogonium and early
spermatocytes, but declines thereafter and is little detected in sper-
matids (Supplementary Fig. 7e). Therefore, bru1 appears to selectively
target a network of testis transcripts via GSC-specific extended 3’ UTR
isoforms. Systematic analysis of miRNA site and RBP sites in testis APA
targets are provided in Supplementary Data 9 and 10, respectively.

Among RBPs that increase in early spermatocyte stages, we
recognized several components of the core cleavage and poly-
adenylation (CPA) machinery (Supplementary Fig. 8a). Based on this,
we performed a directed analysis of the expression patterns of all CPA
factors across testis cell types. While we may expect mRNA processing
factors including CPA factors to be ubiquitous, most Drosophila cell
types exhibit very low levels of CPA factors. However, examination of
bulk RNA-seq data across many dissected tissues79 shows that CPA
factors are particularly high in male and female gonads (Fig. 6g and
Supplementary Fig. 8b). We can rationalize the elevated ovary expres-
sion as representing maternal deposits. Indeed, most CPA factor tran-
scripts are detected at high levels in embryos prior to zygotic
transcription (0–2 h), and their levels usually decline throughout
embryogenesis. On the other hand, as paternal contributions to the
embryo are more modest than maternal ones, the coordinated eleva-
tion of CPA factor transcripts in the testis may be more likely to dyna-
mically affect mRNA processing within the male reproductive system.

To examine this further, we separated testis cell types and plotted
their expression of CPA factors. We note a strikingly coordinated
increase in most CPA factors in early spermatocytes, precisely when
large-scale 3’ isoform changes initiate, and these are maintained
through later spermatocyte stages (Fig. 6h and Supplementary Fig. 8c,
left). This does not seem to be due to a potential normalization issue
involving reorganization of the transcriptome during spermatogen-
esis, since other presumed housekeeping genes can be robustly
detected in all testis germline and somatic cell types, albeit often
at higher levels in spermatocytes (Fig. 6h and Supplementary
Fig. 8c, right).

Overall, these observations are consistent with the notion that
concurrent switching to numerous proximal ALE isoforms and short 3’
UTR isoforms in spermatocytes is facilitated by coordinated elevation
of CPA factors, which we hypothesize may enhance cleavage and
polyadenylation activity.

Discussion
Cellular resolution of APA in Drosophila
In this study, we conducted comprehensive analyses of the recently
available efforts of the Fly Cell Atlas (FCA) consortium, which profiled
17 dissected tissues to yield ~250 well-defined cell types49. This Tabula
Drosophilae provides a much broader framework to analyze dynamic
implementation of 3’ isoforms than we had available using two dozen
3’-seq libraries acrossD.melanogaster stages and tissues22, and permits
analysis of variable utilization of tandem 3’ UTRs (TUTR-APA) and
alternative last exons (ALE-APA). Although a few similar studies of
scAPA have recently been reported in mammals36–38, our analysis of
Drosophila also takes advantage of the largest single cell dataset and
broadest annotation effort available in this major model organism. In
addition, ours is the only study to date to analyze differential usage of
ALE 3’ isoforms, which generates distinct coding isoforms with com-
pletely different 3’ UTRs amongst isoforms.
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This work provides a complementary resource to the main FCA
effort to discern cell-specific gene expression, and on this basis, to
distinguish cell types49. By discovering and leveraging cell-specific
patterns of 3’ isoforms, we illustrate many ways in which broadly
expressed genes can still contribute to defining cell states, whether
they be different types of post-mitotic cells such as neurons and
gametes, to stages along the differentiation of various types of stem

cells. Undoubtedly, additional patterns of TUTR-APA and ALE-APA
remain to be better characterized from thesedata and approaches. For
example, we show that the testis germline stem cell lineage and the
intestinal stem cell lineage are replete with coordinated shifts in 3’
isoforms.Wenote that the digestive system includes ISC, hindgut ISCs,
renal and nephric stem cells in Malphighian tubules, and gastric stem
cells80; which all deserve future investigation. Moreover, although the

nervous
system

specific
neurons Other cell types

Ex
pr

es
si

on

Rbp6
Arl6
dnd
bru1 
Rbp9 
Vha44
shi 
enc 
orb2
Rbp1−like
CG10077
CG12071
aPKC
fid
elav
stai
CG34354
CG43902
CG12605
fne
trv
bru3

a

Rbp9

elav

fne

0.5

0.0

0.5

1.0

1.5

2.0

0.2 0.0 0.2 0.4

Rbp9

elav

fne

0.5

0.0

0.5

1.0

1.5

0.2 0.0 0.2 0.4

CG43902
trv
CG34354
stai
mbl
CG12605
cpo
fne
aPKC
CG12071
bru3
heph
bru1
eIF4EHP
elav
CG10077
RluA−1
PIP4K
Rbp9
dnd

dati
fne
trv
Rbp6
CG10384
CG12605
CG34354
bru3
Rbp1−like
CG12071
CG13375
elav
sm
aPKC
bol
CG11360
pasha
Rbfox1
Rbp9
CG10077

0

1

2

Ex
pr

es
si

on

0

1

2

Ex
pr

es
si

onc

d

leg m
uscle m

otor neuron
gustatory receptor neuron
m

ultidendritic neuron
scolopidial neuron

e
germline

stem
cell

lineage

somatic
stem
cell

lineage

Other
cell

types

Ex
pr

es
si

on

RBP cluster highest in GSC,
and decreasing in early spermatocytes

RBP cluster lowest in GSC,
and increasing in early spermatocytes

f

0

25

50

75

F
P

K
M

modENCODE RNA-seq CP factors

Clp Cpsf6 Cpsf73CstF64 Fip1 Wdr33

Head Ovary Testis Digestive
system

Midgut Fat Malphigian
Tubules

g

h

1

2

3

E
xp

re
ss

io
n 

Le
ve

l

CstF64

1

2

3

E
xp

re
ss

io
n 

Le
ve

l

Clp
(Cpsf30)

1

2

3

E
xp

re
ss

io
n 

Le
ve

l

Cpsf100

1

2

3

E
xp

re
ss

io
n 

Le
ve

l

Sym

1

3

5

E
xp

re
ss

io
n 

Le
ve

l

ATPsynC

germline stem cell lineage
somatic

stem cell lineage Other cell types

b

elav fne Rbp9 bru3 trv aPKC CG10077CG12071 CG12605CG34354

miR−277−3p
miR−987−5p
miR−1000−5p
miR−137−3p
miR−283−5p
miR−315−5p
miR−10−3p
miR−1006−3p
miR−252−5p
miR−310−3p

Top10 enriched
miRNA binding sites

spermatogonium spermatid

2

5

8

R
el

at
iv

e 
nu

m
be

rs
 o

f
m

iR
N

A 
bi

nd
in

g 
si

te
s

bru1
U2af50
pum
fne
Rbp9
Cnot4
PABP
CG17838
CG5213
Rox8

spermatogonium spermatid

10

80

R
el

at
iv

e 
nu

m
be

rs
 o

f
R

BP
 b

in
di

ng
 s

ite
s

Top10 enriched
RBP binding sites

Article https://doi.org/10.1038/s41467-022-32305-0

Nature Communications |         (2022) 13:5372 11



adult nervous system is largely post-mitotic, application of these
approaches during development may permit new insights into neural
stem cell lineages and peripheral nervous system lineages48. Finally,
although the ovary germline lineage is poorly resolved in the FCA,
future studies that provide deeper access to ovarian germline stem
cells and/or distinguish the transcriptionally silent oocyte from nurse
cells, should reveal further 3’ heterogeneity along a relevant develop-
mental trajectory. Importantly, insights can be gained from dispersed
cell populations within a tissue, once appropriate knowledge of cell
type annotation is in hand.

Mechanisms of APA and 3’ isoform diversity
Despite the great variety of APA shifts that have been documented in
the literature by developmental stages, cell or tissue types, life history
traits and perturbations, pathologies and diseases, relatively little is
still known about how characteristic APA landscapes are generated.
Our study, along with other large-scale profilings, provide a reminder
that cell identity is frequently associated with distinct APA isoform
landscapes. As these are implicitly driven by genetic programs, at least
some of which can be deciphered by correlation analyses with RBPs,
we nominate sets of factors whose potential impacts on isoform
selection can be rationally interrogated using the abundant targeted
genetic tools available in Drosophila. Although we focused here on
dominant trends, informative 3’ isoform patterns applicable to indi-
vidual genes can have physiologically relevant consequences. The
availability of the complete set of FCA RNA-seq data segregated as
individual adult cell type tracks, can fuel future directed studies by
community experts. Recent genomic engineering of APA isoform
outputs have started to reveal developmental and/or behavioral
defects41,42,81 and further studies are no doubt upcoming.

Endogenous cell-specific 3’ isoform landscapes are likely to be
mimicked by reprogramming of APA isoforms in disease or cancer.
Thus, factors that drive endogenous APA changes are prime suspects
tobe involved inanalogousprocesses duringpathological settings. For
instance, glioblastoma is associated with lower CFIm25, which in turn
correlates with 3’ UTR shortening and tumorigenic properties82. A
more recent example was the recent demonstration that the testes
restricted MAGE-A11 is upregulated in tumors and drives tumorigen-
esis through ubiquitination of the core pA factor PCF1183. This creates a
mechanistic connection between the short testis 3’UTR landscape (i.e.,
as described in spermatocytes and spermatids) and the short 3’ UTRs
characteristic of some proliferative or oncogenic conditions15,69. At the
same time, caution is warranted if simple edicts apply universally (e.g.,
that proliferating cells express short 3’ UTRs). For example, in this
study, we documented multiple settings where mitotic stem cells
exhibit longer 3’ UTR landscapes, but retreat to shorter 3’ UTRs fol-
lowing differentiation. Thus, there aremore complex implementations
of global APA than currently understood.

Across multiple settings of Drosophila APA shifts, we found at
least three (neurons, ISCs and in male gametogenesis) where changes

across TUTR-APA and ALE-APA isoforms are coordinated in direction.
That is to say, that substantial sets of genes prefer internal ALE iso-
forms and proximal pA sites, or conversely express distal ALE isoforms
and extended 3’ UTRs. Several trans-acting factors have been impli-
cated or demonstrated to drive coordinated shifts in TUTR-APA and
ALE-APA isoforms40,84, and we recently observed global coordination
of these 3’ isoform programs across numerous contexts55. At the least,
this implies that many ALE-APA choices are in fact pA site choices as
opposed to splicing choices. However, the underlying mechanistic
reason(s) that connect these processes over diverse cell types remain
to be better understood.

Of note, many of the gene sets do not overlap amongst settings
of global APA that we documented. One possibility is that intrinsic pA
site qualities are preferentially organized on gene structures so as to
facilitate coordinated shifts. For example, internal pA sites for either
APA strategy may be preferentially less effectively cleaved, whereas
terminal pA sites in the gene model may harbor optimal features8,40.
In this scenario, then the efficacy of internal pA site recognition may
be generallymodulated by, for example, levels of theCPAmachinery.
The fact that we have found coordinated induction of most of the
CPA machinery in early spermatocytes, where large-scale 3’ isoform
shifts to internal and/or shorter 3’ UTRs occur, strongly implicates
modulation of CPA efficacy to reprogram 3’ isoform landscapes.
Experimental knockdown of CPA factors is well known to cause
global APA shifts85–88, but the effect of upregulating most of all CPA
factors remains to be tested directly. More generally, it seems
worthwhile to investigate if modulation of specific RBPs might act in
concert with specific levels of CPA activity to effect appropriate 3’
isoform programs.

Methods
Cell-type specific analysis of the Fly Cell Atlas dataset
Rawsequencing datawas retrieved fromArrayExpress (10XChromium
data; accession number: E-MTAB-10519). The fastq files were aligned
with CellRanger (version 6.0.1) to an index based on FlyBase genome
version 6.28. To split aligned BAM files by annotated clusters, we
retrieved cell barcodes associated with each FlyCellAtlas-annotated
cell type in each tissue dataset by extracting the annotation column of
H5AD datasets from https://flycellatlas.org. We extracted reads that
are associated with each cell type and have a mapping score over 30
with Samtools (version 1.12)89. Duplicateswith an identicalUMI and cell
barcode were removed with UMI-tools (version 1.0.1)90. De-duplicated
BAM files were then converted to bigwig files for visualization of
coverage with Deeptools (version 3.5.0)91. To draw UMAP plots with
specific cell types that we focused to compare APA patterns, we used
Seurat version 4.0.592 to subtract the cells corresponding to the cell
type used in each analysis from the H5AD datasets provided by Fly-
CellAtlas. RunUMAP function was used to draw UMAP plots with dif-
ferent numbers of PCs according to the number of cell types that we
subtracted.

Fig. 6 | Specific RBPs and global alteration of CPA factors are candidate APA
regulators. a Hierarchical clustering of RBPs across cell types in the FCA body
dataset shows a subset of factors that are commonly elevated across multiple
individual neuron types (red and orange cell classes; other cell types designated in
gray). These include ELAV/Hu factors Fne and Elav, which direct global neural ALE
and APA programs, potentially with their other paralog Rbp9. b, c Enrichment of
RBPs in ventral nerve cord (VNC, part of the central nervous system) and peripheral
nervous system (PNS), compared to all other non-neuronal cell types in the FCA
body dataset. d Expression levels of neural-enriched RBP candidates compared to
all other non-neuronal cell types in the FCA body dataset. The boxes represent the
interquartile ranges, the center lines represent medians, and the whiskers denote
the ranges of minima and maxima. Significant differences between the two groups
were assessed by a two-sided Wilcoxon-Wilcox test, with P values adjusted from
multiple hypothesis testing with a Bonferroni correction. (NS, not significant,

*P <0.05, **P <0.01, ***P <0.001, ****P <0.0001) (e) Hierarchical clustering of RBPs
across cell types in the FCA testis dataset shows large scale changes in RBP
expression in the germline (red cell classes). f Top 10 enriched miRNAs (left) and
RBPs (right) that target 3’ UTR regions of genes that are lost in shorter isoforms
during spermatogenesis. Mostly enrichedmiRNAs and RBPs are highlighted as red.
g Multiple cleavage and polyadenylation (CPA) factors are upregulated in gonads
compared to all other somatic tissues; data plotted from modENCODE bulk RNA-
seq data from dissected tissues. Data are presented as mean values +/− SD pooled
from three independent experiments. hData from FCA testis dataset highlights the
specific upregulation ofmultiple CPA factors in early spermatocytes, whenglobal 3’
UTR shortening and proximal ALE switching trends are detected.ATPsynC is shown
as a ubiquitous control gene that is well-expressed in all germline and somatic cell
types of the testis. Data for all CPA factors and additional control genes are shown
in Supplementary Fig. 8.
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Quantification of alternative polyadenylation in scRNAseq data
Weused two strategies to assign 3’UTRprofiles fromscRNA-seq data.
For clustering-based quantification, we first aggregated data by each
of the cell types assigned by the FCA and considered each of the
clusters as a bulk RNA-seq dataset. We then used LABRAT (https://
github.com/TaliaferroLab/LABRAT/) to quantify alternative poly-
adenylation in this data55. As LABRATuses pre-existing transcriptome
annotations to quantify the usage of defined polyadenylation sites,
we used current Drosophila melanogaster gene annotation from
FlyBase (version r6.45). Using LABRAT with –librarytype parameter
3pseq,we quantified transcript abundances using only the last 300nt
of annotated transcripts. The expression values are then aggregated
to the level of transcript 3’ ends. Expression values for transcripts
that have the same or similar (within 25 nt) 3’ ends are summed.
LABRAT then reports pA sites usage by comparing the expression
values associated with each 3’ end, assigning each gene a ψ value. To
minimize noise from lowly expressed genes, only genes with at least
100 counts in a sample were analyzed. ψ values of 0 indicate exclu-
sive usage of the most proximal pA site, while ψ values of 1 indicate
exclusive usage of the most distal pA site. LABRAT then identified
genes with significantly different ψ values across clusters by com-
paring ψ values using a linear model.

To define tandem UTR and ALE gene models, LABRAT observes
the isoform structures at the 3’ end of a gene. If all pA sites are
contained within the same exon, then the structure is tandemUTR. If
all pA sites are contained within different exons, then the structure is
ALE. If a gene hasmore than two pA sites, it is possible for the gene to
fit into both classifications. In these cases, LABRAT assigns the gene
to have a “mixed” structure. The “mixed” genes were not considered
for the analysis specifying “TUTR” and “ALE” models. In this study,
2531 TUTR, 348 ALE and 275 mixed type of genes are analyzed
according to the gene structure from the current FlyBase annotation.
Of note, TUTR genes harbor total 5445 pA sites (2914 internal and
2531 terminal), and ALE genes harbor total 739 last 3’ exons (391
internal and 348 terminal). We used the R package circlize93 to
visualize the overall patterns of 3’ UTRs landscape across the entire
FCA dataset clusters (Fig. 2).

For single-cell level quantification, we used LABRATsc (https://
github.com/TaliaferroLab/LABRAT/tree/singlecell)56. LABRATsc works
similarly to LABRAT, including definingψ values in a similarway. Reads
are first assigned to transcripts using alevin94. These transcript-level
quantifications are then aggregated to 3’ end-level quantifications. 3’
end-level quantifications are then aggregated across all 3’ endswithin a
gene to defineψ values. Each gene in each cell is therefore assigned aψ
value. For each cell, genes with less than one assigned count across all
transcripts were excluded from further analysis.

Analysis of RNA binding protein (RBPs)
For gene expression analysis from 10X Genomics data, we directly
downloaded each of 10X Stringent Loom files corresponding to each
tissue from FCA website (https://flycellatlas.org/) to access raw counts
and clustering information for gene expression analysis. Using default
parameters in Seurat version 4.0.592, we log-normalized counts with a
scale factor of 10,000 (NormalizeData), and used the normalized
values for downstream analyses. For differential expression analysis,
the FoldChange function was used to calculate the average difference
of each cluster.

We used EuRBPDB73, which contains 1633 entries in the Droso-
phila database. This includes 389 non-canonical factors lacking
known RNA binding domains, but that are orthologous to proteins
identified in RNA interactome capture experiments. Since we
noticed that this database lacks some factors associated with RNA
binding function, we supplemented this with 78 additional factors
from FlyBase that have RBP gene ontology terms (Supplemen-
tary Data 6).

RBP and miRNA binding sites enrichment analysis
We used the FIMO program in MEME Suite (https://meme-suite.org/)
to scanRBP sites in the 3’UTRswith default parameter. Positionweight
matrices (PWMs) for the RBPs used in this study were reported78.
TargetScanFly (Release 7.2)95 software was used to predict miRNA
target sites in the 3’ UTRs. Only strong (8mer and 7mer-m8) miRNA
seed matches were considered.

To calculate relative numbersofmiRNA/RBPbinding sites, eachof
the numbers derived from above analysis weremultiplied with relative
usage of alternative polyadenylation sites (ψ, LABRAT) to implicate
quantitative change in the number of the binding sites in the 3’ UTR
according to the relative expression levels of a particular isoform.

Reverse transcription-Polymerase Chain Reaction (rt-PCR)
analysis
We dissected heads, ovaries and testes from <5 dayDrosophila Canton
S adults and prepared total RNA by homogenization in TRIzol. Total
RNAs were treated with TurboDNase prior to reverse transcription
using SuperScript III (Invitrogen) and analysis on agarose gel. rt-PCR
primersdesigned to amplify 100–200bpproduct in length are listed in
Supplementary Table 1.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
author upon request. The raw sequencing data and the cell type
annotation information generated from the FlyCell Atlas (FCA) project
was used in this study. The 10X Genomics raw data is available at
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-10519/.
H5AD files for each correspond fly tissues are available at https://
flycellatlas.org/. Source data are provided with this paper.

Code availability
Custom scripts used for analyses in this paper are available at https://
github.com/imsjay/scAPA_FCA_paper/tree/main/
FlyCellAtlasForAlt3p-main.
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