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A single-cell atlas of the multicellular
ecosystem of primary and metastatic
hepatocellular carcinoma

Yiming Lu1,5, Aiqing Yang1,5, Cheng Quan1,5, Yingwei Pan 2,5, Haoyun Zhang2,
Yuanfeng Li1, Chengming Gao1, Hao Lu 1, Xueting Wang1,3, Pengbo Cao1,
Hongxia Chen1, Shichun Lu2 & Gangqiao Zhou 1,4

Hepatocellular carcinoma (HCC) represents a paradigm of the relation
between tumor microenvironment (TME) and tumor development. Here, we
generate a single-cell atlas of the multicellular ecosystem of HCC from four
tissue sites. We show the enrichment of central memory T cells (TCM) in the
early tertiary lymphoid structures (E-TLSs) in HCC and assess the relationships
between chronic HBV/HCV infection and T cell infiltration and exhaustion. We
find theMMP9+ macrophages to be terminally differentiated tumor-associated
macrophages (TAMs) and PPARγ to be the pivotal transcription factor driving
their differentiation. We also characterize the heterogeneous subpopulations
of malignant hepatocytes and their multifaceted functions in shaping the
immune microenvironment of HCC. Finally, we identify seven
microenvironment-based subtypes that can predict prognosis of HCC
patients. Collectively, this large-scale atlas deepens our understanding of the
HCC microenvironment, which might facilitate the development of new
immune therapy strategies for this malignancy.

Hepatocellular carcinoma (HCC) is the most frequent primary liver
cancer and is the third leading cause of cancer deaths1. HCC is typically
resistant to chemotherapy and radiotherapy, and treatment with sor-
afenib or regorafenib is of limited clinical benefit2. Cancer immu-
notherapies such as immune checkpoint blockade have dramatically
advanced the oncological treatment landscape over the past decades;
however, the treatment options for HCC are still limited and the
response rates remain low3. It is, therefore, paramount to characterize
the baseline landscape of HCC cellular ecosystem and its key compo-
sitions associated with cancer development and immunotherapy.

Several pioneering single-cell RNA sequencing (scRNA-seq) stu-
dies have investigated the immune cells or malignant cells of primary

HCCs4–6 and early-relapse HCCs7. However, these studies have not
characterized a global landscape of TME combining primary and
metastatic HCCs. Here, we perform a large-scale, unbiased assessment
of the multicellular ecosystem of primary or metastatic HCCs from
multiple tissue types. Important immune cell subtypes are identified
and their relationships with tumor progression are investigated. The
intratumoral heterogeneity of malignant hepatocytes and their mul-
tifaceted functions in shaping the immunemicroenvironment are also
assessed. This large-scale transcriptomic data of single-cell resolution
in HCC can be used as a resource for further exploring the basic
characteristics of TME and for developing potentially effective
immunotherapy strategies for this malignancy.
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Results
scRNA-seq and cell typing of primary and metastatic HCC and
paired non-tumor liver tissues
To generate a single-cell atlas of the multicellular ecosystem of HCC,
we recruited 10 HCC patients with primary and/or metastatic tumors,
who are representatives of different tumor-node-metastasis (TNM)
stages and hepatitis virus infection status (Supplementary Fig. 1a;
Supplementary Data 1). Transcriptomes of single cells were measured
in four relevant tissue types of these patients, including the non-tumor
liver (NTL), primary tumor (PT), portal vein tumor thrombus (PVTT)
and metastatic lymph node (MLN) tissues (Supplementary Fig. 1b).
Overall, we obtained the transcriptomic data of 71,915 single cells, with
an average of 1979 detected genes per cell (Supplementary Data 2).

To generate a landscape of the global cellular microenvironment
of primary andmetastaticHCCs,wemerged the scRNA-seqdata across
all tissues and patients using a canonical correlation analysis (CCA)-
based batch correction approach. A total of 53 clusters of cells were
identified using a shared-nearest neighbor (SNN)-based unsupervised
clustering method (Fig. 1a and Supplementary Fig. 1c). The robustness
of the clustering was tested by down-sampling and leave-one-patient-
out analyses, which showed robust cluster assignments (Supplemen-
tary Fig. 1d).

We then annotated the 53 cell clusters with canonical marker
genes of major cell types and found they consist of 15 hepatocyte and
cholangiocyte clusters, 14 T and natural killer (NK) cell clusters, 14
myeloid cell clusters, 5 B cell clusters, 3 endothelial cell clusters and 2
fibroblast clusters (Fig. 1b, c and Supplementary Fig. 2a, b; Supple-
mentary Data 3). We further confirmed the cell type annotation by
comparing with the well-annotated cell clusters in the Human Cell
Landscape (HCL) project (Supplementary Fig. 2c). We found PT
showed significant depletion of T/NK cells and enrichment of myeloid
cells as compared to NTL, in line with previous studies on HCC5,6,8.
Besides, we found that PVTT and MLN tissues exhibited similar com-
position of major cell types with PT (Fig. 1d). To facilitate interactive
exploration of the multicellular ecosystem of HCC, we created a web
interface: http://omic.tech/scrna-hcc/.

Antitumor central memory T cells are enriched in early tertiary
lymphoid structures
We identified a total of 25,591 T/NK cells that were divided into 14
clusters (Fig. 2a). CD8+ T cell clusters include the cytotoxic T lym-
phocytes (CTLs) (C1),mucosal-associated invariant T (MAIT) cells (C2),
effector memory T (TEM) cells (C13), and tissue-resident memory T
(TRM) cells (C14). Cells in cluster C11 are associated to an intermediate
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Fig. 1 | scRNA-seq profiling of multicellular ecosystem in primary and meta-
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Source Data file.
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state (TInt) between the naïve T (TN)/central memory T (TCM) cells and
CTLs according to the trajectory analysis (Supplementary Fig. 3a). We
found most CD8+ T and NK subtypes are enriched in non-tumor livers
and depleted in primary andmetastatic tumors (Fig. 2a), distinct from
the tissue preferences of T cells in breast9 or lung cancer10. None-
theless, the infiltration levels of intratumoral CD8+ T and NK cells

showed heterogeneity across patients, varying from 1.8% to 27.8%
(Supplementary Fig. 3b).

Among CD4+ T cell subtypes, regulatory T cells (Tregs; C9) were
enriched in PT, consistent with previous findings4,5,11. However, we
identified another cluster of CD4+ T cells (C35), highly expressing key
markers of TN or TCM cells, were specifically enriched in PT andMLN.
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Usingmulti-color immunohistochemistry (IHC) assays, we confirmed
these cells to be CCR7+CD45RA−CD45RO+ TCM (Supplementary
Fig. 3c, d). In linewith this, comparisonwith T cell subtypes identified
by other studies showed that these cells shared the highest similarity
with ANXA1+CD4+ T cells, which were annotated as TCM both in the
non-small-cell lung cancer (NSCLC)12 and colorectal cancer (CRC)13

datasets (Supplementary Fig. 4a). Notably, we repeatedly observed
that these intratumoral TCM cells were organized in aggregates
(Fig. 2b and Supplementary Fig. 3d), which resemble early tertiary
lymphoid structures (E-TLSs). We then sought to determine whether
there is coexistence of T and B cells aggregates in these intratumoral
structures, which is a hallmark of E-TLS14,15. Indeed, the coexistence of
CD8+ T, CD4+ TCM and CD20+ B cell aggregates is detected in four out
of nine patients assessed by immunohistochemistry (IHC) assays
(Fig. 2b and Supplementary Fig. 3d). In accordance with this, we
identified a cluster of B cells (C40), which highly expressed MS4A1
(i.e., CD20) and CD79A, to be also specifically enriched in PT and
MLN, closely resembling the tissue preference of CD4+ TCM in C35
(Supplementary Fig. 4b). To further validate these findings, we clas-
sified the HCC tumors from two independent HCC cohorts (TCGA-
LIHC and Fudan) into two groups: TLShigh and TLSlow and found that
the inferred abundances of CD4+ TCM (C35) and CD20+ B cells (C20)
are significantly higher in TLShigh tumors as compared to TLSlow ones
(Fig. 2c and Supplementary Fig. 4c, d). Clinical relevance analysis
showed that higher abundances of CD4+ TCM or CD20+ B cells in
tumors are associated with improved patient’s survival (Fig. 2d and
Supplementary Fig. 4e), supporting their antitumor activities. Taken
together, these results indicated the potential activity of intratu-
moral E-TLSs in antitumor immunity in HCC by serving as deposi-
tories of antitumor TCM and CD20+ B cells.

Distinct T cell states between the HBV-related and non-HBV/
HCV-related HCCs
Tissue preference analysis between the patients with different viral
etiologies showed that most T cell clusters show higher infiltration
levels in HBV-related tumors than in non-HBV/HCV-related tumors
(Fig. 2e). Consistent with the scRNA-seq data, the inferred abundances
of most CD8+ T subtypes are significantly higher in HBV- or HCV-
related tumors than in non-HBV/HCV-related tumors in the TCGA-LIHC
cohort (Fig. 2f). In addition, flow cytometry analyses in eleven inde-
pendent HCC patients also confirmed this finding (Supplementary
Fig. 5a, b).

To investigate the intratumoral CTL exhaustion in HBV-related
HCCs, we identified the exhausted CTLs by dividing CTLs into sub-
clusters based on their expression profiles of CTL markers. The five
CTL subclusters (KM1–5) showed a continuous loss of expression of
CTL markers (Fig. 2g). Subcluster KM5 showed depletion of all CTL
markers and was dominated by CTLs derived from the primary and
metastatic tumors (~77.1%; P = 6.8 × 10–313, Chi-squared test). The genes
upregulated in KM5 included several important T cell exhaustion

markers, such as CTLA4, CD27 and PDCD1 (Supplementary Fig. 5d;
Supplementary Data 4). Hence, T cells in subcluster KM5 were defined
as the exhausted CTLs. Besides, we identified and defined the CTLs in
subcluster KM4 to be pre-exhausted CTLs due to their loss of
expression of CTL markers and sharing a high portion of signature
genes with KM5 (Supplementary Fig. 5e; Supplementary Data 5). We
found that the frequency of exhausted and pre-exhausted CTLs in
HBV-related patients is markedly higher than that of non-HBV/HCV-
related patients (Fig. 2h). We confirmed this finding in the TCGA-LIHC
cohort, as either the HBV-related or HCV-related tumors harbors sig-
nificantly higher abundances of exhausted CTLs compared to non-
HBV/HCV-related tumors and expresses consistently higher levels of
exhaustion markers, while no significant differences were observed
between the HBV-related and HCV-related tumors (Fig. 2i). Flow
cytometry analyses also showed that the percentages of CD8+PD1+

T cells were significantly higher in HBV-related HCC tumors as com-
pared to non-HBV/HCV-related cases (Supplementary Fig. 5a, c).
Together, these findings indicate that chronic HBV/HCV infection is
relevant to the infiltration and exhaustion status of CD8+ CTLs in HCC
tumors.

Characterization of the heterogeneity of intratumoral macro-
phages in HCCs
We identified a total of 15,947 myeloid cells that were divided into 14
clusters, of which 11 were macrophage clusters (Fig. 3a). Most of the
macrophage clusters were enriched in primary and/or metastatic
tumors, except for a MARCO+ macrophage cluster (C5) enriched in
NTL. This led to a large number of heterogeneous intratumoral mac-
rophages (n = 9445), making up ~46% of the immune cells in tumors,
consistent with the flow cytometry observations (Supplementary
Fig. 6a, b). High inter-tumoral heterogeneity of macrophages was also
observed, as four macrophage clusters (C38, C39, C41 and C44) were
specifically associated to individual patients (Supplementary Data 3).

We then focused on the five macrophage clusters (C6, C16, C26,
C21 and C23) enriched in tumor tissues and shared across the patients.
Macrophages inC6 cluster highly expressTREM2, an anti-inflammatory
regulator specifically expressed in infiltrating macrophages recruited
by inflammation16, suggesting that these TREM2+ macrophages in C6
may be a set of anti-inflammatory macrophages newly recruited into
tumors. Cluster similarity analysis showed that TREM2+ TAMs (C6)
shared a high similarity with C1QC+ TAMs and FOLR2+ TAMs in the pan-
cancer8 and Sharma’s HCC6 datasets respectively. Macrophages in C16
and C26 clusters express relatively low levels of macrophage markers
(CD68, CD14 and FCGR3A) and high levels of monocyte markers (FCN1,
LYZ and VCAN), indicating they are monocyte-derived macrophages
(MoMFs). Macrophages in C21 express high level of VEGFA, a well-
knownmarker of TAM17, and oxidative stress-responsive genes (NFKB1,
HSPA1A andHSPA1B), suggesting theseVEGFA+ macrophages areTAMs
associated to oxidative stress in tumors. In addition to C21, the mac-
rophages in C23 are characterized by high expression levels of a

Fig. 2 | Characterization of the heterogeneous T cell populations in HCC.
a Expression profiles of canonical marker genes of T/NK subtypes (top) and their
tissue preferences (bottom). Dot size indicates the ratios of the observed versus
expected cell numbers (RO/E); Dot color indicates the log-transformed P values
determinedby two-sidedChi-squared test. TEM effectormemory T, TNNaïve T, TCM

centralmemoryT, Treg regulatory T,NTL non-tumor liver, PTprimary tumor, PVTT
portal vein tumor thrombus, MLN metastatic lymph node. b Multi-color IHC
staining to validate the presence of CD4+ TCM, CD8

+ T and CD20+ B cells aggregates
in early tertiary lymphoid structures (E-TLSs) in the tumor of patient HCC03.
c Differential abundance of CD4+ TCM (C35) or CD20+ B (C40) in TLSlow and TLShigh

tumors from TCGA-LIHC cohort estimated using a 9-gene TLS signature. d Higher
abundance of CD4+ TCM (C35) or CD20+ B (C40) predicts increased overall survival
rates of patients in the TCGA-LIHC cohort. e The infiltration rates of T cell subtypes
in tumors of HBV-infected (n = 5) and non-HBV/HCV-infected (n = 3) HCC patients,

measured by dividing the number of T cells in tumoral tissues with the number of
the whole T cell subtype. f The inferred abundances of T cell subtypes in HBV-
infected (n = 104), HCV-infected (n = 56) and non-HBV/HCV-infected (n = 216)
tumor samples in the TCGA-LIHC cohort. g The k-means clustering of cytotoxic T
lymphocytes (CTLs) based on the expression levels of CTLs effector molecules.
h Proportions of the exhausted, pre-exhausted and non-exhausted CTLs in HBV-,
HCV- or non-HBV/HCV-infected patients. i The differential abundances of exhaus-
ted T cells (Tex) and differential expression levels of exhaustion markers in HBV-
infected (n = 104), HCV-infected (n = 56) and non-HBV/HCV-infected (n = 216)
tumor samples in the TCGA-LIHCcohort. In c, f and i, the statistical significancewas
determinedby two-sided Student’s t test. ns, not significant, *P <0.05, **P <0.01 and
***P <0.001. Boxplot elements are defined in the Methods section (data visualiza-
tion). Source data are provided as a Source Data file.
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different set of TAM-related molecules, including MMP9, SPP117 and
ITGAM (i.e., CD11b)18, suggesting these MMP9+ macrophages are
another set of TAMs different from the VEGFA+ TAMs. Similarity ana-
lysis showed that the MPP9+ TAMs (C23) shared a mild similarity with
SPP1+ TAMs in Sharma’s HCC dataset (Supplementary Fig. 6c, d). We
further examined the clinical relevance of these two subtypes of TAMs
in two additional HCC cohorts and found that higher abundance of

MMP9+ TAMs in tumors is strongly associated with worse overall sur-
vival (Fig. 3b and Supplementary Fig. 6e), as compared to a weak
association of VEGFA+ TAMs (Supplementary Fig. 6f).

This promoted us to further evaluate the functions of MMP9+

TAMs in HCC progression. MMP9+ TAMs were sorted from the HCC
primary tumors using flow cytometry by gating on their cell surface
markers identified in the scRNA-seq data (CD45+CD68+CD11b+MMP9+;
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Supplementary Fig. 6a). We found that the fractions ofMMP9+ TAMs in
PT are significantly higher than those in NTL (Fig. 3c), consistent with
the scRNA-seq data. We observed that co-culturing with MMP9+ TAMs
significantlypromoted themigration and invasion ofHCCcells and the
tube formation of human umbilical vein endothelial cells (HUVECs)
(Fig. 3d–f and Supplementary Fig. 7a, b), suggesting that the MMP9+

TAMs could promote HCC progression through inducing HCC cells
migration, invasion, and tumor angiogenesis.

MMP9+ macrophages are terminal TAMs that are differentiated
from distinct subpopulations
Next, we sought to explore the differentiation trajectories among these
heterogeneous macrophage subpopulations. StemID2 was used to
reconstruct the cellular lineage by exploiting the tree topology and
transcriptome composition of single cells19 (Methods). This analysis
showed two fully connected meta-clusters of macrophages (Fig. 4a).
The first meta-cluster includes MARCO+ (C5), TREM2+ (C6) and VEGFA+

macrophages (C21), and the secondone includes twoclusters ofMoMFs
(C16 and C26). Notably, we foundMMP9+ TAMs (C23) is connectedwith
both meta-clusters, suggesting its close relationships with both meta-
clusters. To further validate these relationships, an orthogonal algo-
rithm,RNAvelocity analysis, was performedanddisplayed in adiffusion
pseudotime (DPT) space. We found that MMP9+ TAMs at the center of
DPT map serve as a hub and are connected with three branches (b1–b3;
Fig. 4b). Among these branches, b1 and b2, which are composed of
MoMFs andTREM2+macrophages respectively, show clear RNA velocity
flows toward the hub (i.e., MMP9+ TAMs). Thus, in light of both the
lineage tree reconstruction and RNA velocity analysis, our data sug-
gested that MMP9+ TAMs might be a set of terminally differentiated
TAMs that can be accumulated through two distinct differentiation
trajectories from both MoMFs and TREM2+ macrophages.

Further, we investigated the potential driver transcription factors
(TFs) underlying the differentiation trajectories using SCENIC20. Dis-
tinct sets of TFswere activated among the heterogeneousmacrophage
subpopulations, and five TFs (PPARG, MITF, MXI1, TCF12 and TCF4)
were specifically activated in MMP9+ TAMs (Fig. 4c). In addition, the
TREM2+ macrophages contain both a subset that differentiates to
MMP9+ TAMs (C6a) and a subset does not (C6b) (Fig. 4d), which nicely
provided a strict case-control for looking into the key driving TFs in
MMP9+ TAM differentiation. We found all the five TFs show significant
increases of activities in subset C6a than in C6b (Fig. 4e). Especially,
PPARG (encoding PPARγ) showed a threefold increase of activity.
PPARγ has been shown to be required for the maturation of alter-
natively activated macrophages in skeletal muscle and liver21, and our
analysis suggests it may be crucial for the terminal differentiation of
MMP9+ TAMs in HCC.

Besides, we found that MMP9+ TAMs were also enriched in PVTT,
sowas aMoMF cluster (Fig. 3a).We then sought to explorewhether the
MMP9+ TAMs in PT and PVTT share the samedifferentiation trajectory.
Interestingly, we found that the two tissue types showed different RNA

velocity flows: theMoMFs show a clearflow towardMMP9+ TAMs at PT,
but this trend is not obvious at PVTT (Supplementary Fig. 7c). TF
analysis also showed that the activities of all the five MMP9+ TAM-
related TFs are significantly reduced in PVTT than in PT (Supplemen-
tary Fig. 7d). This result suggested thatMMP9+ TAMs enriched in PVTT
were more likely to be recruited from PT rather than differentiated
locally.

PPARγ has a critical function in the terminal differentiation of
MMP9+ TAMs in HCC
We next investigated the function of PPARγ in the differentiation of
MMP9+ TAMs. We found that, both in co-cultured THP-1 macrophages
or primarymacrophages sorted fromHCC tumors, treatment of PPARγ
inhibitors, GW9662 and T0070907 significantly decreases the
expression levels of marker genes of MMP9+ TAMs and the protein
levels of MMP9 and SPP1 in the culture media (Fig. 4g, f and Supple-
mentary Fig. 9a, b). In line with this, treatment of PPARγ inhibitors
significantly reduced the proportion of MMP9+ TAMs in co-cultured
THP-1 macrophages (Fig. 4h). Similarly, PPARG knockdown sig-
nificantly reduced the expression levels ofMMP9+ TAMsmarker genes
in co-cultured THP-1macrophages and the protein levels ofMMP9 and
SPP1 in the culturemedia. Further, the effects of PPARG knockdownon
co-cultured THP-1 macrophages were rescued by overexpression of
PPARG (Supplementary Fig. 10a, b).

We also examined the functions of PPARγ in HCC progression
through its regulationofMMP9+ TAMdifferentiation.Weobserved that
the abilities of HCCLM3 andHuh7 cells migration and invasion and the
tube formation of HUVECs are attenuated by PPARγ inhibitors both in
THP-1 macrophages (Fig. 4i–k and Supplementary Fig. 8) and primary
TAMs co-culture systems (Supplementary Fig. 9c–e). Similarly, the
inhibitory effects of PPARG knockdown in co-cultured THP-1 macro-
phages on HCC cells migration and invasion and tube formation of
HUVECs could be rescued by PPARG overexpression (Supplementary
Fig. 10c–e). Collectively, these results suggested that PPARγ has a cri-
tical function in the terminal differentiation of MMP9+ TAMs in HCC,
which could promote HCC progression through inducing HCC cells
migration, invasion, and tumor angiogenesis.

Intratumoral transcriptomic and genomic heterogeneity of
malignant hepatocytes
We identified a total of 20,406 hepatocytes thatwere separated into 14
clusters, enabling us to systemically explore their heterogeneity in
primary and metastatic HCCs. Two clusters of hepatocytes (C29 and
C49) and a cholangiocyte cluster (C45) were specifically enriched in
theNTL tissues, indicating they are non-malignant cell clusters. For the
remaining 12 malignant cell clusters, six clusters (C15, C17, C19, C27,
C42 and C47) were specifically enriched in primary tumors, therefore
designated as pro-tumorigenic hepatocyte clusters, and the other six
clusters (C3, C4, C12, C22, C24 and C43) were enriched in metastatic
tumors, designated as pro-metastatic hepatocyte clusters (Fig. 5a).

Fig. 3 | Characterization of the heterogeneity of tumor-infiltrating macro-
phages. a Heatmap (top) showing the expression profiles of canonical marker
genes of myeloid cell subtypes and dotplot (bottom) showing their tissue pre-
ferences. Dot size indicates the ratios of the observed versus expected cell numbers
(RO/E); Dot color indicates the log-transformed P values determined by two-sided
Chi-squared test. APC antigen-presenting cell, CC complement cascade, DC den-
dritic cell, TAM tumor-associated macrophage, Mast mastocyte, Mφ macrophage.
bHigher abundancesofMMP9+ TAMs (C23) in tumorspredictworseoverall survival
rates in HCC patients from the TCGA-LIHC cohort. Hazard ratio (HR) (with 95%
confidence interval in brackets) was calculated using a Cox proportional hazards
regression model, and the statistical significance was determined by log-rank test.
c The proportions of MMP9+ TAMs in primary tumor (PT) tissues are significantly
higher than those in non-tumor liver (NTL) tissues, which were measured by
fluorescence-activated cell sorting (FACS) in five HCC patients. The statistical

significance was determined by two-sided paired Student’s t test. **P <0.01. Huh7
cells treatedwithMMP9+ TAMs isolated from the PT tissues show increased abilities
of d migration (n = 12 biological replicates) and e invasion (n = 9 biological repli-
cates) compared to the control groups treated with the TREM2+ TAMs, non-MMP9+

TAMs isolated from the PT tissues and the whole macrophage populations isolated
from the NTL tissues, respectively. Error bars, mean± sd. f Human umbilical vein
endothelial cells (HUVECs) treated with theMMP9+ TAMs show more tubes for-
mation than the control groups treated with the TREM2+ TAMs, non-MMP9+ TAMs
isolated from the PT tissues and the whole macrophage populations isolated from
NTL tissues, respectively (n = 3 biological replicates). The scale bars represent
20μm. Error bars, mean ± sd. In d–f, the statistical significance was determined by
two-sided Student’s t test. *P <0.05, **P <0.01 and ***P <0.001. Source data are
provided as a Source Data file.
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Pathway analyses showed that these clusters are associated with the
activation of distinct pathways, so did hepatocytes at different tissue
sites (Supplementary Fig. 11a, b).We also found that the pro-metastatic
hepatocytes showed higher levels of cancer stemness than the pro-
tumorigenic hepatocytes (P = 1.1 × 10–145), while the non-malignant cells
showed the lowest cancer stemness (P =0.0; Fig. 5b).

Notably, we observed that the malignant hepatocytes from
an individual HCC patient are often distributed across multiple clus-
ters (Fig. 5c), rather than forming a single cluster as previously
reported22. We attributed this difference to the larger sample size and
the batch correction of our dataset. To rule out the potential artifacts
in batch correction and clustering, we also performed two additional
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batch correction and clustering approaches and drew similar conclu-
sions (Supplementary Figs. 12 and 13). Furthermore, wederived a list of
signature genes specifically expressed by pro-metastatic hepatocytes
as compared to pro-tumorigenic ones (Supplementary Data 7). By
scoring HCC tumors in two independent cohorts with this signature,
we found higher pro-metastatic scores are correlated with HCC stages
and predict worse overall survival rates of HCC patients (Fig. 5d, e).

We also explored the heterogeneity of malignant cells at the
genomic level by inferring the single-cell copy-number variation (CNV)
profiles (Fig. 5f). The malignant cells from each patient could be clas-
sified into different CNV clusters, which shared globally similar CNV
profiles but were significantly different at specific chromosome(s)
(Fig. 5g), indicating they belong to different subclones. Despite of the
high consistency on malignant cells identification, we did not observe
direct correspondence between the transcriptome-based and CNV-
based clusters (Supplementary Fig. 11d, e), suggesting high indepen-
dence between large-scale chromosomal aberrations and tran-
scriptomic heterogeneity of malignant cells. Together, these results
highlighted the intratumoral heterogeneity of the malignant hepato-
cytes and their clinical implications.

Malignant hepatocytes have multifaceted functions in shaping
the microenvironment of HCC
We identified 9758, 1296 and 6687 significant ligand-receptor (L-R)
interactions among the cell types that were presented in the PT, PVTT
and NTL tissues, respectively (Supplementary Data 8–10). The meta-
static lymph node was excluded from the analysis due to its limited
number of profiled cells. We found the intensities of hepatocyte-
related L-R interactions were dramatically increased in PT (Fig. 6a) and
PVTT (Supplementary Fig. 14a) than in NTL tissues due to the pro-
duction of a variety of ligands by malignant hepatocytes. This pro-
moted us to investigate the ligand expression among hepatocyte
clusters. Strikingly, we found that the non-malignant, pro-tumorigenic
and pro-metastatic hepatocytes could be well distinguished by their
ligand expression profiles, except for one pro-tumorigenic hepatocyte
cluster (C27) exhibiting similar profiles with the non-malignant hepa-
tocyte clusters (Fig. 6b).

To investigate the relationships between the ligand expression
and pathway activation in hepatocytes, we linked ligands to their
correlated pathways to construct a bipartite network (Fig. 6c). We
found the ligands highly expressed in non-malignant, pro-tumorigenic
and pro-metastatic hepatocytes are associated with activation of dis-
tinct pathways. Specifically, the ligands highly expressed in non-
malignant hepatocytes are related to the physiological functions of
hepatocytes, including metabolism of xenobiotic, fatty acid and bile
acid, adipogenesis, and complement system; the ligands highly
expressed inpro-tumorigenic hepatocytes are related to several stress-
response pathways, including inflammation, interferon, p53, and
apoptosis; and the ligands highly expressed in pro-metastatic

hepatocytes are related to the epithelial-mesenchymal transition
(EMT), MYC targets, Notch and myogenesis pathways.

We next sought to identify the tumor-enriched L-R interactions
that aremediatedby pro-tumorigenic and pro-metastatic hepatocytes,
respectively (Fig. 6d). In linewith thepathwayanalysis above,we found
many of the L-R interactions between pro-tumorigenic hepatocytes
and T cells are related to inflammation, such as CXCL10/CXCR3,
CXCL10/DPP4, CXCL11/CXCR3 and CXCL11/DPP423. Interestingly, the
L-R interactions between the pro-metastatic hepatocytes and immune
cells are enriched of interactions known to be immunosuppressive,
such as CCL20/CCR624, PTDSS1/JMJD625, RPS19/C5AR126 and MIF/
CD7427, suggesting an important activity of pro-metastatic hepato-
cytes in the immunosuppressive environment of HCC. This is con-
sistentwith a pan-cancer study thatobserved associations between the
cancer stemness and immunosuppression in a wide range of tumors28,
given that pro-metastatic hepatocytes show significantly higher
stemness than pro-tumorigenic hepatocytes (Fig. 5b). We validated
two pairs of L-R interactions CXCL10/CXCR3 andMIF/CD74, which are
associated to pro-tumorigenic and pro-metastatic hepatocytes
respectively, usingmulti-color IHC staining in the paired tissues of five
HCC patients (Methods). We quantified the distance between two
interacting cell populations using an image-based spatial analysis
method and found that the distances between CXCL10+ pro-
tumorigenic hepatocytes and CXCR3+ TCM cells in PT and PVTT are
significantly shorter than those in NTL tissues. Similar results are also
observed for MIF+ pro-metastatic hepatocytes and CD74+ MMP9+

TAMs (Fig. 6e, f). In concordancewith theL-R analysis, the image-based
assays indicated the interacting cells mediated by CXCL10/CXCR3 and
MIF/CD74 more closely co-localized with each other in tumor tissues
as compared to those in NTL tissues. Collectively, our results showed
the different functions of the pro-tumorigenic and pro-metastatic
hepatocytes in shaping the immune microenvironment of HCC.

Bulk tissue cell type deconvolution analysis shows seven TME
subtypes of HCC
Next, we sought to identify TME subtypes of HCC based on the
abundances of immune and stromal cell subtypes inferred from the
bulk RNA-seq data of the 369 HCC patients from the TCGA-LIHC
cohort. The inferred abundanceswere normalized by dividing the total
abundances of immune and stromal cells (Supplementary Fig. 15). The
k-means clustering based on the normalized abundances shows seven
distinct TME subtypes of HCC (TME1–7) (Supplementary Data 11),
which are associated with significantly different clinical outcomes
(P = 1.0 × 10–7, log-rank test; Fig. 7a, b).

Tumors in TME2 (n = 50) and TME5 (n = 25) subtypes exhibited a
macrophage-dominated and lymphocyte-depleted microenviron-
ment, and as expected, conferred the worst prognosis. Notably, TME2
and TME5 represented two different TAM-dominant TME subtypes.
Tumors in TME2 exhibited higher proportion of MMP9+ TAMs (C23),

Fig. 4 | The differentiation ofMMP9+ TAMs from distinct macrophage sub-
populations is induced by PPARγ. a Macrophage lineage reconstruction by
StemID2. Transcriptome entropy of each macrophage cluster is denoted by
node color. Significance of links is calculated as described in the Methods section
(StemID-based cellular lineage analysis) and is denoted by edge color. b RNA
velocities are visualized on the diffusion pseudotime (DPT) projection of tumor-
infiltrating macrophages. Arrows indicate the RNA velocity flow. c Heatmap
showing the active status of transcription factors (TFs) acrossmacrophage clusters.
TFs specifically activated in MMP9+ TAMs (C23) are marked by the red box. d RNA
velocities between the MMP9+ (C23) and TREM2+ macrophages (C6) are visualized
on DPT projection. Differential activity of PPARG in two TREM2+ macrophage
subpopulations (C6a and C6b) is visualized by heatmap. Mφ, macrophage; TAM,
tumor-associated macrophage. e The differential activities of five MMP9+ TAM-
related TFs between two TREM2+ macrophage subpopulations (C6a and C6b). The
statistical significance was determined by unpaired two-tailed t test. f Expression

levels of MMP9+ TAMs markers measured by qRT-PCR in THP-1 macrophages cul-
tured alone (Control), co-cultured with HCCLM3 cells (Co-culture+DMSO), or co-
cultured in the presence of the PPARγ inhibitors GW9662 (Co-culture+GW9662) or
T0070907 (Co-culture+T0070907). g Protein levels of MMP9+ TAMs markers
MMP9 and SPP1 measured by ELISA in the culture media of THP-1 macrophages of
different groups. h The proportion of MMP9+ macrophages in co-cultured THP-1
macrophages without treatment of GW9662 are significantly higher than those in
THP-1 macrophages treated by GW9662, measured by FACS. The statistical sig-
nificance was determined by two-sided paired Student’s t test. Migration i and
invasion j abilities of HCCLM3 and Huh7 cells treated with different sets of THP-1
macrophages. k Number of tubes formed by HUVECs treated with different sets of
THP-1 macrophages. In f–k, data was collected from 3 biological replicates. In
e–g, i–k, the statistical significances were determined by two-sided unpaired Stu-
dent’s t test. Error bars in f, g, i–k indicate mean± sd. *P <0.05, **P <0.01 and
***P <0.001. Source data are provided as a Source Data file.
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while tumors in TME5 exhibited higher proportion of VEGFA+ TAMs
(C21) (Fig. 7c). In contrast, TME7 subtype (n = 69) conferred the most
favorable prognosis on their constituent tumors and exhibited high
proportions of CTLs (C1), TCM (C35) and CD20+ B cells (C40) and low
macrophage content. Subtype TME3 (n = 45), which exhibited even
higher proportions of CTLs but also higher proportion of suppressive
Tregs than TME7 (Fig. 7c), showed a less favorable prognosis. By
comparing to the previously described pan-cancer immune subtypes
in PanImmune29, we found TME3 was specifically associated to
PanImmune2 (i.e. the IFN-γ dominant subtype), consistent with the

high proportions of INF-γ-producing NK (C25) and T (C14) subtypes in
TME3-related tumors (Fig. 7a). We also found there is correspondence
between the TME and iCluster-based molecular subtypes of HCCs30.
TME6 subtype consisted predominantly of iCluster1 patients
(P = 3.6 × 10–4), which were characterized by including a low frequency
of CDKN2A silencing by DNA hypermethylation, a low frequency of
CTNNB1 mutations and TERT promoter mutations. We also found the
MMP9+ TAM-enriched TME2 subtype is exclusive to iCluster2 patients
(P = 0.0015), which exhibited a high frequency of CDKN2A silencing by
DNA hypermethylation, a high frequency of TERT promotermutations
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and CTNNB1 mutations and were associated with low-grade tumors
and less microvascular invasion.

Discussion
In this study, by combining single-cell transcriptome profiling with
tissue preference analysis, lineage reconstruction, TF profiling, CNV
inference and cellular interaction analysis, we provided a more com-
prehensive landscape of the heterogeneousmulticellular ecosystem in
primary and metastatic HCCs.

Although much attention has been focused on T cells in the
microenvironment of HCC4 and other types of cancer9,10,31,32, our data
showed the enrichment of a cluster of antitumor CD4+ TCM cells in
E-TLSs in HCCs. A recent survey in 273 HCC patients showed that TLSs
werepresented innearly half of theHCC tumors, amongwhichmost of
themwere E-TLSs, and intratumoral TLSs were significantly correlated
with a lower risk of early relapse33. However, the mechanisms under-
lying the functions of TLSs in the adaptive antitumor immune
response remain to be deciphered. The identification of antitumor
TCM enriched in E-TLSs could provide an insight of this immune-
associated structure and its potential function in HCC immunother-
apy. As intratumoral TLS has recently emerged as a hot topic in the era
of cancer immunotherapy34, strategies aiming to induce/activate TCM

in TLSs/E-TLSs in combination with immune checkpoint inhibitors,
might represent promising avenues for future cancer treatment.

Many studies have investigated the correlation between the
hepatitis virus infection and T cells in peripheral systems35,36 or non-
tumor tissues37. However, few studies have focused on the impact of
hepatitis virus infection on intratumoral T cells. Using scRNA-seq, we
found thatmostCD8+ T cell clusters aremore enriched inHBV-orHCV-
relatedHCCs as compared tonon-HBV/HCV-relatedHCCs, and that the
chronic HBV/HCV infection states are related to an increased CTLs
exhaustion in HCC tumors. These findings are consistent with the high
immune checkpoint blockade (ICB) efficacy of viral-associated HCC38,
considering that higher density of CD8+ T cells is a classic biomarker
for higher ICB response rates39 and higher expression of PD1 by CD8+

T cells was reported to be associated with increased ICB response
rate40.

The origin and function of TAMs is one of the major concerns in
the relationship between the macrophages and the development of
tumors41. We identified MMP9+ TAMs to be a population of terminally
differentiated TAMs and can be accumulated from two distinct mac-
rophage subpopulations. One subpopulation is MoMFs, resembling
CCR2+ inflammatory monocytes reported by a previous study42.
Notably, besides the MoMFs, we found that the newly recruited
TREM2+ macrophages are also able to differentiate to MMP9+ TAMs.
Combining TF profiling and in vitro TAM differentiation assays, we
confirmed that PPARγ is a driving molecule of the terminal differ-
entiation of MMP9+ TAMs and subsequently promotes HCC progres-
sion. Nonetheless, the mechanistic linkage between PPARγ and
MMP9 secretion during macrophages polarization is unclear. A series

of in vivo and in vitro mechanism experiments are required to fully
discover the linkage between PPARγ and MMP9 expression in
macrophages.

Most scRNA-seq studies of malignant cells focused on their inter-
tumoral heterogeneity43,44. Our results highlighted the intratumoral
heterogeneity of malignant hepatocytes both at the transcriptomic
and genomic levels. In line with the heterogenous nature of malignant
hepatocytes, we found that the ligands highly expressed in pro-
tumorigenic and pro-metastatic hepatocytes are related to inflamma-
tion and immunosuppression, respectively, suggesting the distinct
functions of malignant hepatocytes in shaping the immune micro-
environment of HCC. Taken together, these results suggest that the
intratumoral heterogeneity of malignant cells should be considered in
immunotherapy.

In summary, our comprehensive characterization of TME from
different tissue sites of HCC patients showed the heterogeneous nat-
ure of immune and malignant cells in the cancer setting. Our findings
indicated the differential lineage and migratory relationships of mye-
loid and lymphoid cells in theHCCmicroenvironment. Our data canbe
valuable resources for further investigating the biological insights of
HCC, which will be helpful in developing novel therapeutic targets
and/or biomarkers for current immunotherapies of this malignancy.

Methods
Clinical sample collection
Ten patients with primary and/or metastatic HCC were enrolled
between July 2018 and December 2018 at the Chinese PLA General
Hospital (Beijing, China), and their non-tumor liver (NTL), primary
tumor (PT), portal vein tumor thrombus (PVTT) and metastatic lymph
node (MLN) tissues were collected for single-cell RNA sequencing
(scRNA-seq) and/or multi-color immunohistochemistry (IHC) assay.
Besides, 16 additional HCC patients were enrolled between September
2019 and April 2022 from the same hospital, and their NTL, PT, PVTT
and MLN tissues were used for flow cytometry analysis and/or multi-
color IHC assay. The diagnosis of HCC and the inclusion and exclusion
criteria for the patients were described in detail previously45,46. Briefly,
all the HCC patients were newly diagnosed, pathologically confirmed,
and proved not to have other types of cancer. The diagnosis of HCC
wasmade by either positive histologicfindings or an elevated serumα-
fetoprotein (AFP) level (≥400ng/mL) combined with at least one
positive image on angiography, sonography, and/or high-resolution
contrast computed tomography. Among the 26 HCC patients, 16 were
chronic HBV carriers, who were positive for both hepatitis B surface
antigen (HBsAg) and antibody immunoglobulin G to hepatitis B core
antigen (HBcAb) for at least 6 months, and 2 were chronic HCV car-
riers, who were positive for hepatitis C antibody (HCV-Ab). Addition-
ally, all the subjects included in this study were negative for antibodies
to hepatitis D virus or human immunodeficiency virus; and had no
other types of liver disease, including autoimmune hepatitis, toxic
hepatitis, and primary biliary cirrhosis or Budd-Chiari syndrome. None

Fig. 5 | The intratumoral heterogeneity of malignant hepatocytes at the tran-
scriptomicandgenomic levels. aThe tissuedistributionpreferencesof three non-
malignant, six pro-tumorigenic and six pro-metastatic hepatocyte clusters in NTL,
PT, PVTT and MLN tissues. Dot size indicates the ratios of the observed versus
expected cell numbers (RO/E), and dot color indicates the log-transformed P values
determined by two-sided Chi-squared test. b Cancer stemness of each cell cluster
was scored per cell by gene set variation analysis (GSVA) on the basis of the cancer
stemness signature in hepatocyte clusters. c Sankey diagram showing the percen-
tages of hepatocyte clusters among HCC patients and vice versa. d Significant
correlation between HCC stages and pro-metastatic scores across the HCC tumors
in the TCGA-LIHC cohort. A linear regression model was used for data fitting and
the significance of the model was determined by two-sided F-test. DF, degree of
freedom. e Higher pro-metastatic score of tumors predicts worse overall survival
rates of HCC patients in both the TCGA-LIHC (left) and the Fudan cohorts (right).

Hazard ratio (HR) with 95% confidence interval in brackets was calculated using a
Cox proportional hazards regression model, and the statistical significance was
determined by log-rank test. f Chromosomal landscape of the inferred single-cell
CNV profiles in hepatocytes. By use of k-means clustering analyses on the basis of
single-cell CNV profiles, the hepatocytes were divided into 30 CNV clusters. The
number of clusters was determined based on the average silhouette width scores.
Unsupervised k-means clustering can distinguish the malignant hepatocytes (CNV
clusters 1–26) from the non-malignant ones (CNV clusters 27–30) separated by the
horizontal lines. CNV, copy number variation. Tx Transcriptome. g Inferred copy-
number (CN) profiles of subclones in patient HCC02 at chromosome 13 (top) and
20 (middle), and HCC03 at chromosome 16 (bottom). The solid curve and colored
band indicatemean ± standarddeviation (s.d.) of CN in each chromosomal position
across single cells. Source data are provided as a Source Data file.
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of the patients was treated with chemotherapy, radiotherapy or any
other anti-tumor medicines prior to tumor resection. This study was
approved by the Research and Ethical Committee of Chinese PLA
General Hospital (Beijing, China) and Beijing Institute of Radiation
Medicine (Beijing, China). The informed consent was obtained from
each patient or his/her guardian. The detailed demographic and

clinical characteristics of these HCC patients were summarized in
Supplementary Fig. 1a and Supplementary Data 1.

Tissue dissociation and preparation of single-cell suspensions
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tumor (PT) and non-tumor liver (NTL) tissues. The averaged L-R interaction
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ligands (rows) across the malignant hepatocyte clusters (columns). Ligands and
malignant hepatocyte clusters are ordered based on hierarchical clustering. c A
bipartite network linking the hepatocyte-expressed ligands (colored ellipses) to the
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significantly upregulated in PT as compared to NTL tissues. Dot size indicates the
averaged L-R interaction intensity; Dot color indicates the log-transformed fold
change of intensities. e Multi-color IHC for the co-localization analysis of interact-
ing cell populationsmediated by L-R interactions CXCL10/CXCR3 (upper) andMIF/
CD74 (lower) in the non-tumoral liver (NTL) and primary tumor (PT) tissues of
patient HCC26. The nearest cells between two interacting cell populations are
linked by white solid lines. The experiment was repeated independently 5 times
with similar results. Hep, hepatocyte; TCM, central memory T TAM, tumor-
associated macrophage. f Average distances between interacting cell populations
mediated by L-R pairsCXCL10/CXCR3 (upper) andMIF/CD74 (lower) in theNTL, PT
and PVTT tissues of five patients (HCC09, HCC11, HCC12, HCC25, and HCC26),
among whom HCC09, HCC25, and HCC26 accompanied PVTT. The statistical sig-
nificances were determined by two-sided paired Student’s t test. *P <0.05, **P <0.01
and ***P <0.001. Source data are provided as a Source Data file.
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Solution (Miltenyi Biotech, Germany) and were shipped at 4 °C. For
each sample, ~1 g tissue was used for dissociation, and the remaining
tissue, if any, was fixed in formalin for 48 h and embedded in paraffin
for subsequent immunohistochemistry analysis. For dissociation, the
tissue wasminced using the surgical scalpels and further disintegrated
using the Liver Dissociation Kit (Miltenyi Biotech, Germany) and the
gentleMACS Dissociator (Miltenyi Biotech, Germany) according to
manufacturer’s instructions. The resulting single-cell suspension was
filtered sequentially through sterile 70-μm and 40-μm cell strainers.
The cell suspensionwas stained for viabilitywith 25mMcisplatin (Enzo
Life Sciences, USA) in a 1-min-pulse before quenching with 10% FBS.
The single-cell suspensions were then used for subsequent droplet-
based scRNA-seq or flow cytometry analysis.

Single-cell RNA sequencing
The single-cell suspensions were converted to barcoded scRNA-seq
libraries by using the Chromium Single Cell 3’ Library, Gel Bead &
Multiplex Kit and Chip Kit (10× Genomics, USA), aiming for an esti-
mated 5000 cells per library and following the manufacturer’s
instructions. Samples were processed using kits pertaining to V2
barcoding chemistry of 10× Genomics. Single samples are always
processed in a single well of a PCR plate, allowing all cells from a
sample to be treated with the same master mix and in the same
reaction vessel. For each patient, all the samples (NTL, PT, PVTT and
MLN tissues) were processed in parallel in the same thermal cycler.
The generated scRNA-seq libraries were sequenced on a NovaSeq
sequencer (Illumina, USA).
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Multi-color immunohistochemistry (IHC) assays
Paired tumor and non-tumor liver tissues of eleven HCC patients col-
lected from the Chinese PLA General Hospital (Beijing, China) were
used for this assay. Among the eleven HCC patients, six patients
(HCC03, HCC04, HCC05, HCC06, HCC08, and HCC09) have been
performed scRNA-seq on their tissue samples, and the other five
(HCC11, HCC12, HCC13, HCC25, and HCC26) were additionally recrui-
ted patients (Supplementary Data 1). The specimens were collected
within 30min after the tumor resection and fixed in formalin for 48 h.
Dehydration and embedding in paraffin was performed following
routine methods. These paraffin blocks were cut into 5mm slides and
adhered on the slides glass. Then, the paraffin sections were placed in
the 70 °Cparaffin oven for 1 h before deparaffinized in xylene and then
rehydrated in 100%, 90 and 70% alcohol successively. Antigen was
retrieved by critic acid buffer (pH 6.0) in the 95 °C water bath for
20min. Endogenous peroxidase was inactivated by incubation in 3%
H2O2 for 15min. Following a preincubation with 10% normal goat
serum to block non-specific sites for 30min, the sections were incu-
bated with primary antibodies in a humidified chamber at 4 °C over-
night. The antibodies used for identifying the TCM were: anti-CD45RA
(1:100; clone# 4KB4, ZSBIO, China), anti-CD45RO (1:100; clone# UCH-
L1, ZSBIO, China), anti-CD4 (1:400; clone# EPR6855, Abcam,USA), anti-
CD8 (1:500; clone# 144B, Abcam, USA), anti-CCR7 (1:500; polyclonal,
Abcam, USA) and anti-CD20 (1:500; clone# L26, Abcam, USA). Multi-
color IHC staining was also used to validate the cellular interactions
mediated by ligand-receptor pairs. For the validation of CXCL10/
CXCR3 interaction, the pro-tumorigenic hepatocytes are marked by
global hepatocytes marker anti-ALB (1:1000; polyclonal, Proteintech,
USA) and the expressed ligand anti-CXCL10 (1:500; polyclonal, Pro-
teintech, USA), and the interacting TCM cells are marked by TCM mar-
kers anti-CD4 (1:500; clone# EPR6855, Abcam, USA), anti-CCR7 (1:200;
polyclonal, Proteintech, USA) and the corresponding receptor anti-
CXCR3 (1:500; clone# 1B2D6, Proteintech, USA); for the validation of
MIF/CD74, the pro-metastatic hepatocytes are marked by anti-ALB
(1:1000; polyclonal, Proteintech, USA) and the ligand anti-MIF (1:100,
clone# 2A10-4D3, Abcam, USA), and the interacting MMP9+ TAMs are
marked by their markers anti-CD68 (1:500; clone# KP1, ZSGB-BIO,
China) and anti-MMP9 (1:100; polyclonal, Proteintech, USA), as well as
the corresponding receptor anti-CD74 (1:50; clone# LN2, Abcam,USA).
The antigenic binding sites were visualized using the Opal 7-Color
Manual IHC Kit (PerkinElmer, USA) according to the protocol of the
manufacturer. Multi-color IHC data were collected by Mantra Quanti-
tative Pathology Workstation (PerkinElmer, USA) and analyzed by
InForm 2.2.1 (PerkinElmer, USA). Cellular distances were measured
using the ‘nearest neighbor analysis’ model in the HALO pathology
software (Indica Labs, USA).

Flow cytometry analysis of macrophages and cell sorting
To validate the distinct distributions of MMP9+ tumor-associated mac-
rophages (TAMs) between the HCC tissues and NTL tissues, we con-
ducted flow cytometry analyses on paired PT and NTL tissues of
five HCC patients (Supplementary Data 1). The following antibodies
were used in the flow cytometry analysis: PerCp-Cy5.5-conjugated
7-AAD (1:100; Thermo Fisher, USA), APC-H7-conjugated CD45 (1:100;
clone# 2D1, BD Biosciences, USA), BV421-conjugated CD68 (1:100;
clone# Y1/82A, BD Biosciences, USA), FITC-conjugated CD11b
(1:100; clone# ICRF44, BD Biosciences, USA), PE-conjugated MMP9
(1:100; clone# D6O3H, CST, USA) and APC-conjugated TREM2 (1:100;
clone# 237920, R&D Systems, USA). The single-cell suspensions were
stained with antibodies in 2% FBS for 20min at 4 °C, and were analyzed
on an Aria II flow cytometer (BD Biosciences, USA). The expression
levels of CD45, CD68, CD11b, MMP9 and TREM2 were gated by their
negative controls of unstained cells and positive controls of cells
stained by each antibody. For sorting theMMP9+ TAMs from the PT and
NTL tissues, samples were gated for CD45+CD68+CD11b+MMP9+. For

sorting the TREM2+ TAMs from the PT and NTL tissues, samples were
gated for CD45+CD68+TREM2+. Besides, the other macrophages except
forMMP9+ TAMs (referred to as non-MMP9+ TAMs) in the tumor tissues
and the whole macrophage populations in the NTL tissues were
sorted as negative controls by gating for CD45+CD68+CD11b–/
CD45+CD68+MMP9– and CD45+CD68+ respectively. Cells were analyzed
using the BD FACSDIVA software (BD Biosciences, USA) and FlowJo
software (FlowJo, USA).

Flow cytometry analysis of T cells and sorting
To validate the distributions of CD8+ T cells and PD1+ exhausted CD8+

T cells between the HBV-related and non-HBV/HCV-related HCC
tumors, we conducted flow cytometry analyses on seven HBV-related
and four non-HBV/HCV-related HCC tumors (Supplementary Data 1).
The following antibodies were used in the flow cytometry analysis:
PerCp-Cy5.5-conjugated 7-AAD (1:100; Thermo Fisher, USA) APC-
conjugated CD3 (1:100; clone# UCHT1, BD Biosciences, USA), FITC-
conjugated CD8 (1:100; clone# RPA-T8, BD Biosciences, USA) and
BV421-conjugated PD1 (1:100; clone# EH12.1, BD Biosciences, USA).
The single-cell suspensions were stained with antibodies in 2% FBS for
20min at 4 °C, and were analyzed on an Aria II flow cytometer (BD
Biosciences, USA). The expression levels of CD3, CD8 and PD1 were
gated by their negative controls of unstained cells and positive con-
trols of cells stained by each antibody. Cells were analyzed using the
BD FACSDIVA software (BD Biosciences, USA) and FlowJo software
(FlowJo, USA).

Cell culture preparation
To investigate the function of PPARγ in MMP9+ TAMs differentiation,
both cell line and primarymacrophages sorted fromHCC tumors were
used. For the cell line culture, human THP-1 monocytes were first
induced to differentiate to THP-1 macrophages. Specifically, THP-1
monocytes were maintained in RPMI 1640 (HyClone, USA) supple-
mented with 10% FBS and 5mM β-mercatoethanol and were incubated
at 37 °C in a 5% CO2 atmosphere. To induce the THP-1 monocytes to
differentiate to THP-1 macrophages, approximately 2 × 105 THP-1 cells
were seeded in 12-well plates and treated with 100nM phorbol-12-
myristate 13-acetate (PMA) for 24 h. The PMA-containing medium was
removed after 24 h and the cells were washed three times in PBS to
remove the PMA. THP-1 macrophages were then induced to differ-
entiate to TAM-like cells by co-culture with HCCLM3 or Huh7 cells at a
12-mm transwell with 0.4 μm pore polyester membrane insert (Corn-
ing, USA) (Supplementary Fig. 7e). Specifically, approximately 2 × 105

THP-1 macrophages were co-cultured with HCCLM3 or Huh7 cells that
had been left to attach to the inserts for 12 h before the co-culture.
These cells were co-cultured inmedium containing equal volumes (1:1)
of RPMI 1640 medium supplemented with 10% FBS and HCC-CM for
48 h.We found that the THP-1macrophages co-culturedwithHCCcells
express significantly higher levels of PPARG and marker genes of
MMP9+ TAMs (MMP9, SPP1 andCD11b) as compared to non-co-cultured
cells (Fig. 4f and Supplementary Fig. 7f). Accordingly, higher levels of
MMP9 and SPP1 proteins were detected in the co-culture medium
(Fig. 4g). Bulk RNA-seq analysis showed that the co-cultured THP-1
macrophages share the highest expression correlation with MMP9+

TAMs (C23) among all the macrophage clusters (Supplementary
Fig. 7g). These results indicated that the THP-1 macrophages co-
cultured with HCC cells share many properties withMMP9+ TAMs. For
the primary macrophages, we sorted MMP9+ TAMs from HCC tumors
in the gate of CD45+CD68+CD11b+MMP9+ for further differentiation
and functional experiments.

Knockdown and overexpression of PPARG
Lentiviral short harpin RNA (shRNA) constructs (pLKO.1) coding oli-
gonucleotide sequence 5′-GTTTGAGTTTGCTGTGAAG-3′ against
human PPARG transcript (nucleotides 1095–1113) (shPPARG), and a
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scramble sequence 5′-GAGTGAGTAATTCATCCTG-3′ (shControl) were
obtained from Inovogen Tech (Beijing, China). For rescue assays, three
synonymous mutations on PPARG coding sequence were introduced
in the shRNA binding site (new sequence: 5′-GTTCGAGTTCGCTGT-
TAAG-3′) to generate a PPARG construct resistant to shPPARG
(shPPARG + PPARGΔ). Synonymous mutations were generated using
the Site-DirectedMutagenesis Kit (FMTG-25, SBS Genetech, China). To
generate the stable knockdown or rescue cell lines, THP-1 cells were
transfected with the indicated lentiviruses, and the stable clones were
selected with 2μg/mL puromycin or 500μg/mL G418 (Sigma, USA).
Quantitative reverse transcription real-time polymerase chain reaction
(qRT-PCR) assays was performed to determine the knockdown or
overexpression efficiency, respectively.

HCC cell lines and human umbilical vein endothelial cells
(HUVECs) culture
The humanHCC cell lines HCCLM3andHuh7 and the humanumbilical
vein endothelial cells (HUVECs) were obtained from the China Center
for Type Culture Collection (CCTCC;Wuhan city, China). HCCLM3 and
Huh7 were maintained in high-glucose Dulbecco’s modified Eagle’s
medium (DMEM; HyClone, USA) supplemented with 10% FBS
(HyClone, USA), 100U/mL penicillin, and 100μg/mL streptomycin.
The HCC-conditioned media (HCC-CM) were collected, centrifuged at
2000 × g at 4 °C for 10min to remove the cell debris and stored at
–80 °C. HUVECs were cultured in endothelial cell medium (ECM, Sci-
enCell, USA) containing 5% FBS and supplemented with 100× endo-
thelial cell growth supplement (ECGS, ScienCell, USA).

PPARγ interference
For experiments involving in PPARγ inhibitors, the THP-1macrophages
were treated with DMSO, PPARγ inhibitors GW9662 (20μM) or
T0070907 (20μM) for 12 h before the co-culture. For experiments
involving PPARG knockdown and overexpression, the THP-1 macro-
phages transfected with shPPARG, shPPARG + PPARGΔ or shControl
were used for the co-culture. Then, the induced TAM-like cells were
harvested to perform qRT-PCR and to co-culture with the HCC cells or
HUVECs to test the abilities of cells migration, invasion and tube for-
mation, and the co-cultured medium was collected for ELISA assay.

qRT-PCR assays
To determine the expression levels of PPARG,MMP9, SPP1, CD11b and
VEGFA in macrophages, total RNAs were isolated by Trizol (Invitrogen,
USA) reagent and were converted to cDNAs using the superscript III
First Strand Synthesis System (Invitrogen, USA). qRT-PCR assays were
then performed using the Bio-Rad IQ5 System (Bio-Rad, USA). PCR
reactions were performed in 20μL reactions using the SYBR Green
PCR master mix (Bio-Rad, USA) and 0.2μM specific primers. The
relative expression levels of mRNAs were calculated using the com-
parative CT method normalized to GAPDH. Primers used for qRT-PCR
are shown in Supplementary Data 6.

Quantification of MMP9 and SPP1 protein levels
MMP9 and SPP1 protein levels in culture supernatants were mea-
sured using the ELISA kits purchased from R&D Systems (Cat#
DMP900 and Cat# DOST00, respectively) according to the manu-
facturer’s instructions.

Cells migration and invasion assays
The 24-well chemotactic camber with a polycarbonate filter of 8-μm
pore size (Corning, USA) was used for cells migration assays, and the
24-well BioCoat matrigel invasion chamber (BD Biosciences, USA) was
used for cells invasion assays. In brief, HCCLM3 or Huh7 cells were
cultured in serum-free medium for 12 h and then stained with Cell-
Tracker Green (5-chloromethylfluorescein diacetate [CMFDA]; Invi-
trogen) for 30min. For both of the cell migration and invasion assays,

approximately 5 × 104 stained HCCLM3 or Huh7 cells together with
5 × 104 TAM/TAM-like cells in 500μL serum-free medium were placed
in the upper chamber of each well, whereas the lower chamber was
loadedwith 500μLRPMI 1640mediumwith 10% FBS. For assessing the
effects of TAMs fromclinical samples, TAMs sorted from the single-cell
suspensions of the PT or NTL tissues were used. For assessing the
effects of TAMs induced in vitro, the THP-1 cells co-cultured with HCC
cells or primary MMP9+ TAMs sorted from HCC tumors were used.
After 24–36 h of incubation, cells were fixed in 3.7% paraformaldehyde
in phosphate-buffered saline (PBS). The abilities of cells migration and
invasion were then quantified by counting the number of HCCLM3 or
Huh7 cells (green) that were on the underside of the filter in five fields
under a 10× objective lens and imaged using the SPOT imaging soft-
ware (Nikon, Japan). The assays were performed for at least three
times, each with at least three biological replicates.

Tube formation assays
To assess the tube formation ability of HUVECs, the 15-well µ-Slide
Angiogenesis plates (Ibidi, Germany) were coated with 10 µL Matrigel
andwere allowed to polymerize for at least 30min before use. HUVECs
were stained with CellTracker Green CMFDA (Invitrogen, USA) for
30min and washed three times with PBS. Then, approximately 1 × 104

stained HUVECs together with 1 × 104 TAMs in 50 μL medium were
seeded into each well on the plate. For assessing the effects of TAMs
from clinical samples, TAMs sorted from the single-cell suspensions of
PTorNTL tissueswere used. For assessing the effects of TAMs induced
in vitro, the THP-1 macrophages co-cultured with HCC cells or primary
MMP9+ TAMs sorted from HCC tumors were used. After incubation of
6 h at 37 °C,HUVECs (green)were imaged at ×10magnificationon aTE-
2000U inverted microscope (Nikon, Japan), and the total number of
tubes in eachwell were counted as ameasurement of the ability of tube
formation. The assays were performed for at least three times, each
with at least three biological replicates.

Single-cell gene expression quantification
The Cell Ranger software (version 2.2.0; 10× Genomics, USA) was used
to perform sample demultiplexing, barcode processing and single-cell
3’ counting. The mkfastq function in Cell Ranger was used to demul-
tiplex the raw base calling files from the sequencer into the sample-
specific fastq files. Then, the fastq files for each samplewere processed
with the count function in Cell Ranger, which was used to align the
reads to humangenome (buildhg38) and quantify the gene expression
levels in single cells.

Quality control and batch correction
To filter out low-quality cells and doublets (two cells encapsulated in a
single droplet), for each sample, the cells that had either fewer than
200 unique molecular identifiers (UMIs), or over 8000 or below 200
expressed genes, were removed. To filter out dead or dying cells, the
cells that hadover 10%UMIs derived frommitochondrial genomewere
further removed. This resulted in a total of 71,915 high-quality single-
cell transcriptomes in all samples.

To merge samples across the tissues or patients, we run a cano-
nical correlation analysis (CCA) for batch correction using the Run-
MultiCCA function in R package Seurat (v2). To calculate the canonical
correlation vectors (CCVs), the variably expressed genes were selected
for each sample as having a normalized expression between 0.125 and
3, and a quantile-normalized variance exceeding 0.5, and then com-
bined across all samples. The resulting 2,773 non-redundant variable
genes were summarized by CCA, and the first 15 CCVs were aligned to
combine raw gene expression matrices generated per sample. The
aligned CCVs were also used for T-distributed Stochastic Neighbor
Embedding (tSNE) dimensionality reduction using the RunTSNE func-
tion in Seurat. Besides the CCA, we also performed themutual nearest
neighbor (MNN)-based and anchor-based batch correction
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approaches. For MNN-based correction, all the cells across all samples
were projected into the low-dimensional space defined by principal
component analysis (PCA). Identification of MNNs and calculation of
correction vectors were then performed in this low-dimensional space
using the fastMNN function in R package Scran47 with the default
number of nearest neighbors. The low-dimensional corrected coordi-
nates were then used for further cell clustering and tSNE dimension-
ality reduction. For anchor-based correction, the cell pairwise
correspondences between single cells across datasets, termed
“anchors”, were calculated based on the 2,773 non-redundant variable
genes using the FindIntegrationAnchors function in Seurat (v3) with
default parameters. The expression levels of these variable genes in
each sample were corrected using the generated anchors and com-
bined into a single Seurat object.

Cells clustering
For cell clustering, we used the FindClusters function in Seurat (v2),
which implements shared nearest neighbor (SNN) modularity
optimization-based clustering algorithm. A total of 26–61 clusters
were identified using the 30 aligned CCVs, with resolution ranging
from 1 to 4. A resolution of 3 was chosen for the analysis and a final of
53 clusters were obtained. To evaluate the effect of cell numbers on
clustering results, we iteratively repeated the clustering analysis after
down-sampling the data to 1/2, 1/3, 1/4 and 1/5 of all cells. For each
down-sampling, 100 replicates were performed. Each down-sampled
dataset was used for clustering analysis by FindClusters, and the
resulting cluster labels were compared with our benchmark labels, as
obtained from the whole dataset analysis, using the normalized
mutual information (NMI) index48. A higher NMI index means more
accurate cluster assignment in the down-sampled dataset. Addi-
tionally, we performed leave-one-patient-out analysis similar to the
down-sampling assessment above. In this analysis, we hold out one
patient at a time and compute the NMI index between the clustering
labels in the other nine patients and benchmark labels. As expected,
this NMI index slightly drops for smaller clusters biased to one
patient, but is otherwise highly robust and stable (Supplementary
Fig. 1d). Among the 53 cell clusters, 13 clusters are specifically asso-
ciated to individual patients (>60% cells froma single patient) and are
therefore termed as the patient-specific clusters. The other 40 clus-
ters are shared across multiple patients and are termed as the
patient-shared clusters.

Identification of marker genes for cell clusters
To identify the marker genes for each one of those 53 cell clusters,
we contrasted cells from a cluster to all the other cells of that cluster
using the FindMarkers function of Seurat, which identifies differ-
entially expressed genes between two groups of cells using a Wil-
coxon rank-sum test. P values were then corrected using Bonferroni
correction based on the total number of genes in the dataset.
Marker genes were required to have an adjusted P value < 0.01, an
average expression level in that cluster that was at least 2-fold
higher than the average expression level in the other clusters, and a
detectable percentage in that cluster at least 20% higher than in the
other clusters.

Similarity measurement of cell clusters
We used two different methods to evaluate the cluster similarities. For
datasets with raw gene expression matrix available, we adopted a
logistic regression model previously used by a pan-cancer scRNA-seq
study8 (related to Supplementary Figs. 4a and 6c, d). For datasets with
only the fold-change (FC) of markers available, we developed a
weighted similarity scoring method by multiplying the FC of the
shared markers between each pair of clusters respectively and then
sum them up (related to Supplementary Fig. 2c).

CNV estimation for single cells
We used CONICS49 to infer large-scale copy number variations (CNVs)
fromour scRNA-seq data. To infer the copy number status of each cell,
the CONICSmat module in CONICS was used to fit a two component
Gaussian Mixture Model for each chromosomal region (Supplemen-
tary Fig. 11c). The mixture model was fitted to the average gene
expression level of genes within a chromosome, across all cells. Cells
with a deletion at a specific region will show an average lower
expression level from that region than cells without the deletion. The
posterior probabilities for each cell belonging to one of the compo-
nents were then used to construct a heatmap that visualizes the copy
number status of each cell.

SCENIC analysis
SCENIC was used to identify the shared regulatory networks by uti-
lizing the putative regulatory binding sites found in promoter
regions20. To investigate the transcription factor (TF) activity in single
cells, SCENIC analysis was run using the pySCENIC and GRNboost2
packages. The required databases for running SCENIC, including the
TF database (cisTarget.hg38.mc9nr.feather) and motif annotation
database (hgnc.v9.m0.001), were downloaded from the pySCENIC
website (https://github.com/aertslab/pySCENIC). The input matrix of
pySCENIC was the normalized expression matrix output from Seurat,
and the activity of a TF was measured as the Area Under the recovery
Curve (AUC) of the genes that are regulated by this TF. To get differ-
entially activated TFs between each two types of cells, the R package
limma50 was used to fit TF-wise linear models and implements
empirical Bayes moderated t-statistics to determine the statistical
significance (Benjamini-Hochberg-adjusted P value <0.01 and t-statis-
tics >30). Results of these linear models were visualized using the bar
plots or heatmaps based on the t-statistics.

Cell subtype deconvolution from bulk RNA-seq
To assess the function of cell subtypes in larger compendiums of
samples,we assessed their composition inbulk RNA-seq data fromThe
Cancer Genome Atlas (TCGA)-liver hepatocellular carcinoma (LIHC)
(n = 369)51 and the Fudan HCC cohorts (n = 225)52. We assumed that
only the abundance of patient-shared cell subtypes could be robustly
inferred across samples, so the patient-specific subtypes were exclu-
ded from this analysis. The abundance of a cell subtype in a tumor or
non-tumor liver tissue was estimated by the sum of log-transformed
TPM of all its marker genes in the bulk RNA-seq. The abundance of
exhausted T cells was estimated using a set of canonical T cell
exhaustion markers, including CTLA4, PDCD1, LAG3, CD27, CD52 and
ICOS. We normalized the abundance of a cell subtype by dividing its
abundance with the sum of the abundance of all patient-shared
immune and stromal cell types identified in theHCCsingle-cell dataset.
To assess the clinical relevanceof these cell subtypes,we applied a Cox
proportional hazards model implemented in the R survival package.

Identification of TLShigh and TLSlow tumors from bulk RNA-seq
We used an approach similar with cell subtype deconvolution to infer
the tertiary lymphoid structure (TLS) abundances of tumors frombulk
RNA-seq data. Twodifferent TLS signatures that have beenwidely used
for TLS detection in various tumors were adopted for this analysis: a
9-gene signature53 and a 12-gene signature54. The 9-gene signature
includes a set of immune cell-specific genes: CD79B, CD1D, CCR6, LAT,
SKAP1, CETP, EIF1AY, RBP5 and PTGDS, while the 12-gene signature
includes a set of genes encoding chemokines: CCL2, CCL3, CCL4, CCL5,
CCL8, CCL18, CCL19, CCL21, CXCL9, CXCL10, CXCL11 and CXCL13. The
abundance of TLS in a tumor was estimated by the sum of log-
transformed TPM of two sets of signature genes, respectively, and the
tumors in the TCGA-LIHC and Fudan cohorts, respectively, were divi-
ded into two groups: TLShigh and TLSlow using the median split. To
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assess the clinical relevance of TLS abundance, we applied a Cox
proportional hazards model implemented in the R survival package.

Tumor microenvironment classification
We partitioned the HCC patients using the k-means clustering
method based on the absolute or normalized abundance of non-
malignant cell subtypes inferred from bulk RNA-seq. We found the
patient groups divided based on the absolute abundances of cell
subtypes do not show significant difference in patient prognosis
(P = 0.3) (Supplementary Figs. 15a, b). Correlation analyses of abso-
lute cellular abundances showed that most non-malignant cell sub-
types are highly correlated with one another across patients
(Supplementary Fig. 15c). We showed that consistent with previous
study55, the averaged absolute abundance of non-malignant cell
clusters is also strongly negatively correlated with tumor purity
(R = –0.70, P = 1.4 × 10–53, Spearman’s ρ test; Supplementary Fig. 15d),
which estimates the relative proportion of malignant and non-
malignant cell clusters in a tumor. As a result, we chose to partition
the HCC patients based on the normalized abundance of non-
malignant cell subtypes.

Gene set variation analysis
Pathway analyses were predominantly performed on the 50 hallmark
pathways described in the molecular signature database (v7) of gene
set enrichment analysis (GSEA)56. To reduce the pathway overlaps and
redundancies, each gene set associatedwith apathwaywas trimmed to
only contain unique genes, and all genes associated with two or more
pathways were removed. Most gene sets retained >70% of their asso-
ciated genes. Then, we applied the gene set variation analysis (GSVA)57

with standard settings, as implemented in the R GSVA package, to
assign the pathway activity estimates to individual cells.

StemID-based cellular lineage analysis
StemID2 infers the links between cell clusters which are more
populated with intermediate single-cell transcriptomes than expec-
ted by chance19. For a separate analysis of the macrophage popula-
tion, all the cells from clusters C5, C6, C16, C21, C23 and C26 were
extracted and analyzed using StemID2 as implemented in the R
RaceID package. The entropy of each cell type, which is required to
compute the StemID2 score, was computed using the compentropy
function with default parameters. The dimensionality reduction and
the calculation of the projections of each cell onto all inter-cluster
links are performedby the projcells functionwith default parameters.
Finally, the lineage graph was assembled based on the cell projec-
tions onto inter-cluster links using the lineagegraph function with
default parameters. The significance of links of the lineage tree was
determined by circumvent time-intense randomizations of the
lineage tree.

RNA velocity-based cell fate tracing
RNA velocity infers the precursor-progeny cell dynamics between
subpopulations by distinguishing between unspliced and spliced
mRNAs in scRNA-seq data58. To perform the RNA velocity analysis, the
spliced reads and unspliced reads were recounted by the velocyto
python package based on previous aligned bam files of scRNA-seq
data. The calculation of RNA velocity values for each gene in each cell
and embedding RNA velocity vector to low-dimension space were
done using velocyto.R and destiny R package. We estimated the des-
tination of a cell by identifying the highest correlation value. Then,
Fisher’s exact test was performed on 2 × 2 cluster-by-cluster or cluster-
by-tissue contingency tables to test the fate destinations of interested
cell clusters. To infer the differential directions of macrophages, we
first constructed partition-based graph abstraction for macrophage,
and then oriented edges among cell populations using the RNA velo-
city information.

Cell-cell interaction analysis
The cell-cell interaction analysis was based on the expression of spe-
cific ligands (Ls) and receptors (Rs). A total of 1169 literature-
supported and manually curated ligand-receptor (L-R) interactions
were collected from the Fantom5 and CellPhoneDB databases59,60. Cell
clusters that had at least 5 cells andoccupied 10%of immune cells from
either primary tumor or non-tumor liver tissues were considered. We
estimated the potential interaction between twocell clustersmediated
by a specific L-Rpair by the product of the average expression levels of
the ligand in one cell cluster and the corresponding receptor in the
other cluster. To examine the statistical significance of the estimated
interaction intensity, permutations were applied on the cell cluster
tags of individual cells for 1000 times, and theP valuewas estimatedby
the number of permutations that had interaction intensity larger than
the real value. Adjusted P value by Bonferroni correction was calcu-
lated formultiple testing correction across the hundreds of L-Rpairs. If
a pair of ligand and receptor had a value of interaction intensity larger
than 1, and an adjusted P value less than 0.01 between two cell clusters,
we defined this L-R pair as a potential molecular axis mediating inter-
actions between the two cell clusters. For a given pair of ligand and
receptor, cell clusters with the average expression level of either the
ligand or the receptor less than 1 (log2(Normalized Counts) <1) were
filtered. The cellular communication intensity between two cell types
was defined as the number of significant L-R interactions between
them weighted by the number of cells in the corresponding tissue.

Bulk RNA sequencing and data processing
Total RNAs were extracted from the non-co-cultured and co-cultured
THP-1 cells using the RNeasyMini Kit (QIAGEN, Germany) according to
the manufacturer’s instructions. The qualities of total RNAs were
measured by spectrophotometer (NanoDrop, Thermo Fisher, USA).
Libraries were constructed using theNEBNext Poly(A)mRNAMagnetic
Isolation Module kit (NEB, USA) and NEBNext Ultra RNA Library Prep
Kit for Illumina Paired-end Multiplexed Sequencing Library (NEB,
USA). Samples were sequenced on the Illumina Hiseq 4000 sequencer
with 150bp paired-end reads. The Bulk RNA-seq data were processed
using the STAR-rsem pipeline. Read counts per gene were normalized
to gene length and to the total read counts, and directly compared to
the log-transformed UMI count per gene for the single-cell samples
using the Pearson correlation analysis.

Data visualization
Boxplots are defined as follows: the middle line corresponds to the
median; the lower and upper hinges correspond to first and third
quartiles, respectively; the upper whisker extends from the hinge to
the largest value no further than 1.5× the inter-quartile range (or the
distance between the first and third quartiles) from the hinge and the
lowerwhisker extends from the hinge to the smallest value atmost 1.5×
the inter-quartile range of the hinge.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw data of single-cell RNA sequencing generated in this study
have beendeposited in the EuropeanGenome-phenomeArchive (EGA)
database under accession code EGAC00001001616. Because all data
submitted to the EGA must be subject to controlled access as defined
by the original informed consents, researchers have to propose a sci-
entific hypothesis to require access by contacting Prof. Gangqiao
Zhou. The processed gene expression data of single-cell RNA
sequencing is available at the Gene Expression Omnibus (GEO) data-
base under accession code GSE149614. The raw and processed gene
expression data of bulk RNA sequencing is available at the GEO
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database under accession code GSE168922. The L-R data used
in this study are available in the Fantom5 and CellPhoneDB databases
via https://fantom.gsc.riken.jp/5/suppl/Ramilowski_et_al_2015/ and
https://www.cellphonedb.org/downloads. Analyzing, visualizing, and
downloading of the single-cell transcriptome data is available at http://
omic.tech/scrna-hcc/. Source data are provided with this paper.
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