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Differential analysis of RNA structure probing
experiments at nucleotide resolution: uncovering
regulatory functions of RNA structure
Bo Yu 1, Pan Li2,3, Qiangfeng Cliff Zhang 2,3✉ & Lin Hou 1,2✉

RNAs perform their function by forming specific structures, which can change across cellular

conditions. Structure probing experiments combined with next generation sequencing tech-

nology have enabled transcriptome-wide analysis of RNA secondary structure in various

cellular conditions. Differential analysis of structure probing data in different conditions can

reveal the RNA structurally variable regions (SVRs), which is important for understanding

RNA functions. Here, we propose DiffScan, a computational framework for normalization and

differential analysis of structure probing data in high resolution. DiffScan preprocesses

structure probing datasets to remove systematic bias, and then scans the transcripts to

identify SVRs and adaptively determines their lengths and locations. The proposed approach

is compatible with most structure probing platforms (e.g., icSHAPE, DMS-seq). When

evaluated with simulated and benchmark datasets, DiffScan identifies structurally variable

regions at nucleotide resolution, with substantial improvement in accuracy compared with

existing SVR detection methods. Moreover, the improvement is robust when tested in

multiple structure probing platforms. Application of DiffScan in a dataset of multi-subcellular

RNA structurome and a subsequent motif enrichment analysis suggest potential links of RNA

structural variation and mRNA abundance, possibly mediated by RNA binding proteins such

as the serine/arginine rich splicing factors. This work provides an effective tool for differential

analysis of RNA secondary structure, reinforcing the power of structure probing experiments

in deciphering the dynamic RNA structurome.
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RNA molecules play important roles in myriad cellular
processes by forming specific structures1–3. Deciphering
RNA structure is informative for understanding RNA

functions. In recent years, diverse structure probing (SP) methods
have been developed to study RNA secondary structure in various
cellular contexts, which utilize chemicals that react differentially
to nucleotides according to their local stereochemistry, pairing
status, solution environment, etc4,5. Coupled with next generation
sequencing technologies, SP experiments can be performed at
high throughput, providing a transcriptome level view of RNA
secondary structure4–6, i.e., RNA structurome. There are various
mature high-throughput SP platforms, such as SHAPE-Seq7,8,
DMS-Seq9, and icSHAPE10. These platforms offer flexible options
for tackling different biological problems, and have achieved
success in uncovering pervasive links between RNA structure and
RNA function11.

Studies have examined how the structures of particular RNA
molecules change across multiple cellular conditions, revealing
explicit connections between RNA structure and RNA function12.
For example, the ubiquitous yybP-ykoY motif has been shown to
adopt distinct structures in response to manganese ions, thus
exerting regulatory consequences on protein translation in both
Escherichia coli and Bacillus subtilis13. RNA structural variations
have also been reported to regulate the binding of trans-acting
factors and RNA stability in multiple organisms, including
human, yeast, and zebrafish14–18.

To explore the SP experiments to uncover dynamic RNA
structures, quantitative tools that contrast SP experiments to
identify structurally variable regions (SVRs) are in great demand.
Several methods have been proposed to identify SVRs. PARCEL19

and RASA20 directly model and compare raw read counts at each
nucleotide position, and then identify regions enriched for
position-level signals. However, their models are tailored for
specific experimental protocols, and it is not straightforward to
extend them to accommodate more emerging SP techniques.
ClassSNitch21 uses machine learning methods to predict SVRs
from pre-defined regions, such as segments of RNA transcripts
harboring single-nucleotide mutations. It requires manually
labeled SHAPE data for model training, which is based on visual
judgements from experienced RNA scientists. While this method
can obtain high prediction accuracy, the requirement of manual
curation makes it prohibitive to generalize the strategy to more SP
platforms. StrucDiff22, deltaSHAPE23, and dStruct24 take reac-
tivities as input, which are estimated from raw read counts to
summarize the pairing status at each nucleotide position. They
search for SVRs with pre-specified search lengths to aggregate
differential signals22–24. However, the choice of search length is
based on prior domain knowledge, which can be subjective.
Unlike the above methods which directly detect SVRs, diffBUM-
HMM25 infers structural variation at position level by calculating
a posterior probability of differential modification for each
nucleotide position.

Previous methods have addressed the many challenges of dif-
ferential analysis of SP data to varying degrees. Continued
development of methods to tackle the following challenges will
advance insights from SP data. First, SVRs manifest great varia-
tion in length, ranging from a few to several dozens of nucleotide
positions19,24,26. As a result, searching with fixed search length
can lead to insufficient detection power and inaccurate boundary
mapping, when the prespecified search length deviates greatly
from the true length. Second, SP platforms differ in utilization of
additives, specific experimental protocols, and preprocessing
pipelines, yielding distinct data types and distributions in
output4,5,27. As a result, it is desirable but usually not easy to
extend methods developed for one platform to another. Third, SP
data can be confounded by systematic bias4,5, which should be

removed from reactivities of the two compared conditions prior
to differential analysis28. However, the performance of existing
normalization techniques with multiple SP platforms has not
been evaluated in benchmarking comparisons. Finally, rigorous
error control is also highly impactful on the accuracy and bio-
logical relevance of output from SVR detection24, especially for
transcriptome-scale analyses.

We advance the state of the field by developing DiffScan, a
computational framework for differential analysis of SP data at
nucleotide resolution. DiffScan normalizes SP reactivities via a
built-in Normalization module, which is compatible with various
platforms, and then looks for SVRs via a Scan module. The Scan
module locates SVRs at nucleotide resolution, and rigorously
controls family-wise error rate. We demonstrate with large-scale
simulated datasets and benchmark datasets that DiffScan can
achieves superior or comparable power and accuracy in SVR
detection across various platforms, compared to state-of-art
methods. We apply DiffScan to a recent icSHAPE dataset of RNA
structurome in multiple subcellular compartments (e.g., nucleo-
plasm and cytoplasm), and reveal the potential roles of SVRs in
regulating mRNA abundance, possibly mediated by RNA binding
proteins such as the serine/arginine rich splicing factors.

Results
Model description. DiffScan comprises a Normalization module
and a Scan module (Fig. 1a). SP reactivities of RNA transcripts for
two conditions are taken as input, and the reactivities are nor-
malized relative to one another in the Normalization module
(Fig. 1b) to correct for systematic bias. The corrected reactivities
are comparable as far as possible across different cellular condi-
tions. In the Scan module (Fig. 1c), structural variations are
initially evaluated at each nucleotide position, and then the
algorithm scans through the transcripts with variable search
lengths to identify SVRs. Finally, DiffScan returns a list of sig-
nificant SVRs, with their transcript ID, nucleotide positions, and
p values.

Normalization. It is known that the reactivities of particular
RNA nucleotide positions can be affected by a variety of con-
founding factors in SP experiments28, including transcript
abundance, sequencing depth, and signal-to-noise ratio (see
Methods). Owing to discrepancies in these factors, the SP reac-
tivities obtained from two conditions lacking substantial biolo-
gical differences may show substantial differences29 (see
Supplementary Fig. 1 for example). The unwanted variations will
then persist throughout the routine preprocessing steps. Thus, in
practice careful adjustment between and within conditions is
essential when comparing SP data obtained from samples in
distinct conditions. Related challenges have been widely reported
for other high-throughput sequencing experiments, such as ChIP-
Seq30 and ATAC-Seq31. Inspired by normalization approaches
for other high-throughput sequencing based methods, we pro-
pose the following normalization procedure for differential ana-
lysis of SP data.

To account for a potentially wide range of reactivity levels, we
first rescale the reactivity values into the interval [0,1] after a 90%
winsorization (see Methods). Next, the reactivities of within-
condition replicates, if available, are processed by quantile
normalization32,33, so that the quantiles of each replicate are
matched within conditions. We subsequently normalize between-
condition reactivities using an approach similar to MAnorm30.
Briefly, a structurally invariant set of nucleotide positions S is
determined as a “pivot” for normalization, and the reactivities are
transformed so that the transformed reactivities are at the same
level for the pivot set between conditions. The basic idea is to
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learn transformation rules from S and then extrapolate the
learned transformation to all nucleotide positions of the
transcripts. In particular, the transformation is learned from
training a linear model from S, which takes reactivities in one
condition as response and reactivities in the other condition as
predictor. The adjusted reactivities from the Normalization
module are then ready for differential analysis in the Scan
module (Supplementary Fig. 2). We provide theoretical justifica-
tions and empirical validations of the Normalization module in
Supplementary Note I and II, to show that the normalization
explicitly corrects for between-condition differences in sequen-
cing depth and signal-to-noise ratio. We show that when the
pivot set is mis-specified, or the between-condition differ-
ences in sequencing depth and signal-to-noise ratio change from
nucleotide to nucleotide, the performance of the proposed
normalization approach is robust (Supplementary Note III). We
also demonstrate the superiority of the Normalization module
over existing normalization methods, such as 2%–8%
normalization34, with benchmark datasets (Supplementary
Note IV).

Scan. Formally, “scan statistics” refer to statistical methods for
cluster detection in time and space35,36. These methods can
accurately map regional signals and control family-wise error
rates during multiple testing of interrelated hypotheses. Scan
statistics have been successfully applied to many areas including
molecular biology37 and human genetics38. The Scan module of
DiffScan was developed with the goal to identify SVRs at
nucleotide resolution in a data-adaptive fashion. In brief, the Scan
module slides through the transcripts to enumerate overlapping
regions of different lengths, identifies regions with maximal dif-
ferential signals, and evaluates their statistical significance. In
detail, we first quantify positional differential signals by calcu-
lating a p value for each nucleotide position by Wilcoxon test,
which contrasts reactivities between conditions in a small window
surrounding the nucleotide position. Note that the Normalization

module does not enforce any specific distributions of the nor-
malized reactivities (Supplementary Fig. 3), and the nonpara-
metric test we use guarantees robust evaluation of differential
signals for various SP platforms.

Second, for each region R, we propose the following scan
statistic to quantify differential signals for regions,

Q Rð Þ ¼
�Σj2RlogðpjÞffiffiffiffiffiffi

Rj jp : ð1Þ

The sum in the numerator aggregates positional differential
signals, while the denominator penalizes the extension of a
candidate region. A discussion of the Q function is provided in
Supplementary Note V. Intuitively, regions that are enriched with
structurally variable nucleotides will obtain high Q(R) scores.

We search in the transcripts with sliding windows of different
lengths, and calculate the scan statistic for each candidate region
(Fig. 1c). A Monte Carlo approach is then implemented to
evaluate the statistical significance of the scan statistics, which
addresses the multiple testing problem for the overlapping
regions by controlling the family-wise error rate (see Supple-
mentary Methods). Accordingly, we can identify SVRs with
accurately mapped boundaries based on the significance of the
scan statistics (Fig. 1c).

Validation of DiffScan using simulated SP datasets. We
simulated RNA secondary structures in two conditions, and
generated SP reactivities based on the simulated secondary
structures in each condition using three types of empirical models
representing different SP platforms, including two types of
SHAPE reactivity27,39,40 and one type of icSHAPE reactivity17

(see Supplementary Methods). Biologically, it is often the case
that a particular RNA molecule will occur as a mixture of
structural conformations in a given cellular condition41,42, so
SVRs detected between conditions represent altered proportions
comprising these mixtures of structural conformations. Thus, the
between-condition differences in RNA secondary structures can
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Fig. 1 Workflow of DiffScan. a Taking raw reactivities as input, DiffScan first normalizes them relative to one another in the Normalization module (b) to
correct for systematic bias, and then identifies SVRs in the Scan module (c). b The Normalization module transforms raw reactivities into normalized
reactivities to remove systematic bias. The raw reactivities are from the icSHAPE SRP vivo dataset which has no SVRs. The normalized reactivities are
comparable as far as possible across different cellular conditions. c Taking normalized reactivities as input, the Scan module first calculates the significance
of any differential signals for each nucleotide position with two-sided Wilcoxon test, and then concatenates positional p values into a regional signal via
scan statistic. The significance of the scan statistic for each enumerated region is evaluated by Monto Carlo sampling, and those regions crossing a
specified significance threshold are reported as SVRs.
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be very subtle in reality. To mimic the complexity of the land-
scape of RNA secondary structures, we sampled multiple struc-
tural conformations from an ensemble of energy-function-based
predictions, and mixed them in varying proportions in the
simulated datasets (see Methods). The reactivities were thereafter
simulated based on the pairing status of each nucleotide.

In detail, we sampled 10 conformations for each of the 1000
RNA transcripts we randomly selected from transcripts in human
embryonic kidney (HEK293) cells17. The lengths of the RNA
transcripts ranged between 60 nt and 1,972 nt, and the simulated
SVRs covered 1.6% to 67.3% of the nucleotide positions of the
RNA transcripts (Supplementary Fig. 4), with lengths between 1
nt and 81 nt. These data included a total of 38,317 simulated
SVRs, with 12,201 being single nucleotide structural variations,
13,048 having lengths between 2 nt and 5 nt, and 13,068 SVRs
with lengths greater than 5 nt (see Supplementary Fig. 4 for
further details). Note that these simulated data echo the real
world knowledge that the lengths of SVRs vary
extensively13,19,24,26,43. We varied the strength of differential
signals of simulated SVRs between “high”, “medium”, and “low”.
Combining different levels of signal strength and the three types
of generative models of reactivity, we have in total 9 simulation
settings.

We compared the performance of DiffScan with two other SVR
detection methods, deltaSHAPE and dStruct. Note that DiffScan
adaptively determines the lengths of SVRs from data, whereas
deltaSHAPE uses a fixed search length and dStruct uses a
prespecified minimum search length. We set the search length to
5 nt for deltaSHAPE (the default setting suggested by the
authors23) and to three different values (1 nt, 5 nt, and 11 nt) for
dStruct. The following discussions are based on dStruct with
minimum search length of 5 nt. The results corresponding to
minimum search length of 1 nt and 11 nt are consistent and
provided in Supplementary Figs. 5 and 6.

First, to evaluate the accuracy of SVR detection at nucleotide
resolution, we calculated the Jaccard index between the top
predicted nucleotide positions (at varying cutoffs) and the
simulated SVRs. DiffScan consistently has the largest Jaccard
index in all 9 settings (Fig. 2a, Supplementary Figs. 7a and 8a).
Note that the output of deltaSHAPE is a fixed set of regions that
the threshold is internally decided, and it is represented as a single
dot rather than a curve. Although dStruct also sensitively
identifies SVRs, it tends to output long, contiguous regions,
which include a substantial proportion of nucleotide positions
without structural variations, which explains the decrease of its
performance with stronger signals (Supplementary Tables 1–3).
In contrast, DiffScan locates SVRs by optimizing its scan statistic,
thereby effectively distinguishes SVRs amongst overlapping
regions of different lengths, leading to a finer level of granularity
relative to deltaSHAPE and dStruct. Moreover, the superiority of
DiffScan is consistent across different reactivity models and signal
levels.

Next we evaluated the accuracy of SVR boundary mapping by
the average distance from the predicted SVRs to the true SVRs. In
the ideal case, if a predicted SVR sits within a true SVR, the
distance for each nucleotide in the predicted SVR is zero.
Oppositely, if a predicted SVR is off-target, i.e., containing many
nucleotides that are neither in or close to the true SVRs, the
distances will be large. The average distance provides comple-
mentary information of Jaccard index, as predicted SVRs that are
far away from any true SVRs will have a greater distance than
those close to a true SVR. An illustrative example for the average
distance is provided in Supplementary Note VI and Supplemen-
tary Fig. 9. DiffScan consistently has the minimum average
distance in all 9 settings (Fig. 2b, Supplementary Figs. 7b and 8b),
demonstrating its superior performance in accurate mapping of

SVR boundaries. These results again underline the advantage of
DiffScan to adaptively determine SVR boundaries via scan
statistic optimization, which effectively distinguishes SVRs
amongst overlapping regions of different lengths.

Finally, we evaluated the precision and recall rate, and the
specificity (see Methods) of the SVR detection methods. Among
all three methods, DiffScan achieves the best precision at the same
recall rate (Fig. 2c, Supplementary Figs. 7c and 8c). It also has the
highest specificity when the same number of nucleotides are
predicted to be differential (Supplementary Fig. 10).

We also considered the simulation framework in Choudhary
et al.24 to compare the above methods. Briefly, DiffScan and
dStruct outperform deltaSHAPE, RASA, and PARCEL regarding
to Jaccard index and precision at fixed recall rate, demonstrating
that the advantage of DiffScan is not specific to the simulation
framework (Supplementary Fig. 11). However, the relative
performance of DiffScan and dStruct depends the cutoff used to
select differential regions.

Model validation with negative control datasets. To assess the
extent of false positive discoveries of DiffScan and other SVR
detection methods, we constructed six negative control datasets
(Control 1–6, see Methods) from multiple SP platforms, includ-
ing SHAPE-Seq and icSHAPE. In these datasets, no SVRs are
present between the compared conditions. Thus, any significant
SVRs identified by the detection methods would represent false
positives. Other SVR detection methods were included based on
their applicability to the negative control datasets (Supplementary
Table 4). diffBUM-HMM was excluded as Bayesian approaches
do not precisely control for type I error.

The false positive rates for DiffScan, dStruct, and PARCEL
were below 0.05 for all tested datasets (Supplementary Fig. 12,
Supplementary Table 5). The error rate of RASA is slightly
inflated in Control 2, but is well-controlled for the other datasets.
Consistent inflation is observed for deltaSHAPE across different
datasets, reporting false positive results covering ~15% of
nucleotide positions in the datasets. The fact that neither
deltaSHAPE nor RASA control for the multiple testing problem
can likely explain the observed inflation. Visualization of the
prediction results by different methods are provided in
Supplementary Figs. 13–18.

Evaluation using benchmark datasets. We used two benchmark
datasets with explicitly annotated SVRs between the compared
conditions, curated by Choudhary et al.24 to evaluate different
SVR detection methods. The Flu dataset26 is from a SHAPE-Seq
experiment that measured the secondary structure of a Bacillus
cereus crcB fluoride riboswitch in vitro in the presence or absence
of fluoride. The transcript (100 nt in length) has five annotated
SVRs, ranging in length between 1 nt and 8 nt. The RRE dataset43

is from a SHAPE-Seq experiment that measured the secondary
structure of the HIV Rev-response element in the presence or
absence of the Rev protein. There are seven annotated SVRs for
Rev-RRE interactions in the transcript (369 nt in length), with
lengths ranging between 7 nt and 39 nt.

We applied DiffScan, deltaSHAPE, diffBUM-HMM, dStruct,
PARCEL, and RASA to identify SVRs in the two datasets.
Visualization of the predicted SVRs and the annotated SVRs are
provided in Supplementary Figs. 19–22. For the Flu dataset, 60%
of the top-20 nucleotides identified by DiffScan are in annotated
SVRs. deltaSHAPE identified six regions, of 19 nucleotides in
sum, and 63% of the nucleotides overlap with annotated SVRs.
50% of the top-20 nucleotides identified by diffBUM-HMM are in
annotated SVRs. For dStruct, the identified SVR covered three
annotated SVRs, with 38% of the top-20 nucleotides overlapping
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with annotated SVRs. PARCEL predicted a long region, covering
72% of all nucleotide positions in the transcript. Although the
region spanned all five annotated SVRs, it did not effectively
distinguish SVRs from flanking nucleotides between SVRs and
falsely entailed many nucleotide positions without structural
variations, i.e., only 33% nucleotides in the predicted SVR are in
annotated SVRs. RASA did not report any significant region for
the Flu dataset. Discussions of the top-40 ranked nucleotides by
different methods for the Flu dataset and the results of the RRE
dataset are provided in Supplementary Note VII.

In addition, their performance is compared by the Jaccard
Index and average distance to true SVRs. DiffScan had the second
largest Jaccard index in the Flu dataset and the largest Jaccard
index in the RRE dataset (Fig. 3a). The Jaccard index of
deltaSHAPE was slightly higher than DiffScan in the Flu dataset,
but worse in the RRE dataset. DiffScan achieved the lowest
average distance to annotated SVRs in the two benchmark
datasets (Fig. 3b). The results are consistent when the Jaccard
index and average distance are evaluated at different cutoffs of the
number of top ranked nucleotides (Supplementary Fig. 23).

Roles of SVRs in regulating mRNA abundance. We applied
DiffScan to a recently reported icSHAPE dataset that mapped
RNA secondary structure across human cellular compartments
covering chromatin (Ch), nucleoplasm (Np), and cytoplasm
(Cy)17. The DiffScan-predicted SVRs for the Ch versus Np
(Fig. 4a) and for the Np versus Cy (Supplementary Fig. 24)
comparisons mostly involved protein binding sites and RNA
modification sites. As we also had data for RNA abundance in the
Ch, Np, and Cy samples, we were interested in the potential
impacts of SVRs on regulating mRNA abundance. Comparison of
mRNA abundance in the Np versus Cy samples identified 61
transcripts that are significantly down-regulated in the Cy frac-
tion (FDR < 0.05, Supplementary Fig. 25). In addition, DiffScan
identified SVRs in all of the 61 transcripts (p value = 1.7e-3 by
Fisher’s exact test, Supplementary Fig. 25), suggesting an asso-
ciation between RNA structural variation and mRNA abundance.

To further investigate this association, we used the FIMO
module from the MEME suite44 to search for RBPs with binding
motifs enriched in the predicted SVRs from the Np versus Cy
comparison (see Methods). 27 RBPs were identified (FDR < 0.05,
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predicted nucleotides and the true SVRs at varying cutoffs. b Average distance between the top predicted nucleotides and the true SVRs at varying cutoffs.
c Precision-Recall curves. Columns: three levels of strength of differential signals at simulated SVRs. Note deltaSHAPE does not allow external thresholding,
and therefore it is represented as dots instead of curves.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31875-3 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:4227 | https://doi.org/10.1038/s41467-022-31875-3 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Supplementary Table 6), which are most enriched in “mRNA
splicing, via spliceosome” and “RNA export from nucleus” GO
terms45,46 (Supplementary Table 7). In particular, the identified
RBPs included nine serine/arginine rich splicing factors (SRSF
proteins)47, including SRSF1-SRSF6 and SRSF9-SRSF11. On the
one hand, although initially discovered as splicing factors, SRSF
proteins have been reported to regulate multiple steps of gene
expression such as mRNA export, mRNA stability, and
translation47. For example, SRSF1, SRSF3, and SRSF7 have been
uncovered as adaptor proteins in mRNA export48,49. More recent
studies have demonstrated that SRSF3 and SRSF7 promote the
recruitment of receptor proteins for mRNA export50, hand over
mRNAs to them to stimulate the nuclear export of mRNAs51, and
therefore control mRNA abundance in the Cy fraction50. On the
other hand, a recent study reported that RNA structural variation
induced by a genetic variant influenced the binding of SRSF352.
RNA structural specificities of SRSF1 and SRSF9 have also been
reported in recent studies53,54. Therefore, the DiffScan-identified
SVRs may regulate the binding of SRSF proteins, and consequently
regulate mRNA abundance in the Cy fraction. Similar evidence was
found for another significant RBP, FMRP, which is encoded by
gene FMR1 (Supplementary Table 6). The binding of FMPR
controls the nuclear export of mRNAs55,56 and is regulated by RNA
structure57,58. In summary, the DiffScan-predicted SVRs,

combined with the RBP motif enrichment analysis, suggest roles
of 27 RBPs in regulating mRNA abundance through mechanisms
related to RNA structural variations.

SVRs are enriched of trait-associated variants. Given the
importance of SVRs in transcriptome regulation, we reason that
SVRs may make more contributions to human complex traits
than randomly selected segments in the human genome. To this
end, we investigated whether DiffScan-predicted SVRs were
enriched of trait-associated single nucleotide polymorphisms
(SNPs) curated in the GWAS Catalog database59 (see Methods).
Significant enrichment was found for the predicted SVRs from
the Ch versus Np comparison and the Np versus Cy comparison
(Fig. 4b). The results underscore the essential roles of RNA
structural variation in shaping human traits.

Discussion
We have developed DiffScan, a computational framework for
differential analysis of RNA secondary structure measured in
multiple SP platforms. Our method provides several advantages.
First, it adaptively estimates the lengths and locations of SVRs
with single-nucleotide resolution. Compared to existing SVR
detection methods, predicted SVRs by DiffScan are closer to true
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the annotated SVRs. b Average distance from the top-20 ranked nucleotides to annotated SVRs. “X” indicates that the corresponding method was not
applicable for the dataset. “*” indicates that the average distance cannot be calculated since the corresponding method did not report any region.
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SVRs, both from simulated and benchmark datasets. Second,
DiffScan is compatible with multiple SP platforms with robust
performance. Existing SVR detection methods are usually tailored
for a specific SP platform, and their generalization to other SP
platforms can be prohibitive. Our method flexibly accommodates
multiple SP platforms through its Normalization module and
using the nonparametric test we implemented. This enables
flexible analysis that is adaptable to suitable data types reflecting
particular biological problems of interest. For example, the
SHAPE-Seq platform with fast-acting reagent is suitable for
in vitro studies of RNA folding dynamics60, while the icSHAPE
platform utilizing slow-acting reagent allows in vivo
transcriptome-wide structure probing16,17. As demonstrated with
simulated and benchmark datasets, the excellent performance of
DiffScan in terms of statistical power and accuracy for identifying
SVRs is robust across different SP platforms. Third, DiffScan
rigorously controls for the family-wise error rate in SVR detec-
tion, which is particularly influential for transcriptome level
analyses.

DiffScan has several limitations. First, the Normalization
module in DiffScan relies on a structurally invariant set of
nucleotide positions, which is identified via a built-in data-driven
strategy. The strategy would fail in extreme cases when almost all
nucleotide positions in the studied transcripts exhibit structural
variations, although we expect it is rarely the case in
practice4,16,17,61. In addition, when the structurally invariant set
can be specified by prior knowledge, the normalization step can
be easily adapted. Second, we recognize the statistical power of
DiffScan is not optimized for a particular SP platform, so when
the distribution of reactivities is known a priori, use of an
appropriate parametric test would yield increased power. Third,
proper modeling of inter-replicate variability when calculating
reactivities can potentially improve the overall performance of
DiffScan. Fourth, we note that the ultimate goal of studying SVRs
is to understand the functional roles of RNA structure, which
often involves cross-examination of other data sources, including
motif analysis of RBPs, multi-omics datasets, etc. Incorporation of
these multi-source data may help to accurately annotate SVRs11.

Methods
Structure Probing Datasets. We evaluated the power of DiffScan and other SVR
detection methods in two SHAPE-seq datasets, of which the SVRs were curated in
Choudhary et al.24. The Flu dataset probed the Bacillus cereus crcB fluoride
riboswitch in vitro with and without fluoride ions, with four replicates for each
condition. The transcript is 100 nt in length, and nucleotide positions 12–17,
22–27, 38–40, 48, and 67–74 were identified as SVRs between conditions. The RRE
dataset studied the HIV Rev-response element, with three replicates measured in
the presence and absence of Rev. The Rev-RRE interaction sites are considered
SVRs. We obtained raw read counts and reactivities for the Flu dataset and reac-
tivities for the RRE dataset, based on data availability.

Synthetic negative control datasets were constructed from real SP data to
assess the specificity of DiffScan and existing methods. For construction, we
randomly split replicates in a single condition into two groups, and identified
SVRs by contrasting the two groups. Any reported SVRs were considered false
positive results. In particular, control datasets 1–4 were obtained by randomly
splitting samples in the Flu dataset in the absence (Control 1) and presence
(Control 2) of fluoride, and the RRE dataset with (Control 3) and without Rev
(Control 4). To include more SP platforms in evaluation, we constructed another
two control datasets from an icSHAPE dataset of mouse SRP RNA (272 nt)10, by
contrasting the two in vitro samples (Control 5) and the two in vivo samples
(Control 6).

To apply DiffScan in transcriptome level analysis, we downloaded the icSHAPE
dataset17 in Sun et al., which mapped RNA secondary structure across HEK293
cellular compartments including chromatin, nucleoplasm, and cytoplasm.
Transcripts mapped to mitochondrial genome were excluded to eliminate possible
contamination by lysed mitochondria. Transcripts with RPKM less than 5 or RT
stop less than 2 for all nucleotide positions were excluded17,62. Then nucleotide
positions with coverage less than 10 were removed. As a result, 1,277 transcripts
(covering 805,895 nucleotide positions) were compared between chromatin and
nucleoplasm, and 1,815 transcripts (covering 1,203,523 nucleotide positions) were
compared between nucleoplasm and cytoplasm.

Normalization module. Suppose that there are nA replicates from condition A, and
the reactivity of nucleotide position j in replicate i is rAij ; 1≤ i≤ nA; 1≤ j≤ n, where n
is the length of the transcript. Similarly, for nB replicates from condition B, the
reactivity of nucleotide position j in replicate k is rBkj; 1≤ k≤ nB; 1≤ j ≤ n. We nor-
malized reactivities using the following steps.

Step 1: 90% winsorization is applied to the reactivities in each replicate
separately to remove outliers, i.e., the bottom 5% of reactivities are set to the 5th
percentile while the upper 5% of reactivities are set to the 95th percentile. After
that, reactivities are scaled into range [0,1] by subtracting the minimum and then
dividing the result by the new maximum.

Step 2: Quantile normalization is applied to within-condition replicates to
match the quantiles, which is frequently used in normalization analysis of genome-
wide assays32,63 and has been found to be advantageous in secondary structure
prediction compared to the 2–8% normalization method33,34.

Step 3: To make between-condition reactivities comparable, we first determine a
structurally invariant set S, i.e., nucleotide positions that do not exhibit structural
variation across conditions. The reactivities are normalized so that the adjusted
reactivities are similar between conditions in the structurally invariant set. The
determination of S is described in Supplementary Methods. Then we learn a linear
transformation rule from S, which converts reactivities of one condition to the
same level of those of the other condition in S, and extrapolate the transformation
to all nucleotide positions to obtain normalized reactivities.

We learn how to transform between-condition reactivities to the same level in S
by fitting the following robust regression utilizing iterated re-weighted least squares
with Huber’s M estimate64. (For the sake of simplicity, we will still use rAij ; r

B
ij to

denote reactivities processed by Step 1 and Step 2).

log rAj � log αþ β log rBj ; j 2 S; ð2Þ
where log α corrects for the difference in sequencing depth and β corrects for the
difference in signal-to-noise ratio. Given that within-condition replicates are

normalized by quantile normalization, it follows that frAij � frBkj in S if we transform

rBkj into
frBkj ¼ expð dlog αþ β̂ log rBkjÞ and let frAij ¼ rAij ; j 2 S. Based on this, we

extrapolate the fitted model to all nucleotide positions to obtain normalized

reactivities frAij ¼ rAij and
frBkj ¼ expð dlog αþ β̂ log rBkjÞ; 1≤ j≤ n.

Differential analysis at the position level. With normalized reactivities as input,
we first test position-level differences between conditions to derive positional p
values. To encompass various SP platforms, a nonparametric Wilcoxon test is used,
which evaluates the structural variation at nucleotide position j by contrasting
reactivities between conditions in a small window surrounding j. Technically, we
define

pj ¼ Wilcoxon test frAit ; 1≤ i≤ nA; t 2 Cj

n o
; frBkt ; 1≤ k≤ nB; t 2 Cj

n o� �
; ð3Þ

where frAit ;frBkt are normalized reactivities, Cj is a small window centering at
nucleotide position j with radius r, and pj is the two-sided p value. By default, we set
r to 2 nt.

Summarizing position-level signals via scan statistics. To concatenate position-
level signals into regional signals, a scan statistic is defined for each region R,

Q Rð Þ ¼
�Σj2RlogðpjÞffiffiffiffiffiffi

Rj jp : ð4Þ

With penalty of region length |R|, extending a candidate region will accumulate
position-level signals at the expense of penalization. As a result, SVRs with
accurately mapped boundaries can be distinguished based on the magnitude of the
scan statistic.

Statistical inference for detection of SVRs. In view of the dynamic locations and
lengths of SVRs, we scan the transcripts by enumerating all candidate regions with
suitable lengths, i.e., every region in R = {R|Lmin ≤ |R| ≤ Lmax}. To determine
whether a region R is selected as an SVR, we test

HR
0 : pj � i:i:d:U 0; 1ð Þ; j 2 R ð5Þ

based on the magnitude of Q(R). We implemented a Monte Carlo approach to
control the family-wise error rate for DiffScan (see Supplementary Methods).

Simulations. We simulated reactivities for two conditions through the following
three steps.

Step 1. 1000 human RNA sequences in an icSHAPE dataset17 were randomly
selected (length no more than 2000 nt due to computational burden). For each
RNA sequence, we sampled 10 conformations from the Boltzmann distribution of
secondary structure65 utilizing the RNAsubopt program in ViennaRNA version
2.4.1566.

Step 2. Conditional on the pairing status of each nucleotide in a transcript, the
reactivities can be sampled from pre-trained reactivity distributions. Three
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distributions were used: Cordero et al.39 and Sükösd et al.40 as fitted from SHAPE
data, and also reactivity distributions we fitted from icSHAPE data (Supplementary
Methods).

Step 3. Different biological conditions were characterized by differential
compositions of the 10 conformations generated in Step 1. The reactivities of each
conformation were linearly combined accordingly to generate the observed reactivities
in each condition. Specifically, for condition A, the 10 conformations of a transcript
were assigned with weights wA

c ; 1≤ c≤ 10, with wA
c corresponding to the weight of the

cth conformation in condition A, with 0≤wA
c ≤ 1; Σ

10
c¼1w

A
c ¼ 1. For condition B, the

weight of the cth conformation was wB
c , with 0≤wB

c ≤ 1;Σ
10
c¼1w

B
c ¼ 1. To simulate

SVRs that cover a reasonable proportion (approximately 20%16,17) of all nucleotide
positions of the 100 transcripts, we allocated 90% of the weight to the first two
conformations and randomly distributed the remaining 10% to the other eight
conformations. We then generated reactivities in condition A and B separately by
changing the weights of the first two conformations. Thus, nucleotide positions with
different pairing status between the first two conformations form SVRs. Furthermore,
replicates were simulated by adding random noise (N 0; 0:12

� �
) to the weights of the

first two conformations. Finally, simulations were conducted at three levels of signal
strength respectively by setting (i) ðwA

1 ;w
A
2 Þ ¼ ð0:4; 0:5Þ; ðwB

1 ;w
B
2 Þ ¼ ð0:5; 0:4Þ, (ii)

ðwA
1 ;w

A
2 Þ ¼ ð0:3; 0:6Þ; ðwB

1 ;w
B
2 Þ ¼ ð0:6; 0:3Þ, and (iii) ðwA

1 ;w
A
2 Þ ¼ ð0; 0:9Þ; ðwB

1 ;
wB
2 Þ ¼ ð0:9; 0Þ.

Performance metrics for validation of DiffScan. In the simulated datasets, we
evaluated the performance of different methods with four metrics. First, to evaluate
the accuracy of SVR detection at nucleotide resolution, we calculated the Jaccard
index between predicted SVRs and true SVRs. Jaccard index between nucleotide
position sets A and B is defined as A\Bj j

A∪Bj j. Second, to evaluated the accuracy of SVR
boundary mapping, we calculated the average distance from predicted SVRs to true
SVRs. For each nucleotide position in a predicted SVR, the distance to true SVRs is
the number of nucleotides between itself and the nearest nucleotide in all true SVRs.
The nucleotide distance of a predicted SVR is calculated by taking the average of the
distances of all its nucleotides. An illustrative example for the average nucleotide
distance is provided in Supplementary Fig. 9. Third, we calculated the Precision-
Recall curve. At varying significance levels, the value of precision was calculated as the
number of correctly predicted nucleotide positions divided by the number of all
predicted nucleotide positions. The value of recall rate was calculated as the number
of correctly predicted nucleotide positions divided by the number of all nucleotide
positions in the simulated SVRs. Fourth, we calculated the specificity of predicted
SVRs as the number of correctly predicted non-SVR nucleotide positions divided by
the number of all true non-SVR nucleotide positions.

In the negative control datasets (Control 1–6), to access whether the false
positive discoveries of a method can be controlled at a nominal level, we calculated
the position-level false positive rate as the number of predicted nucleotide positions
at significance level 0.05 divided by the length of the transcript.

In the benchmark datasets with annotated SVRs (Flu and RRE)—similar to our
processing of the simulated datasets—we calculated the Jaccard index and average
distance between top predicted nucleotide positions and annotated SVRs.

Implementation of existing methods. The software deltaSHAPE version 1.0
available at the Weeks lab website23 was utilized to implement deltaSHAPE. As far
as we know, there is no official software release for PARCEL or RASA; and we
implemented them utilizing custom scripts from existing literature24. The R
package dStruct version 1.0.0 was utilized to implement dStruct. The scripts in
Paolo Marangio’s GitHub page (https://github.com/marangiop/diff_BUM_HMM)
were used to implement diffBUM-HMM.

Application to icSHAPE data
Reactivity calculation. To calculate reactivities, we assumed that RTj �
BinomialðNj; pjÞ; in which RTj is the RT stop at position j in the case experiment,
Nj is the number of times that position j is exposed to the probing molecules, and pj
is the probability that position j is modified. The maximum likelihood estimator for

pj is bpj ¼ RTj

Nj
. On the other hand, the coverage at position j in the control

experiment (coveragecontrolj ) is approximately proportional to Nj. Therefore, we

calculated the reactivity at position j as rj ¼
RTj

coveragecontrolj

67. Based on this, four

reactivity replicates of each condition were generated by enumerating the four
pairings of the two count replicates from case experiments and the two count
replicates from control experiments.

Enrichment analysis of RBP binding motifs. We collected 1193 motifs of 159 RBPs
from the ATtRACT database68. For each motif, we searched in the predicted SVRs for
significant motif hits utilizing the FIMO module (–norc–thresh 0.001) from the MEME
suite version 5.2.044, and the number of significant hits in each SVR were counted.

To evaluate the significance of motif enrichment, we randomly sampled null
regions in non-SVR regions in the same transcripts, with region length matched to
the predicted SVRs. The number of significant hits in each null region is recorded.
After that, we performed a one-sided Wilcoxon signed-rank test for the two count

vectors of significant hits to evaluate the significance of enrichment. Motifs with
corrected p value (Benjamini-Hochberg method) less than 0.05 were considered
significantly enriched.

Enrichment analysis of trait-associated SNPs. We downloaded the summary sta-
tistics of the published genome-wide association studies (GWAS) curated in the
GWAS catalog database (v1.0)59. Proportions of trait-associated SNPs (GWAS p
value < 1e–5) in SVR and non-SVR positions were compared, and the statistical
significance was evaluated with Fisher’s exact test.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding authors upon
reasonable request. The raw benchmark datasets used in this study are available at
https://doi.org/10.5281/zenodo.2536501. The processed negative control datasets
(Control 1–6) and benchmark datasets (Flu and RRE) are available at https://github.com/
yub18/DiffScan. The icSHAPE datasets for transcriptome level analysis are available in
the GEO database under accession code GSE117840.

Code availability
The DiffScan software is available at https://github.com/yub18/DiffScan. The scripts and
data for the reproduction of the analyses and results are also provided.
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