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Aggregative trans-eQTL analysis detects trait-
specific target gene sets in whole blood
Diptavo Dutta 1, Yuan He2, Ashis Saha3, Marios Arvanitis2,4, Alexis Battle 2,3,6✉ & Nilanjan Chatterjee1,5,6✉

Large scale genetic association studies have identified many trait-associated variants and

understanding the role of these variants in the downstream regulation of gene-expressions

can uncover important mediating biological mechanisms. Here we propose ARCHIE, a

summary statistic based sparse canonical correlation analysis method to identify sets of

gene-expressions trans-regulated by sets of known trait-related genetic variants. Simulation

studies show that compared to standard methods, ARCHIE is better suited to identify “core”-

like genes through which effects of many other genes may be mediated and can capture

disease-specific patterns of genetic associations. By applying ARCHIE to publicly available

summary statistics from the eQTLGen consortium, we identify gene sets which have sig-

nificant evidence of trans-association with groups of known genetic variants across 29

complex traits. Around half (50.7%) of the selected genes do not have any strong trans-

associations and are not detected by standard methods. We provide further evidence for

causal basis of the target genes through a series of follow-up analyses. These results show

ARCHIE is a powerful tool for identifying sets of genes whose trans-regulation may be related

to specific complex traits.
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Genome-wide association studies (GWAS) have identified
tens of thousands of common variants associated with a
variety of complex traits1 and a majority of these identified

trait-related variants are in the non-coding regions of the
genome2–4. It has been shown that these GWAS identified variants
have a substantial overlap with expression quantitative trait loci
(eQTL) i.e., variants that are associated with the expression levels
of genes5–7. A number of tools8–11 have been developed to identify
potential target genes through which genetic associations may be
mediated by investigating the effect of variants on local genes (cis-
eQTL), typically within 1Mb region around the variant, but
underlying causal interpretation remains complicated due to
linkage disequilibrium and pleiotropy. A recent study has shown
that a modest fraction of trait-heritability can be explained cis-
mediated bulk gene-expressions12, but future studies with more
cell-type specific information has the potential to explain further.

Compared to cis-eQTL, studies of trans-eQTL have received less
attention though they have the potential to illuminate downstream
genes and pathways that would shed light on disease mechanism. A
major challenge has been the limited statistical power for detection
of trans-eQTL effects due to much weaker effects of SNPs on
expressions of distal genes compared to those in cis-regions and a
very large burden of multiple testing. However, trans-effects, when
detected, has been shown to be more likely to have tissue-specific
effects13,14 and are more enriched than cis-eQTLs among disease
loci15. Trans-eQTLs are, in general, known to act on regulatory
circuits governing broader groups of genes16 and thus have the
potential to uncover gene networks and pathways consequential to
complex traits17,18. Limited studies of trans-eQTL effect of known
GWAS loci have identified complex downstream effects on known
consequential genes for diseases15,19. In fact, an “omnigenic”model
of complex traits has been hypothesized under which a large
majority of genetic associations is mediated by cascading trans-
effects on a few “core genes”20,21. Thus, given the increasing scope
of eQTL studies, it has become even more important to compre-
hensively identify trait-specific trans-associations to highlight bio-
logical processes and mechanisms underlying phenotypic change.
However, to the best of our knowledge, no framework has been
developed to detect such trait-specific trans-association patterns
and sets of trait-relevant genetically regulated genes, specifically
leveraging summary statistics from transcriptomic studies, which
are more readily available than individual-level genotype data.

In this work, we propose a summary-statistics based method
using sparse canonical correlation analysis (sCCA)22–27 frame-
work, termed Aggregative tRans assoCiation to detect pHenotype
specIfic gEne-sets (ARCHIE), which identifies sets of distal genes
whose expression levels are trans-associated to (or regulated by)
groups of GWAS SNPs associated to a trait. The method requires
summary statistics from standard SNP-gene expression trans-
eQTL mapping, estimates of linkage disequilibrium (LD) between
the variants and co-expression between genes, which can be
estimated using publicly available datasets. Together, the selected
variants and genes (jointly termed ARCHIE components) reflect
significant trait-specific patterns of trans-association (Fig. 1A
shows an illustration for the functionality of ARCHIE). Com-
pared to standard trans-eQTL mapping, the proposed method
improves power for detection of signals by aggregating multiple
trans-association signals across GWAS loci and genes. Moreover,
we propose a resampling-based method to assess the statistical
significance of the top components of sCCA for testing enrich-
ment of trait-specific signals in the background of broader
genome-wide trans-associations. If multiple ARCHIE compo-
nents are significant, they reflect approximately orthogonal
patterns of trans-associations for the trait-related variants, with
the selected target genes pertaining to distinct downstream
mechanisms of trans-regulation.

Here we apply the proposed method to analyze large-scale
trans-association summary statistics for SNPs associated with 29
traits reported by the eQTLGen consortium19. The results show
that ARCHIE can identify trait-specific patterns of trans-asso-
ciations and relevant sets of variants and co-regulated target
genes. The majority (50.7%) of the target genes we detect, are
novel, meaning they would not have been identified by standard
trans-eQTL mapping alone. We provide independent evidence
supporting our results, using a series of downstream analysis to
show that the selected target genes are enriched in known trait-
related pathways and define directions of associations for the
SNPs that are more enriched for underlying trait heritability than
expected by chance. The proposed methods can be further
applied in the future to association statistics data on other types
of high throughput molecular traits, such as proteins and meta-
bolites, to understand their mediating role in genetic architecture
of complex trait.

Results
Overview of methods. We assume that we have summary statistics
data (Z values and p values) available for a set of variants identified
through large-scale GWAS of a given trait of interest, from stan-
dard trans-eQTL analysis across large number of distal genes. We
further assume that we have additional reference datasets to esti-
mate correlation (linkage disequilibrium) among the SNPs and
among gene expressions in the underlying population of interest.
ARCHIE uses these datasets to employ a sCCAs22,24 which pro-
duces sparse linear combinations of the trait-related variants
(termed variant-component) that is associated with sparse linear
combination of genes (termed gene-component) where each non-
zero element of the variant (or gene)-component indicates that the
respective variant (or gene) is selected. (Fig. 1A shows a toy
example of ARCHIE’s functionality). The selected genes reflect sets
that are broadly trans-regulated by the selected SNPs and via which
the effects of selected SNPs on the trait appear to be mediated.
Further, we evaluate whether the genes and variants selected in the
ARCHIE components reflect significant trait-specific trans-asso-
ciation patterns, through a resampling method by comparing the
observed sparse canonical correlation values to that expected from
trans-associations of GWAS variants not specific to a trait (for
details see Methods and Supplementary Note 1). We show through
simulation and resampling studies that by jointly analyzing mul-
tiple GWAS variants associated to a trait, ARCHIE can identify
broader downstream trans-regulatory mechanisms relevant to the
trait compared to standard trans-eQTL mapping which identifies
general trans-associations that might not be trait-specific and can
arise due to factors like pleiotropy, correlated expressions, and
others (See Supplementary Note 2).

Simulation study results: comparison with standard trans-
eQTL analysis and assessing trait-specificity. We first compare
ARCHIE with standard trans analysis using a series of simulation
studies. ARCHIE addresses a composite null hypothesis that there
is no association between a group of variants and genes, while
standard trans-eQTL mapping tests a series of individual null
hypotheses of no association across variant-gene pairs. Thus,
these two methods are not directly comparable in terms of power
unless the type-I error rates are calibrated with respect to a
common benchmark. We first evaluate the type-I error rate for
each method under a global null hypothesis of no association
between a group of SNPs and a gene network (Fig. 2A). Type-I
error rate for ARCHIE is defined as the proportion of simulation
iterations where the p value for at least one ARCHIE component
is less than the chosen α-level. Correspondingly, for standard
trans-eQTL analysis, type-I error is calculated as the proportion
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Fig. 1 Overview of ARCHIE and Analysis pipeline. A An illustrative example for ARCHIE. Association statistics (−log10 p value) from trans-eQTL mapping
for P variants and G genes are shown in the left panel heatmap. Using LD and co-expression estimated from reference datasets, ARCHIE aggregates
multiple weaker trans-eQTL associations to select a subset of variants and genes which capture trait specific trans-association patterns (right panel
heatmap). B Description of analysis pipeline for summary statistics of trans-eQTL mapping provided by the eQTLGen consortium by integrating external
estimates from GTEx (v8) and UK Biobank. See Results and Methods for more details.

Fig. 2 Simulation model and results. A causal network model for global null scenario with no association between the SNPs 1-40 and the Genes 1-9
(marked in blue). See Results and Methods: Simulation Model for more details. B Sparse causal network: causal regulatory network of downstream Genes
1–9 (in blue) regulated by SNPs 1-40 mediated via 8 local (cis) genes (marked in red). C Dense causal network: causal regulatory network of downstream
Genes 1–9 (in blue) regulated by SNPs 1–40 mediated via 8 local (cis) genes (marked in red). For both B, C the heritability of cis gene expressions explained
was maintained at 20–22% and the heritability of downstream genes (1–9) explained was maintained at 10–14%. D Empirical power to identify different
gene sets within sparse causal regulatory network (B) using ARCHIE compared to standard trans-eQTL mapping. E Empirical power to identify different
gene sets within dense causal regulatory network (C) using ARCHIE compared to standard trans-eQTL mapping.
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of simulation iterations where there is at least one p-value across
all possible variant-gene pairs is less than the chosen α-level. We
found that ARCHIE maintains a highly conservative type-I error
rate (Table 1) at all levels while standard trans-eQTL mapping
maintains the overall familywise error rate of standard trans-
eQTL mapping at 0.05 for the approximate Bonferroni correction
level (0.05/(40 × 9) ≈ 1 × 10−04). Subsequently, we found that at
approximately level 9 × 10−04, ARCHIE achieves similar type-I
error rate as the FWER of trans-eQTL mapping at level 1
× 10−06. We use these levels for subsequent empirical power
estimations.

We next compared the power of ARCHIE to identify gene-sets
associated to trait-related SNPs in comparison to standard trans-
eQTL mapping, for several different causal models (Fig. 2B, C; See
Methods for details on the Simulation model). Briefly, each causal
network consists of 40 SNPs associated to a trait, with successive
five SNPs having regulatory effect on a local (cis) gene. In total eight
cis (local) genes (in red) mediate the effect of these SNPs on a
network of nine distal genes. The average cis heritability of the eight
cis-genes were maintained approximately at 20–22% while the
average trans-heritability for the nine distal genes were maintained
at about 10%-14%. Each causal scenario was simulated at two
sample sizes (N= 1000 and 30,000) reflecting the approximate
sample sizes of GTEx v8 and eQTLGen studies respectively.

For sparse causal networks (Fig. 2B), we found that the power
of ARCHIE to detect genes in each layer of network was
comparable or somewhat better than trans-eQTL mapping under
two sample sizes (Fig. 2D). However, for the dense causal network
(Fig. 2C), we find that ARCHIE has a major power advantage
over trans-eQTL mapping throughout (Fig. 2E). This is
potentially due to the increased weaker effects in the dense
causal network (Fig. 2C) since the average trans-heritability is
maintained at the same value as that of the sparse causal network.
This demonstrates that ARCHIE can effectively aggregate weaker
associations compared to trans-eQTL mapping. Additionally, we
estimated power under the presence of a master regulator, where
we found that as before ARCHIE had comparable or higher
power that trans-eQTL of identifying the downstream genes
(Supplementary Note 2 and Supplementary Fig. 2). We further
compared the sensitivity and specificity of ARCHIE with that of
standard trans-eQTL and found that although the sensitivity of
ARCHIE was only slightly higher than, the specificity was
substantially higher compared to trans-eQTL mapping (Supple-
mentary Note 2 and Supplementary Fig. 3).

It is to be noted that the potential space of alternative null
hypothesis for relationship between a group of SNPs and gene
networks is extremely large, and a comprehensive evaluation is
beyond the scope of this article. However, the above small scale
simulations provide us with an intuitive insight that ARCHIE has
robust power for detection of trans-association under a variety of
plausible models for trans-associations.

We note that a primary objective of our analysis was to detect
disease specific trans-association pattern in the background of
broad trans-associations that are expected to be seen in the
genome. Since GWAS variants associated to traits are enriched in

trans-eQTLs, we investigated whether ARCHIE captured any trait
specific trans-association beyond the general expected pattern of
trans-associations for GWAS variants which are not related to the
trait in consideration. Thus, we considered this “competitive null
hypothesis” to be more pertinent for our main analysis and we
conducted additional resampling studies to investigate perfor-
mance of ARCHIE for detecting trait-specific patterns. We
performed resampling experiments using trans-eQTL summary
statistics reported by eQTLGen consortium19 across four
different traits (See Sample description for details). For a given
trait, we used summary statistics for 100 variants across 5000
genes of which a certain proportion (δ) of the variants were
related to the given trait and rest were variants randomly sampled
from different traits reflecting the general background of trans-
associations expected for GWAS variants (See Supplementary
Note 2 for details). The results from applying ARCHIE, with
varying δ (Supplementary Fig. 4), show that the probability of at
least one ARCHIE component to be significant increases with the
increase in the proportion of trait-specific variants (δ), con-
sistently across the four different traits. In particular, at δ= 0, the
results would correspond to the type-I error of ARCHIE under
the competitive null hypothesis. We found that at a level of
1 × 10−04, the competitive type-I error of ARCHIE is conservative
for all the traits under consideration indicating that ARCHIE
produces reduced false positives (Supplementary Data 1). Since
competitive null hypothesis tests for trait-specific trans-associa-
tion patterns, the subsequent results presented here are
corresponding to the competitive null hypothesis unless other-
wise mentioned.

The above numerical experiments taken together, demonstrate
that ARCHIE can effectively identify weaker trait-specific trans-
regulation effects.

Trait-specific patterns of trans-associations in Whole Blood.
We applied ARCHIE on large-scale trans-association summary
statistics for SNPs associated with 29 different traits reported by
the eQTLGen consortium19 to identify trans-regulated gene-sets
associated with the respective traits. The eQTLGen consortium
provides summary statistics (Z values, p values) from standard
trans-eQTL mapping for more than 10,000 variants across
numerous loci in the genome, curated from external databases,
that have been identified to be associated to traits and diseases in
large scale GWAS. For each of the 29 traits, we extracted the
trans-association summary statistics for the variants associated
with the trait and only the genes that were either more 5Mb away
from each of the variants or on a different chromosome. Thus, by
design, all the genes in the analysis for a trait were distal to all the
variants under consideration. We then applied ARCHIE to this
trans-eQTL summary statistics and selected the trait-specific
target genes via the significant gene components (See Methods
and Fig. 1B for analysis details). On an average, across these traits,
we detect 2 (max= 7 for “Height”) significant sets of variant and
gene components (ARCHIE components) capturing phenotype-
specific trans-association patterns (Supplementary Fig. 1). Of the

Table 1 Type-I error of ARCHIE under the global null hypothesis of no association between the SNPs and gene network as shown
in Fig. 2A.

Hypothesis Level

Method 1 × 10−03 1 × 10−04 1 × 10−05 1 × 10−06

At least one variant-gene association significant Standard trans-eQTL 0.15 0.044 0.004 2.1 × 10−04

At least one ARCHIE component significant ARCHIE 1.8 × 10−04 9.1 × 10−06 3.9 × 10−07 2.5 × 10−07

See Methods and Supplementary Section B for details on the simulation model.
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target genes selected by ARCHIE in the significant gene-
components for each trait, approximately only 49.3% genes dis-
played a strong association in standard analysis (trans-eQTL
p value < 1 × 10−06 reported in eQTLGen) with any variant
associated to that traits. The remaining 50.7% genes (termed
“novel genes”) harbors only weaker (0.05 > p value > 1 × 10−06)
associations and hence cannot be detected by standard trans-
eQTL mapping alone; these genes display a similar pattern of
trans-association with corresponding selected trait-related var-
iants and are detectable only via the significant ARCHIE com-
ponents. In fact, a large majority of the novel genes (89%) harbor
multiple weaker trans-associations with the variants selected in
the variant component. We made the list of target genes and
variants selected by ARCHIE for each phenotype publicly avail-
able through an openly accessible database (https://github.com/
diptavo/ARCHIE). Here, we focus on results for three different
phenotypes, reflecting three different classes of diseases, their
corresponding trans-association patterns, the selected target gene-
sets, and the novel genes detected by ARCHIE (Table 2).

Schizophrenia. Schizophrenia is a neuropsychiatric disorder that
affects perception and cognition. The eQTLGen consortium
reports complete (non-missing) trans-association statistics for
218 SNPs, curated from multiple large-scale GWAS, associated
with Schizophrenia (SCZ) across 7,756 genes. Of these, 7047
genes were expressed in whole blood of Genotype-Tissue
Expression (GTEx)28 v8 individuals. Testing against the compe-
titive null hypothesis (See previous section), we identified one
significant ARCHIE component capturing trans-association pat-
terns significantly related to SCZ (Fig. 3A, B) consisting of 27
variants across several different genomic loci and 75 genes. Of the
selected genes, only 16 (21.4%) had evidence of at least one strong
association (p value < 1 × 10−06) and possibly multiple weaker
(0.05 > p value > 1 × 10−06) association as reported by eQTLGen.
The remaining 59 genes (78.6%) only had weaker trans-associa-
tions with SCZ-related variants (Table 2, Supplementary Data 2).
These novel genes were not identified using traditional trans-
eQTL mapping and were not reported as significant findings by
the eQTLGen consortium. We further investigated the robustness
of the results using coexpression estimates from gene expressions
levels reported in Whole Blood by the Depression Genes and
network (DGN) study29. The results show that out of 75 genes
and 59 novel genes identified by ARCHIE, 62 and 45 were also
selected in the replication analysis using data from DGN,
demonstrating the potential robustness of the results by ARCHIE.

Next, we tested whether the selected variants and genes were
enriched in trans-heritability for SCZ. Using an expression
imputation approach (See Methods for details), we estimated the
approximate heritability of SCZ explained by the trans-
associations between the selected genes and variants, using
individual level data from UK Biobank. We compared the
estimate to (1) the expected distribution of heritability explained
by the selected SNPs and randomly chosen genes (excluding the

selected genes) for SCZ and (2) the expected distribution of
heritability explained by the selected SNPs and genes for a
randomly chosen trait. The results showed that the selected SNPs
and genes are significantly enriched in trait heritability (p
value < 0.001) than expected by chance (Fig. 3D).

Several of the 59 identified novel genes have previously been
reported to be associated with neurological functions. For
example, chemokine receptor 4 (CXCR4), a gene that underlies
interneuron migration and several neurodegenerative diseases30,
was identified by aggregating weaker associations from 20 SCZ-
related SNPs in the variant component, but does not have any
significant trans-associations. Similarly, caveolin-1 (CAV1),
which is a known regulator of a SCZ risk gene (DISC1)31,
aggregates 13 weaker association to SCZ-related variants in the
variant component. Notably, the target genes identified by
ARCHIE include genes such as HSPA5 and AP5S1, which not
only harbor multiple trans-associations from SCZ-related variants
but have also been reported to have cis-variants associated with
psychiatric disorders32,33. We investigated whether in general the
genes selected by ARCHIE had have evidence of association with
SCZ through cis variants. Aggregating results from several large-
scale cis-eQTL studies across tissues9,34, we found that 12 of the
59 of the (enrichment p value = 2.8 × 10−05) novel genes have
nominally significant (p value <1 × 10−04) evidence of cis-
regulatory SNPs to be associated with SCZ or other different
neuropsychiatric diseases. Further, eQTLGen consortium reports
the association of gene expressions with several publicly available
polygenic risk scores (PRS) of SCZ at different p value thresholds,
curated from external databases. We found that out of the 59
novel genes identified, 38 (64.4%) had a nominal association with
at least one reported PRS for SCZ.

By performing pathway enrichment analysis of the target genes
using FUMA35 (https://fuma.ctglab.nl) and ShinyGO36 (http://
bioinformatics.sdstate.edu/go), we investigated if the selected
genes represented known SCZ-related biological mechanisms
(See Methods for details). Among the significantly enriched
pathways, the majority (51.3%) were immune related. In
particular, we identified 42 GO pathways37, 36 canonical
pathways38–41 and 4 hallmark pathways42 to be strongly enriched
(FDR adjusted p value < 0.05) for the selected genes with 73
(89.0%) of them containing at least one novel gene (Fig. 3C,
Table 3 and Supplementary Data 3). Several pathways, previously
reported in connection to SCZ, are identified to be enriched
(FDR adjusted p value < 0.05) for the selected genes (Fig. 3C).
For example, among the enriched gene ontology (GO) terms, GO-
0034976: response to endoplasmic reticulum stress43 (FDR
adjusted p value= 0.013), GO-055065 metal ion homeostasis44

(adjusted p value= 0.029), GO-0006915: apoptotic process45

(adjusted p value = 0.029), GO-0043005: neuron projection
(adjusted p value= 0.021) have previously been suggested to be
linked to SCZ (Table 3). Four hallmark gene-sets are also found to
be significantly enriched for the selected genes including
glycolysis46, hypoxia47, mTORC1 signaling48, and unfolded
protein response49, all of which have suggestive evidence of being

Table 2 The number of variants, genes and novel genes selected by ARCHIE for each the significant components for the analysis
of SCZ, UC and PC.

Schizophrenia (SCZ) Ulcerative Colitis (UC) Prostate Cancer (PC)

Component 1 Component 1 Component 2 Component 1 Component 2

Variants 27 41 33 20 13
Genes 75 106 42 36 17
Novel genes (proportion %) 59 (78.7%) 56 (52.8%) 16 (38.1%) 31 (86.1%) 13 (76.5%)

For a full list of selected variants and genes see Supplementary Data 2.
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associated to SCZ. Using numerous TF databases50,51, we found
that the selected target genes were enriched (adjusted p value <
0.05) for targets of ten TFs (Supplementary Data 4), several of
which have been previously reported to be associated with

neuropsychiatric disorders52,53. While connection between
immune pathways and SCZ is less obvious, we believe this is
also a noteworthy finding given recent studies have increasingly
pointed out complex interactions between the immune system,

Fig. 3 Trans-association pattern and properties of selected target gene-set for Schizophrenia (SCZ). A Top 10 sparse canonical correlation values (cc-
values; red) and the corresponding competitive null distributions (black box plot) for ARCHIE analysis of SCZ. Top 1 ARCHIE component is significant. The
box plot for competitive null distribution is presented as ±1.5 interquartile range with the median line denoted at the center. The competitive null
distribution denotes the general pattern of sparse canonical correlation (and trans-associations) expected in analysis of variants that are not specific to
SCZ. The significant ARCHIE components are marked by a blue asterisk. B −-log10 (p values) for standard trans-eQTL association test between variants
and genes selected in ARCHIE component 1 as reported in eQTLGen (two sided test). Any association p value < 10−08 is collapsed to 10−08 for the ease of
viewing. C Pathway enrichment results for some selected top pathways for the target genes selected in gene-component 1. For full pathway enrichment
results for the target genes selected see Supplementary Data 3, 4. The dashed vertical line corresponds to a suggested FDR threshold of 0.001. D trans-
heritability enrichment analysis for target genes selected for SCZ. The violin plots represent the distribution of pseudo-r2 for the selected SNPs and a
random gene-set of the same size on SCZ (left) and the distribution of pseudo-r2 of the selected genes and SNPs on a random trait in UK Biobank (right).
The red dashed line represents the observed pseudo-r2 for the selected SNPs and target genes for SCZ (See Results and Methods for details).

Table 3 Pathway enrichment results for the target genes selected for SCZ.

Category Pathway Adjusted
p value

Genes in
pathway

Genes
overlap

Novel genes
overlap

GO Endosome (GO: 0005768) 3.8 × 10–05 885 13 11
Vacuole (GO: 0005773) 2.7 × 10–04 760 11 9
Response to endoplasmic reticulum stress (GO: 0034976) 1.3 × 10−02 272 7 6

Hallmark Glycolysis 3.3 × 10−03 200 5 4
Hypoxia 1.4 × 10−02 200 4 3
MTORC1 signaling 1.4 × 10−02 200 4 3

Curated Gene sets Wierenga_STAT5A_TARGETS_DN 5.9 × 10−03 189 6 5
Zhou_INFLAMMATORY_RESPONSE_LIVE_DN 6.5 × 10−03 372 7 3

Oncogenic
Signatures

TBK1. DN.48HRS_DN 3.1 × 10−02 50 3 3
ATF2_S_UP. V1_DN 4.4 × 10−02 185 4 4

Immunologic
Signatures

GSE6269_E_COLI_VS_STREP_PNEUMO_INF_PBMC_DN 3.9 × 10−07 166 9 8
GSE6269_E_COLI_VS_STAPH_AUREUS_INF_PBMC_DN 2.1 × 10−04 174 7 5

Several selected top pathways containing novel genes across different categories are shown. See Supplementary Data 3 and 4 for results on all significant pathways and transcription factor target gene-
sets for the selected genes.
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inflammation, and the brain54. However, relative importance of
different pathways is likely to have been biased in our analysis
because blood is more likely to contain stronger signature of
immune mechanisms than processes that are directly related
to brain.

Protein-protein interaction (PPI) enrichment analysis using
STRING (v11.0)55 showed a significant enrichment (p value= 1.1
× 10−03) indicating that the corresponding proteins may physi-
cally interact. Although the analysis is performed using trans-
associations in whole blood, we found several of the selected target
genes were differentially expressed in tissues directly related with
SCZ. For example, three novel genes (PADI2, KCNJ10, MLC1),
were highly upregulated in several brain tissues (Supplementary
Fig. 5), in comparison to their expression in rest of the tissues in
GTEx v8. To systematically evaluate this, we performed a
differential expression enrichment analysis to investigate whether
the target genes were differentially expressed in any of the 54
tissues in GTEx v8 dataset. Since SCZ is a complex disease, we
expect the selected genes to be differentially expressed or regulated
in numerous potentially distinct tissues. For each tissue, we curated
lists of differentially expressed genes across the genome. We
defined a gene to be differentially expressed in a tissue if the
corresponding gene expression level in that tissue was significantly
different from that across the rest of the tissues (See Supplementary
Note 3 for details). Using such pre-computed lists of differentially
expressed genes for each tissue, we found that the target genes
selected by ARCHIE were enriched within the set of differentially
expressed genes in 12 different tissues including 7 brain tissues in

GTEx v8 (Supplementary Fig. 6). Majority of these tissues had
been previously reported to be involved in the pathophysiology
of SCZ56–58.

Ulcerative colitis. Ulcerative colitis (UC) is a form of inflam-
matory bowel disease, affecting the innermost lining of colon and
rectum, causing inflammation and sores in the digestive tract and
can lead to several colon-related symptoms and complications
including colon cancer59–61. The eQTLGen consortium reports
complete (non-missing) trans-association summary statistics for
163 SNPs associated with Ulcerative Colitis, curated from mul-
tiple large-scale GWAS, across 12,010 genes. Of these, 10,307
genes were expressed in Whole Blood from GTEx v8 individuals.
Using ARCHIE, we detected two significant variant-gene com-
ponents comprising of 74 SNPs and 148 genes in total (Fig. 4A
and Supplementary Fig. 7; Supplementary Data 2) that reflect
trans-association patterns specific to UC. Of the selected genes, 68
genes (45.9%) were novel, meaning they did not have any strong
trans-association (Table 2, Supplementary Data 2) with the var-
iants related to UC. Further, similar to SCZ, we found the asso-
ciations of the SNPs with target genes was strongly enriched
(p value < 0.001) for heritability of UC than expected by chance
alone and also the selected trans-associations explained herit-
ability of UC more than expected for a random trait or disease
(Fig. 4D).

Several of the novel target genes detected have been previously
linked to intestinal inflammations and diseases. For example,

Fig. 4 Analysis of selected target gene-set for Ulcerative Colitis (UC). A Top 10 cc-values (red) and the corresponding competitive null distributions
(black box plot) for ARCHIE analysis of UC. Top 2 ARCHIE components are significant. The box plot for competitive null distribution is presented as ±1.5
interquartile range with the median line denoted at the center. The competitive null distribution denotes the general pattern of sparse canonical correlation
(and trans-associations) expected in analysis of variants that are not specific to UC. The significant ARCHIE components are marked by a blue asterisk.
B Pathway enrichment results (one sided test) for some selected top pathways for the selected target genes. The dashed vertical line corresponds to a
suggested FDR threshold of 0.001. For full pathway enrichment results for the target genes selected for both the components see Supplementary Data 5–7.
C PPI enrichment (one sided test) for the two significant ARCHIE components for UC. D trans-heritability enrichment analysis for target genes selected for
UC. The violin plots represent the distribution of pseudo-r2 for the selected SNPs and a random gene-set of the same size on UC (left) and the distribution
of pseudo-r2 of the selected genes and SNPs on a random trait in UK Biobank (right). The red dashed line represents the observed pseudo-r2 for the
selected SNPs and target genes for UC (See Results and Methods for details).
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glycoprotein A33 (GPA33) is known to impact intestinal
permeability62 and is an established colon cancer antigen63.
Recent research using mouse models have reported a connection
between the regulation of GPA33 and the development of colitis
and other colon-related inflammatory syndromes64. We also
identify spermine oxidase (SMOX) through its weaker association
with 9 UC-related variants. SMOX is significantly upregulated in
individuals with inflammatory bowel diseases65 and has been
implicated in gastric and colon inflammations as well as
carcinogenesis66.

Using a series of follow-up analyses, we identify several
pathways to be enriched (FDR adjusted p value < 0.05) for the
selected target genes (Supplementary Data 5, 6), majority of them
being immune related (59.6%). Among others, the hallmark
interleukin-2-STAT5 signaling pathway (FDR adjusted p value=
1.6 × 10−08) has previously been reported to be associated to
development of UC via suppression of immune response67.
Various GO pathways related to endocytosis, lymphocyte
activation, T-cell activation are found to be overrepresented in
the selected target genes as well (Fig. 4B and Table 4). Further
enrichment analysis using broad TF databases, we found the
selected target genes across both gene components are enriched
(adjusted p value < 0.01) for targets of 18 different TFs, majority
of which have been previously reported to be involved in mucosal
inflammation, inflammation of the intestine and epithelial cells
and in immune-related responses (Supplementary Data 7).

PPI enrichment analysis shows that the resultant proteins
interact more often than random (p value= 8.8 × 10−03 and
1.3× 10−03 respectively for two significant ARCHIE components)
(Fig. 4C). Additionally, the selected genes were found to be
enriched for genes significantly differentially expressed in several
relevant tissues like colon-sigmoid and small-intestine ileum
among others (Supplementary Fig. 8).

We further investigated if any known mechanism can explain
how the selected genes are associated with the selected variants,
including mechanisms reflecting cis mediation15. In one example
from our analysis, we observe that, among the 41 variants selected
by variant-component 1, one UC-related variant rs3774959 is a
cis-eQTL of NFKB1 (p value= 6.2 × 10−41 in eQTLGen and
6.3 × 10−05 in GTEx in whole blood). The Nuclear factor κB (NF-
κB) family of transcription factors (TF) including NFKB1, has
been extensively reported to be involved in immune68 and

inflammatory responses69. In particular, mutations in the
promoter region of Nuclear factor κB1 (NFKB1) have been
strongly implicated to be associated with UC70, although the
downstream target genes of NFKB1 that are associated with UC,
are largely unknown. Among 106 target genes selected in the first
gene component, there are 6 genes (CD74, CD83, IL1B, Il2RA,
PTPN6, FOXP3) that are reported targets for NFKB1 (adjusted
enrichment p value= 7.5 × 10−03) in TRRUST v2.050. Thus, it
can be conceptualized that the selected UC-related variant may
regulate the expression levels of the six selected targets of NFKB1
via cis-regulation of NFKB1 expression levels, influencing UC-
status downstream.

Prostate cancer. Prostate cancer (PC) is one of the most common
types of cancers in middle-aged and older men, having a high
public health burden with more than 3 million new cases in USA
per year. The eQTLGen consortium reports complete (non-
missing) trans-association summary statistics for 122 SNPs
associated with prostate cancer, curated from multiple large-scale
GWAS, across 12,951 genes. Of these, 11,385 genes were
expressed in Whole Blood from GTEx v8 individuals. Using
ARCHIE, we detected two significant variant-gene components
comprising 33 SNPs, spanning 14 different loci across the gen-
ome, and 53 genes in total (Fig. 5A; Supplementary Data 2) that
reflect trans-association patterns specific to PC, of which 44 genes
(83.1%) were novel (Table 2, Supplementary Data 2). Addition-
ally, similar to SCZ and UC, we found evidence of enrichment of
trans-heritability of PC that can be mediated by the target genes
and also that the trans-heritability mediated by the selected SNPs
and genes was significantly more than that for a randomly chosen
trait (Fig. 5D), but the level of significance achieved was relatively
weaker (p value= 0.001 and 0.007; See Methods for details).

Among the novel genes, we identified several key genes that are
generally implicated in different types of cancers. For example,
TP53 aggregates weaker trans-associations with 9 PC-related
variants in ARCHIE component 1 (Fig. 5B). The TP53 gene
encodes tumor protein p53 which acts as a key tumor suppressor
and regulates cell division in general. TP53 is implicated in a large
spectrum of cancer phenotypes and has been considered to be one
of the most important cancer genes studied71. Further, genes
associated with the second gene component included SMAD3

Table 4 Pathway enrichment results for the target genes selected for UC.

Component Category Pathway Adjusted
p value

Genes in
pathway

Genes
overlap

Novel
genes
overlap

1 GO Regulation of Immune system (GO: 0002683) 8.5 × 10−09 1606 25 11
Lymphocyte activation (GO: 0046649) 8.5 × 10−09 709 18 8
Regulation of T-cell activation (GO: 0050863) 2.9 × 10−06 311 11 6

Hallmark IL2 STAT5 signaling 3.2 × 10−10 200 10 5
G2M checkpoint 2.6 × 10−03 200 4 4

Curated PILON_KLF1_TARGETS_DN 2.5 × 10−05 854 11 4
KEGG: Endocytosis 3.2 × 10−02 181 5 3
Reactome: Adaptive immune system 2.1 × 10−02 807 10 3

Immunologic
Signatures

GSE7460_WT_VS_FOXP3_HET_ACT_WITH_TGFB_TCONV_UP 6.9 × 10−08 200 10 8
GSE4984_UNTREATED_VS_GALECTIN1_TREATED_DC_DN 4.5 × 10−16 191 16 7
GSE22886_NAIVE_CD4_TCELL_VS_MONOCYTE_UP 3.2 × 10−07 196 11 6

2 GO Defense Response (GO: 0006952) 2.0 × 10−04 1684 11 4
Inflammatory Response (GO: 0022610) 1.2 × 10−03 714 7 2

Curated JAATINEN_HEMATOPOIETIC_STEM_CELL_DN 4.7 × 10−04 233 6 3
Immunologic
Signatures

GSE22886_NAIVE_BCELL_VS_MONOCYTE_UP 2.1 × 10−12 195 11 4
GSE10325_CD4_TCELL_VS_BCELL_DN 5.8 × 10−08 193 8 3

Several selected top pathways containing novel genes across different categories are shown here. See Supplementary Data 5–7 for results on all the significant pathways for the selected in ARCHIE
components 1 and 2, respectively.
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(Fig. 5C) which is also a well-known tumor suppressor gene that
plays a key role in transforming growth factor β (TGF-β)
mediated immune suppression and also in regulating transcrip-
tional responses suitable for metastasis72–74. TP53 and SMAD3
belong to two different ARCHIE components meaning that they
might pertain to two relatively distinct biological processes that
are independently affected by different sets of PC-related variants.
Additionally, the second gene component included EEA1 which is
reported to have significantly altered expression levels in prostate
cancer patients75.

Using enrichment analyses (Supplementary Data 8, 9), we
found several pathways, including broadly ubiquitous pathways
to be significantly overrepresented in the selected genes for both
the gene components like regulation of intracellular transport
(adjusted p value= 0.017) and mRNA 3’-UTR binding (adjusted
p value= 0.008). Notably, we found the selected genes to be
enriched for targets of several transcription factors many of which
have been associated with different types and subtypes of cancer
(Supplementary Data 10). For example, we found a TF target
enrichment for SPAG9 (adjusted p-value = 0.016) which has been
identified to be associated with breast cancer, ovarian cancer,
colorectal cancer and others76. We also found enrichment for
targets of SSRP1 (adjusted p value= 0.016), which is differentially
regulated in a wide spectrum of malignant tumors77 along with
enrichment for targets of MYC and TP73 which are well-
established cancer-related genes (Supplementary Data 10). How-
ever, we did not find any evidence for significant enrichment of
PPI among identified genes.

The downstream analysis suggests that a majority of the
pathways (78.1%) enriched for the selected genes are immune
related as observed in the previous examples as well. This might
have been driven by the fact that eQTLGen reports summary
trans-associations in whole blood. In general, whole blood might
not be the ideal candidate tissue to identify trans-associations
pertaining to PC. It is conceivable that relevant tissue-specific
analysis for PC could have illuminated further trans-association
patterns and identified key tissue-specific target genes. Despite
that, we can identify several genes which have been elaborately
reported to be key target genes for various cancers as well as some
novel trans-associations. This underlines the utility of our
aggregative approach and that it can illuminate important target
genes pertaining to a trait.

Discussion
While modern genome-wide association studies have been suc-
cessful in identifying a large number of genetic variants associated
with complex traits, the underlying biological mechanisms by
which these associations arise has remained elusive. Although
trans genetic regulations, mediated through cis- or otherwise,
have been proposed for detecting important target genes for
GWAS variants, identification of trans associations using stan-
dard univariate SNP vs gene-expression association analysis is
notoriously difficult due to weak effect-sizes and large multiple
testing burdens. In this article, we have proposed ARCHIE, a
summary statistics-based method for identifying groups of trait-
associated genetic variants whose effects may be mediated

Fig. 5 Analysis of selected target gene-set for Prostate Cancer (PC). A Top 10 cc-values (red) and the corresponding competitive null distributions (black
box plot) for ARCHIE analysis of PC. Top 2 ARCHIE components are significant. The box plot for competitive null distribution is presented as ±1.5
interquartile range with the median line denoted at the center. The competitive null distribution denotes the general pattern of sparse canonical correlation
(and trans-associations) expected in analysis of variants that are not specific to PC. The significant ARCHIE components are marked by a blue asterisk.
-log10 p-value for trans-eQTL association between variants and genes selected in B ARCHIE component 1 and C component 2 as reported in eQTLGen data.
TP53 and SMAD3 are highlighted. Any association p value < 10−08 is collapsed to 10−08 for the ease of viewing. D trans-heritability enrichment analysis for
target genes selected for PC. The violin plots represent the distribution of pseudo-r2 for the selected SNPs and a random gene-set of the same size on PC
(left) and the distribution of pseudo-r2 of the selected genes and SNPs on a random trait in UK Biobank (right). The red dashed line represents the
observed pseudo-r2 for the selected SNPs and target genes for PC (See Results and Methods for details).
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through trans-associations with groups of coregulated genes.
ARCHIE involves estimating LD and coexpression from publicly
available reference datasets. However, we found that the results
can be reasonably robust to the choice of reference data and
estimation errors arising due to sampling variations (Supple-
mentary Fig. 9). In general, robust performance can be achieved
under an optimal ratio of the sample sizes of the reference
transcriptomic study and the study from which summary statis-
tics of standard trans-eQTL associations are being analyzed.
Further, we develop a resampling-based method to test the sta-
tistical significance of trait-specific enrichment patterns in the
background of expected highly polygenic broad trans association
signals. We have shown through simulation studies that com-
pared to standard trans-eQTL analysis, ARCHIE is more pow-
erful for the detection of “core”-like genes which may potentially
mediate the effects of multiple upstream genes and variants and
can explain trait-specific genetic associations.

Application of the method to eQTLGen consortium trans-eQTL
statistics not only identified many novel trans-associations for trait-
related variants, but also helped to contextualize the individual
associations in terms of broader trait-specific trans-regulation
patterns that were detected by underlying gene and variant com-
ponents. The set of selected target genes in the gene component is
one of the key outputs of ARCHIE. Using a series of follow-up
analyses for three different types of traits, we showed that the
selected genes are often overrepresented in known disease-relevant
pathways, enriched in protein-protein interaction networks, show
co-regulations across tissues and contain targets for known tran-
scription factors implicated in the disease (SCZ and UC) and key
tumor suppressor genes (PC). Further, using a trans-expression
imputation approach, we demonstrated that the selected genes can
significantly mediate heritability-associated trait-related variants.
All of these analyses point out that the trans-association patterns
we detect are likely to have trait-specific biological basis.

There are several limitations of the proposed method and
current analysis. First, in the current version ARCHIE, we begin
with a set of genetic variants associated with a trait, but we do not
incorporate the underlying association directions and effect sizes
in the analysis. This approach allowed us to independently
investigate identified target genes through testing for consistency
of directions of association of the SNPs with the trait and those
with the expressions of the target through the trans-heritability
analysis. However, it is likely that incorporation of the GWAS
effect sizes (value and direction) of trait association for the SNPs
in the sCCA itself will lead to improved power for detection of the
trait-specific target genes. One of the immediate ways to incor-
porating that might be to weight the variants with weights pro-
portional to squared (or absolute value) of the GWAS effect size.
However, incorporating the direction of the GWAS effect with
the sCCA framework remains an interesting problem and merits
further research. Additionally, incorporation of information on
cis-genes and known functional annotation of genetic variants
can improve the power of the analysis as well.

Although the estimation of the ARCHIE components is com-
putationally efficient, in the current implementation, the
resampling-based testing method is computationally intensive. In
the future, further research is merited to develop analytical
approximation techniques to reduce the computational burden of
ARCHIE. Since variable selection is a major goal in ARCHIE, we
have introduced regularization via the L1 penalty due to its proven
theoretical selection consistency78. In fact, in presence of correla-
tion between SNPs as well gene expressions, elastic net regular-
ization approach can be effective in accurate selection. In the future,
usefulness of alternative types of penalty functions in selecting the
genes and variants merits further research. Further, due to the lack
of existing methods to identify trait-specific trans associations, we

have compared the performance against the standard trans-eQTL
mapping. Although the eQTLGen data analysis shows that
ARCHIE can identify a broader range of gene-sets trans-regulated
by GWAS variants as compared to standard trans-eQTL mapping,
the goals of ARCHIE and the standard analysis are different and
therefore not directly comparable—the goal of the standard ana-
lysis is to identify association in individual variant-gene pair irre-
spective of trait specificity. In contrast, ARCHIE can identify trait-
specific trans-regulated target genes harboring multiple weaker
associations with trait-related variants. As newer methods are
developed to detect trait-relevant trans-regulated genes, more
comprehensive analyses comparing alternative approaches will
allow us to understand their benefits and limitations.

Currently, not many transcriptomic studies have made the
summary statistic from trans-eQTL mapping available. However,
as these studies grow in size and with improved methods of data
sharing, we expect more studies to make the summary statistics
from trans-eQTL mapping available, allowing researchers to
investigate a broader range of diseases and traits. Further, ARCHIE
can be broadly applicable to understand role of other types of
molecular traits, such as proteins and metabolites, in mediating
complex trait genetic associations. In the future, as data on mole-
cular biomarkers become increasingly available in large biobanks,
tools like ARCHIE will be increasingly needed to understand
common pathways through which genes and biomarkers interact
to cause specific diseases.

In this article, we have analyzed summary statistics reported by
eQTLGen in the whole blood. This is primarily because of the
substantial effective sample size of eQTLGen. While the approach
can be applied to eQTL results from other tissues, the underlying
sample sizes may be too limited to yield sufficient power.
Although blood might not be the most relevant tissue for a
number of traits, our analyses did detect trans association pat-
terns that appear to have a broader biological basis in the disease
genetics, from multiple independent lines of evidence. Never-
theless, it is likely that our analysis has missed many trans-
association patterns that will be present only in specific disease-
relevant tissues, cell types or/and dynamic stages79. In the future,
we will seek applications for ARCHIE in various types of emer-
ging eQTL databases to provide a more complete map of net-
works of genetic variants and trans-regulated gene expressions
and relevant contexts.

In summary, in this article we have developed a summary-
based method, ARCHIE, to detect trait-specific gene-sets by
aggregating trans-associations from multiple trait-related var-
iants. ARCHIE is a powerful tool for identifying target gene sets
through which the effect of genetic variants on a complex trait
may be mediated. In the future, applications of the methods to a
variety of existing and new data on association between genetic
variants with high-throughput molecular traits can provide
insights to biological mechanisms underlying genetic basis of
complex traits.

Methods
Sample Description. eQTLGen: The eQTLGen consortium19 is a large-scale
multi-study effort to identify to study the downstream effects of trait-related var-
iants via their effects on gene expression in whole blood. The consortium consists
of 37 individual studies with a collective sample size of 31,684 participants. With
this sample size, the study has relatively higher power to detect moderate to weaker
effects of variants on gene expression. 10,317 variants related to complex traits,
compiled from several GWAS databases, were tested for trans-associations with the
expression levels of 19,964 genes in whole blood. The authors have made summary
statistics (Z score, p value) for these trans-eQTL mapping analyses freely available
to public.

GTEx: The Genotype-Tissue Expression (GTEx) project28 aims to study tissue-
specific gene expression and regulation. We used individual-level data from GTEx
(v8) whole blood to construct the co-expression matrix (ΣEE) and further
downstream validation of the gene-sets selected using ARCHIE. In our analysis, we
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used the latest version (v8) of GTEx having gene expression and genotype data
with samples from 54 different tissues. In particular, 755 individuals had expression
data on 20,315 genes for whole blood. Of these, we used 670 individuals with
genotype data present.

UK Biobank: UK Biobank is a large biobank study with above 500,000
participants. Among several data resources available, the genotype data,
hospitalization records, and health-records data are available. We used individual-
level genotype data from UK Biobank to construct LD matrix (ΣGG) and for further
downstream analysis of the selected target genes.

The phenotype data constructed from hospitalization and health-data records
were used in the quantification and testing of enrichment in trans-heritability
explained by the selected target genes (See Methods). We included the individuals
with European ancestry in the analysis. For example, in the analysis of SCZ, we
used a sample of 366,326 participants from UK Biobank to construct the imputed
gene-expression levels and evaluate the corresponding regression r2 as an estimate
of trans-heritability on SCZ as a binary phenotype.

Estimating trait-specific pattern of trans-associations. Our proposed method,
Aggregative trans association to detect phenotype-specific gene-sets (ARCHIE),
can select target genes trans-associated with trait-related variants using summary
statistics in a sparse canonical correlation framework. To introduce the details of
ARCHIE, first, we briefly describe sCCA. For n individuals, let Gn ´ p be the nor-
malized genotype matrix for p variants and En ´ g be the normalized gene-
expression matrix for g genes all of which are distant (trans) to the variants. sCCA
seeks to estimate sparse linear combinations of variants (up ´ 1) and genes (vg ´ 1)
such that the correlation between Gu and Ev is maximized i.e.,

ðu; vÞ ¼ argmax ~vTETG~u

with vTETEv ≤ 1 and uTGTGu≤ 1 and k~Uk1 ≤ cu; k~Vk1 ≤ cv
ð1Þ

where jjxjjh is the Lh norm of a vector x; cu (or cv) is the sparsity parameter on the
variant (or gene) component for the lasso-type L1 penalty. The subsequent pairs of
sCCA components are obtained by similarly maximizing the correlation between
Gu and Ev and under the constraint of being uncorrelated or orthogonal to the
previous components. In practice, the optimization problem can be reformulated in
terms of covariance matrices as:

ðu; vÞ ¼ argmax ~vTW~u

with k~uk1 ≤ cu; k~vk1 ≤ cv and k~uk2 ¼ 1; k~vk2 ¼ 1
ð2Þ

where W ¼ Σ�1=2
EE ΣGEΣ

�1=2
GG and vk ¼ Wu ; ΣGG and ΣEE are the column-

correlations of G and E respectively and ΣGE is the cross-covariance matrix
between the variants and the gene expressions. However, the matrices can be
estimated from publicly available summary statistics and reference data. We
approximate ΣGG and ΣEE by the empirical LD-matrix and a penalized co-
expression matrix (See Supplementary Note 1) using external reference samples
and ΣGE can be obtained from the summary statistics of the regression for trans-
eQTL mapping across all pairs of variants and gene-expressions (See Supple-
mentary Note 1).

To apply ARCHIE, thus, we start with the summary statistics from trans-eQTL
mapping (Z value, p value). Given the trans-association summary statistics across
the variants related with the trait and all the corresponding distant genes
(variant > 5Mb away from the transcription start site of the gene), we first adjust
for the correlation within the variants and genes through appropriate LD and co-
expression matrices, estimated from reference panels with individual-level
genotype (or dosage) and gene expression data respectively, as follows:

W ¼ Σ�1=2
EE ΣGEΣ

�1=2
GG ð3Þ

where ΣGG and ΣEE are estimates of LD-matrix and co-expression matrix (see
Supplementary Note 1), and ΣGE is the cross-correlation matrix obtained using the
Z values from the standard trans-eQTL mapping across all pairs of variants and
gene-expressions. It is important to adjust for the dependence within the variants
and gene expression levels using the LD and co-expression matrices respectively,
since we aim to identify trait-relevant gene-sets and variants through independent
trans-associations. Furthermore, gene-expression levels in bulk tissues may appear
to be correlated due to cell composition effects as well, which needs to be adjusted
for by incorporating the estimated co-expression between the genes.

Using W, the correlation-adjusted matrix of trans-associations, ARCHIE
employs sCCA22,24 which produces a sparse linear combination of the variants (u;
termed variant-component) that is strongly correlated with a sparse linear
combination of genes (v; termed gene-component) by solving the following
optimization problem

ðu; vÞ ¼ argmax ~vTWu

with k~uk1 ≤ cu; k~vk1 ≤ cv and k~uk2 ¼ 1; k~vk2 ¼ 1
ð4Þ

Sparsity aids in interpretation since each non-zero element of a variant or gene
component indicates that the respective variant (or gene) is selected in that component.
Thus, ðu vÞ, which are the resultant variant and gene components (jointly termed
ARCHIE components) can be interpreted as the sparse latent factors that explain the
majority of the aggregated association between all the trait-related variants and all the
genes. The corresponding sparse canonical correlation (cc-value) between each pair of

variant and gene components, defined as q2 ¼ ðvTWuÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuTWTWuÞðvTWWTvÞ

p would be a measure

of the cumulative association between the selected sets of variants and genes by
aggregating multiple (possibly weaker) associations (Fig. 1A shows an illustration using
P variants and G genes). Multiple such components ðu vÞ, can be extracted to reflect
approximately orthogonal latent factors of the aggregative correlation, corresponding to
possibly distinct mechanisms of trans-regulation (See Supplementary Note 1).

At suitable levels of sparsity (See Supplementary Note 1), ARCHIE components
produce a much smaller number of selected target genes which harbor multiple
moderate to weak trans-association from a selected set of trait-associated variants,
thus reflecting a trait-specific pattern of trans-association. A detailed algorithm for
the estimation of the ARCHIE components is provided in Supplementary Note 1.
We can interpret the ARCHIE output as the subset of genes (selected by the gene
component) having possibly multiple weaker trans-associations to the subset of
variants (selected by the variant component).

Testing hypothesis of enrichment of trait-specific trans-association using a
competitive null hypothesis framework. To test which ARCHIE components
significantly capture the phenotype-specific trans-association pattern we evaluated
the results from the original analysis against a competitive null hypothesis. Since trait-
related variants are expected to be enriched for trans-eQTLs in general, we test
whether the cc-values obtained in the original analysis are higher than that obtained
using the trans-summary statistics between a random set of GWAS-identified var-
iants and genes of similar size, that do not reflect any trait-specific pattern. For this,
we first construct a null matrix by taking a random sample of p variants from the pool
of all variants available and extracting the corresponding trans-summary statistics for
another set of randomly chosen g genes. Since eQTLGen reports the trans-summary
statistics across about 10,000 variants associated with different traits, we can construct
the null matrix using the trans-summary statistics from these variants that are
associated with different traits and not with the trait of interest. This matrix of trans-
associations, by design, should not reflect phenotype-specific patterns. For example,
in the analysis for SCZ using summary statistics across 218 variants and 7047 genes,
we construct the null matrix using 1 variant selected at random from 218 randomly
chosen traits and extracting their corresponding trans-summary statistics across 7047
randomly chosen genes.

Then we use ARCHIE with the same sparsity levels as the original analysis, to
extract the gene and variant components and calculate corresponding cc values.
We repeat this step multiple (M) times to generate a competitive null distribution
of cc values. We then evaluate the observed cc-values from the original analysis
against the corresponding competitive null distributions to calculate the p-value. In
particular, the p value of the kth ARCHIE component is given as:

pk ¼
∑
M

i¼1
Iðq2k > q2k;nullðiÞÞ

M

ð5Þ

where q2k denotes the kth cc-value in the original analysis and q2k;nullð:Þ denotes the
elements of the null distribution of the kth cc-value. We declare that the top L
components significantly capture phenotype-specific trans-association patterns if

L ¼ min k : pk > α; k ¼ 1; 2; ¼ ;min p; g
� �� �� 1 ð6Þ

The random set of p variants should be carefully chosen so that none of the
variants associated with the phenotype in consideration or any phenotype sharing
substantial genetic correlation, are included. Further, the set should be such that it
does not include a large fraction of the variants from the same phenotype (different
from the original phenotype), which may bias the competitive null distribution
towards the trans-association cc-values for that phenotype.

Simulation model. To demonstrate that ARCHIE can identify downstream trans-
associations, we simulate individual-level gene-expression data for N individuals
(N= 1000 or 30,000). First, we randomly sampled N unrelated individuals with
genotypes at 50 independent and randomly selected SNPs from the UK Biobank
with minor allele frequencies ranging from 10 to 40%. The SNPs were then
arranged in sets of five each. Each set of five SNPs was then used to simulate the
cis-gene expression of eight genes in total marked in red (Fig. 2A–C). For type-I
error simulations (Fig. 2A) the expressions for genes 1–4 were simulated from a
univariate standard Gaussian distribution and the subsequent downstream genes
5–9 were simulated using the causal regulatory model. The gene-gene regulatory
causal effects on genes 5–9 were chosen such that the ~20–30% of the variation in
gene expression was explained by causal upstream genes.

For power simulations (Fig. 2B, C), the direct cis-regulatory effects of the five
SNPs on the corresponding cis-gene expression were chosen from a Gaussian
distribution such that the average cis-heritability explained by the SNPs were
maintained at ~20–22%. Then we simulated gene expression for genes 1 through 9
using a causal regulatory model as shown in Fig. 2B, C, using the simulated cis-gene
expressions. The regulatory effects between the gene expressions were chosen such
that the total variance explained for the expression of Genes 1–9 by indirect effect of
the SNPs (trans-heritability) were ~10–14%. For the global null scenario, the
downstream genes 1–9 were simulated independent from the cis genes (Fig. 2A)
using the causal regulatory model. We further simulated a separate sample of 700
(NRef ) from which the gene expressions were used to estimate the coexpression
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matrix (ΣEE). The ΣGG matrix was taken to be a diagonal matrix with the diagonal
elements being the estimated sample variance of the SNPs. Using this simulated
data, we applied ARCHIE and compared the results to that obtained from standard
trans-eQTL mapping. To test against the global null hypothesis, that there was no
trans-association between the SNPs and any gene in the gene network, we simulated
null ΣGE;null as vecðΣGE;nullÞ �Nð0;ΣEE ΣGGÞ where vec(.) represents the stacked row
vectorization of a matrix and represents the Kronecker product. We simulated
applied ARCHIE to the ΣGE;null multiple times to obtain a distribution of the sparse
canonical correlation scores (q2). Any ARCHIE component with p-value less than
the chosen level was declared significant and the corresponding selected genes were
noted (See Supplementary Note 2 for more details).

Next, through resampling experiments we assess whether ARCHIE can
potentially identify trait specific trans-associations. Using data from eQTLGen
consortium, we construct a matrix of trans-eQTL summary statistics (Z values)
across for p variants and g genes. Out of the p variants, we set δ proportion of them
to be related to a particular trait. For high values of δ we expect that the trans-
summary statistics matrix would reflect trans-association patterns pertaining to the
trait and hence should be captured by the ARCHIE components. We then applied
ARCHIE on this matrix and evaluate the significance of the components. We
replicate this experiment multiple times in a given setting, to estimate the empirical
probability of at least one ARCHIE component to be significant (See
Supplementary Note 2 for details) and reported the empirical probability of at least
one ARCHIE component to be significant across varying values of δ. We repeated
this resampling experiment with four different traits (Supplementary Fig. 4).

Analysis of eQTLGen data. To identify phenotype-specific trans-associations, we
applied ARCHIE on the trans-association summary statistics for 10,317 trait-related
variants across 19,942 genes reported by the eQTLGen consortium19 (See Sample
Description for details on the study). In line with the consortium, we defined any gene
to be trans to a variant if the variant was located at least 5Mb from the transcription
start site of the gene or on another chromosome. The data contains multiple variants
associated with the same trait analyzed for trans-eQTL mapping. Our analysis was
restricted to phenotypes that had at least 100 associated variants tested for trans-
mapping in the consortium, producing 29 phenotypes. Figure 1B shows a graphical
representation of the major steps of our workflow. Briefly, for each phenotype, we
extracted the summary trans-eQTL association statistics (Z-score, p-value) and
removed all genes that were in within 5Mb of any of the trait-related variants. In the
preprocessing step, we filtered for any missing data and retained the genes that were
also expressed in GTEx (v8)28 whole blood. This produced a list of approximately 129
(min: 112; max: 533) variants and 10,219 (min: 3426; max: 13910) genes on an
average per phenotype. ARCHIE requires two additional matrices representing the
correlation among the variants themselves (a linkage-disequilibrium matrix) and
among the gene-expression levels (a co-expression matrix), which can be estimated
using reference data. We constructed the LD-matrix for the variants from individual-
level genotype information using 5,000 randomly selected, unrelated European
samples in UK Biobank80. For the correlation between gene-expressions, we used a
penalized co-expression matrix81 of the corresponding genes constructed from the
covariate-adjusted quantile normalized gene-expression levels for individuals in
GTEx v8 data. Subsequently, for the given trait, we extracted the selected variants and
genes using the significant components and were evaluated for presence of false-
positives due to cross-mapping.

Cross-mappability. Alignment errors due to similarity in sequenced reads can lead
to a substantial rise in false positives for detecting trans-eQTL associations82. With
the selected ARCHIE components, we extracted the nearby genes expressed in
GTEx v8 whole blood for the selected variants (TSS within ±500 kb of the variant)
and evaluated the cross-mapping scores for these genes with the selected target
genes. Across the 3 traits analyzed in this article, we found that all such gene pairs
were mostly non cross-mappable (SCZ: 99.98%, UC: 99.17%, PC: 99.93%), indi-
cating that the trans-association patterns were less likely to be affected by false
positive arising from alignment errors.

Quantifying and testing for enrichment for trait heritability explained by
identified target genes. In the following, we propose a method for quantifying
trait heritability explained by the GWAS variants that would be mediated by the
identified target-genes and develop a corresponding test for enrichment through
comparison of such estimates of mediated heritability associated with that from
random genes. For or a particular trait of interest, we start with the Z scores for
regression-based trans-eQTL mapping for a set of underlying p variants and g
genes. We will assume that, using ARCHIE, we have identified G target genes that
capture trait-specific trans-association patterns. To perform the test as proposed
above, we require individual-level phenotype and genotype data independent of the
samples used in the original analysis. Given genotypes (or dosages) at the p variant
sites for an individual k, for each target gene, we define the trans-imputed
expression scores (TIES) as the predicted expression value for the jth target gene as

TIES p
� �

jk ¼ ∑
p

i¼1

Zijxikffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mið1� miÞ

p ; ð7Þ

where Zij is the z-score for the effect of the ith trait-related variant on the jth gene,
xik is the genotype or dosage for the kth individual at the ith variant and mi is the
minor allele frequency of the ith variant. We construct the TIES under two dif-
ferent schemes:

1. Using all the trait-related variants with complete trans-association statistics
reported in eQTLGen.

2. Using only the trait-related variants selected in the significant components.

To evaluate how strongly the TIES for the G target genes are associated with the
phenotype levels, we use the following multiple regression model

g½E yk
� �� ¼ β0 þ ∑

G

j¼1
βjTIESðpÞjk ð8Þ

where yk is the phenotype value (e.g., disease status) for the kth individual; g½:� is a
canonical link function and can be set to be the identity function for continuous
phenotype or the logistic function for binary (disease status) phenotypes. We
record the pseudo-r2 from this regression model as a measure of association
between the TIES and the phenotype value. The pseudo-r2 would provide an
estimate of trans-heritability, meaning it can quantify the variance explained by the
trait-related variants that is expected to be mediated via the selected target genes in
the context of the trans-associations reported. To test whether the observed r2 is
significant in comparison to what is expected at random, we adopt a resampling-
based approach. We sampled g genes (excluding the originally selected target
genes) from the genome, constructed the corresponding TIES for the individuals
and recorded the r2 for the regression model. This would a null estimate of trans-
heritability of the SNPs expected to be mediated by a set of g genes. If the
observed pseudo-r2 is substantially higher than the null estimates, we can infer
that the trans-associations selected by ARCHIE explain higher variance
compared to that expected through random trans-associations. We performed
resampling multiple (1000) times to generate a control (null) distribution of r2

to reflect the associations expected from random genes. We then calculated the
p value of the observed r2 using the originally selected g genes from this control
distribution to evaluate whether the TIES have any significant association with
the phenotype.

Approximately, the observed r2 reflects the proportion of trait-variance
explained by the TIES. Thus, a significantly higher r2 would imply that the selected
genes harbor several trans-associations and mediate the effects of the trait-related
variants more than any random set of genes. As the analysis of association between
TIES and trait (for both the selected trans genes and random genes) is performed in
an independent dataset, and no information on directions or magnitudes of trait
association for the SNPs are used in the original ARCHIE analysis, the test for
heritability enrichment provides independent validation of the relevance of selected
target-genes in explaining genetic associations for the trait. In our application, we
used individual-level phenotype and genotype data from UK Biobank participants
to estimate association between TIES and traits.

We also performed several other follow-up analyses including PPI enrichment,
pathway enrichment, and differentially expressed genes enrichment. These analyses
were carried out using pre-established standard pipelines. For full details on these
see Supplementary Note 3.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The eQTLGen consortium summary statistics for trans-eQTL associations were
obtained from: https://www.eqtlgen.org/trans-eqtls.html (downloaded on 09/01/2019).
The UK BioBank data were obtained from https://www.ukbiobank.ac.uk under the UK
BioBank resource application 17712. GTEx data were obtained from dbGAP (accession
id: phs000424.v8.p2). For details on accessing and interpreting GTEx data please see:
https://www.gtexportal.org/home/. Individual-level data for the DGN cohort are
available by application through the NIMH Center for Collaborative Genomic Studies
on Mental Disorders. Instructions for requesting access to data can be found at https://
www.nimhgenetics.org/access_data_biomaterial.php, and inquiries should reference the
“Depression Genes and Networks study (D. Levinson, PI)”. Individual-level genotype
data from 1000 Genomes study can be accessed from: https://www.internationalgenome.
org/data/. The summary data, results generated through this study and source data for
figures are provided in the GitHub repository: https://github.com/diptavo/ARCHIE and
in the Zenodo database83 at: https://doi.org/10.5281/zenodo.6533206. Source data are
provided in this paper.

Code availability
The codes and an example simulated data can be found on ARCHIE GitHub repository:
https://github.com/diptavo/ARCHIE and in Zenodo83 database: https://doi.org/10.5281/
zenodo.6533206.
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