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Physiological adaptive traits are a potential allele
reservoir for maize genetic progress under
challenging conditions
Claude Welcker 1,14, Nadir Abusamra Spencer1,14, Olivier Turc 1,14, Italo Granato 1, Romain Chapuis2,

Delphine Madur3, Katia Beauchene4, Brigitte Gouesnard5, Xavier Draye 6, Carine Palaffre7, Josiane Lorgeou8,

Stephane Melkior9, Colin Guillaume10, Thomas Presterl11, Alain Murigneux12, Randall J. Wisser 1,

Emilie J. Millet 13, Fred van Eeuwijk 13, Alain Charcosset3 & François Tardieu 1✉

Combined phenomic and genomic approaches are required to evaluate the margin of pro-

gress of breeding strategies. Here, we analyze 65 years of genetic progress in maize yield,

which was similar (101 kg ha−1 year−1) across most frequent environmental scenarios in the

European growing area. Yield gains were linked to physiologically simple traits (plant phe-

nology and architecture) which indirectly affected reproductive development and light

interception in all studied environments, marked by significant genomic signatures of

selection. Conversely, studied physiological processes involved in stress adaptation remained

phenotypically unchanged (e.g. stomatal conductance and growth sensitivity to drought) and

showed no signatures of selection. By selecting for yield, breeders indirectly selected traits

with stable effects on yield, but not physiological traits whose effects on yield can be positive

or negative depending on environmental conditions. Because yield stability under climate

change is desirable, novel breeding strategies may be needed for exploiting alleles governing

physiological adaptive traits.
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Y ield progress under challenging environmental conditions
is necessary to face the negative impacts of climate change
and the limitations on irrigation and fertilization, in a

context of high demand for agricultural products1,2. Breeding and
the improvement of agronomic practices have increased yields of
most species1,3. In maize, a major source of yield progress was the
fine-tuning of plant cycle duration to the local environmental
conditions, based on the well-documented genetic variability for
flowering time4,5. However, the genetic ability of varieties to
produce high yield has also rapidly increased in maize, for a given
cycle duration and a given set of management practices, repre-
senting 50–75% of total yield gain6–14. For each class of crop cycle
duration, this gain was essentially obtained by breeders via
selection for yield and, more recently, genomic selection based on
yield15,16.

A crucial question is whether this rate of genetic progress can
be sustained in the next decades. Evaluating the margin of the
progress of breeding strategies requires a comprehensive analysis
that links, in the same genetic material, yield progress to under-
lying traits and corresponding genomic regions. This would allow
the evaluation of which traits can still be improved, in relation to
likely physical limits, and the allele fixation achieved for these
traits by breeding programs. Elements for this exist in the lit-
erature, either for identifying the genomic changes associated
with selection17,18, to evaluate the yield progress over time of
released varieties in multi-site field experiments6–13, or to identify
traits that appreciably changed with year of release7,19,20. To our
knowledge, the whole path of examining causal links between the
changes in alleles, traits, and yield in a range of environmental
scenarios has never been analyzed in the same genetic material.
This path is not straightforward because a vast majority of yield
quantitative trait loci (QTLs), which necessarily act via underlying
traits, have positive, negative, or neutral effects depending on
environmental conditions21,22. This justified the fact that we
considered trait effects on yield in a range of environments, but
also that we characterized their changes across generations of
selection.

Different categories of traits are potentially involved in genetic
progress. Adaptive physiological traits (e.g., stomatal control or
leaf growth) vary several-fold over minutes to hours as a response
to environmental conditions for a given genotype23, so it is
challenging to consider them in a breeding program (in addition
to the intrinsic difficulty to phenotype them at high
throughput24). We recently proposed that evolution has coordi-
nated the numerous and complex adaptive mechanisms into
strategies ranging from ‘growth-oriented’ to ‘conservative’, which
favor yield in most favorable vs most adverse environmental
conditions23,25. Constitutive traits (e.g., duration of phenological
phases expressed in thermal time or plant architectural traits,
including harvest index) have long-term variations with the
environment, so they are selectable in a breeding program15,23.
Their effect on yield is less dependent on environmental scenarios
than adaptive traits, with the notable exception of crop cycle
duration (expressed in thermal time), for which shortest dura-
tions allow escaping stress in driest or hottest scenarios, whereas
longest durations compensate the effects of increased mean
temperatures in the absence of water deficit5.

In this study, we evaluated the contributions of a range of traits
and alleles to the genetic progress of yield, in particular to what
extent yield-based selection indirectly affected adaptive,
environment-dependent traits and constitutive traits having more
stable effects. In a maize panel of 66 European varieties released
from 1950 to 2016, we (i) measured physiological traits with
novel phenomic methods, in particular stomatal conductance
at the plant level, growth responses to environmental
conditions, plant architecture, and reproductive development (see

Supplementary data 11 for precise definitions of variables),
together with plant phenology in ten high-precision experiments
in three phenotyping platforms24,26,27 and three equipped fields
(Supplementary Table 2), (ii) measured yield and its components
in 30 field experiments across Europe (Supplementary Table 2),
(iii) analyzed trait contributions to yield improvement via linear
models and Bayesian networks, and (iv) investigated if genomic
regions associated with these traits showed signatures of selection.
Such signatures were sought in the same panel of genetic progress
as above, whereas genomic regions associated with studied traits
were those previously identified in a diversity panel with a similar
genetic background compared to that of the genetic progress
panel studied here (Supplementary Fig. 1). Finally, we examined a
hypothesis that adaptive traits did not respond to selection due to
their conditional effects on yield.

Results
The studied environments and hybrids were typical of the
growing area of European maize. The genetic progress was
analyzed by comparing traits and performances of the 66 most
commercially successful European hybrids released from 1950 to
2015 (Supplementary Table 1). Because each maize variety grows
in a limited range of latitude, we chose the range 43–48°N which
covers a large proportion of the maize growing area in Europe
(Fig. 1a)5, and corresponds to mid-early (FAO 280) to mid-late
(FAO 490) hybrids.

This genetic progress panel captured the elite breeding pools of
European and American germplasm, as shown by projecting the
genotypes onto a principal component biplot of 96 commercial
varieties with expired Patent Variety Protection (ex-PVPs;
Supplementary Fig. 1). Notably, an appreciable shift in SNP
frequency was observed with year of release in the genetic
progress panel, with an increasing proportion of Iodent material
(Supplementary Figs. 1 and 2, Supplementary Table 1). In order
to leverage additional data, we also compared the genetic progress
panel to a diversity panel of 250 hybrids21,28,29 which covers the
whole domain of the PCA for ex-PVPs, and was extensively
phenotyped21,30–33. Importantly, this diversity panel served as a
training population for genomic prediction of yield in a European
breeding population34, lending credence to comparative analysis
of QTLs identified in this panel with signatures of selection in the
genetic progress panel (described later).

Mean yields in the 30 studied experiments covered the entire yield
range simulated over 35 years in 59 sites in Europe5 (3–12 t h−1,
latitudes 41–53°N, Fig. 1b). The measured environmental conditions
recorded in studied fields also captured the wide range of European-
scale conditions (Fig. 1e, f). Field experiments were clustered in six
environmental scenarios defined by combinations of favorable to
highly unfavorable air temperature, evaporative demand, and soil
water status (Fig. 1e), which markedly affected yield (Fig. 2). Overall,
minimum and maximum temperatures during the flowering time
covered the major range observed for the European maize growing
area over the last 35 years (e.g., maximum temperatures 24–32 °C in
our experiments vs 24–29 °C for the 59 × 35 studied records in
European sites Fig. 1c, d). They tended to be higher than those
measured at the same latitudes in the last 35 years, potentially a
consequence of climate change. Hence, the genetic progress was
studied here in a range of climatic conditions that essentially covers
both the current and past climatic conditions in the European maize
growing area, avoiding the bias recently suggested when old hybrids
are compared with recently released hybrids in today’s environments
only35.

The rate of genetic progress was high and similar in fields with
high/low temperatures or water status, and at two plant
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densities. The annual genetic gain in grain yield (i.e., the slope of
the regression between yield and year of release) was, on average,
101 kg ha−1 year−1 (n= 60, p-values < 10−5) representing 75% of
on-farm yield increase in Europe for the same period3. It was as
fast in favorable scenarios as in unfavorable ones with water
deficit or high temperatures (Fig. 2). Indeed, the interaction
between the year of release and the environmental scenario
accounted for only 0.9% of yield variance (GEIyear, Fig. 3b),
consistent with earlier studies7,16. The genetic gain was also
similar at two plant densities representative of farmers’ practices
in 1960 vs 201036 (7 and 9 plants m−2, Supplementary Fig. 3),
corresponding to different competition for light and soil water.
This result was unexpected because breeding for high plant
density was proposed as a key mechanism for maize genetic
progress7,36,37.

With grain number per unit area and individual grain weight
as key components of maize yield, the genetic progress in yield
was mainly driven in all scenarios by an increased grain number,
fixed at the end of flowering38 (Supplementary Fig. 4g–i),
consistent with earlier studies39,40. Year of release (Gyear in
Fig. 3b) captured 74% of the genetic effect on grain number in the
considered panel. Environmental scenarios (Scenario in Fig. 3b)
captured 76% of the environmental effect (Fig. 3b, see also
boxplots in Supplementary Fig. 5). Individual grain weight,
dependent on the grain-filling phase, progressed by 14% with
little difference between scenarios and was weakly related to yield
(Supplementary Fig. 4).

A change in phenology resulted in an improvement in repro-
ductive development. Breeders indirectly changed plant phe-
nology by selecting for yield. While crop cycle duration was
essentially constant with year of release (Fig. 4d, slightly
decreasing duration p-value= 0.01 and 0.02 in WW and WD,
respectively), opposing changes were observed in the duration of
vegetative (longer by +10 equivalent days at 20 °C, Fig. 5a, p-
value < 10−5) and grain filling (shorter, p-value < 10−5) pheno-
logical phases (Fig. 4c). The genetic variability of the duration of
the vegetative phase was largely exploited by breeding, because
the difference between the oldest and newest hybrids covered
most of it, in both the genetic progress and the diversity panel
(Fig. 6a). The increased vegetative phase duration was coupled
with a reduction in the anthesis-silking interval (ASI, Fig. 4b, p-
value < 10−5) which acted independently on grain number, as
shown by Bayesian network analysis (Fig. 3a). Individual grain
weight was maintained across years of release despite a shorter
duration of the grain-filling period, so the rate of grain filling per
unit time was improved by breeding. This was either because of
genetic improvement of carbon translocation, or because photo-
synthesis during the grain-filling period was improved since grain
filling is essentially sink-limited.

Reproductive development was profoundly affected by these
changes in phenology, as assessed in phenotyping platforms and
detailed field experiments (Fig. 7). Firstly, ovary cohorts, which
sequentially develop along with the ear, increased in number with
year of release in all studied treatments for soil water status and
temperature (Fig. 7a, Supplementary Fig. 6a, p-values in the figure
legend). The prolonged vegetative phase observed in recent
varieties allowed more ovary cohorts to be initiated38,41. Second,
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silk growth and the number of extruded silks, which determine
the ASI42, increased with year of release in all fields, platform
experiments, and treatments (Fig. 7e–h, Supplementary Fig. 6a).
This contributed to increasing the proportion of ovary cohorts
that become grains, via a reduced ovary abortion38,41,43. The
network analysis in Fig. 3a suggests that the increased vegetative
duration (supporting more ovaries) and the increased silk growth
(reducing abortion rate) mostly contributed to the observed
increase in the number of fertile grain cohorts for modern
hybrids, which was observed in all field experiments (Fig. 7b-d).
Interestingly, the number of grains or ovaries per cohort, which is
independent of the duration of the vegetative phase, remained
unchanged (Supplementary Fig. 7). This reinforces the hypothesis
of a phenology-driven change in reproductive development
underlying the yield progress for elite maize hybrids. Overall,
changes in phenology and its consequences on reproductive
development captured 40% of the variance explained by genetic
progress on grain number (Fig. 3b).

A change in plant architecture favored light interception at ear
level in spite of unchanged or reduced leaf area. The second set
of traits contributing to yield progress related to plant archi-
tecture (48% of variance explained by genetic progress, Fig. 3b).
Virtual 3D reconstructions were built every day to replicate plants
of each hybrid measured in the phenotyping platform44. The
vertical distribution of leaf area, calculated for each plant,

appreciably changed with a year of hybrid release, with an
increased proportion of leaf area located at lower altitudes in the
canopy (Fig. 5d, rhPAD in Fig. 3a, p-value < 10−5). The difference
between the oldest and newest hybrids accounted for most of the
genetic variability in rhPAD in the genetic progress and diversity
panels (Fig. 6b). Therefore, breeding for yield improvement also
indirectly affected this trait. This was due to larger leaves inserted
at the lowest positions on the stem44, together with increasingly
erect leaves also observed in our field experiment (Supplementary
Fig. 9c, d) and in other studies18,45,46. In turn, this changed the
vertical distribution of intercepted light, calculated via a model of
light penetration in virtual field canopies at three plant densities,
made-up of repetitions of each individual hybrid tested44,47. This
model44 and the network analysis (Fig. 3a) showed that the
change in rhPAD increased the amount of light intercepted by the
canopy layer harboring ears (Fig. 5e, Supplementary Fig. 8a),
which provides most of the carbon supply to the growing ear48.
Grain development was therefore improved, thereby avoiding
grain abortion41,49 and, in turn, increasing grain number per unit
of radiation intercepted by the whole canopy (Supplementary
Fig. 10a). The root:shoot ratio, measured in an aeroponic phe-
notyping platform, and the radiation use efficiency calculated via
a 3D model44 both increased in modern hybrids (Fig. 5f, Sup-
plementary Fig 8b). This was due to changes in allometries of
roots vs shoots and of the whole plant vs leaves. Indeed, shoot
biomass and leaf area tended to decrease at a given date with year
of release (Supplementary Figs. 8, 9, 11, 12). Notably, the leaf area
at the adult stage was still highest in the most recent hybrids
because it grew for a longer duration during the vegetative stage
(Supplementary Fig. 9b).

Leaf growth sensitivity, stomatal conductance, and water-use
efficiency were essentially unaffected by selection in spite of
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large genetic variabilities and heritabilities. Studied traits rela-
ted to adaptation to water deficit, evaporative demand, or high
temperature showed little change with year of release (Fig. 5g-i).
Stomatal conductance, calculated at the plant level for all hybrids
in a phenotyping platform by model inversion30, presented no
significant trend across the year of release (Fig. 5h, p-value=
0.03), consistent with an essentially stable biosynthesis of the
stress hormone abscisic acid50. Stomatal conductance was
therefore similar in the oldest and newest hybrids in spite of a
large genetic variability observed in both the genetic progress and
diversity panels, with a high heritability30 (Fig. 6c).

Leaf elongation rate, extremely sensitive to short-term environ-
mental variations51, tended to slightly decrease with year of release
in water deficit whereas it was stable in well-watered conditions,
indicating an essentially stable drought sensitivity of leaf growth
(Fig. 5g, p-values= 0.95 and 0.005 in WW and WD, respectively).
As in the case of stomatal conductance, the large genetic variability
was not exploited by breeding as shown by close leaf elongation rates
in modern vs old varieties (Supplementary Fig 6b). Water-use
efficiency i.e., the ratio of biomass to transpiration, largely affected by
stomatal behavior, was also stable in spite of high genetic variability
and heritability (Fig. 5i, p-values= 0.11 and 0.10). Finally, the
relation of grain yield to cumulated transpiration at harvest
simulated via a crop model52 showed a change in generational
responses to transpiration that was a by-product of increased grain
yield and not the consequence of better transpiration efficiency
(Supplementary Fig. 13). The absence of strong or significant trends
for these traits, and presumably for others that were not studied
here, resulted in an essentially stable sensitivity of grain number to
soil water status, with a slight tendency to increase in the multi-site
field experiment (Supplementary Fig. 10b). This is despite large
genetic variability and heritability for sensitivity to soil water status
in both genetic progress and diversity panels, and its genomic
prediction in the diversity panel29.

Phenology and plant architecture showed signatures of selec-
tion whereas physiological adaptive traits did not. We tested if
signatures of selection in the genome were consistent with the
phenotypic trends presented above. For that, we first identified
regions of the genome that showed evidence of selection in the
genetic progress panel. We then compared the resulting regions
with published QTLs for the traits presented above, identified in
the diversity panel21,30,32. The rationale was to evaluate to what
extent the genetic diversity available at genomic regions asso-
ciated with the studied traits has been exploited by breeders.

Regions under selection (RUS) were detected (Fig. 8) based on
two methods, (i) a genome-wide scan for adaptive divergence
between old and modern hybrids was performed using a Bayesian
statistic53, and (ii) for all studied hybrids, a regression analysis of
reference (B73) allele counts on the year of release was performed
(Supplementary Fig. 2). Both methods accounted for genetic
covariance among individuals and therefore the global trends
observed in Supplementary Figs. 1-2). This allowed for the
identification of genomic regions with robust differentiation
across decades of selection.

We performed a meta-analysis of the RUS loci together with
QTLs for phenological, architectural, or adaptive physiological
traits identified in the diversity panel (Fig. 8), measured in the
same set of phenotyping platforms and a similar field network
used for the genetic progress panel21,30,32,33. The analysis
included QTLs for: (i) flowering time and related traits33, (ii)
florigens (eQTLs)33, (iii) stomatal conductance and difference in
biomass between well-watered and water deficit treatments30, (iv)
radiation interception efficiency (RIE) and vertical distribution of
leaf area26, (v) sensitivity of leaf growth to soil water potential,
(vi) sensitivity of grain number to soil water potential, night
temperature, and light intensity29, also characterized by QTLs of
grain yield observed only in fields with high temperature or water
deficit21.
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Fig. 5 Phenological, reproductive, and architectural traits changed with year of release similarly in all environmental conditions; adaptive traits did
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We then estimated the proportion of RUS overlapping with
QTLs for individual traits and tested for enrichment of the
observed data relative to an expected distribution from 105

random iterations of genomic regions having the same number
and length (tested for both physical and genetic scales) as the
QTL space for each trait. Regions under selection largely
overlapped with QTLs for flowering time, florigens, and
architectural traits (Fig. 8, Supplementary Fig. 14), more than
what would be expected by chance alone. Moreover, the reference
allele frequency differences between old vs recent hybrids at
locations overlapping with these QTLs were significantly greater
than for random regions in the genome. Conversely, QTLs for
stomatal conductance, leaf growth rate, or water-use efficiency
were found to scarcely colocalize with RUS, and the QTL space
for these traits showed little difference in allele frequencies
between old vs recent hybrids.

Why physiological adaptive traits may not have been selected: a
fluctuation of allelic effects with environmental scenarios. We
examined a possible explanation why physiological adaptive traits
were not selected in the breeding programs behind the genetic
progress panel studied here, despite the fact that these traits can
have appreciable impacts on yield under given environmental
scenarios23. For this purpose, we selected six published yield
QTLs detected in the diversity panel that either (i) correspond to
adaptive traits (biosynthesis of abscisic acid or stomatal con-
ductance) with allelic effects affected by water deficit (Fig. 9a

QTLs a1 and a2) or high temperature (Fig. 9a, QTLa3); or (ii)
correspond to flowering time or architectural traits with essen-
tially stable allelic effects on yield (Fig. 9a, QTLc1 to c3). We used
the allelic effects estimated in the diversity panel in each scenario
(Fig. 9d) to predict the potential QTL × scenario interaction in
the multi-site field experiment presented here. For that, each field
experiment studied here was assigned to its respective environ-
mental scenario so the corresponding allelic effect was assigned to
each QTL.

The predicted allelic effects on the yield of the three
physiological adaptive QTLs were highly variable in the multi-
site field experiment, ranging from −0.16 to +0.17 t h−1

depending on the QTL and field (±3% of yield in unfavorable
conditions in which these QTLs have largest effects). These allelic
effects would also oscillate in each field with the year-to-year
variability of climatic conditions54. These oscillations may explain
why breeding programs did not affect, for these QTLs, the
frequencies of the allele with a positive effect on yield under
favorable conditions. Indeed, these frequencies were stable or
decreased between the 22 oldest and the 22 most recent hybrids
(Fig. 9b). Conversely, the predicted allelic effects on the yield of
the three developmental or architectural QTLs were more stable,
from 0.10 to 0.24 t ha−1, with a mean effect of +0.18 t ha−1 (2%
of mean yield, Fig. 9d). Consistently, the allelic frequencies of the
positive allele for yield in favorable conditions increased, for these
genomic regions, between old and recent hybrids (Fig. 9b).
Interestingly, breeding eliminated the unfavorable allele for yield
at the most stable QTL (Fig. 9a, b, QTL c2).

These results suggest that breeding for yield may indirectly
select for constitutive traits such as flowering time or rhPAD,
corresponding to QTLs with stable effects. In contrast, the
physiological adaptive traits were not selected because they
correspond to QTLs with scenario-dependent allelic effects.
Indeed, the coupling of a crop model with a model calculating
the change in allelic composition in a breeding population
suggests that the allelic frequencies at QTLs with unstable effects
oscillate between years without any clear trend, which is not the
case for QTLs with more stable effects54.

Discussion
This study results in the somewhat paradoxical conclusion that
physiological adaptive traits, whose tight control is essential for
the survival and reproduction of plants under stress (e.g., the
control of stomatal conductance or of growth under water defi-
cit), have not been affected by breeding in the considered elite
pools of temperate varieties. In natural contexts, avoidance of soil
water depletion via limitation of transpiration in the early stages
of the plant cycle allows the production of at least a few fertile
grains. In agricultural contexts, yield improvement in drought-
prone areas was reached via ‘conservative’ agronomical practices
that limit transpiration, such as reduced duration of crop cycle or
skipping one plant row out of two5,55. Here, we observed yield
improvement under water deficit or high temperature, showing a
stable yield gap with parallel progress caused by the same traits as
in favorable conditions. Selection on yield indirectly improved
essential traits, such as reproductive development and the con-
version of light into biomass, in all studied environmental con-
ditions. Conversely, physiological adaptive traits resulting in
conservative water use were not selected, even for mostly
dry areas.

A first possible interpretation might be that physiological
adaptive traits bring yield advantage only in extreme conditions
mostly incompatible with agriculture. However, a strong genetic
variability and high heritabilities were observed for stomatal
conductance and growth sensitivity in the diversity panel30, in

Fig. 6 The genetic progress (green and orange arrows) accounted for the
largest part of the genetic variabilities of vegetative phase duration and
of architecture, and for a small part of the genetic variability of stomatal
conductance. Left boxes, genetic progress panel (presented here); right
boxes, diversity panel with similar background. Green and orange arrows,
median of the phenotypic value of the 22 most recent and 22 most ancient
hybrids, respectively. Phenotypic values taken into account are the BLUES
for each hybrid. a Duration of the vegetative phase; b Distance of the
canopy layer with 50% of total leaf area from top, in % of canopy height
(rhPAD); c maximum stomatal conductance. n= 56, 60, and 60 hybrids in
panels a–c, respectively. Bold lines in boxes, median; boxes, 25 and 75
percentiles; vertical lines, 25 and 75 percentiles multiplied by 1.5 of the
interquartile range (25–75). Source data in Supplementary data 6.
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which all lines derive from landraces used by farmers in the
past28. Genetic differences and high heritabilities were also
observed for stomatal conductance, water-use efficiency, and
ABA synthesis in several breeding populations56,57. Hence, we
propose that the genetic variability within the temperate maize
breeding pool was not exploited by breeding strategies in the last
60 years.

A second hypothesis is that our conclusion is specific to the
breeding process in Europe, which would not favor the selection
of traits that confer adaptation to adverse conditions. However,
the retrospective analysis of maize yield over Europe (Fig. 1b)
shows that yields lower than 6 t ha−1 on average over 30 years
were observed at 32% of the sites (15% lower than 5 t ha−1).
Breeding companies involved in this study state that their own
multi-site breeding experiments include such low-yielding fields
(Stephane Melkior, Colin Guillaume, Thomas Presterl, and Alain
Murigneux, personal communication). Hence, the selection
pressure that resulted in the hybrids studied here would have
included both favorable and unfavorable conditions. Similarly,
the ERA series, resulting from a breeding program in the USA,
also shows essentially parallel yield progress in growing areas with
or without irrigation7,16, although the latter is associated with low
yield58. In the ERA program, the released varieties bred for
drought tolerance showed similar yield increases in dry and wet

experiments16. Similar results were also found in Argentina with
another set of varieties, with a rate of genetic progress similar to
that reported here14. A common rate of genetic progress was
observed in water deficit and well-watered conditions and at
different fertilization rates, although observed mean yields ranged
from 5 to 11 t ha−1 in worst vs best conditions59. Interestingly,
these authors observed an increased number of ovaries and ear
growth rate but a stable vegetative shoot growth rate, consistent
with results presented here60. Hence, our conclusion is likely valid
for the temperate maize growing area. It remains to be tested in
subtropical and tropical regions where maize is grown.

The interpretation we propose here is that genetic variabilities
for stomatal control, for parsimonious leaf growth under water
deficit, for water-use efficiency, or for more stable yield exist in
the breeding pool for temperate dent maize, but that they were
not exploited by the breeding processes over the last 60 years.
This is backed by the examples in Figs. 8 and 9. The yield QTLs
whose effects largely vary with environmental scenarios were
neither fixed by the selection nor were the related adaptive traits
whose effects on yield can be either positive or negative
depending on the environmental context. Because sensitivity
traits have different effects on yield in dry vs wet years29, allelic
frequencies in genomic regions governing these traits have likely
oscillated with year-to-year climatic variability during the
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breeding process, without an overall trend54. Hence, sensitivity
traits have not been exploited thus far, suggesting an untapped
reservoir of favorable alleles.

However, it remains to be demonstrated that exploiting this
reservoir will bring comparative advantages for yield. Indeed, it
was stated that, if this pool was not exploited but a substantial
yield improvement was still observed, breeding based on yield
(directly or via genomic selection) may well remain the most
promising strategy15. While recognizing that this statement is
fair, we propose two arguments against it. Firstly, climate change
will bring increasingly frequent events of severe drought or high
temperatures. Breeding for the resilience to such events requires
exploration of physiological adaptive traits, which may have
neutral or slightly negative effects on yield in favorable conditions
but allow new varieties to cope with extreme events (such a trade-

off of yield potential vs risk is indeed widely accepted for crop
cycle duration in a given growing area5). Because the climate is
rapidly changing and breeding for new varieties takes years, it
would probably be safe to explore this avenue. Secondly, the
constitutive traits associated with yield progress in this study may
reach a limit for future genetic progress, because the duration of
the vegetative period and the distribution of foliage in the canopy
cannot be indefinitely optimized. The high and increasing fre-
quencies of positive alleles at some QTLs for these traits suggest
that a limit might be reached in a near future.

Advances in phenotyping and novel breeding methods may
help exploit the genetic variability of physiological adaptive traits.
(i) The most obvious of those would be to select for yield stability
in addition to high yield. However, yield stability cannot be
considered as an objective per se because it may select for the
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lower yield. (ii) A major emphasis on suboptimal environments
may be reached by systematically exploring the genotype ×
environment × management landscape61. This would allow one
to refine selection for each environmental scenario, regardless of
the actual location of an experiment in considered regions. (iii)
Using the genetic variability of response curves of yield to tem-
perature, evaporative demand, and soil water status may also be
achieved with big data strategies that integrate phenomics,
modeling, and genomic prediction29,58. Selection would then be
carried out, in addition to yield itself, on the response of yield to
environmental conditions clustered into growth-oriented vs
conservative strategies. This would allow one to fine-tune hybrids
for different environmental scenarios and present farmers with a
larger offer, for them to choose the most appropriate hybrids
based on their knowledge of each field and on their attitude
towards risk23.

Methods
Genetic material. The genetic progress panel used in this study consisted of 66
highly successful commercial hybrids (Supplementary Table 1) released on the
European market from 1950 to 2015. Experiments in 2010-2013 were performed
with hybrids from 1950 to 2010, while further experiments included hybrids
released after 2010. Three hybrids considered in early experiments could not be
continued because the seed was not available anymore. Some phenotypic instal-
lations were able to only include a sub panel, which was sampled for an optimum
representation of breeding generations (Supplementary Table 2). The presence of
hybrids in all experiments is presented in Supplementary Table 1. The panel was
designed to show a limited range of maturity classes, from mid-early (FAO 280) to
mid-late (FAO 490) covering the largest growing area in Europe. Sixty of the
hybrids were genotyped with a 600k Axiom Affymetrix array62. Data can be found
and downloaded at https://doi.org/10.15454/KLD0GH ‘genotypic dataset’. After
quality control, 465,621 polymorphic SNPs were retained for analysis (excluding
SNPs with minor allele frequency lower than 0.05 and/or missing value for more
than 20% of hybrids). Missing values were otherwise imputed63. All physical
positions referred to hereafter are based on the B73 reference genome64.

We tested the representativeness of the above panel of varieties (named ‘genetic
progress panel’ below) by comparing it with other two panels. First, we considered
a series of 96 lines with expired Plant Variety Protection, known as ex-PVPs. These
represent the founding material and germplasm pool for maize breeding from 1970
to 2000 in America and Europe65,66, for which genotypic information is available
based on a set of 29,296 public SNP markers67. Second, we considered a panel of
hybrids presented elsewhere21,28 resulting from the cross of a common flint parent
(UH007) with 250 dent lines that maximized the diversity of temperate dent
germplasm while keeping a restricted flowering window (called diversity panel
hereafter), with the same range of earliness as the genetic progress panel. The
parental lines of the diversity panel were also genotyped with the 600k Affymetrix
array, as well as 500k markers obtained by genotyping-by-sequencing28. It was
phenotyped in four experiments in a phenotyping platform30–32 and in 29 field
experiments21,29 carried out in the same regions as those presented in Fig. 1a. We
compared the three panels using a principal component analysis (PCA, R softare
v3.6) based on common markers. The positions of founder lines of major heterotic
groups were identified on the biplot (Supplementary Fig. 1). Finally, we performed
another PCA on the genetic progress panel, with the 465,621 polymorphic SNPs,
and analyzed the correlation of the first axis of the PCA with the year of release of
corresponding varieties (R2= 0.70, Supplementary Fig. 2). This regression was
used in the genomic analysis below. The genome origin of each variety was
determined via STRUCTURE68, using prior information on genetic groups (Iodent,
Lancaster, Stiff Stalk) to estimate admixture proportions28. Pairwise identity-by-
state (IBS) estimates69 ranged from 0.65 to 0.99 (av. 0.72), compared to IBS of
0.58–0.95 (av 0.66)29 in the diversity panel. Nei’s genetic diversity index70 was
stable across old, intermediate, and recent groups of hybrids, thereby suggesting the
maintenance of allelic diversity across years of release71.

Yield and environmental conditions in Europe. We tested the representativeness
of the experiments presented here based on the information5 collected over 35
years in 59 locations representative of the European maize growing area and of
typical soil types of these regions, representing the ten European countries with the
highest maize growing. Briefly, soil data were obtained from the JRC European Soil
Commission database and from the Crop Growth Monitoring System. Meteor-
ological data represent 35 years of daily weather (1975–2010) obtained from (i) the
AGRI4CAST database of the JRC or the INRAE CLIMATIK databases. Sowing
dates were simulated in each field as the first day from February to May in which
the frequency of frost was <5% in the following ten days. We showed that these
rules captured the variability of sowing dates in European databases5. Two watering
regimes were simulated in each site, either rainfed or watered every seventh day
with a water volume equaling the difference between reference evapotranspiration

and rainfall. Plant density was adjusted in each country based on the JRC database.
Nitrogen supply at sowing was calculated as 70% of nitrogen needed to reach the
maximum yield of the optimum genotype with the optimum sowing date. Yields
presented in Fig. 1 were simulated based on the information on climate and
management practices presented above, over the 59 × 35 combinations of location
and year5. For that, we used a modified version of the APSIM model72 para-
metrized for the B73×UH007 hybrid73.

Platform experiments. The seven platform experiments presented here are syn-
thesized in Supplementary Table 2, and the hybrids involved in each of them are
presented in Supplementary Table 1. The phenotypic variables considered in each
experiment are presented in a spreadsheet (Supplementary data 11) in which each
sheet corresponds to one experiment and presents in detail the traits measured in
this experiment with their entity (e.g., ear or plant), characteristic (e.g., area),
methods, unit, and phenological stages at which each measurement was taken. This
file also presents the mapping of these terms onto public ontologies. Each of these
sheets is presented again as a csv file in an experiment-specific directory of the
dataset https://doi.org/10.15454/KLD0GH, together with complements of methods
and the datafile from which all values can be downloaded.

Three experiments were carried out at the Phenoarch platform26 https://www6.
montpellier.inrae.fr/lepse/Plateformes-de-phenotypage/Montpellier-Plant-
Phenotyping-Platforms-M3P/PhenoArch. They followed an alpha-lattice design
with seven, four, three and three plants per genotype in experiments a, c, and d,
respectively (Supplementary Table 2). Experiments involved treatments with
contrasting soil water status and air temperature. Two levels of soil water content
were imposed, either retention capacity (WW, mean soil water potential of
−0.05 MPa) or water deficit (WD) in which soil water potential was individually
maintained at −0.4 MPa for each pot30. The greenhouse temperature was 25 ± 3 °C
and 18 ± 1 °C during day and night. In Exp a, the high-temperature treatment (HT)
involved transferring four plants per hybrid to a greenhouse at 33 ± 3 and 21 ± 1 °C
during day and night, from the 14th visible leaf stage until flowering time. Air
temperature and humidity were measured at six positions on the platform every
15 min30. The temperature of the meristematic zone was measured with fine
thermocouples in either twenty (Exp. a) or six (other experiments) plants per
experiment. Daily incident photosynthetic photon flux density (PPFD) over each
plant was estimated by combining a 2D map of light transmission in the
greenhouse with the outside PPFD averaged every 15 min26. Supplemental light
was provided either during daytime when external solar radiation was below
300Wm−2 or to extend the photoperiod (14 h) with 0.4 lamps m−2. The number
of visible and ligulated leaves of each plant was recorded every week. This
information was used in a model of progression of leaf stage for each hybrid as a
function of thermal time, used to predict phenological stages for all hybrids in all
field experiments29.

Architectural traits were calculated from 3D reconstructions of each plant in the
platform (Exp. a), based on RGB (2056 × 2454) images taken from thirteen views
(twelve side views from 30° rotational difference and one top view) captured daily
for each plant during the night. The distribution of leaf area along the stem was
calculated from 3D reconstructions44. An index, rhPAD, represented the point in
this distribution (from the top of the canopy, relative to total canopy height) where
half of the cumulative leaf area was observed44. The radiation intercepted by the
canopy layer including the ear was calculated in simulated canopies repeating each
plant in the platform, at densities of 6, 8, or 10 plants m−2 44. Total leaf area and
shoot biovolume (transformed into biomass via periodic measurements of plant
water content) were obtained every day from 3D reconstructions (Exp. a) or
estimated by regression with pixel number in Exp. c and d30. Radiation use
efficiency (RUE) was calculated as the ratio of biomass to intercepted light, with the
latter calculated from 3D plant reconstructions44.

Reproductive development was studied in Exp. a, c and d. Four plants per
hybrid were sampled on the first day of pollen shedding, individually recorded for
each plant. Ears were dissected to measure (i) silk length (from ovary insertion to
tip) and the number of emerged silks42 (silks are modified styles of each ovary that
collect pollen) and (ii) the number of ovary cohorts per ear38 (rings of ovaries or
grains initiated at a common date, localized at a common distance from the ear
base). Raw trait values were corrected for spatial disturbances by fitting a mixed
model to daily measurements (R package SpATS74,75) with a fixed term for
genotype and random effects for rows and columns as well as a smooth surface
defined on row and column coordinates. Generalized heritabilities were calculated
daily with the same R package, using the same model but with genotypes included
as a random term74,75. Genotypic predictions for traits at individual time points, t,
were obtained from a generalized additive model fitted to the spatially adjusted
daily measurements, eyi;k tð Þ, for each plant k of genotype i

eyi;k tð Þ ¼ αi þ f i tð Þ þ ϵi;k tð Þ; ϵi;k tð Þ � N 0; σ2
� �

ð1Þ

where αi is a genotype-specific intercept, f i tð Þ is a genotype-specific thin plate
regression spline function on time, and ϵi;k tð Þ is a random error term. Model (1)
was fitted with the gam function of the mgcv R package by REML. Variance
components were obtained by treating smooth terms as random effects

Three series of experiments were performed in the Phenodyn platform76,
https://www6.montpellier.inrae.fr/lepse/Plateformes-de-phenotypage/Montpellier-
Plant-Phenotyping-Platforms-M3P. A completely randomized design was used
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involving three replicates per hybrid. Leaf elongation rate (LER), expressed per
equivalent days at 20 °C77, was measured with a 15 min temporal definition on the
sixth appeared leaf51. Three treatments were imposed, well-watered (soil water
potential ranging from 0 to −0.05MPa), water deficit in which soil was left to
dehydrate from −0.05 to −1.2 MPa, and high evaporative demand. The latter
treatment involved transferring well-watered plants to a growth chamber in which
steps of air vapor pressure deficit (VPDair) were imposed from 0.8 to 3 kPa51. Air
temperature and relative humidity were measured at plant level with nine
sensors51, the temperature of the meristematic zone was measured as above in six
plants, photosynthetic photon flux density (PPFD) was measured using nine
sensors51. The transpiration rate was calculated as in the previous work51. The
genotypic sensitivities to soil water potential and VPD were estimated as the slopes
of the regression of leaf elongation rate on soil water potential or VPDair

78. In Exp.
g, transpiration rates were scaled by individual plant leaf area, and smoothed by
Nadaraya-Watson kernel regression with an optimal span of 0.25, using the R
package stats. Genotypic estimates of transpiration rate were then calculated for
each time-point with a mixed model adjusting for spatial effects as above. They
were used for the calculation of stomatal conductance every 15th minute by
inversion of the Pennman-Monteith equation30. Generalized heritabilities were
calculated as above.

One experiment (Exp. h) was carried out in the RootPhAir platform (https://
uclouvain.be/en/research-institutes/eli/elia/rootphair.html), with a completely
randomized design involving 30 hybrids and 30 replicates per hybrid
(Supplementary Table 2). The greenhouse temperature was 23 ± 3 °C and 16 ± 2 °C
during day and night. Supplementary LED lighting was used to obtain a 16:8
photoperiod. Seeds were pre-germinated on vertical filter paper and transferred to
the aeroponics platform. The latter allows roots to grow at a rate only constrained
by assimilating availability and temperature. Shoot and root dry and fresh weights
were measured after 2 weeks. Genotypic means were corrected for spatial effects
as above.

Field experiments. The 30 field experiments presented here are synthesized in
Supplementary Table 2. The phenotypic and environmental variables considered in
each experiment are presented in a spreadsheet (Supplementary data 1) in which
each sheet corresponds to one experiment, as presented above for experiments in
controlled conditions. Each of these sheets is presented again as a csv file in an
experiment-specific directory of the dataset https://doi.org/10.15454/KLD0GH,
together with complements of methods and the datafile from which all values can
be downloaded.

One intense field experiment (Exp. k) tested the effect of plant density in the
Phenofield platorm79. Plants were sown at densities of either 7 or 9 plants m−2,
either irrigated or with a water deficit imposed by rain-out shelters. The experiment
followed an alpha-lattice design with three replicates of two-rows plots, 6 m long.
Light, air temperature, relative humidity (RH), and wind speed were measured
every hour with an on-field weather station. Soil water potential was measured
every day with tensiometers at 30, 60, and 90 cm depths with three replicates per
treatment. Plots were mechanically harvested, then grain yield was scaled to 15%
moisture content after estimation of grain moisture at harvest. Individual grain
weight was measured and used to calculate grain number per square meter from
grain yield. The proportion of the green fraction was calculated from images taken
horizontally above the canopy80.

Two intensive field experiments (Exp i, j) were carried out in the DIAPHEN
platform of Mauguio, near Montpellier. Experiments followed an alpha-lattice design
with three replicates of four-row plots. The light was measured with PPFD sensors at
2m height in the immediate vicinity of experimental fields. Air temperature and RH
were measured in ventilated shelters for calculation of VPDair. Soil water potential was
measured every day with tensiometers at 30, 60, and 90 cm depths in watered and
rainfed microplots with three and two replicates, respectively. Each day was
characterized by the VPDair for the three hours in the afternoon during which VPDair

was maximum, referred to as VPDmax. The progression of the crop cycle was expressed
in d20 °C after emergence. Visible leaf number was recorded twice during the vegetative
phase for 10 plants per plot for all field experiments. The number of fertile ears per plant
was measured at harvest. The number of cohorts and the number of grains per cohort
were manually counted from ears harvested from ten plants per plot. Silk length at
silking was measured on ten plants per plot. Traits were averaged per plot and spatially
adjusted as in the multi-site experiment below. In experiment j, images were taken from
a hexacopter Atechsys (http://atechsys.fr/) that carried a six-channel multispectral
camera (Hi-Phen modèle V3 AirPhen 6 bands (450–532–568–675–730–850). The leaf
area index was calculated as the projected leaf area per unit ground surface area,
generated by inverting the radiative transfer model PROSAIL81. The fraction of
intercepted photosynthetically active radiation was calculated from RGB images. The
mean leaf angle was calculated by inverting the radiative transfer model PROSAIL81.
Other variables calculated from these images are presented in the datafile https://doi.org/
10.15454/KLD0GH but not used in this study.

A multi-site experiment involved 26 field experiments (each defined as a
combination of location × year × water regime, Exp. i, j, l, m, i.e., including
intensive fields i and j presented above) between 2010 and 2017 in 16 European
locations spread along a climatic transect for temperature and evaporative demand
in both rainfed and irrigated conditions (Fig. 1a, Supplementary Table 2).
Experiments followed an alpha-lattice design with two replicates of four-row plots

in well-watered conditions, three replicates in rainfed conditions. The light was
measured with PPFD sensors at 2 m height in the immediate vicinity of
experimental fields. Air temperature and RH were measured in ventilated shelters
for calculation of VPDair. Soil water potential was measured every day with
tensiometers at 30, 60, and 90 cm depths in watered and rainfed microplots with
three and two replicates, respectively. Each day was characterized by the VPDair for
the 3 h in the afternoon during which VPDair was maximum, referred to as
VPDmax. Reference evapotranspiration (ET0) was calculated based on the Penman-
Monteith equation as revised in the FAO-56 estimation82. The progression of the
crop cycle in each site was expressed in d20 °C after emergence. The amount of light
intercepted by plants was simulated for each experiment using a modified APSIM
crop model73 for the standard hybrid B73xUH007 under well-watered conditions
but parametrized with the mean final leaf number of the panel73. As such, the
amount of light intercepted is akin to an environmental variable. Visible leaf
number was recorded twice during the vegetative phase for 10 plants per plot for all
field experiments, to check the model established based on experiments in
PhenoArch. Sowing, harvesting and emergence dates were recorded for each
experiment. Anthesis and silking dates were recorded for each plot when half the
plants reached these stages. The number of fertile ears per plant was measured at
harvest. The number of grain cohorts was calculated in each experiment by
dividing grain number by the mean ear number per plant (as measured in each
experiment) and by the number of grains per cohort measured in platform and
intensive field experiments, very stable for each hybrid (Supplementary Fig. 5). The
two central lines of each plot were mechanically harvested, and grain yield was
scaled to 15% moisture content. Individual grain weight was measured and used to
calculate grain number per m2 from grain yield. BLUEs were calculated, for grain
yield components and flowering traits, by fitting a mixed model that included a
fixed term for genotype, row and column as random terms and a smooth surface,
using the R package SpATS74,75. Generalized heritabilities were then calculated
with genotype included as a random term74,75.

The above field experiments were clustered into six environmental scenarios
based on light, temperature, VPDmax, and soil water status. A principal component
analysis was performed on cumulated intercepted light and daily minimum and
maximum temperatures over the vegetative, flowering and grain-filling phases
defined as earlier29, followed by clustering of experiments based on partitioning
around medoids. Three consistent temperature scenarios were identified, namely
cool, warm and hot, with mean minimum temperatures of 15, 17, and 18 °C and
mean maximum temperature of 25, 28, and 30 °C, respectively. The Hot scenario
was also characterized by a longer period during which temperatures were at high
values (Fig. 1e). Soil water conditions, clustered over the same phases, resulted in
two scenarios (Fig. 1f), namely well-watered (mean soil water potential during the
vegetative and flowering phases above −0.1 MPa) and water deficit (mean soil
water deficit below −0.1 MPa, see time courses in Fig. 1f). Evapotranspiration was
simulated with the APSIM crop growth model72, which simulates plant growth,
transpiration and soil evaporation every day, based on environmental data and
parametrized for the B73×UH007 hybrid but with final leaf number, phyllochron
and ligulochron set to the mean genotypic estimate over four generations of
hybrids73. Calculations at the base of Supplementary Fig. 13 follow those in ref. 52.
Briefly, yields measured in each experiment were plotted against
evapotranspiration simulated as above in the same field for each studied hybrid.
Hybrids were then clustered by year of release.

Genetic gain, Bayesian networks, and genotype × environment interaction.
Genetic gain for a trait was defined by the slope of the linear regression of the trait
value on the year of release in the genetic progress panel. Genotypic means for
traits were obtained for each environmental scenario or experimental treatment
with a linear mixed model including a fixed term for hybrids and a random term
for experiments (R package lme4). A Bayesian network was constructed (R package
bnlearn) to evaluate the conditional dependencies between year of release, mea-
sured phenotypic traits and grain number. For each environmental scenario,
acyclic-directed Bayesian networks were fitted to scenario-specific genotypic means
of grain number and phenology, together with estimates for traits measured in
phenotyping platforms, centered and scaled prior to analysis. Straightforward
assumptions were made in the analysis. Firstly, the year of release was assumed to
be a driver for the considered traits (i.e., no arc from traits to a year of release).
Secondly, conditional dependencies between phenotypic traits followed the tem-
poral order of plant development25, i.e., traits determined during the vegetative and
flowering periods were assumed as not conditionally dependent on grain number,
which is fixed at the beginning of the grain-filling period. Network learning was
conducted with the TABU algorithm combined with the Bayesian gaussian
equivalent score (BGE), which assumes non-informative flat priors over both the
space of network structures and of parameters83. Scenario-specific models were
fitted to the corresponding genotypic means of traits for 500 bootstrap samples,
and subsequently averaged across all bootstrap iterations83,84. Model averaging was
based on an empirical test, whereby significant arcs were maintained83,84. Scenario-
specific predictive ability of averaged models was then evaluated by ten times
repeated five-fold cross-validation. Correlation between predicted and observed
values was 0.7 on average across traits and scenarios. A synthesis is presented in
Fig. 3a representing the arrows that were consensus across scenarios.
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We then further investigated the rate of yield progress in various linear models
for grain number per square meter29, i.e., the dependence of grain number on the
year of release. To model grain numbers across multiple experiments grouped into
environmental scenarios, the linear models used contained terms for genetic main
effects (including generation of selection), and additional terms for environmental
main effects and genotype-by-environment interaction. The inclusion of terms was
tested by ANOVA-based forward selection and backward elimination with the R
package stats (R Core Team, 2020). The grain number was modeled as a response to
a genotypic main effect, an environmental main effect, and a residual term that
included the genotype by environment interaction. The linear model was fitted
with the R package stats85. Genotypic and environmental effects were further
partitioned by including a fixed genotypic covariate term for the year of release
(Gyear) and a fixed factor representing environmental scenarios (Scen), respectively.
After the introduction of a genotypic covariate and an environmental scenario
effect, a residual genotypic main effect (Gres) was included alongside a residual
environmental effect “experiment within scenarios” (Eres). The interaction between
genotypes and environment was partitioned into a part due to Gyear × Scen (GEIyear
in Fig. 3b) and a term:

GN ¼ μþ ðGyear þ GresÞ þ ðScenþ EresÞ þ ðGyear ´ ScenÞ þ ε ð2Þ
where µ is the intercept. We then investigated the relative contributions of key
categories of traits -phenology, reproductive and architecture- to the variance
explained for grain number. This resulted in a further partition of genotypic main
effects by the duration of the vegetative phase (Veg), number of extruded silks
(Silks), and plant architecture (rhPAD). In addition, Gyear, was again included to
assess the extent to which genetic gain was captured by those three covariates.
Finally, a residual genotypic main effect was added. For the environmental main
effect, again we included the partitioning of trial main effects into scenarios (Scen)
and experiments within scenarios (Eres). The interaction between the genotypic
covariate year of release and scenario was also included (Gyear ´ Scen).

GN ¼ μþ ðVegþ Silk þ rhpadþ Gyear þ GresÞ þ ðScenþ EresÞ
þ ðGyear ´ ScenÞ þ ε

ð3Þ

Finally, we dissected the interaction of year and scenario by factorial regression
on environmental indices:

GN ¼ μþ Gyear þ Gres

� �
þ Scenþ Eres

� �þ β1Ψ þ β2Rintþ ε ð4Þ

where β1 is the genotypic sensitivity to mean soil water potential at flowering, Ψ,
and β2 is the genotypic response to the intercepted radiation during the vegetative
phase, Rint. The environmental indices were included sequentially by step-wise
model selection, as described above.

Genome-wide scans of regions under selection and multi-trait meta-analysis.
We performed genome-wide scans to identify regions under selection (RUS), based
on two independent methods:

We identified loci with robust differentiation between the 22 oldest and 22 most
recent hybrids of the genetic progress panel (Supplementary Table 1) using a
Bayesian XTX statistic that minimizes false associations by accounting for
genome-wide covariance in allele frequencies53. XTX identifies loci with
differences in group-wise allele frequencies that strongly depart from genome-
wide differences arising from population structure, putatively identifying loci
underlying changes due to selection. Bayenv 2.0 was run using default settings,
with a random subset of 8946 SNPs pruned according to local LD86 to compute
the covariance matrix. As recommended by the authors, markers exceeding the
99.95th quantile of XTX values were considered RUS.
We carried out a regression between the year of release and allele counts for the
alternative SNP to the B73 reference genome (0, 1, or 2 whether the considered
allele is homozygous for B73 allele, heterozygous or homozigous for the
alternative allele, respectively) over the whole panel (Supplementary Fig. 2)
while controlling for the relatedness structure using a genomic relationship
matrix (GCTA software: flag --mlma87. SNPs were ranked based on the
−log10(p-value) for the regression coefficient. A threshold of 3.5 was used for
identifying SNPs whose allelic values changed most with year of release, and
classified as belonging to RUS (Supplementary Fig 2c).

Finally, we tested for the enrichment of colocalization between RUS and QTLs
for studied traits, compared to proportions expected for an equal number of
random genomic regions having the same physical size as the studied QTL
intervals, using a permutation-based approach. We sampled, 100,000 times,
random regions from the genome with matching numbers and physical lengths
compared with the studied QTLs while keeping the RUS positions fixed. At each
iteration, we counted the number of random regions overlapping with RUS. A null
distribution was built based on these 100,000 values, to which the observed number
of overlaps was compared via a Chi2 test (function permp in the R package
statmod88). Because published QTLs were positioned on the V2 version of the
genome21,30–32, the whole study was performed on this version. Colocalization of
QTLs was tested for: (i) QTLs for days to anthesis, days to silking and final leaf
number identified in the panel of lines33, (ii) eQTLs for the florigens ZCN8,
ZCN12, and ZCN7 in the same panel33, (iii) QTLs for maximal stomatal

conductance and difference in biomass between well-watered and water deficit
treatments, measured in a series of experiments in PhenoArch30 and calculated in
the hybrid panel28, (iv) QTLs for radiation interception efficiency (RIE) and
vertical distribution of leaf area measured in PhenoArch and calculated as in ref. 44

in the hybrid panel, (v) QTLs for the slope of the response curve of leaf elongation
rate to soil water potential measured in PhenoArch in the hybrid panel, (vi) QTLs
for grain yield in the hybrid panel, observed in fields classified in scenarios with
high temperature or water deficit, but not in well-watered conditions21 (vi)
QTLs for the slope of the responses of grain number to soil water potential, night
temperature and light intensity29 in the same panel.

Calculation of allelic effects of QTLs in the 24 fields of the multi-site
experiment and of allelic frequencies at these QTLs in the 22 most ancient
and 22 most recent hybrids of the panel. We considered six QTLs identified
previously in the diversity panel, whose effects depend on the environmental
scenarios defined as a function of soil water status and air temperature (Fig. 9). We
ascribed each of the 24 fields of the multi-site experiment to the scenarios as
defined in Millet et al.21 using measured environmental conditions in each field of
the multi-site experiment (Exp i,j,l,m as in Supplementary Table 2). For each QTL,
the allelic effect estimated in the previous study was assigned to each field as a
function of its environmental scenario. The frequency of the B73 allele was cal-
culated for the peak marker at each QTL21 in the 22 most ancient and 22 most
recent hybrids of the genetic progress panel. Frequencies presented in Fig. 9d are
those of the allele that provides positive effect in the most favorable condition for
yield, namely cool and well-watered.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The Phenotypic and genotypic data generated in this study have been deposited in the
DATA.INRAE database under accession code https://doi.org/10.15454/KLD0GH. They
are presented with necessary metadata and explanation of the dataset.
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